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Abstract
Markovian imprecise jump processes provide a way

to express model uncertainty about Markovian jump
processes. The dynamics are not governed by a unique
rate matrix, but are instead partially specified by a
set of such matrices. Since the dynamics are partially
specified, the resulting expected time averages are
no longer uniquely determined either, and one then
resorts to tight lower and upper bounds on them. In
this paper, we are interested in the existence of an
asymptotic limit of these upper and lower bounds, as
the time horizon becomes infinite. When those limits
exist and are furthermore independent of the choice
of the process’s initial state, we say that the process is
weakly ergodic. Our main contribution is a necessary
and sufficient condition for a Markovian imprecise
jump process to be weakly ergodic, expressed in terms
of simple graph-theoretic conditions on its set of rate
matrices.
Keywords: Markovian jump process, imprecise proba-
bilities, expected time averages, weak ergodicity, upper
rate operator.

1. Introduction
The Point-Wise Ergodic Theorem – see, for example, [16,
Theorem 3.8.1] or [17, Corollary 4.4.10] – is one of the
most important results for (time-homogeneous) Markovian
jump processes.1 This theorem establishes that, under suit-
able conditions on the rate matrix 𝑄 of the Markovian
jump process, for any real-valued function 𝑓 on the state
space, the limit for large 𝑇 of the (time) average of 𝑓 (𝑋𝑡 )
over [0, 𝑇] converges to 𝐸𝜋∞ ( 𝑓 ) almost surely, where the
‘limit/stationary distribution’ 𝜋∞ can be easily obtained as
the unique solution to a system of linear equations – see
[16, Sections 3.5 and 3.6] or [17, Theorem 4.4.8]. It is not

1We follow the – perhaps a bit non-standard – terminology used in
[7, 9]; Norris [16, Chapters 2 and 3] speaks of ‘continuous-time Markov
chains’ whereas Stroock [17, Chapter 4] and Iosifescu [12] stick to ‘Markov
processes (in continuous time)’.

difficult to see that the same conditions on the rate matrix𝑄
imply what we call weak ergodicity, meaning that the limit
of the expected time average exists and is independent of
the initial state, or more formally, that for all initial states 𝑥
and real-valued functions 𝑓 of the state,

lim
𝑡→+∞

𝐸

(
1
𝑡

∫ 𝑡

0
𝑓 (𝑋𝜏) d𝜏

���� 𝑋0 = 𝑥

)
= 𝐸𝜋∞ ( 𝑓 ).

In this contribution, we investigate this weak ergodicity
directly, which suffices for many applications. The novelty
of this contribution lies in the fact that we do not consider a
single Markovian jump process but a so-called Markovian
imprecise jump process [19, 14, 9]. We will see in Section 2
that this is a set of jump processes characterised by a set of
rate matrices, and that we are interested in weak ergodicity
for the corresponding tight upper (and lower) bounds on
the expected time averages. In Section 3, we explain how
this is tied to a notion of weak ergodicity for the upper
rate operator induced by the set of rate matrices. Section 4
introduces our main result: a convenient graph-theoretic
condition on an upper rate operator that is necessary and
sufficient for it to be weakly ergodic. We prove this main
result in Sections 5 and 6, and conclude this contribution in
Section 7.

2. Imprecise Jump Processes

A Markovian imprecise jump process – called an impre-
cise continuous-time Markov chain in [14] – generalises
the notion of a (homogenous) Markovian jump process
[16, 17] to the framework of imprecise probabilities, in
particular to the setting of sets of (conditional) probability
charges/measures. In this contribution we work with the
theory as introduced by Krak et al. [14] and extended by
Erreygers and De Bock [9]; see also [7, 13]. Unfortunately
the page restriction does not permit us to explain all details
of this theory, so we will only give an informal and intuitive
explanation.
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2.1. Jump Processes

