
 C++ Cheat Sheet
 Syntax

 Let’s kick off our C++ reference sheet with syntax.

 #include <iostream>

 using namespace std ;

 int main () {

 cout << "Hello World!" ;

 return 0 ;

 }

 ● Line 1: ‘#include <iostream>’ specifies the header file library , which helps you deal with
 input and output objects like “cout.” Header files are used to add specific functionality to
 C++ programs.

 ● Line 2: ‘using namespace std’ allows you to use names for objects and variables from
 the standard library.

 ● Line 3: Blank line. C++ ignores the spaces present within the code.
 ● Line 4: ‘int main()’, which is a function. Any code within the curly brackets {} will be

 executed.
 ● Line 5: cout is an object used along with the insertion operator (<<) to print the output

 text.
 ● Line 6: return 0 is used to end the main function.

 While writing code in C++, always make sure you end each line with a semicolon to specify the
 end of the line. You must also add the closing bracket to end the main function; otherwise, you’ll
 get errors while compiling the code.

 Comments
 In C++, the compiler ignores the text followed by the comments. C++ supports two different
 types of comments:

 //: specifies the single-line comment.
 /* ….*/ : specifies the multi-line comment.

 Data Types
 Data types specify the type of the data variable. The compiler allocates the memory based on
 the data types. The following are the C++ data types:

 ● Built-in or primitive data types: Pre-defined data types that can be used directly,
 including Integer, Character, Boolean, Floating Point, Double Floating Point, Valueless or
 Void, and Wide Character.

 ● Derived data types: Derived from primitive data types: function, array, pointer, and
 reference.

 ● User-defined data types: Defined by users: class, structure, union, enumeration, and
 Typedef.

 Variables
 Variables store the data values. C++ supports various types of variables, such as int, double,
 string, char, and float.

 For example:

 int num = 12 ; // Integer

 string name = "Unity Buddy" ; // String(text)

 char ch = 'U' ; //character

 float fl = 5.99 ; // Floating point number

 You can use alphabets, numbers, and the underscore for a variable name. However, variables
 cannot start with numbers or the underscore ‘_’ character. Instead, they begin with letters

 followed by numbers or the underscore ‘_’ character. Moreover, you cannot use a keyword for
 the variable name.

 Variables Scope
 In C++, you can declare your variables within three parts of the program, also known as the
 scope of the variables:

 Local Variables
 These variables are declared within a function or block of code. Their scope is only limited to
 that function or block and cannot be accessed by any other statement outside that block.

 For example:

 #include <iostream>

 using namespace std ;

 int main () {

 // Local variable:

 int a, b;

 int c;

 // initialization

 a = 10 ;

 b = 20 ;

 c = a + b;

 cout << c;

 return 0 ;

 }

 Global Variables
 Global variables are accessible to any function, method, or block of the program. Usually, it is
 defined outside all the functions. The value of the global variable is the same throughout the
 program.

 For example:

 #include <iostream>

 using namespace std ;

 // Global variable:

 int g;

 int main () {

 // Local variable:

 int a, b;

 // initialization

 a = 10 ;

 b = 20 ;

 g = a + b;

 cout << g;

 return 0 ;

 }

 Data Type Modifiers
 Data type modifiers are used to modify a data type’s maximum length of data. The following
 table will help you understand the size and range of built-in data types when combined with
 modifiers. There are four different types of modifiers available in C++, namely signed, unsigned,
 short, and long.

 Data Type Size (in bytes) Range

 short int 2 -32,768 to 32,767

 unsigned short int 2 0 to 65,535

 unsigned int 4 0 to 4,294,967,295

 int 4
 -2,147,483,648 to
 2,147,483,647

 long int 4
 -2,147,483,648 to
 2,147,483,647

 unsigned long int 4 0 to 4,294,967,295

 long long int 8 -(2^63) to (2^63)-1

 unsigned long long
 int 8

 0 to
 18,446,744,073,709,551,6
 15

 signed char 1 -128 to 127

 unsigned char 1 0 to 255

 float 4

 double 8

 long double 12

 wchar_t 2 or 4 1 wide character

 Literals
 Literals in C++ are data that you can use to represent the fixed values. You can use them
 directly within the code.

 For example, 1, 2.5, “s”, etc.

