
GIT CHEAT SHEET

STAGE & SNAPSHOT
Working with snapshots and the Git staging area

git status

show modified files in working directory, staged for your next commit

git add [file]

add a file as it looks now to your next commit (stage)

git reset [file]

unstage a file while retaining the changes in working directory

git diff

diff of what is changed but not staged

git diff --staged

diff of what is staged but not yet committed

git commit -m “[descriptive message]”

commit your staged content as a new commit snapshot

SETUP
Configuring user information used across all local repositories

git config --global user.name “[firstname lastname]”

set a name that is identifiable for credit when review version history

git config --global user.email “[valid-email]”

set an email address that will be associated with each history marker

git config --global color.ui auto

set automatic command line coloring for Git for easy reviewing

SETUP & INIT
Configuring user information, initializing and cloning repositories

git init

initialize an existing directory as a Git repository

git clone [url]

retrieve an entire repository from a hosted location via URL

BRANCH & MERGE
Isolating work in branches, changing context, and integrating changes

git branch

list your branches. a * will appear next to the currently active branch

git branch [branch-name]

create a new branch at the current commit

git checkout

switch to another branch and check it out into your working directory

git merge [branch]

merge the specified branch’s history into the current one

git log

show all commits in the current branch’s history

Git is the free and open source distributed version control system that's responsible for everything GitHub
related that happens locally on your computer. This cheat sheet features the most important and commonly
used Git commands for easy reference.

INSTALLATION & GUIS
With platform specific installers for Git, GitHub also provides the
ease of staying up-to-date with the latest releases of the command
line tool while providing a graphical user interface for day-to-day
interaction, review, and repository synchronization.

GitHub for Windows
https://windows.github.com

GitHub for Mac
https://mac.github.com

For Linux and Solaris platforms, the latest release is available on
the official Git web site.

Git for All Platforms
http://git-scm.com

education@github.com
education.github.com

Education
Teach and learn better, together. GitHub is free for students and teach-
ers. Discounts available for other educational uses.

Teach and learn better, together. GitHub is free for students and teach-
ers. Discounts available for other educational uses.

SHARE & UPDATE
Retrieving updates from another repository and updating local repos

git remote add [alias] [url]

add a git URL as an alias

git fetch [alias]

fetch down all the branches from that Git remote

git merge [alias]/[branch]

merge a remote branch into your current branch to bring it up to date

git push [alias] [branch]

Transmit local branch commits to the remote repository branch

git pull

fetch and merge any commits from the tracking remote branch

TRACKING PATH CHANGES
Versioning file removes and path changes

git rm [file]

delete the file from project and stage the removal for commit

git mv [existing-path] [new-path]

change an existing file path and stage the move

git log --stat -M

show all commit logs with indication of any paths that moved TEMPORARY COMMITS
Temporarily store modified, tracked files in order to change branches

git stash

Save modified and staged changes

git stash list

list stack-order of stashed file changes

git stash pop

write working from top of stash stack

git stash drop

discard the changes from top of stash stack

REWRITE HISTORY
Rewriting branches, updating commits and clearing history

git rebase [branch]

apply any commits of current branch ahead of specified one

git reset --hard [commit]

clear staging area, rewrite working tree from specified commit

INSPECT & COMPARE
Examining logs, diffs and object information

git log

show the commit history for the currently active branch

git log branchB..branchA

show the commits on branchA that are not on branchB

git log --follow [file]

show the commits that changed file, even across renames

git diff branchB...branchA

show the diff of what is in branchA that is not in branchB

git show [SHA]

show any object in Git in human-readable format

IGNORING PATTERNS
Preventing unintentional staging or commiting of files

git config --global core.excludesfile [file]

system wide ignore pattern for all local repositories

logs/
*.notes
pattern*/

Save a file with desired patterns as .gitignore with either direct string
matches or wildcard globs.

git clean -n
Shows which files would be removed from working directory.
Use the -f flag in place of the -n flag to execute the clean.

Push the branch to <remote>, along with necessary commits and
objects. Creates named branch in the remote repo if it doesn’t exist.

git push
<remote> <branch>

git reset <file>
Remove <file> from the staging area, but leave the working directory
unchanged. This unstages a file without overwriting any changes.

git pull <remote>
Fetch the specified remote’s copy of current branch and
immediately merge it into the local copy.

git revert
<commit>

Create new commit that undoes all of the changes made in
<commit>, then apply it to the current branch.

git fetch
<remote> <branch>

Fetches a specific <branch>, from the repo. Leave off <branch>
to fetch all remote refs.

git remote add
<name> <url>

Create a new connection to a remote repo. After adding a remote,
you can use <name> as a shortcut for <url> in other commands.

git diff
Show unstaged changes between your index and
working directory.

git commit -m
"<message>"

Commit the staged snapshot, but instead of launching
a text editor, use <message> as the commit message.