Suppose a subject – which we will refer to as ‘You’ – is
interested in some system. The state 𝑋𝑡 of this system takes
values in some finite state space X and changes over contin-
uous time 𝑡 ∈ ℝ≥0, and You are uncertain about the (future)
values of the state. One way to model Your uncertainty
is through a jump process 𝑃 [14, Section 4.2]; informally,
this means that You specify the initial probabilities, so
𝑃(𝑋0 = 𝑥) for all 𝑥 ∈ X, and the transition probabilities, so

𝑃(𝑋𝑡𝑛+𝛥 = 𝑦 | 𝑋𝑡1 = 𝑥1, . . . , 𝑋𝑡𝑛 = 𝑥𝑛)

for all 𝛥 ∈ ℝ>0, 𝑡1, . . . , 𝑡𝑛 ∈ ℝ≥0 such that 𝑡1 < · · · < 𝑡𝑛
and 𝑥1, . . . , 𝑥𝑛, 𝑦 ∈ X.

Such a jump process 𝑃 is Markovian – or satisfies the
Markov property – if for all 𝑡 ∈ ℝ≥0, 𝛥 ∈ ℝ>0, 𝑡1, . . . , 𝑡𝑛 ∈
ℝ≥0 such that 𝑡1 < · · · < 𝑡𝑛 < 𝑡 and 𝑥1, . . . , 𝑥𝑛, 𝑥, 𝑦 ∈ X,

𝑃(𝑋𝑡+𝛥 = 𝑦 | 𝑋𝑡1 = 𝑥1, . . . , 𝑋𝑡𝑛 = 𝑥𝑛, 𝑋𝑡 = 𝑥)
= 𝑃(𝑋𝑡+𝛥 = 𝑦 | 𝑋𝑡 = 𝑥),

and a Markovian jump process 𝑃 is called homogeneous if
furthermore

𝑃(𝑋𝑡+𝛥 = 𝑦 | 𝑋𝑡 = 𝑥) = 𝑃(𝑋𝛥 = 𝑦 | 𝑋0 = 𝑥).

It is well-known – see [14, Theorem 5.2] or [12, Sec-
tion 8.3] – that for any initial probability mass func-
tion 𝜋 : X → [0, 1] and rate matrix𝑄 : X×X → ℝ – mean-
ing that

∑
𝑦∈X 𝑄(𝑥, 𝑦) = 0 for all 𝑥 ∈ X and 𝑄(𝑥, 𝑦) ≥ 0

for all 𝑥, 𝑦 ∈ X with 𝑥 ≠ 𝑦 – there is a unique homogeneous
Markovian jump process 𝑃𝜋,𝑄 with initial probabilities
𝑃𝜋,𝑄 (𝑋0 = 𝑥) = 𝜋(𝑥) and transition probabilities

𝑃𝜋,𝑄 (𝑋𝑡+𝛥 = 𝑦 | 𝑋𝑡 = 𝑥) = 𝑒𝛥𝑄 (𝑥, 𝑦),

where 𝑒𝛥𝑄 is the matrix exponential of 𝛥𝑄. Conversely,
under a mild continuity condition [12, Eqn. (8.4)], a homo-
geneous Markovian jump process 𝑃 is uniquely determined
by its initial probability mass function

𝜋𝑃 : X → [0, 1] : 𝑥 ↦→ 𝑃(𝑋0 = 𝑥)

and its rate matrix 𝑄𝑃 : X × X → ℝ defined by

𝑄𝑃 (𝑥, 𝑦) B lim
𝛥↘0

𝑃(𝑋𝛥 = 𝑦 | 𝑋0 = 𝑥) − 𝐼 (𝑥, 𝑦)
𝛥

for all 𝑥, 𝑦 ∈ X, with 𝐼 the identity matrix. That is, we then
have that 𝑃 = 𝑃𝜋𝑃 ,𝑄𝑃

.