 There are different types of literal available in C++, as explained below:

 Integer literal
 An integer literal is numeric and does not have any fractional or exponential part.

 For example:

 Decimal (base 10): 0, -9, 22, etc.
 Octal (base 8) : 021, 077, 033, etc.
 Hexadecimal (base 16): 0x7f, 0x2a, 0x521, etc.

 Floating-Point Literals
 These are numeric literals that have either a fractional part or an exponent part.

 For example: (-2.0, 0.8589, -0.26E -5).

 Character Literal
 These are single characters enclosed within a single quote.

 For example: ‘a’, ‘F’, ‘2’, etc.

 Escape Sequences
 You can use escape sequences in C++ for untypable characters that have special meaning in
 C++.

 For example:

 Escape
 Sequences Characters

 \b Backspace

 \f Form feed

 \n Newline

 \r Return

 \t Horizontal tab

 \v Vertical tab

 \\ Backslash

 \'
 Single quotation
 mark

 \"
 Double quotation
 mark

 \? Question mark

 \0 Null Character

 String Literal
 This is a sequence of characters enclosed within double quotes.

 For example:

 "good" string constant

 "" null string constant

 " " string constant of six white space

 "x" string constant having a single character

 "Earth is round\n" prints string with a newline

 Constants
 To create a variable for which you do not want to change the values, you can use the “const”
 keyword.

 For example:

 const int LIGHT_SPEED = 2997928 ;

 LIGHT_SPEED = 2500 // cannot change the value

 Math Functions
 C++ provides several functions that allow you to perform mathematical tasks. The following
 table highlights all the basic math functions available in C++:

 Function Description

 abs(x) Returns the absolute value of x

 acos(x) Returns the arccosine of x

 asin(x) Returns the arcsine of x

 atan(x) Returns the arctangent of x

 cbrt(x) Returns the cube root of x

 ceil(x) Returns the value of x rounded up to its nearest integer

 cos(x) Returns the cosine of x

 cosh(x) Returns the hyperbolic cosine of x

 exp(x) Returns the value of Ex

 expm1(x) Returns ex -1

 fabs(x) Returns the absolute value of a floating x

 fdim(x, y) Returns the positive difference between x and y

 floor(x) Returns the value of x rounded down to its nearest integer

 hypot(x, y) Returns sqrt(x2 +y2) without intermediate overflow or underflow

 fma(x, y, z) Returns x*y+z without losing precision

 fmax(x, y) Returns the highest value of a floating x and y

 fmin(x, y) Returns the lowest value of a floating x and y

 fmod(x, y) Returns the floating point remainder of x/y

 pow(x, y) Returns the value of x to the power of y

 sin(x) Returns the sine of x (x is in radians)

 sinh(x) Returns the hyperbolic sine of a double value

 tan(x) Returns the tangent of an angle

 tanh(x) Returns the hyperbolic tangent of a double value

 User Inputs
 C++ supports “cout” and “cin” for displaying outputs and for taking inputs from users,
 respectively. The cout uses the iteration operator (<<), and cin uses (>>).

 For example:

 int x; // declaring a variable

 cout << "Type a number: " ; // Type any number and hit enter

 cin >> x; // Get user input from the keyboard

 cout << "Your number is: " << x; // Display the value

 Strings
 A string is a collection or sequence of characters enclosed within double-quotes.

 For example:

 string str= "Hello" ;

 To use string within your code, you must include the string library using this code line:

 #include <string>

 C++ will then allow you to perform various functions to manipulate strings. The following table
 describes the function names and their descriptions:

 Function Description

 int compare(const string& str) Compare two string objects

 int length() Finds the length of the string

 void swap(string& str) Swaps the values of two string objects

 string substr(int pos, int n) Creates a new string object of n characters

 int size() Return the length of the string in terms of bytes

 void resize(int n) Resizes the length of the string up to n characters

 string& replace(int pos, int len,
 string& str)

 Replaces the portion of the string beginning at character
 position pos and spans len characters

 string& append(const string&
 str)

 Adds a new character at the end of another string object

 char& at(int pos) Accesses an individual character at specified position pos

 int find(string& str, int pos, int
 n)

 Finds a string specified in the parameter

 int find_first_of(string& str, int
 pos, int n)

