
The neuro-cognitive relationship between fingers and adults’ 
mathematical abilities remains debated, though. Rusconi et al. (2005) 
showed that repetitive TMS on adults’ left angular gyrus interfered 
with finger gnosia and explicit magnitude processing but did not 
affect the network of stored arithmetic facts. Andres et al. (2007), 
in contrast, showed that TMS affected the corticospinal excitability 
of adults’ hand muscles during a dot counting task. It thus seems 
that the relationship between hands and mathematical abilities is 
functionally differentiated, with a connection between hands and 
counting dots but not between hands and retrieving arithmetic facts.

With the present study, we wanted to pursue the role of hand 
motor circuits in adults’ mathematical abilities. More specifically, 
we wanted to test if the functional relationship between hand 
movements and mathematical abilities depends on the arithmetical 
strategy used. In the domain of simple arithmetic, three main strate-
gies can be distinguished (Campbell and Timm, 2000): (a) direct 
memory retrieval, for example knowing that 8 + 3 = 11, (b) trans-
formation or using intermediate steps, for example first retrieving 
8 + 2 = 10 and then 10 + 1 = 11, and (c) one-by-one counting, 
for example 8 + 3 = 8…9…10…11. The question now is: to what 
extent do hand movements play a role in these different strategies? 
According to the representational account, the configuration of our 
fingers is used to mentally represent and process numbers (Di Luca 
et al., 2006; Fischer, 2008). Because we need to access numerical 
information irrespective of the applied strategy, this theory pre-
dicts a functional relationship between hand movements and all 
three strategies. According to the procedural account, in contrast, the 
involvement of hand motor circuits in adults’ mathematical abili-
ties is reminiscent of finger counting during childhood, a universal 
behavior observed in several different cultures (Butterworth, 1999). 
Hence, this theory predicts that adults will mainly use their fingers 
to support one-by-one counting strategies and will not use their 
fingers to retrieve answers from long-term memory.

In order to distinguish between both theories, we conducted 
an experiment in which adults solved simple-arithmetic prob-
lems applying one of the three strategies described above. While 

IntroductIon
During development, children all go through a stage in which they 
count on their fingers to solve simple-arithmetic problems like 
8 + 5 and 7 − 4. They use their fingers to represent numerosities 
before they acquire symbolic representations of numbers (such as 
number words and Arabic digits). It is thus no surprise that finger 
gnosia or “finger sense” (i.e., the ability to mentally represent one’s 
fingers) plays an important role in the development of numerical 
abilities. Indeed, Noël (2005) showed that finger gnosia tested at 
the beginning of grade 1 predicted numerical abilities (tested by 
tasks such as digit comparison and subitizing) and mathematical 
abilities (tested by an addition task) in grade 2; whereas it did 
not predict reading abilities (see also Fayol et al., 1998). Similarly, 
Penner-Wilger et al. (2007) showed that children able to use their 
fingers as representational tools performed better in mathemat-
ics. Training children’s finger differentiation even increases finger 
gnosia and improves numerical performance (Gracia-Bafalluy and 
Noël, 2008, but see Fischer, 2010).

Generally, adults no longer use their fingers to solve arithmetic 
tasks, and the correlation between finger use and math accuracy 
decreases across development (Jordan et al., 2008). One may there-
fore suppose that the link between finger gnosia and numerical or 
mathematical abilities is absent in adults. However, there is evidence 
that indicates that this might not be true.

In a seminal electromyographic (EMG) experiment, Andres 
et al. (2004) showed that adults’ grip closure was initiated faster in 
response to small digits, while grip opening was initiated faster in 
response to large digits (see also Andres et al., 2008). In a similar 
vein, it has been shown that adults’ precision grip was initiated faster 
in response to small numbers, while power grip was initiated faster 
in response to large numbers (Lindemann et al., 2007; Moretto and 
di Pellegrino, 2008). Finally, using transcranial magnetic stimula-
tion (TMS), Sato et al. (2007) observed increased corticospinal 
excitability of adults’ hand muscles during a parity judgment task. 
Taken together, all these studies show that adults still exhibit a 
neural link between fingers and numbers.
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solving these problems, the experimenter did or did not move 
the  participants’ hand on a four-point matrix. We chose for this 
passive hand movement task so as not to load attentional or 
executive resources, which have been shown to play a role in simple- 
arithmetic problem solving (Hecht, 2002; Seyler et al., 2003; Imbo 
and Vandierendonck, 2007a,b,c)1. The representational account 
predicts that the passive hand movements will affect all strategies 
whereas the procedural account predicts that mainly the counting 
strategy will be affected.