2.2. Towards Imprecision

That said, it is not always possible or desirable to model
Your uncertainty with a single jump process. Here, we

assume that it is instead possible to adequately model Your
uncertainty through a set P of jump processes; one way
to look at this is through the lens of sensitivity analysis:
You believe that one of the jump processes 𝑃 ∈ P is the
‘correct’ one, but do not know which one. Regardless of
interpretation, we call such a set P of jump processes an
imprecise jump process.

Krak et al. [14] present an elegant method to construct
such an imprecise jump process. They draw inspiration from
how a homogeneous Markovian jump process is uniquely
characterised by its initial probability mass function and rate
matrix, but they relax the requirement that these parameters
should be known precisely: instead of one initial probability
mass function 𝜋 and rate matrix 𝑄, they consider a set M
of initial probability mass functions and a bounded2 set Q
of rate matrices; we keep these sets fixed throughout the
remainder of this contribution. It then makes sense to
consider the set

PHM
M,Q B {𝑃𝜋,𝑄 : 𝜋 ∈ M, 𝑄 ∈ Q}

of corresponding homogeneous Markovian jump processes.
However, they argue that this is not the most convenient
imprecise jump process, at least not in the case when Q
is infinite and we seek to determine tight lower and upper
bounds on the probabilities and expectations with respect to
the jump processes in PHM

M,Q . Quite remarkably, this does
not appear to be a problem if one relaxes the requirement of
homogeneity, and possibly even that of Markovianity. That
is, if instead of the set PHM

M,Q of homogeneous Markovian
jump processes, one considers the set PM

M,Q of (not neces-
sarily homogeneous) Markovian jump processes that are
‘consistent’ with M and Q, or even the set PM,Q of (not
necessarily Markovian) jump processes that are ‘consistent’
with M and Q.

The notion of consistency with M is inspired by the
definition of 𝜋𝑃: a jump process 𝑃 is consistent with M
if there is some 𝜋 ∈ M such that 𝑃(𝑋0 = 𝑥) = 𝜋(𝑥)
for all 𝑥 ∈ X. The notion of consistency with Q is more
involved, but to some extent also inspired by the definition
of 𝑄𝑃: loosely speaking, a jump process 𝑃 is consistent
with Q if for all 𝑛 ∈ ℤ≥0, 𝑡1, . . . , 𝑡𝑛, 𝑡 ∈ ℝ≥0 such that
𝑡1 < · · · < 𝑡𝑛 < 𝑡, 𝑥1, . . . , 𝑥𝑛 ∈ X and 𝛥 ∈ ℝ>0, the
corresponding matrix 𝑄𝛥 : X × X → ℝ, defined for all
𝑥, 𝑦 ∈ X by

𝑄𝛥 (𝑥, 𝑦) B
𝑃(𝑋𝑡+𝛥 = 𝑦 | 𝑋𝑡1:𝑛 = 𝑥1:𝑛, 𝑋𝑡 = 𝑥) − 𝐼 (𝑥, 𝑦)

𝛥
,

comes arbitrarily close to – or is eventually contained in
– Q as 𝛥 approaches 0. In any case, these three imprecise
processes are nested by construction: PHM

M,Q ⊆ PM
M,Q ⊆

PM,Q .

2A set A ⊆ ℝX×X is bounded if sup{ ∥𝐴∥ : 𝐴 ∈ A} < +∞, where
for any matrix 𝐴: X × X → ℝ, ∥𝐴∥ = sup{∑𝑦∈X |𝐴(𝑥, 𝑦) | : 𝑥 ∈ X}.
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2.3. The Upper Expectation of Interest

Suppose Your uncertainty can be adequately modelled by
an imprecise jump process P, and that You want to say
something about the average of 𝑓 (𝑋𝜏) over [0, 𝑡], with 𝑓

some given real-valued function on X. Erreygers and De
Bock [9] show that – under a mild technical condition on P
– for any 𝑃 ∈ P and 𝑥 ∈ X, the expectation

𝐸𝑃

(
1
𝑡

∫ 𝑡

0
𝑓 (𝑋𝜏)d𝜏

���� 𝑋0 = 𝑥

)
(1)

is well defined. Often, You are only interested in the best-
and/or worst-case value of this expected average and not in
the exact range{