 Find the first occurrence of the specified sequence

 int find_first_not_of(string& str,
 int pos, int n)

 Searches for the string for the first character that does not
 match with any of the characters specified in the string

 int find_last_of(string& str, int
 pos, int n)

 Searches for the string for the last character of a specified
 sequence

 int find_last_not_of(string& str,
 int pos)

 Searches for the last character that does not match with the
 specified sequence

 string& insert() Inserts a new character before the character indicated by the
 position pos

 int max_size() Finds the maximum length of the string

 void push_back(char ch) Adds a new character ch at the end of the string

 void pop_back() Removes the last character of the string

 string& assign() Assigns new value to the string

 int copy(string& str) Copies the contents of string into another

 void clear() Removes all the elements from the string

 const_reverse_iterator
 crbegin()

 Points to the last character of the string

 const_char* data() Copies the characters of string into an array

 bool empty() Checks whether the string is empty or not

 string& erase() Removes the characters as specified

 char& front() Returns a reference of the first character

 string& operator+=() Appends a new character at the end of the string

 string& operator=() Assigns a new value to the string

 char operator[](pos) Retrieves a character at specified position pos

 int rfind() Searches for the last occurrence of the string

 iterator end() Refers to the last character of the string

 reverse_iterator rend() Points to the first character of the string

 void shrink_to_fit() Reduces the capacity and makes it equal to the size of the
 string

 char* c_str() Returns pointer to an array containing a null terminated
 sequence of characters

 void reserve(inr len) Requests a change in capacity

 allocator_type get_allocator(); Returns the allocated object associated with the string

 Operators
 C++ supports different types of operators to add logic to your code and perform operations on
 variables and their respective values. Here are the C++ operator types:

 Arithmetic Operators
 You can perform common mathematical operations with arithmetic operators.

 Operator Name Example

 + Addition x + y

 - Subtraction x - y

 * Multiplication x * y

 / Division x / y

 % Modulus x % y

 ++ Increment ++x

 -- Decrement --x

 Assignment Operators
 You can assign values to variables with assignment operators.

 Operator Example Description Same As

 = x = 5 For assigning a value to
 the variable.

 x = 5

 += x += 3 It will add the value 3 to
 the value of x.

 x = x + 3

 -= x -= 3 It will subtract the value 3
 from the value of x.

 x = x - 3

 *= x *= 3 It will multiply the value 3
 with the value of x.

 x = x * 3

 /= x /= 3 It will divide the value of x
 by 3.

 x = x / 3

 %= x %= 3 It will return the reminder
 of dividing the the value x
 by 3.

 x = x % 3

 &= x &= 3 x = x & 3

 |= x |= 3 x = x | 3

 ̂ = x ^= 3 x = x ^ 3

 >>= x >>= 3 x = x >> 3

 <<= x <<= 3 x = x << 3

 Comparison Operators
 You can use these operators to compare two values to return a true or false value. It will return
 true if both the values match, and false if they don’t match.

 Operator Name Example

 == Equal to x == y

 != Not equal x != y

 > Greater than x > y

 < Less than x < y

 >= Greater than or
 equal to

 x >= y

 <= Less than or
 equal to

 x <= y

 Logical Operators
 These operators determine the logic between variables.

 Operator Name Description Example

 && Logical and Returns true if both statements are true x < 5 && x < 10

 || Logical or Returns true if one of the statements is
 true

 x < 5 || x < 4

 ! Logical not Reverse the result, returns false if the
 result is true

 !(x < 5 && x < 10)

 Decision-Making Statements
 Decision-making statements in C++ decide the flow of program execution. Here, programmers
 specify more than one condition. If a condition holds true the statements in that block are
 executed. Otherwise, the statements from other blocks are executed instead.

 C++ has various decision-making instructions:

 ● If statement
 ● if..else statement
 ● Switch statement
 ● Nested if statement
 ● Nested switch statement
 ● Ternary operator

 If Statement
 This is the most basic type of decision-making statement. It instructs the compiler to execute the
 block of code only if the condition holds true.

 Syntax:

 if (expression)

 { //code}

 Example:

 #include <iostream>

 using namespace std ;

 int main () {

 int b = 10 ;

 if (b < 20) {

 cout << "b is less than 20;" << endl ;

 }

 cout << "value of a is : " << b << endl ;

 return 0 ;

 }

 If..Else Statement
 This is an extension of the ‘if’ statement. It instructs the compiler to execute the ‘if’ block only if
 the specified condition is true. Otherwise, it executes the ‘else’ block.

