
BASH Cheat Sheet
2017 ICOS Big Data Summer Camp

Most BASH commands
● follow the pattern $ [command] [options] [input] [output]
● tell you how to use them if you type $ [command] --help
● have a manual file with more info $ man [command]
● are explained with examples if you google them “bash [command] example”

Command Description Quit Example

!! Repeat the previous command.

cat
Concatenate. Takes the contents of a file and
puts them on the end of something else (your
screen, another file, etc.)

[ctrl]+C cat file.txt

cd Change Directory. Move from one folder
(directory) to another. cd my_folder/data

cp Copy. Make a copy of a file. See also: mv. [ctrl]+C cp original.html copy.html

diff Difference. Print a list of all lines that are different
between two files. [ctrl]+C diff old.csv new.csv

echo Echo. Repeat whatever I type next. echo "Hello, World!"

emacs Editor Macros. Program for editing files.
Advanced users. See also: vi, nano, pico.

find Find. Search for files that match some criteria
(size, date modified, name, type, and more). [ctrl]+C find . -name "*.html" -size +100k

grep
Search for lines of text that match a pattern and
print them (similar to [ctrl]+F or [cmd]+F). See
also: sed.

[ctrl]+C grep “href” kitten.html

head Print just the top (head) of a file. See also: tail. [ctrl]+C head long_file.txt

htop Hisham Table of Processes. Like "top", but with
more information and colors. [ctrl]+C htop

ll
List Long. The same as "ls -l". Will show the size,
owner, date, and permissions for all files in the
current directory. [ctrl]+C

ll -h

ls List files in the current directory. [ctrl]+C ls

man
Manual. Show the manual entry for a command
to see how to use it and what the options are.
(Use arrow keys to scroll.)

Q man cat

mkdir Make Directory. Create a new directory (folder).
See also: rmdir. mkdir new_folder

mv Move a file or directory. See also: cp. [ctrl]+C mv file.txt subfolder/file.txt

nano Same as "pico" but released as free software. [ctrl]+X nano my_code.py

pico Pine Composer. Very simple program for editing
files in the terminal. See also: vi, nano, emacs. [ctrl]+X pico my_code.py

Command Description Quit Example

pwd Print Working Directory. Show the full path of
what directory (folder) you are currently in. pwd

rm
Remove. Deletes the specified file(s). Does not
send things to a trash folder. They are gone
forever.

[ctrl]+C rm unwanted_file.doc

rmdir Remove Directory. Deletes a specified
directory/folder. See also: mkdir. [ctrl]+C rmdir unwanted_directory

script
Make a record of everything that I type and
everything that appears in my terminal until I type
"exit." Then save that as a file.

"exit"

sed
Stream Editor. The sed command can do a lot,
but it's most useful function is find and replace in
text. See also: grep.

[ctrl]+C sed 's/dog/cat/g' dog.txt > cat.txt

split Splits a file into multiple smaller files. See also
cat, which can put them back together. [ctrl]+C split big_file.csv

ssh Secure Shell. Connect to a remote server's
command line. "exit" ssh my.server.umich.edu

tail Print just the bottom of a file. See also: head. [ctrl]+C tail long_file.txt

top
Table Of Processes. Shows running processes
memory use. Like WIndows system monitor or
Mac activity monitor. See also: htop.

[ctrl]+C top

uname Unix Name. Print the name and versio n of my
operating system. uname -a

vi
Visual (line editor). A program for editing files in
the terminal. Intermediate and advanced users.
See also: pico, nano, emacs.

[esc]+[:]+Q vi my_code.py

wc Word Count. Count many lines, words, and
characters are in something. [ctrl]+C wc essay.txt

wget Web Get. Download something from an internet
URL. [ctrl]+C wget bbc.co.uk

Symbol Use

* Wildcard. Select everything. Can be combined with other characters, e.g. "​*.txt​" would match all files ending in
"​.txt​" and "​ls *.txt​" will list the files that end in "​.txt​".

> Overwrite. Take the output of the argument to the left and use it to replace the contents of what is on the right. E.g. "​cat
updates.txt > latest.txt​" will replace whatever is in 'latest.txt' with whatever is in 'updates.txt'.