𝐸𝑃

(
1
𝑡

∫ 𝑡

0
𝑓 (𝑋𝜏)d𝜏

���� 𝑋0 = 𝑥

)
: 𝑃 ∈ P

}
of all its values. That is, it suffices to determine the lower
and upper bound on this set of values; we denote the upper
bound by

𝐸P

(
1
𝑡

∫ 𝑡

0
𝑓 (𝑋𝜏) d𝜏

���� 𝑋0 = 𝑥

)
B sup

𝑃∈P
𝐸𝑃

(
1
𝑡

∫ 𝑡

0
𝑓 (𝑋𝜏) d𝜏

���� 𝑋0 = 𝑥

)
,

and leave it to the reader to verify that

−𝐸P

(
1
𝑡

∫ 𝑡

0
− 𝑓 (𝑋𝜏) d𝜏

���� 𝑋0 = 𝑥

)
is the lower bound; hence, it suffices to only study the upper
bounds. Consequently, we can generalise the notion of weak
ergodicity for Markovian jump processes (as informally
introduced in the Introduction) to one for imprecise jump
processes as follows.

Definition 1 An imprecise jump process P is said to be
weakly ergodic if for all 𝑓 : X → ℝ and 𝑥 ∈ X,

lim
𝑡→+∞

𝐸P

(
1
𝑡

∫ 𝑡

0
𝑓 (𝑋𝜏) d𝜏

���� 𝑋0 = 𝑥

)
exists and is the same for all 𝑥 ∈ X.

2.4. A Computational Scheme

Erreygers and De Bock [9] show that for any imprecise
jump process P such that PM

M,Q ⊆ P ⊆ PM,Q and under
some mild condition on Q, we can determine the upper
expectation of the average of 𝑓 (𝑋𝜏) over [0, 𝑡] recursively,
where in every step we only need to solve an optimisation
problem with Q. This result motivates the remainder of this
contribution, so let us introduce the necessary notation and
notions needed to repeat it.

We let L B ℝX be the set of real functions on X, which
we equip with the supremum (or maximum) norm; this
makes L a Banach space, which we mention here because
it will allow us to invoke the Cauchy–Lipschitz Theorem in
Section 3 further on. Whenever it does not lead to confusion,
we identify any real number 𝜇 ∈ ℝ with the constant
function 𝜇 ∈ L with range {𝜇}. Besides the constant
functions, we will also often need indicator functions: for
any subset 𝐴 of X, the corresponding indicator 𝕀𝐴 takes the
value 1 on 𝐴 and 0 elsewhere; for the sake of clarity, for all
𝑥 ∈ X we will shorten 𝕀{𝑥} to 𝕀𝑥 .

Henceforth, we identify any matrix 𝑀 : X×X → ℝ with
the linear map from L to L, which we will also denote
by 𝑀 , that maps 𝑓 ∈ L to 𝑀 [ 𝑓 ] ∈ L defined by

𝑀 [ 𝑓 ] (𝑥) B
∑︁
𝑦∈X

𝑀 (𝑥, 𝑦) 𝑓 (𝑦) for all 𝑥 ∈ X;

note that 𝑀 [𝕀𝑦] (𝑥) = 𝑀 (𝑥, 𝑦) for all 𝑥, 𝑦 ∈ X. The (point-
wise) upper envelope of Q, then, maps any 𝑓 ∈ L to

𝑄Q [ 𝑓 ] : X → ℝ : 𝑥 ↦→ sup
{
𝑄 [ 𝑓 ] (𝑥) : 𝑄 ∈ Q

}
.