 Syntax:

 if (expression)

 { //code}

 else

 { //code}

 Example:

 #include <iostream>

 using namespace std ;

 int main () {

 int b = 10 ;

 if (b < 20) {

 cout << "b is less than 20;" << endl ;

 }

 cout << "value of a is : " << b << endl ;

 return 0 ;

 }

 Switch Statement
 When you need to execute conditions against various values, you can use switch statements.

 Syntax:

 switch (expression) {

 case constant-expression :

 statement(s);

 break ; //optional

 case constant-expression :

 statement(s);

 break ; //optional

 default : //Optional

 statement(s);

 }

 Example:

 #include <iostream>

 using namespace std ;

 int main () {

 // local variable declaration:

 char grade = 'D' ;

 switch (grade) {

 case 'A' :

 cout << "Outstanding!" << endl ;

 break ;

 case 'B' :

 case 'C' :

 cout << "Well done" << endl ;

 break ;

 case 'D' :

 cout << "Pass" << endl ;

 break ;

 case 'F' :

 cout << "Try again" << endl ;

 break ;

 default :

 cout << "Invalid grade" << endl ;

 }

 cout << "Your grade is " << grade << endl ;

 return 0 ;

 }

 Nested If Statement
 This is an “if” statement inside another “if” statement. You can use this type of statement when
 you need to base a specific condition on the result of another condition.

 Syntax:

 if (boolean_expression 1) {

 // Executes when the boolean expression 1 is true

 if (boolean_expression 2) {

 // Executes when the boolean expression 2 is true

 }

 }

 Example:

 #include <iostream>

 using namespace std ;

 int main () {

 // local variable declaration:

 int x = 100 ;

 int y = 200 ;

 if (x == 100) {

 if (y == 200) {

 cout << "Value of x is 100 and y is 200" << endl ;

 }

 }

 cout << "Exact value of x is : " << x << endl ;

 cout << "Exact value of y is : " << y << endl ;

 return 0 ;

 }

 Nested Switch Statement
 You can include one switch statement within another switch statement.

 Syntax:

 switch (ch1) {

 case 'A' :

 cout << "This A is part of outer switch" ;

 switch (ch2) {

 case 'A' :

 cout << "This A is part of inner switch" ;

 break ;

 case 'B' : // ...

 }

 break ;

 case 'B' : // ...

 }

 Example:

 #include <iostream>

 using namespace std ;

 int main () {

 int x = 100 ;

 int y = 200 ;

 switch (x) {

 case 100 :

 cout << "This is part of outer switch" << endl ;

 switch (y) {

 case 200 :

 cout << "This is part of inner switch" << endl ;

 }

 }

 cout << "Exact value of x is : " << x << endl ;

 cout << "Exact value of y is : " << y << endl ;

 return 0 ;

 }

 Ternary Operator

 Exp1 ? Exp2 : Exp3;

 First, expression Exp1 is evaluated. If it’s true, then Exp2 is evaluated and becomes the value of
 the entire ‘?’ expression. If Exp1 is false, then Exp3 is evaluated and its value becomes the
 value of the expression.

 Loops
 Loops are used to execute a particular set of commands for a specific number of time based on
 the result of the evaluated condition. C++ includes the following loops

 ● While loop
 ● Do-while loop
 ● For loop
 ● Break statement
 ● Continue statement

 While Loop
 The loop will continue till the specified condition is true.

 while (condition)

 {code}

 Do-While Loop
 When the condition becomes false, the do-while loop stops executing. However, the only
 difference between the while and do-while loop is that the do-while loop tests the condition after
 executing the loop. Therefore, the loop gets executed at least once.

 do

 {

 Code

 }

 while (condition)

 For Loop
 You can use the for loop to execute a block of code multiple times. This loop runs the block until
 the condition specified in it holds false.

 for (int a= 0 ; i< count; i++)

 {

 Code

 }

 Break Statement
 This is used to break the flow of the code so the remaining code isn’t executed. This brings you
 out of the loop.