>> Append. Take the output of the argument to the left and add it to end end of what is on the right. E.g. "​cat
updates.txt >> all.txt​" will add whatever is in 'updates.txt' to the end of ‘all.txt' after what is already in there.

|
Pipe (usually above the [enter] key). Use the output of the command to the left as input for the command to the right.
E.g. in order to count the files in a directory, you can type "​ls | wc -l​". ​ls​ outputs a list of files, one per line. That list
is sent ("piped") to the word count utility with the "​-l​" option to count lines. The result is the count of files.

; End previous command, begin a new one. E.g. “​echo “We’re in”; pwd​” would first print the words “We’re in” and
then it would print the path of the current working directory.

Bash Cheat Sheet

By John Stowers

This file contains short tables of commonly used items in this shell. In most cases the information applies to both the Bourne
shell (sh) and the newer bash shell.

Tests (for ifs and loops) are done with [] or with the test command.

Checking files:

-r file Check if file is readable.
-w file Check if file is writable.
-x file Check if we have execute access to file .
-f file Check if file is an ordinary file (as o pposed to a directory, a device special file, etc.)
-s file Check if file has size greater than 0.
-d file Check if file is a directory.
-e file Check if file exists. Is true even if file is a directory.

Example:

if [-s file]
then
 #such and such
fi

Checking strings:

s1 = s2 Check if s1 equals s2.
s1 != s2 Check if s1 is not equal to s2.
-z s1 Check if s1 has size 0.
-n s1 Check if s2 has nonzero size.
s1 Check if s1 is not the empty string.

Example:

if [$myvar = "hello"] ; then
echo "We have a match"
fi

Checking numbers:
Note that a shell variable could contain a string that represents a number. If you want to check the numerical value use one of
the following:

n1 -eq n2 Check to see if n1 equals n2.
n1 -ne n2 Check to see if n1 is not equal to n 2.
n1 -lt n2 Check to see if n1 < n2.
n1 -le n2 Check to see if n1 <= n2.
n1 -gt n2 Check to see if n1 > n2.
n1 -ge n2 Check to see if n1 >= n2.

Example:

if [$# -gt 1]
then
 echo "ERROR: should have 0 or 1 command-line parameters"
fi

Boolean operators:

! not
-a and
-o or

Example:

if [$num -lt 10 -o $num -gt 100]
then
 echo "Number $num is out of range"
elif [! -w $filename]

Page 1 of 4» Bash Cheat Sheet Johns Blog

18/3/2553http://www.johnstowers.co.nz/blog/index.php/reference/bash-cheat-sheet/

then
 echo "Cannot write to $filename"
fi

Note that ifs can be nested. For example:

if [$myvar = "y"]
then
 echo "Enter count of number of items"
 read num
 if [$num -le 0]
 then
 echo "Invalid count of $num was given"
 else
#... do whatever ...
fi
fi

The above example also illustrates the use of read to read a string from the keyboard and place it into a shell variable. Also
note that most UNIX commands return a true (nonzero) or false (0) in the shell variable status to indicate whether they
succeeded or not. This return value can be checked. At the command line echo $status. In a shell script use something like
this:

if grep -q shell bshellref
then
 echo "true"
else
 echo "false"
fi

Note that -q is the quiet version of grep. It just checks whether it is true that the string shell occurs in the file bshellref. It does
not print the matching lines like grep would otherwise do.

I/O Redirection:

pgm > file Output of pgm is redirected to file.
pgm < file Program pgm reads its input from fil e.
pgm >> file Output of pgm is appended to file.
pgm1 | pgm2 Output of pgm1 is piped into pgm2 as the input to pgm2.
n > file Output from stream with descriptor n redirected to file.
n >> file Output from stream with descriptor n appended to file.
n >& m Merge output from stream n with stre am m.
n <& m Merge input from stream n with strea m m.
<< tag Standard input comes from here throu gh next tag at start of line.

Note that file descriptor 0 is normally standard input, 1 is standard output, and 2 is standard error output.