Now that we have introduced 𝑄Q , we are almost ready to
repeat (a slightly rephrased version of) Theorem 68 in [9].
We do need one more notion, though. The bounded set Q
of rate matrices is said to have separately specified rows
[14, Definition 7.3] if for any selection (𝑄𝑥)𝑥∈X ∈ QX of
rate matrices in Q, the rate matrix

𝑄 : X × X → ℝ : (𝑥, 𝑦) ↦→ 𝑄𝑥 (𝑥, 𝑦),

whose 𝑥-th row is the 𝑥-th row of𝑄𝑥 , belongs to Q; in other
words, Q has separately specified rows if and only if its
‘rows’ are specified independently of each other.

Theorem 2 Consider an imprecise jump process P such
that PM

M,Q ⊆ P ⊆ PM,Q . Fix any 𝑓 ∈ L and 𝑡 ∈ ℝ>0.
For all 𝑛 ∈ ℕ, let 𝛥𝑛 B 𝑡/𝑛 and define the sequence
( 𝑓𝑛,0, . . . , 𝑓𝑛,𝑛) by the initial condition 𝑓𝑛,𝑛 B 0 and, for
all 𝑘 ∈ {0, ..., 𝑛 − 1}, by the recursive relation

𝑓𝑛,𝑘 B 𝛥𝑛 𝑓 + 𝑓𝑛,𝑘+1 + 𝛥𝑛𝑄Q [ 𝑓𝑛,𝑘+1] . (2)

If Q has separately specified rows, then for all 𝑥 ∈ X,

𝐸P

(
1
𝑡

∫ 𝑡

0
𝑓 (𝑋𝑠)d𝑠

���� 𝑋0 = 𝑥

)
=

1
𝑡

lim
𝑛→+∞

𝑓𝑛,0 (𝑥).

Proof It follows from Theorem 66 in [9] – with, for all
𝑛 ∈ ℕ and 𝑘 ∈ {0, . . . , 𝑛−1}, 𝑓𝑛,𝑘 here equal to 𝛥𝑛 𝑓 + 𝑓𝑛,𝑘+1
there – that for all 𝑥 ∈ X,

𝐸P

(∫ 𝑡

0
𝑓 (𝑋𝑠)d𝑠

���� 𝑋0 = 𝑥

)
= lim
𝑛→+∞

(𝐼 + 𝛥𝑛𝑄Q) [ 𝑓𝑛,0] (𝑥).
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Now it follows from (R5) further on that for all 𝑛 ∈ ℕ,(𝐼 + 𝛥𝑛𝑄Q) [ 𝑓𝑛,0] − 𝑓𝑛,0
 ≤ 𝛥𝑛∥𝑄Q ∥∥ 𝑓𝑛,0∥,

with ∥𝑄Q ∥ as defined in (3) further on. Moreover, it is
not difficult to show (see Lemma 23 in the Supplementary
Material) that ∥ 𝑓𝑛,0∥ ≤ 𝑡∥ 𝑓 ∥ for all 𝑛 ∈ ℕ such that
𝑡∥𝑄Q ∥ ≤ 2𝑛. From these two observations, we infer that

lim
𝑛→+∞

(𝐼 + 𝛥𝑛𝑄Q) [ 𝑓𝑛,0] − 𝑓𝑛,0
 ≤ lim

𝑛→+∞
𝑡2

𝑛
∥𝑄Q ∥∥ 𝑓 ∥ = 0.

The equality in the statement follows because 𝐸P is posi-
tively homogeneous since every 𝐸𝑃 is.

3. Weak Ergodicity for Upper Rate Operators

Krak et al. [14, Eqn. (38)] argue that the upper envelope𝑄Q
is a map from L to L because Q is bounded, and their
Proposition 7.5 establishes that this upper envelope 𝑄Q is
an upper rate operator in the sense of their Definition 7.2,
which we repeat here.

Definition 3 An upper rate operator 𝑄 is a map from L
to L such that for all 𝑓 , 𝑔 ∈ L, 𝜇 ∈ ℝ and 𝑥, 𝑦 ∈ X,

R1. 𝑄 [ 𝑓 + 𝑔] ≤ 𝑄 [ 𝑓 ] +𝑄 [𝑔];
R2. 𝑄 [𝜇 𝑓 ] = 𝜇𝑄 [ 𝑓 ] whenever 𝜇 ≥ 0;
R3. 𝑄 [𝜇] = 0;
R4. 𝑄 [−𝕀𝑦] (𝑥) ≤ 0 whenever 𝑥 ≠ 𝑦.