UNDOING CHANGES

git status List which files are staged, unstaged, and untracked.

REMOTE REPOSITORIES

git log
Display the entire commit history using the default format.
For customization see additional options.

git branch
List all of the branches in your repo. Add a <branch> argument to
create a new branch with the name <branch>.

git checkout -b
<branch>

Create and check out a new branch named <branch>.
Drop the -b flag to checkout an existing branch.

git merge <branch> Merge <branch> into the current branch.

git add
<directory>

Stage all changes in <directory> for the next commit.
Replace <directory> with a <file> to change a specific file.

git clone <repo>

git config
user.name <name>

GIT BRANCHES

Define author name to be used for all commits in current repo. Devs
commonly use --global flag to set config options for current user.

git rebase <base>

git reflog
Show a log of changes to the local repository’s HEAD.
Add --relative-date flag to show date info or --all to show all refs.

Clone repo located at <repo> onto local machine. Original repo can be
located on the local filesystem or on a remote machine via HTTP or SSH.

git init
<directory>

Create empty Git repo in specified directory. Run with no
arguments to initialize the current directory as a git repository.

git commit
--amend

Replace the last commit with the staged changes and last commit
combined. Use with nothing staged to edit the last commit’s message.

Rebase the current branch onto <base>. <base> can be a commit ID,
branch name, a tag, or a relative reference to HEAD.

GIT BASICS REWRITING GIT HISTORY

Git Cheat Sheet

Visit atlassian.com/git for more information, training, and tutorials

http://atlassian.com/git

git config --global
user.name <name>

Define the author name to be used for all commits by the current user.

GIT CONFIG

git config --global
user.email <email>

Define the author email to be used for all commits by the current user.

git config --global
alias. <alias-name>
<git-command>

Create shortcut for a Git command. E.g. alias.glog “log --graph
--oneline” will set ”git glog” equivalent to ”git log --graph --oneline.

git config --system
core.editor <editor>

Set text editor used by commands for all users on the machine. <editor>
arg should be the command that launches the desired editor (e.g., vi).

Open the global configuration file in a text editor for manual editing.git config
--global --edit

Limit number of commits by <limit>.
E.g. ”git log -5” will limit to 5 commits.

git log -<limit>

Include which files were altered and the relative number of
lines that were added or deleted from each of them.

git log --oneline

Display the full diff of each commit.

git log --stat

Search for commits by a particular author.

git log -p

git log --author=
”<pattern>”

Show commits that occur between <since> and <until>. Args can be a
commit ID, branch name, HEAD, or any other kind of revision reference.

git log
--grep=”<pattern>”

git log
<since>..<until>

Only display commits that have the specified file.git log -- <file>

--graph flag draws a text based graph of commits on left side of commit
msgs. --decorate adds names of branches or tags of commits shown.

git log --graph
--decorate

git diff HEAD Show difference between working directory and last commit.

git diff --cached Show difference between staged changes and last commit

git reset
Reset staging area to match most recent commit,
but leave the working directory unchanged.

git reset --hard
Reset staging area and working directory to match most recent
commit and overwrites all changes in the working directory.

git reset <commit>
Move the current branch tip backward to <commit>, reset the
staging area to match, but leave the working directory alone.

git reset --hard
<commit>

Same as previous, but resets both the staging area & working directory to
match. Deletes uncommitted changes, and all commits after <commit>.

GIT RESET

GIT REBASE

git rebase -i
<base>

Interactively rebase current branch onto <base>. Launches editor to enter
commands for how each commit will be transferred to the new base.

GIT PULL

git pull --rebase
<remote>

Fetch the remote’s copy of current branch and rebases it into the local
copy. Uses git rebase instead of merge to integrate the branches.

GIT PUSH

git push <remote>
--force

Forces the git push even if it results in a non-fast-forward merge. Do not use
the --force flag unless you’re absolutely sure you know what you’re doing.

git push <remote>
--all

Push all of your local branches to the specified remote.

git push <remote>
--tags

Tags aren’t automatically pushed when you push a branch or use the
--all flag. The --tags flag sends all of your local tags to the remote repo.

Additional Options +

Visit atlassian.com/git for more information, training, and tutorials

GIT DIFF

GIT LOG

Condense each commit to a single line.

Search for commits with a commit message that
matches <pattern>.

http://atlassian.com/git