Shell Built-in Variables:

$0 Name of this shell script itself.
$1 Value of first command line paramete r (similarly $2, $3, etc)
$# In a shell script, the number of com mand line parameters.
$* All of the command line parameters.
$- Options given to the shell.
$? Return the exit status of the last c ommand.
$$ Process id of script (really id of t he shell running the script)

Pattern Matching:

* Matches 0 or more characters.
? Matches 1 character.
[AaBbCc] Example: matches any 1 char from the list.
[^RGB] Example: matches any 1 char not in t he list.
[a-g] Example: matches any 1 char from thi s range.

Quoting:

\c Take character c literally.
`cmd` Run cmd and replace it in the line o f code with its output.
"whatever" Take whatever literally, after first interpreting $, `...`, \
'whatever' Take whatever absolutely literally.

Example:

Page 2 of 4» Bash Cheat Sheet Johns Blog

18/3/2553http://www.johnstowers.co.nz/blog/index.php/reference/bash-cheat-sheet/

match =` ls * .bak ` #Puts names of .bak files into shell variable match.
echo \ * #Echos * to screen, not all filename as in: echo *
echo '$1$2hello' #Writes literally $1$2hello on screen.
echo "$1$2hello" #Writes value of parameters 1 and 2 and string hello.

Grouping:
Parentheses may be used for grouping, but must be preceded by backslashes
since parentheses normally have a different meaning to the shell (namely
to run a command or commands in a subshell). For example, you might use:

if test \ (-r $file1 -a -r $file2 \) -o \ (-r $1 -a -r $2 \)
then
 #do whatever
fi

Case statement:
Here is an example that looks for a match with one of the characters a, b, c. If $1 fails to match these, it always matches the *
case. A case statement can also use more advanced pattern matching.

case "$1" in
 a) cmd1 ;;
 b) cmd2 ;;
 c) cmd3 ;;
 *) cmd4 ;;
esac

Loops:
Bash supports loops written in a number of forms,

for arg in [list]
do
 echo $arg
done

for arg in [list] ; do
 echo $arg
done

You can supply [list] directly

NUMBERS="1 2 3"
for number in ` echo $NUMBERS̀
do
 echo $number
done

for number in $NUMBERS
do
 echo -n $number
done

for number in 1 2 3
do
 echo -n $number
done

If [list] is a glob pattern then bash can expand it directly, for example:

for file in * .tar.gz
do
 tar -xzf $file
done

You can also execute statements for [list] , for example:

for x in ` ls -tr * .log `
do
 cat $x > > biglog
done

Shell Arithmetic:
In the original Bourne shell arithmetic is done using the expr command as in:

Page 3 of 4» Bash Cheat Sheet Johns Blog

18/3/2553http://www.johnstowers.co.nz/blog/index.php/reference/bash-cheat-sheet/

result =` expr $1 + 2 `
result2 =` expr $2 + $1 / 2 `
result =` expr $2 \ * 5 ` #note the \ on the * symbol

With bash, an expression is normally enclosed using [] and can use the following operators, in order of precedence:

* / % (times, divide, remainder)
+ - (add, subtract)
< > <= >= (the obvious comparison operators)
== != (equal to, not equal to)
&& (logical and)
|| (logical or)
= (assignment)

Arithmetic is done using long integers.
Example:

result =$[$1 + 3]

In this example we take the value of the first parameter, add 3, and place the sum into result.

Order of Interpretation:
The bash shell carries out its various types of interpretation for each line in the following order:

brace expansion (see a reference book)
~ expansion (for login ids)
parameters (such as $1)
variables (such as $var)
command substitution (Example: match=`grep DNS *`)
arithmetic (from left to right)
word splitting
pathname expansion (using *, ?, and [abc])

Other Shell Features:

$var Value of shell variable var.
${var}abc Example: value of shell variable var with string abc appended.
At start of line, indicates a commen t.
var=value Assign the string value to shell var iable var.
cmd1 && cmd2 Run cmd1, then if cmd1 successful ru n cmd2, otherwise skip.
cmd1 || cmd2 Run cmd1, then if cmd1 not successfu l run cmd2, otherwise skip.
cmd1; cmd2 Do cmd1 and then cmd2.
cmd1 & cmd2 Do cmd1, start cmd2 without waiting for cmd1 to finish.
(cmds) Run cmds (commands) in a subshell.