Its conjugate lower rate operator 𝑄 : L → L is defined by

𝑄 [ 𝑓 ] B −𝑄 [− 𝑓 ] for all 𝑓 ∈ L.

Throughout this contribution, we will need the (operator)
norm of an upper rate operator 𝑄, which De Bock [4,
Eqn. (4)] defines as

∥𝑄∥ B sup
{
∥𝑄 [ 𝑓 ] ∥ : 𝑓 ∈ L, ∥ 𝑓 ∥ = 1

}
< +∞, (3)

and can easily be computed with the help of Proposition 4
in [8]. Moreover, it follows immediately from this definition
and (R2) that

R5. ∥𝑄 [ 𝑓 ] ∥ ≤ ∥𝑄∥∥ 𝑓 ∥ for all 𝑓 ∈ L.

Let us now revisit the recursion in (2), but this time for a
general upper rate operator 𝑄. For all 𝑓 ∈ L, we let

𝑄 𝑓 : L → L : 𝑔 ↦→ 𝑓 +𝑄 [𝑔] .

This way, for all 𝑓 , 𝑔 ∈ L and 𝛥 ∈ ℝ>0,

𝛥 𝑓 + 𝑔 + 𝛥𝑄 [𝑔] = 𝑔 + 𝛥𝑄 𝑓 [𝑔] = (𝐼 + 𝛥𝑄 𝑓 ) [𝑔] .

With this in mind, we see that for all 𝑛 ∈ ℕ, 𝑓𝑛,0 as defined
in Theorem 2 can be thought of as an approximation through
Euler’s method with uniform step size 𝛥𝑛 = 𝑡/𝑛 – see for
example [15, Section 5.1] – of the solution of the initial
value problem{

𝑢′ (𝑡) = 𝑄 𝑓 [𝑢(𝑡)] for 𝑡 ∈ ℝ≥0

𝑢(0) = 0.
(4)

It should not come as a surprise, then, that this initial
value problem has a solution; as we will presently see, this
solution is in fact unique.

Fix some 𝑓 ∈ L, and consider the initial value problem{
𝑢′ (𝑡) = 𝑄 𝑓 [𝑢(𝑡)] for 𝑡 ∈ ℝ≥0

𝑢(0) = 𝑔
(5)

in L, where 𝑔 ∈ L is an arbitrary initial condition. The
Cauchy–Lipschitz Theorem – see for example [2, The-
orem 7.3] or [15, Theorem 1.1] – gives existence and
uniqueness of a solution of this initial value problem in the
class C1 (ℝ≥0,L) of continuously differentiable maps from
ℝ≥0 to L, but this requires that 𝑄 𝑓 is Lipschitz. This is
clearly the case because 𝑄 is Lipschitz [4, R11] and, for all
𝑔, ℎ ∈ L,

∥𝑄 𝑓 [𝑔] −𝑄 𝑓 [ℎ] ∥ = ∥𝑄 [𝑔] −𝑄 [ℎ] ∥.

Hence, by the Cauchy–Lipschitz Theorem, the initial value
problem in (5) has a unique solution, which we denote by
𝑒•𝑄 𝑓 [𝑔] : ℝ≥0 → L : 𝑡 ↦→ 𝑒𝑡𝑄 𝑓 [𝑔].

It is essentially well-known that Euler’s Method is con-
vergent [see 15, Section 5.2], and therefore

𝑒𝑡𝑄 𝑓 [𝑔] = lim
𝑛→+∞

(
𝐼 + 𝑡

𝑛
𝑄 𝑓

)𝑛
[𝑔] (6)

for all 𝑡 ∈ ℝ≥0 and 𝑔 ∈ L. Using this equality, we can
rewrite Theorem 2 with 𝑒𝑡𝑄 𝑓 as follows.