MaterIals and Methods
PartIcIPants
Twenty participants took part in the present experiment, 10 solv-
ing subtraction problems and 10 solving addition problems. They 
were all first year psychology students at Ghent University and par-
ticipated for course requirements and credits. The two participant 
groups did not differ from each other in age, calculator use (rated 
on a scale from 1 “never” to 5 “always”), math experience (i.e., the 
number of mathematics lessons per week during the last year of 
secondary school), or arithmetic skill (tested with the French Kit; 
French et al., 1963; see Table 1).

Procedure
Each participant was tested individually in a quiet room for approx-
imately 1 h. The choice/no-choice method, designed by Siegler and 
Lemaire (1997), was used to independently assess strategy selection 
and strategy efficiency. This entails that the participants solved the 
simple-arithmetic problems under four conditions: first the choice 
condition, in which they were allowed to choose strategies, and then 
three no-choice conditions, in which they had to solve all prob-
lems with the same specified strategy. The order of the no-choice 
conditions was randomized across participants. Data obtained in 
no-choice conditions are unbiased because they are not susceptible 
to selection effects (e.g., if a certain strategy is only used on easier 
problems, this strategy may look more efficient than it actually is). 
In the choice condition, 5 practice problems and 32 experimental 
problems were presented. The no-choice conditions comprised the 

32 experimental problems. Each condition was further divided into 
two blocks: one without passive hand movements and one with 
passive hand movements. For half of the participants, each condi-
tion started with hand movements whereas for the other half of 
the participants each condition started without hand movements.

sIMPle-arIthMetIc task
The addition problems consisted of two one-digit numbers. 
Problems involving 0 or 1 as an operand or answer (e.g., 5 + 0) 
and tie problems (e.g., 3 + 3) were excluded. All problems crossed 
10 (e.g., 3 + 8). Since commuted pairs (e.g., 9 + 4 and 4 + 9) were 
considered as two different problems, this resulted in 32 addi-
tion problems (ranging from 2 + 9 to 9 + 8). The 32 subtraction 
problems were the reverse of the addition problems. A trial started 
with the presentation of a fixation point for 500 ms. Then the 
arithmetic problem was presented horizontally in the center of the 
screen, with the operation sign at the fixation point. The problem 
remained on the screen until the participant responded. Timing 
began when the stimulus appeared and ended when the response 
triggered the sound-activated relay. To enable this sound-activated 
relay, participants wore a microphone that was activated when they 
spoke their answer. This microphone was connected to a software 
clock accurate to 1 ms. On each trial, feedback was presented to 
the participants: a green “Correct” when their answer was correct 
and a red “Incorrect” when it was not. Immediately after solving 
each problem, participants in the choice condition were presented 
four strategies on the screen: retrieval, counting, transformation, 
and other. These four choices had been extensively explained by 
the experimenter:

1. Retrieval: you solve the problem by remembering or knowing 
the answer directly from memory. For example, you know that 
8 + 3 = 11 because 11 “pops into your head.”

2. Counting: you solve the problem by counting one-by-one to 
get the answer. For example, 8 + 3 = 8…9…10…11.

3. Transformation: you solve the problem by making an interme-
diate step to 10. For example, 8 + 3 = 8 + 2 + 1 = 10 + 1 = 11.

4. Other: you solve the problem by a strategy unlisted here, or 
you do not know what strategy you used to solve the problem. 
For example, guessing.

After each problem, participants were asked to verbally report 
which of these strategies they had used. In the no-choice condi-
tions, participants were asked to use one particular strategy to solve 
all problems. In no-choice/retrieval, they were asked to retrieve 
the answer. More specifically, they had to say the answer that first 
popped into their head. In no-choice/transformation, they were 
asked to transform the problem by making an intermediate step 
to 10. In no-choice/counting, finally, they had to count one-by-one 
(subvocally) until they reached the correct total. After having solved 
the problem, participants also had to answer yes or no to indicate 
whether they had succeeded in using the required strategy. The 
answer of the participant, the strategy information, and the validity 
of the trial were recorded on-line by the experimenter. All invalid 
trials (e.g., failures of the voice-activated relay) were discarded and 
returned at the end of the block, which minimized data loss due 
to unwanted failures.