Page 4 of 4» Bash Cheat Sheet Johns Blog

18/3/2553http://www.johnstowers.co.nz/blog/index.php/reference/bash-cheat-sheet/

freeworld.posterous.com

Linux Bash Shell
 Cheat Sheet

(works with about every distribution, except for apt-get which is Ubuntu/Debian exclusive)

Legend:

Everything in “<>” is to be replaced, ex: <fileName> --> iLovePeanuts.txt
Don't include the '=' in your commands
'..' means that more than one file can be affected with only one command ex: rm
file.txt file2.txt movie.mov

http://freeworld.posterous.com/

Linux Bash Shell Cheat Sheet
Basic Commands

Basic Terminal Shortcuts

CTRL L = Clear the terminal
CTRL D = Logout
SHIFT Page Up/Down = Go up/down the terminal
CTRL A = Cursor to start of line
CTRL E = Cursor the end of line
CTRL U = Delete left of the cursor
CTRL K = Delete right of the cursor
CTRL W = Delete word on the left
CTRL Y = Paste (after CTRL U,K or W)
TAB = auto completion of file or command
CTRL R = reverse search history
!! = repeat last command
CTRL Z = stops the current command (resume with fg in foreground or bg in background)

Basic Terminal Navigation

ls -a = list all files and folders
ls <folderName> = list files in folder
ls -lh = Detailed list, Human readable
ls -l *.jpg = list jpeg files only
ls -lh <fileName> = Result for file only

cd <folderName> = change directory
if folder name has spaces use “ “

cd / = go to root
cd .. = go up one folder, tip: ../../../

du -h: Disk usage of folders, human readable
du -ah: “ “ “ files & folders, Human readable
du -sh: only show disc usage of folders

pwd = print working directory

man <command> = shows manual (RTFM)

Basic file manipulation

cat <fileName> = show content of file
(less, more)

head = from the top
-n <#oflines> <fileName>

tail = from the bottom
-n <#oflines> <fileName>

mkdir = create new folder
mkdir myStuff ..
mkdir myStuff/pictures/ ..

cp image.jpg newimage.jpg = copy and rename a file

cp image.jpg <folderName>/ = copy to folder
cp image.jpg folder/sameImageNewName.jpg
cp -R stuff otherStuff = copy and rename a folder
cp *.txt stuff/ = copy all of *<file type> to folder

mv file.txt Documents/ = move file to a folder
mv <folderName> <folderName2> = move folder in folder
mv filename.txt filename2.txt = rename file
mv <fileName> stuff/newfileName
mv <folderName>/ .. = move folder up in hierarchy

rm <fileName> .. = delete file (s)
rm -i <fileName> .. = ask for confirmation each file
rm -f <fileName> = force deletion of a file
rm -r <foldername>/ = delete folder

touch <fileName> = create or update a file

ln file1 file2 = physical link
ln -s file1 file2 = symbolic link

Linux Bash Shell Cheat Sheet
Basic Commands

Researching Files

The slow method (sometimes very slow):

locate <text> = search the content of all the files
locate <fileName> = search for a file
sudo updatedb = update database of files

find = the best file search tool(fast)
find -name “<fileName>”
find -name “text” = search for files who start with the word text
find -name “*text” = “ “ “ “ end “ “ “ “

Advanced Search:

Search from file Size (in ~)
find ~ -size +10M = search files bigger than.. (M,K,G)

Search from last access
find -name “<filetype>” -atime -5

('-' = less than, '+' = more than and nothing = exactly)

Search only files or directory’s
find -type d --> ex: find /var/log -name "syslog" -type d
find -type f = files