 For example:

 for (int i = 0 ; i < 10 ; i++) {

 if (i == 4) {

 break ;

 }

 cout << i << "\n" ;

 }

 Continue Statement
 This statement will break the flow and take you to the evaluation of the condition. Later, it starts
 the code execution again.

 For example:

 for (int i = 0 ; i < 10 ; i++) {

 if (i == 4) {

 continue ;

 }

 cout << i << "\n" ;

 }

 Arrays
 Arrays are derived data types that store multiple data items of similar types at contiguous
 memory locations.

 For example:

 string vehicles [4]; //declaring array to store up to 4 variables.

 string vehicles[4]= { "car" , "scooter" , "cycle" , "bike" }; //initializing

 the array

 Accessing Array Values
 You need to use the index number to access the elements stored in an array.

 string vehicles[4]= { "car" , "scooter" , "cycle" , "bike" };

 cout << vehicles [0];

 Changing Array Elements
 You can change the elements stored in an array using the index number.

 string vehicles[4]= { "car" , "scooter" , "cycle" , "bike" };

 vehicles [0]= " " airplane ";

 cout << vehicles[0];

 Functions
 A function is a group of instructions to carry out a specific task. The common function in every
 C++ program is the main() function. You can even break down your complex code into multiple
 small functions and execute them separately.

 For this, you need to declare, define, and call that function. C++ has several built-in functions
 that you can call directly within any program.

 Defining a Function
 The following is the syntax for defining a function in C++:

 return_type function_name (parameter list) {

 body of the function

 }

 Where:

 ● return_type specifies the type of value being returned by that function.
 ● function_name specifies the name of the function and needs to be unique.
 ● parameter list allows you to pass more than one value to your function, along with their

 data types.
 ● body of the function specifies the set of instructions to accomplish a task.

 For example:

 int max (int num1, int num2) { // declaring the function max

 int result;

 if (num1 > num2)

 result = num1;

 else

 result = num2;

 return result;

 }

 Calling a Function
 You must call a function wherever you need it in your program.

 For example:

 #include <iostream>

 using namespace std ;

 // function declaration

 int max (int num1, int num2);

 int main () {

 int a = 100 ;

 int b = 200 ;

 int ret;

 ret = max(a, b);

 cout << "Max value is : " << ret << endl ;

 return 0 ;

 }

 Function Arguments
 You can pass arguments in three ways:

 ● Call by value: Passes the actual value of an argument into the formal parameter
 of the function. It will not make any change to the parameter inside the function
 and does not effect on the argument.

 ● Call by pointer: You can copy an argument address into the formal parameter.
 Here, the address accesses the actual argument used in the call. This means
 that changes made to the parameter affect the argument.

 ● Call by reference: You can copy an argument reference into the formal
 parameter. The reference accesses the actual argument used in the call. This
 means that changes made to the parameter affect the argument.

 Storage Classes
 Storage classes define the visibility of the variables and functions. C++ supports various storage
 classes, like auto, register, extern, static, and mutable.

 Auto Storage Class
 By default, C++ uses this storage class for all variables.

 For example:

 {

 int var;

 auto int var1;

 }

 You can only use the “auto” within functions for defining the local variables.

 Register Storage Class
 This storage class defines the local variables to be stored within the register rather than in RAM.
 It’s useful when you want to access the variable frequently, such as counters. The size of the
 variable will have a maximum size equal to the register size.

 For example:

 {

 register int miles;

 }

 Static Storage Class
 The static storage class tells the compiler to maintain local variables throughout the program
 without needing to create and destroy them when it comes into and goes out of scope. Defining
 a variable as static means it will maintain its values between function calls.

 Global variables are static, which means their scope will be restricted to their declared file. If you
 specify a class data member as static, it creates only one copy of that member that all objects of
 its class will share.

 For example:

 #include <iostream>

 // Function declaration

 void func1 (void);

 static int count = 10 ; /* Global variable */

 main() {

 while (count--) {

 func();

 }

 return 0 ;

 }

 // Function definition

 void func1 (void) {

 static int i = 5 ; // local static variable

 i++;

 std :: cout << "i is " << i ;

 std :: cout << " and count is " << count << std :: endl ;

 }

 Extern Storage Class
 The extern storage class provides a reference of a global variable and makes it visible to ALL
 the program files. When you specify a variable as ‘extern', the variable cannot be initialized
 because it points the variable name at a storage location that has been previously defined.