Table 1 | Participant information for the addition group (N = 10) and the 

subtraction group (N = 10).

 Addition  Subtraction  Difference

Females:males 8:2 8:2 

Age (in years) 18.4 18.8 t(18) = 1.1

Calculator use questionnaire 3.3 3.3 t(18) < 1

Arithmetic skill (French Kit score) 34.3 35.9 t(18) < 1

Math experience  4.5 4.7 t(18) < 1 

(number of arithmetic lessons)

1Although passive hand movements may put a load on visuo-spatial working 
 memory, it is very unlikely that this will influence our results. Indeed, althou-
gh adults do rely on visuo-spatial working-memory resources to solve complex- 
arithmetic problems (Trbovich and LeFevre, 2003; Imbo and LeFevre, 2010), they 
do not rely on visuo-spatial working-memory resources to solve simple-arithmetic 
problems (Seitz and Schumann-Hengsteler, 2000; see also DeStefano and LeFevre, 
2004, for review). Further, even if a visuo-spatial load would affect people’s simple-
arithmetic performance, it would do so on both transformation and counting, and 
not only on counting, as was observed.
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PassIve hand MoveMents
In the block with passive hand movements, participants were told 
to stretch their index finger while keeping their wrist and arm 
muscles relaxed so that the experimenter could move hand and 
arm. The experimenter moved the non-dominant hand and arm 
of the participant on a four-point matrix in such a way that the 
participant’s index finger sequentially tapped the numbers 1, 7, 9, 
and 3 (i.e., clockwise) on a numerical keyboard. There was about 
one tap per second.

results
Failures of the sound-activated relay spoiled 6.7% of the trials. 
Since all these invalid trials returned at the end of the block, most 
of them were recovered from data loss, which reduced the trials 
lost due to failures of the sound-activated relay to 1.1%. All incor-
rect trials (2.7%), all choice trials on which participants reported 
having used another strategy (0.4%), and all no-choice trials on 
which participants failed to use the required strategy (10.5%) were 
deleted. All data were analyzed on the basis of the multivariate 
general linear model, and all reported results were considered to 
be significant if p < 0.05, unless stated otherwise.

strategy effIcIency
Only the RTs uncontaminated by strategy choices (i.e., no-
choice RTs) will be considered, since only these RTs provide 
clear data concerning strategy efficiency. A 2 × 2 × 3 ANOVA 
was conducted on correct RTs with Operation (addition or sub-
traction) as between-subjects factor and Movement (with or 
without passive hand movements) and Strategy (retrieval, trans-
formation, counting) as within-subjects factors (see Table 2). 
The main effects of Operation and Movement were significant. 
Participants were faster on addition (1.8 s) than on subtrac-
tion (2.7 s), F(1,18) = 13.20, MSe = 1925240, ηp

2 0 42= .  and 
faster without than with passive hand movements (2.1 vs. 2.4 s), 
F(1,18) = 12.60, MSe = 130460, ηp

2 0 41= . . The main effect of 
Strategy was significant as well, F(2,17) = 69.89, MSe = 838067, 
ηp

2 0 80= . . Retrieval (1.0 s) was faster than transformation (1.6 s), 
F(1,18) = 35.55 and transformation was faster than counting 
(4.1 s), F(1,18) = 147.25.

Strategy interacted with Operation, F(2,17) = 4.44, MSe = 838067, 
ηp

2 0 21= . . The difference between addition and subtraction was larger 
when counting (1.9 s) than when transforming (0.6 s), F(2,17) = 8.73, 
and slightly larger when transforming than when retrieving (0.2 s), 
F(1,18) = 3.99 (p = 0.06). As predicted, Strategy also interacted 
with Movement, F(2,17) = 7.00, MSe = 115034, ηp

2 0 29= . . As can 
be seen in Figure 1, participants slowed down when their hands 
were passively moved in the counting condition, F(1,18) = 12.08, 
but not in the retrieval or transformation conditions (each F < 1). 
The Operation × Movement and Operation × Movement × Strategy 
interactions were not significant (both ps > 0.20).