More info: man find, man locate

Extract, sort and filter data

grep <someText> <fileName> = search for text in file
-i = Doesn't consider uppercase words
-I = exclude binary files

grep -r <text> <folderName>/ = search for file names
with occurrence of the text

With regular expressions:

grep -E ^<text> <fileName> = search start of lines
with the word text
grep -E <0-4> <fileName> =shows lines containing numbers 0-4
grep -E <a-zA-Z> <fileName> = retrieve all lines
with alphabetical letters

sort = sort the content of files
sort <fileName> = sort alphabetically
sort -o <file> <outputFile> = write result to a file
sort -r <fileName> = sort in reverse
sort -R <fileName> = sort randomly
sort -n <fileName> = sort numbers

wc = word count
wc <fileName> = nbr of line, nbr of words, byte size

-l (lines), -w (words), -c (byte size), -m
(number of characters)

cut = cut a part of a file
-c --> ex: cut -c 2-5 names.txt

(cut the characters 2 to 5 of each line)
-d (delimiter) (-d & -f good for .csv files)
-f (# of field to cut)

more info: man cut, man sort, man grep

Linux Bash Shell Cheat Sheet
Basic Commands

Time settings

date = view & modify time (on your computer)

View:
date “+%H” --> If it's 9 am, then it will show 09
date “+%H:%M:%Ss” = (hours, minutes, seconds)
%Y = years

Modify:
 MMDDhhmmYYYY

Month | Day | Hours | Minutes | Year

sudo date 031423421997 = March 14th 1997, 23:42

Execute programs at another time

use 'at' to execute programs in the future

Step 1, write in the terminal: at <timeOfExecution> ENTER
ex --> at 16:45 or at 13:43 7/23/11 (to be more precise)
or after a certain delay:

at now +5 minutes (hours, days, weeks, months, years)

Step 2: <ENTER COMMAND> ENTER
repeat step 2 as many times you need

Step 3: CTRL D to close input

atq = show a list of jobs waiting to be executed

atrm = delete a job n°<x>
ex (delete job #42) --> atrm 42

sleep = pause between commands
with ';' you can chain commands, ex: touch file; rm file

you can make a pause between commands (minutes, hours, days)
ex --> touch file; sleep 10; rm file <-- 10 seconds

(continued)

crontab = execute a command regularly
-e = modify the crontab
-l = view current crontab
-r = delete you crontab

In crontab the syntax is
<Minutes> <Hours> <Day of month> <Day of week (0-6,
0 = Sunday)> <COMMAND>

ex, create the file movies.txt every day at 15:47:
47 15 * * * touch /home/bob/movies.txt
* * * * * --> every minute
at 5:30 in the morning, from the 1st to 15th each month:

30 5 1-15 * *
at midnight on Mondays, Wednesdays and Thursdays:
0 0 * * 1,3,4
every two hours:
0 */2 * * *
every 10 minutes Monday to Friday:
*/10 * * * 1-5

Execute programs in the background

Add a '&' at the end of a command
ex --> cp bigMovieFile.mp4 &

nohup: ignores the HUP signal when closing the console
(process will still run if the terminal is closed)

ex --> nohup cp bigMovieFile.mp4

jobs = know what is running in the background

fg = put a background process to foreground
ex: fg (process 1), f%2 (process 2) f%3, ...

Linux Bash Shell Cheat Sheet
Basic Commands

Process Management

w = who is logged on and what they are doing

tload = graphic representation of system load average
(quit with CTRL C)

ps = Static process list
-ef --> ex: ps -ef | less
-ejH --> show process hierarchy
-u --> process's from current user

top = Dynamic process list
While in top:

• q to close top
• h to show the help
• k to kill a process

CTRL C to top a current terminal process

kill = kill a process
You need the PID # of the process

ps -u <AccountName> | grep <Application>
Then

kill <PID>
kill -9 <PID> = violent kill

killall = kill multiple process's
ex --> killall locate

extras:
sudo halt <-- to close computer
sudo reboot <-- to reboot

Create and modify user accounts

sudo adduser bob = root creates new user
sudo passwd <AccountName> = change a user's password
sudo deluser <AccountName> = delete an account

addgroup friends = create a new user group
delgroup friends = delete a user group

usermod -g friends <Account> = add user to a group
usermod -g bob boby = change account name
usermod -aG friends bob = add groups to a user with-
out loosing the ones he's already in