 In case of multiple files where you define a global variable or function, also to be used in other
 files, extern will provide a reference in another file of defined variable or function. You must use
 the extern modifier when you have to share the same global variables or functions between two
 or more files.

 For example:

 Program 1

 #include <iostream>

 int count ;

 extern void write_extern ();

 main() {

 count = 5 ;

 write_extern();

 }

 Program 2

 #include <iostream>

 extern int count;

 void write_extern (void) {

 std :: cout << "Count is " << count << std :: endl ;

 }

 Mutable Storage Class
 You can use this storage class if you want an object member to override the member function.
 That is, a mutable member that can be modified by a const member function.

 Structure
 Structure allows you to define the data items of the non-similar data types. To use a structure,
 you must define it and access its structure members.

 The following is the syntax for creating a structure:

 struct [structure tag] {

 member definition;

 member definition;

 ...

 member definition;

 } [one or more structure variables];

 For example, we want to create a structure of books consisting of title, author, subject, and
 book_id, as follows:

 struct Books {

 char title[50];

 char author[50];

 char subject[100];

 int book_id;

 } book;

 Accessing Structure Members
 You must use the member access operator (.) to access structure members. This is a period
 between the structure variable name and the structure member that we wish to access.

 #include <iostream>

 #include <cstring>

 using namespace std ;

 struct Books {

 char title[50];

 char author[50];

 char subject[100];

 int book_id;

 };

 int main () {

 struct Books Book1 ; // Declare Book1 of type Book

 struct Books Book2 ; // Declare Book2 of type Book

 // book 1 specification

 strcpy (Book1.title, "Learn C++ Programming");

 strcpy (Book1.author, "Chand Miyan");

 strcpy (Book1.subject, "C++ Programming");

 Book1.book_id = 6495407 ;

 // book 2 specification

 strcpy (Book2.title, "Telecom Billing");

 strcpy (Book2.author, "Yakit Singha");

 strcpy (Book2.subject, "Telecom");

 Book2.book_id = 6495700 ;

 // Print Book1 info

 cout << "Book 1 title : " << Book1.title << endl ;

 cout << "Book 1 author : " << Book1.author << endl ;

 cout << "Book 1 subject : " << Book1.subject << endl ;

 cout << "Book 1 id : " << Book1.book_id << endl ;

 // Print Book2 info

 cout << "Book 2 title : " << Book2.title << endl ;

 cout << "Book 2 author : " << Book2.author << endl ;

 cout << "Book 2 subject : " << Book2.subject << endl ;

 cout << "Book 2 id : " << Book2.book_id << endl ;

 return 0 ;

 }

 References
 When you declare a variable as a reference, it acts as an alternative to the existing one. You
 need to specify the reference variable with “&”, as shown below:

 string food = "Pizza" ;

 string &meal = food; // reference to food

 Pointer
 A pointer in C++ is a variable that stores the memory address of another variable. Similar to
 regular variables, pointers also have data types. We use ‘*’ to declare pointers in C++.

 For example:

 string food = "Pizza" ; // string variable

 cout << food; // Outputs the value of food (Pizza)

 cout << &food; // Outputs the memory address of food (0x6dfed4)

 Classes and Objects
 C++ is an object-oriented programming language with classes and objects. Class is a
 user-defined data type you can use to bind data members and member functions together. You
 can access them by creating an instance of that class.

 Creating a Class
 Here’s how to create a class in C++:

 class MyClass { // The class

 public : // Access specifier- accessible to everyone

 int myNum; // Attribute (int variable)

 string myString; // Attribute (string variable)

 };

https://hackr.io/blog/oops-concepts-in-java-with-examples

 Creating an Object
 Objects work as an instance of the class, allowing you to access its members, functions, and
 variables. You must use the dot (.) operator, as shown below:

 class MyClass {

 public :

 int myNum;

 string myString;

 };

 int main () {

 MyClass myObj; // Creating an object of MyClass

 myObj.myNum = 15 ;

 myObj.myString = "Some text" ;

 // Print attribute values

 cout << myObj.myNum << "\n" ;

 cout << myObj.myString;

 return 0 ;

 }

 Creating Multiple Objects
 Here’s an example of how to create multiple objects of the same class:

 class Car {

 public :

 string brand;

 };

 int main () {

 // Create an object of Car

 Car carObj1;

 carObj1.brand = "BMW" ;

 // Create another object of Car

 Car carObj2;

 carObj2.brand = "Ford" ;

 // Print attribute values

 cout << carObj1.brand "\n" ;

 cout << carObj2.brand "\n" ;

 return 0 ;

 }

 Class Methods
 Methods are like functions that are defined within a class. C++ has two types of methods: inside
 class and outside class.