strategy selectIon
In order to test whether passive hand movements affected people’s 
strategy choices, a 2 × 2 ANOVA was conducted on percentages use 
of each strategy (in the choice condition), with Operation (addition 
or subtraction) as between-subjects factor and Movement (with 
or without passive hand movements) as within-subjects factor 
(see Table 3). The main effects of Operation and Movement did 
not reach significance for any of the strategies (highest F = 1.1, each 
p > 0.30). The Operation × Movement interaction was significant 
for neither strategy (highest F = 1.5, each p > 0.23). The absence 
of dual-task effects on adults’ strategy choices is in agreement with 

Table 2 | Reaction times (in seconds) as a function of Operation, 

Movement, and Strategy.

 No hand Passive hand 

 movement movement

ADDiTiON

Retrieval 0.8 (0.1) 0.9 (0.1)

Transformation 1.2 (0.2) 1.3 (0.2)

Counting 3.1 (0.3) 3.4 (0.5)

SubTRAcTiON

Retrieval 1.1 (0.1) 1.1 (0.1)

Transformation 1.9 (0.2) 1.9 (0.2)

Counting 4.7 (0.3) 5.5 (0.5)

Standard errors are shown in parentheses.

FiguRe 1 | Reaction times (in seconds) as a function of Strategy and 
Movement. Error bars denote standard errors.

Table 3 | Strategy choices (%) as a function of Operation, Movement, 

and Strategy.

 No hand Passive hand 

 movement movement

ADDiTiON

Retrieval 62.5 (8.4) 64.1 (6.8)

Transformation 36.2 (8.4) 33.8 (6.6)

Counting 1.3 (1.0) 2.0 (0.7)

SubTRAcTiON

Retrieval 57.5 (8.4) 65.2 (8.4)

Transformation 40.9 (8.4) 34.4 (6.6)

Counting 1.7 (1.0) 0.3 (0.7)

Standard errors are shown in parentheses.
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problems (237 ms) as for large problems (214 ms). Hence, the 
observed load effects cannot be attributed to cognitive interference 
caused by problem difficulty.

Finally, one could argue that load effects were found for counting 
only because counting relies on subvocalization. Indeed, subvocali-
zation requires the movement of speech muscles, which in their 
turn evolved from manual gestures (Gentilucci and Corballis, 2006; 
Gentilucci and Volta, 2008). However, previous studies also showed 
that subvocalization is not only applied in counting strategies but 
also in transformation strategies (Imbo and Vandierendonck, 
2007a,b). Hence, if the load effects would be driven by mouth 
movements rather than by hand movements, we should have found 
load effects in the transformation strategy. However, the effect of 
passive hand movements on transformation was not significant, 
indicating that the load effects cannot be attributed to subvocali-
zation processes.

theoretIcal InterPretatIon
Hand motor circuits are thus involved in one-by-one counting 
but not in other simple-arithmetic strategies. This result extends 
the – previously observed – neural link between hands and num-
bers (Sato et al., 2007) by giving it a functional interpretation. In 
the domain of mathematical abilities, the link between hands and 
numbers seems to depend on the procedure that is applied: hand 
movements are irrelevant for retrieval and retrieval-like strategies 
(such as transformation) but relevant for counting. This observa-
tion also solves the discrepancy between two earlier TMS studies, 
one observing a link between hands and counting dots (Andres 
et al., 2007) and another one observing no link between hands and 
retrieving arithmetic facts (Rusconi et al., 2005).

The fact that hand motor circuits are involved in counting 
is in agreement with the premotor theory of counting (Andres 
et al., 2007). According to this theory, counting in adults consists 
in building a motor plan for moving fingers sequentially without 
actually executing these movements. Adults’ finger and number 
sense are thus still related because of the functional role fingers play 
in numeracy development (Butterworth, 1999). Indeed, children 
use their fingers to point to objects when counting, to represent 
cardinality (e.g., raising fingers to show how old they are), and to 
keep track of the counting steps when solving arithmetic problems. 
When learning arithmetic facts, at the other hand, children do not 
use their fingers.