File Permissions

chown = change the owner of a file
ex --> chown bob hello.txt

chown user:bob report.txt = changes the user owning
report.txt to 'user' and the group owning it to 'bob'
-R = recursively affect all the sub folders

ex --> chown -R bob:bob /home/Daniel

chmod = modify user access/permission – simple way
u = user
g = group
o = other

d = directory (if element is a directory)
l = link (if element is a file link)
r = read (read permissions)
w = write (write permissions)
x = eXecute (only useful for scripts and
programs)

Linux Bash Shell Cheat Sheet
Basic Commands

File Permissions (continued)

'+' means add a right
'-' means delete a right
'=' means affect a right

ex --> chmod g+w someFile.txt
(add to current group the right to modify someFile.txt)

more info: man chmod

Flow redirection

Redirect results of commands:

'>' at the end of a command to redirect the result to a file

ex --> ps -ejH > process.txt
'>>' to redirect the result to the end of a file

Redirect errors:

'2>' at the end of the command to redirect the result to a file
ex --> cut -d , -f 1 file.csv > file 2> errors.log

'2>&1' to redirect the errors the same way as the standard output

Read progressively from the keyboard

<Command> << <wordToTerminateInput>
ex --> sort << END <-- This can be anything you want

> Hello
> Alex
> Cinema
> Game
> Code
> Ubuntu
> END

Flow Redirection (continued)

terminal output:
Alex
Cinema
Code
Game
Ubuntu

Another example --> wc -m << END

Chain commands

'|' at the end of a command to enter another one
ex --> du | sort -nr | less

Archive and compress data

Archive and compress data the long way:

Step 1, put all the files you want to compress in
the same folder: ex --> mv *.txt folder/

Step 2, Create the tar file:
tar -cvf my_archive.tar folder/

-c : creates a .tar archive
-v : tells you what is happening (verbose)
-f : assembles the archive into one file

Step 3.1, create gzip file (most current):
gzip my_archive.tar

to decompress: gunzip my_archive.tar.gz

Step 3.2, or create a bzip2 file (more powerful but slow):
bzip2 my_archive.tar

to decompress: bunzip2 my_archive.tar.bz2

Linux Bash Shell Cheat Sheet
Basic Commands

Archive and compress data (continued)

step 4, to decompress the .tar file:
 tar -xvf archive.tar archive.tar

Archive and compress data the fast way:

gzip: tar -zcvf my_archive.tar.gz folder/
decompress: tar -zcvf my_archive.tar.gz Documents/

bzip2: tar -jcvf my_archive.tar.gz folder/
decompress: tar -jxvf archive.tar.bz2 Documents/

Show the content of .tar, .gz or .bz2 without decompressing it:

gzip:
gzip -ztf archive.tar.gz

bzip2:
bzip2 -jtf archive.tar.bz2

tar:
tar -tf archive.tar

tar extra:
tar -rvf archive.tar file.txt = add a file to the .tar

You can also directly compress a single file and view the file
without decompressing:

Step 1, use gzip or bzip2 to compress the file:
gzip numbers.txt

Step 2, view the file without decompressing it:
zcat = view the entire file in the console (same as cat)
zmore = view one screen at a time the content of the file (same as more)
zless = view one line of the file at a time (same as less)

Installing software

When software is available in the repositories:
sudo apt-get install <nameOfSoftware>

ex--> sudo apt-get install aptitude

If you download it from the Internets in .gz format
(or bz2) - “Compiling from source”
Step 1, create a folder to place the file:

mkdir /home/username/src <-- then cd to it

Step 2, with 'ls' verify that the file is there
(if not, mv ../file.tar.gz /home/username/src/)

Step 3, decompress the file (if .zip: unzip <file>)
<--
Step 4, use 'ls', you should see a new directory
Step 5, cd to the new directory
Step 6.1, use ls to verify you have an INSTALL file,
then: more INSTALL
If you don't have an INSTALL file:
Step 6.2, execute ./configure <-- creates a makefile
Step 6.2.1, run make <-- builds application binaries
Step 6.2.2 : switch to root --> su
Step 6.2.3 : make install <-- installs the software
Step 7, read the readme file

http://freeworld.posterous.com/
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://archive.tar.gz
https://my_archive.tar.gz
https://my_archive.tar.gz
https://my_archive.tar.gz

Linux Command Cheat Sheet

|

sudo [command]

nohup [command]

man [command]