 Inside Class Method

 class MyClass {

 public :

 void myMethod () { // Method/function inside the class

 cout << "Hello World!" ;

 }

 };

 int main () {

 MyClass myObj; // Create an object of MyClass

 myObj.myMethod(); // Call the method

 return 0 ;

 }

 Outside Class Method

 class MyClass {

 public :

 void myMethod (); // Method declaration

 };

 // Method/function definition outside the class

 void MyClass::myMethod() {

 cout << "Hello World!" ;

 }

 int main () {

 MyClass myObj; // object creation

 myObj.myMethod(); // Call the method

 return 0 ;

 }

 Constructors
 A constructor is a method automatically called upon object creation. It has the same name as
 the class name, and no data type.

 For example:

 class Fir_Class {

 public :

 Fir_Class() { // Constructor

 cout << "Hello World!" ;

 }

 };

 int main () {

 Fir_Class myObj; // call the constructor

 return 0 ;

 }

 Access Specifiers
 Access specifiers define the access of the class members and variables. C++ supports three
 types of access specifiers:

 ● Public: Class members and variables are accessible from outside the class.
 ● Private: Class members and variables are accessible only within the class and not

 outside the class.
 ● Protected: Class members and variables are accessible only in their subclasses.

 Encapsulation
 Encapsulation helps you hide sensitive data from the users. Here, we use the private access
 specifier for declaring the variables and methods. If you want to allow others to read or modify
 those variables and methods, you must use the public get and set methods.

 For example:

 #include <iostream>

 using namespace std ;

 class Employee {

 private :

 int name;

 public :

 // Setter

 void setName (int n) {

 name= s;

 }

 // Getter

 int getName () {

 return name;

 }

 };

 int main () {

 Employee myObj;

 myObj.setName("Bob");

 cout << myObj.getName();

 return 0 ;

 }

 Inheritance
 C++ supports inheritance, allowing you to inherit the members and variables of one class to
 another. The inheriting class is the child class and the other is the parent class. You must use (:)
 symbol to inherit:

 // Parent class

 class Vehicle {

 public :

 string brand = "Ford" ;

 void sound () {

 cout << "honk \n" ;

 }

 };

 // Child class

 class Car : public Vehicle {

 public :

 string model = "Mustang" ;

 };

 int main () {

 Car myCar;

 myCar.sound();

 cout << myCar.brand + " " + myCar.model;

 return 0 ;

 }

 Polymorphism
 Polymorphism specifies the “many forms.” It is the ability of a single message to be displayed in
 multiple forms and takes place when you have multiple child classes and one base class.

 For example:

 // Parent class

 class Animal {

 public :

 void sound () {

 cout << "The animal makes a sound \n" ;

 }

 };

 // Child class

 class Pig : public Animal {

 public :

 void sound () {

 cout << "The pig says: wee wee \n" ;

 }

 };

 // Derived class

 class Dog : public Animal {

 public :

 void sound () {

 cout << "The dog says: bow wow \n" ;

 }

 };

 int main () {

 Animal ani;

 Pig myPig;

 Dog myDog;

 ani.sound();

 myPig.sound();

 myDog.sound();

 return 0 ;

 }

 File Handling
 You can use an fstream library to handle files. The fstream library consists of <iostream> and
 <fstream> header file.

 #include <iostream>
 #include <fstream>

 ofstream: create and write to the files.
 ifstream: read from the specified file.
 fstream: combination of above both.