Finger gnosia and computational abilities are also supported by 
neighboring brain regions in the posterior parietal lobe (Dehaene 
et al., 2003). Retrieval and transformation strategies, in contrast, 
would not rely on motor plans but on a verbal number code. This 
verbal number code is located in the angular gyrus of the left 
hemisphere (Dehaene and Cohen, 1995), distant from the brain 
areas supporting the representation of fingers and magnitudes. 
Our results suggest that adults’ counting strategies do not only 
(re-)use the same neural substrates that serve finger counting, they 
also inherit the functional properties of these basic motor pro-
cesses. Indeed, according to embodied cognition theories (Barsalou, 
2008; Domahs et al., 2010), mathematical knowledge is represented 
together with the sensory and motor activity that was present dur-
ing its acquisition. The motor function of counting thus extends 
to adulthood.

earlier studies showing that choosing among simple-arithmetic 
strategies does not load on working-memory resources (Hecht,  
2002; Imbo and Vandierendonck, 2007a,b).

dIscussIon
Adults solved simple-arithmetic problems applying three dif-
ferent strategies: retrieval, transformation, and counting. While 
they solved these problems, the experimenter did or did not 
move their hand. The question was to which extent these passive 
hand movements would affect the different strategies. According 
to the representational account, all strategies would be affected, 
whereas according to the procedural account, mainly the count-
ing strategy would be affected. The results clearly supported the 
latter account, since adults counted slower during passive hand 
movement, while their retrieval and transformation efficiencies 
stayed unaffected.

alternatIve exPlanatIons
Can the selective effect of hand movements on counting be 
explained by characteristics of the counting strategy, such as (a) 
its slowness, (b) its difficulty, or (c) its subvocalization? In follow-
ing, we disprove these three alternative explanations.

First, we tested whether the movement effects on the counting 
strategy could be due to the fact that counting takes much more 
time than retrieval and transformation. The same 2 × 2 × 3 ANOVA 
with Operation (addition or subtraction) as between-subjects fac-
tor and Movement (with or without passive hand movements) and 
Strategy (retrieval, transformation, counting) as within-subjects 
factors was conducted on the on z-scores of the correct RTs. That 
is, we subtracted each participant’s mean RT (averaged over condi-
tions) from his/her observed RT and divided this by each partici-
pant’s SD. These z-scores correct for the latency differences between 
strategies and between operations, as proven by the insignificant 
main effect of Strategy (F = 1.1), the insignificant main effect 
of Operation (F < 1), and the insignificant interaction between 
Strategy and Operation (F < 1). The main effect of Movement and 
the Movement × Strategy interaction were still significant though, 
F(1,18) = 9.70 and F(2,17) = 3.62. Planned comparisons showed 
significant effects of movement on counting, F(1,18) = 16.21, but 
not on retrieval or transformation (each p > 0.25). Hence, the 
observed effect cannot be due to the fact that counting takes more 
time than retrieval and transformation.

Second, we tested whether the movement effects on the counting 
strategy could be due to the fact that counting is more difficult than 
retrieval and transformation. Problems get more difficult when 
problem size increases (Ashcraft, 1992; Zbrodoff, 1995). Hence, 
if the passive hand movements simply interfered with problem 
difficulty, we would expect a Size × Load interaction. This was 
tested by means of a 2 × 2 × 2 × 3 ANOVA on correct RTs with 
Operation (addition or subtraction) as between-subjects factor and 
Size (small or large), Movement (with or without passive hand 
movements) and Strategy (retrieval, transformation, counting) 
as within-subjects factors. Problems were coded as small when 
the sum (for additions) or the subtrahend (for subtractions) was 
smaller or equal to 13 (= the median) and coded as large otherwise. 
The Load × Size and Load × Size × Strategy were not significant 
(each F < 1), indicating that load effects were equally large for small 
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In conclusion, our data show that developmental processes that 
were thought to be transient (e.g., finger calculation) still affect adults’ 
mathematical performance. Finger and hand movements are thus 
not just an arbitrary and transient stage of cognitive development, 
they still exert their effects in educated adults. It would be interesting 
to test the effect of passive hand movements in groups that show a 
more frequent use of counting strategies, such as children and math-
ematically disabled persons. We predict that the disturbing effect 
of passive hand movements will even be greater in these groups. It 
would also be interesting to test the effect of active rather than passive 
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