[command] &

>> [fileA]

> [fileA]

echo -n

xargs

1>2&

fg %N

jobs

ctrl-z

Basic commands

Pipe (redirect) output

run < command> in superuser
mode

run < command> immune to
hangup signal

display help pages of
< command>

run < command> and send task
to background

append to fileA, preserving
existing contents

output to fileA, overwriting
contents

display a line of text

build command line from
previous output

Redirect stdout to stderr

go to task N

list task

suspend current task

df -h, -i

mkfs -t -V

resize2fs

fsck -A -N

pvcreate

mount -a -t

fdisk -l

lvcreate

umount -f -v

Disk Utilities

File system usage

create file system

update a filesystem, after
lvextend*

file system check & repair

create physical volume

mount a filesystem

edit disk partition

create a logical volume

umount a filesystem

chmod -c -R

touch -a -t

chown -c -R

chgrp -c -R

touch -a -t

File permission

chmod file read, write and
executable permission

modify (or create) file timestamp

change file ownership

change file group permission

modify (or create) file
timestamp

tr -d

uniq -c -u

split -l

wc -w

head -n

cut -s

diff -q

join -i

more, less

sort -n

comm -3

cat -s

tail -f

File Utilities

translate or delete character

report or omit repeated lines

split file into pieces

print newline, word, and byte
counts for each file

output the first part of files

remove section from file

file compare, line by line

join lines of two files on a
common field

view file content, one page at a
time

sort lines in text file

compare two sorted files, line
by line

concatenate files to the
standard output

output last part of the file

mkdir

rmdir

Directory Utilities

create a directory

remove a directory

find

ls -a -C -h

rm -r -f

locate -i

cp -a -R -i

du -s

file -b -i

mv -f -i

grep, egrep, fgrep -i -v

File management

search for a file

list content of directory

remove files and directory

find file, using updatedb(8)
database

copy files or directory

disk usage

identify the file type

move files or directory

print lines matching pattern

tar xvfz

gzip, gunzip, zcat

uuencode, uudecode

zip, unzip -v

rpm

bzip2, bunzip2

rar

File compression

create or extract .tar or .tgz
files

create, extract or view .gz files

create or extract .Z files

create or extract .ZIP files

create or extract .rpm files

create or extract .bz2 files

create or extract .rar files

ex

vi

nano

view

emacs

sublime

sed

pico

File Editor

basic editor

visual editor

pico clone

view file only

extensible, customizable editor

yet another text editor

stream editor

simple editor

free -m

killall

sensors

top

kill -1 -9

service
[start|stop|restart]

ps aux

dmesg -k

Memory & Processes

display free and used system
memory

stop all process by name

CPU temperature

display current processes, real
time monitoring

send signal to process

manage or run sysV init script

display current processes,
snapshot

display system messages

netstat -r -v

telnet

tcpdump

ssh -i

ping -c

Network

print network information,
routing and connections

user interface to the TELNET
protocol

dump network traffic

openSSH client

print routing packet trace to
host network

pwd -P

bc

expr

cal

export

` [command]

date -d

$[variable]

Misc Commands

print current working directory

high precision calculator

evaluate expression

print calender

assign or remove environment
variable

backquote, execute command

print formatted date

if set, access the variable

awk, gawk

tsh

" "

' '

python

bash

ksh

php

csh, tcsh

perl

source [file]

Scripting

pattern scanning

tiny shell

anything within double quotes
is unchanged except \ and $

anything within single quote is
unchanged

"object-oriented programming
language"

GNU bourne-again SHell

korn shell

general-purpose scripting
language

C shell

Practical Extraction and Report
Language

load any functions file into the
current shell, requires the file
to be executable

Compiled by Alvin Khoo

Share This Cheat Sheet

Read the Blog Post »
bit.ly/Linux-Commands

https://twitter.com/intent/tweet?text=Check+out+this+essential+cheat+sheet+for+%23Linux+admins+%28via+%40Loggly%29%3A+http%3A%2F%2Fbit.ly%2FLinux-Commands
http://bit.ly/Linux-Commands
https://www.linkedin.com/in/alkhoo
http://bit.ly/1F1GrZb