 Creating and Writing

 #include <iostream>

 #include <fstream>

 using namespace std ;

 int main () {

 // Create and open a text file

 ofstream MyFile ("filename.txt");

 // Write to the file

 MyFile << "content" ;

 // Close the file

 MyFile.close();

 }

 Reading

 // text string to output the text file

 string myText;

 // Read from the text file

 ifstream MyReadFile ("filename.txt");

 // for reading the file line by line

 while (getline (MyReadFile, myText)) {

 // Output the text from the file

 cout << myText;

 }

 // Close the file

 MyReadFile.close();

 Exceptions
 While compiling and running, you might run into errors. C++ allows you to handle and catch
 these errors using exception handling. The following is the syntax for exception handling that
 includes a try-catch block:

 try {

 // Block of code to try

 throw exception; // Throw an exception when a problem arise

 }

 catch () {

 // Block of code to handle errors

 }

 For example:

 try {

 int age = 10 ;

 if (age >= 20) {

 cout << "you are old enough." ;

 } else {

 throw 505 ;

 }

 }

 catch (int num) {

 cout << "Access denied \n" ;

 cout << "Error number: " << num;

 }

 Preprocessor
 The following are some in-built preprocessors available in C++ for various functionalities.

 #include <stdio.h> // Insert standard header file
 #include "myfile.h" // Insert file in current directory
 #define X some text // Replace X with some text
 #define F(a,b) a+b // Replace F(1,2) with 1+2
 #define X \
 some text // Multiline definition

 #undef X // Remove definition
 #if defined(X) // Conditional compilation (#ifdef X)
 #else // Optional (#ifndef X or #if !defined(X))
 #endif // Required after #if, #ifdef

 Dynamic Memory Management
 #include <memory> // Include memory (std namespace)

 shared_ptr < int > x; // Empty shared_ptr to a integer on heap. Uses

 reference counting for cleaning up objects.

 x = make_shared< int >(12); // Allocate value 12 on heap

 shared_ptr < int > y = x; // Copy shared_ptr, implicit changes reference count to

 2.

 cout << *y; // Dereference y to print '12'

 if (y.get() == x.get()) { // Raw pointers (here x == y)

 cout << "Same" ;

 }

 y.reset(); // Eliminate one owner of object

 if (y.get() != x.get()) {

 cout << "Different" ;

 }

 if (y == nullptr) { // Can compare against nullptr (here returns true)

 cout << "Empty" ;

 }

 y = make_shared< int >(15); // Assign new value

 cout << *y; // Dereference x to print '15'

 cout << *x; // Dereference x to print '12'

 weak_ptr< int > w; // Create empty weak pointer

 w = y; // w has weak reference to y.

 if (shared_ptr < int > s = w.lock()) { // Has to be copied into a shared_ptr before

 usage

 cout << *s;

 }

 unique_ptr < int > z; // Create empty unique pointers

 unique_ptr < int > q;

 z = make_unique< int >(16); // Allocate int (16) on heap. Only one reference

 allowed.

 q = move(z); // Move reference from z to q.

 if (z == nullptr){

 cout << "Z null" ;

 }

 cout << *q;

 shared_ptr r;

 r = dynamic_pointer_cast(t); // Converts t to a shared_ptr

 Floating Point Math
 You must include the “cmath” library to perform tasks on floating-point numbers.

 #include <cmath> // Include cmath (std namespace)
 sin(x); cos(x); tan(x); // you can perform Trig functions, x (double) is in radians
 asin(x); acos(x); atan(x); // Inverses
 atan2(y, x); // atan(y/x)
 sinh(x); cosh(x); tanh(x); // Hyperbolic sin, cos, tan functions
 exp(x); log(x); log10(x); // e to the x, log base e, log base 10
 pow(x, y); sqrt(x); // x to the y, square root
 ceil(x); floor(x); // Round up or down (as a double)
 fabs(x); fmod(x, y); // Absolute value, x mod y

 iostream.h and iostream
 #include <iostream> // Include iostream (std namespace)
 cin >> x >> y; // Read words x and y (any type) from standard input
 cout << "x=" << 3 << endl; // Write line to stdout
 cerr << x << y << flush; // Write to stderr and flush
 c = cin.get(); // c = getchar();
 cin.get(c); // Read char
 cin.getline(s, n, '\n'); // Read line into char s[n] to '\n' (default)
 if (cin) // Good state (not EOF)?

 // To read/write any type T:
 istream& operator>>(istream& i, T& x) {i >> ...; x=...; return i;}
 ostream& operator<<(ostream& o, const T& x) {return o << ...;}