Corollary 4 Consider an imprecise jump process P such
that PM

M,Q ⊆ P ⊆ PM,Q , and let 𝑄 B 𝑄Q . Fix any 𝑓 ∈ L
and 𝑡 ∈ ℝ>0. If Q has separately specified rows, then for
all 𝑥 ∈ X,

𝐸P

(
1
𝑡

∫ 𝑡

0
𝑓 (𝑋𝑠)d𝑠

���� 𝑋0 = 𝑥

)
=

1
𝑡
𝑒𝑡𝑄 𝑓 [0] (𝑥).

The combination of this result and Definition 1 motivates
our notion of weak ergodicity for upper rate operators.

Definition 5 An upper rate operator 𝑄 is called weakly
ergodic if for all 𝑓 ∈ L, the limit lim𝑡→+∞

1
𝑡
𝑒𝑡𝑄 𝑓 [0] exists

and is constant over X.

4
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This way, we have turned the question whether P – with
PM
M,Q ⊆ P ⊆ PM,Q and Q separately specified – is

weakly ergodic into the question whether𝑄 B 𝑄Q is weakly
ergodic, and this is progress because the latter is easier to
investigate.

Before we continue, let us briefly investigate the special
case 𝑓 = 0. Since 𝑄0 = 𝑄, it follows from (6) that for all
𝑡 ∈ ℝ≥0 and 𝑔 ∈ L,

𝑒𝑡𝑄0 [𝑔] = lim
𝑛→+∞

(
𝐼 + 𝑡

𝑛
𝑄

)𝑛
[𝑔] = 𝑒𝑡𝑄 [𝑔],

where 𝑒𝑡𝑄 is the (non-linear) operator exponential of 𝑡𝑄 as
defined and investigated by [19, 4, 14].

4. A Necessary and Sufficient Condition

Our main contribution is an easy to check condition on 𝑄
that is necessary and sufficient for 𝑄 to be weakly ergodic.
As we will see in Section 4.2, said condition can be elegantly
stated by means of the notions of upper and lower reachabil-
ity. We will work with these notions for upper rate operators
and upper transition operators – see Section 4.3 further on –
so we present these notions for an arbitrary operator; this is
simply a unified treatment of the reachability relations in
[11, 4, 18], see also [1, Sections 4.1 and 4.2].

4.1. Upper and Lower Reachability

Consider an operator 𝐹 : L → L. We letG(𝐹) = (V𝐹 , E𝐹)
be the directed graph with vertices V𝐹 B X and directed
edges

E𝐹 B
{
(𝑥, 𝑦) ∈ X2 : 𝑥 ≠ 𝑦, 𝐹 [𝕀𝑦] (𝑥) > 0

}
.

For any two states 𝑥, 𝑦 ∈ X, we say that 𝑦 is upper reachable
from 𝑥, and write 𝑥 ⇝ 𝑦, if (i) 𝑥 = 𝑦; or (ii) there is a di-
rected path from 𝑥 to 𝑦 in G(𝐹), so a sequence 𝑥0, 𝑥1, ..., 𝑥𝑛
such that 𝑥0 = 𝑥, 𝑥𝑛 = 𝑦 and (𝑥𝑘−1, 𝑥𝑘) ∈ E𝐹 for all
𝑘 ∈ {1, . . . , 𝑛}. Moreover, we say that 𝑥 and 𝑦 commu-
nicate, denoted by 𝑥 ↭ 𝑦, if 𝑥 ⇝ 𝑦 and 𝑦 ⇝ 𝑥. The
equivalence relation •↭ • partitions X into equivalence
classes, called communication classes, which partition X.
Such a communication class S is closed if 𝑥 ̸⇝ 𝑦 for all
𝑥 ∈ S and 𝑦 ∈ Sc. The upper reachability relation •⇝ •
induces a partial order ≺ on the communication classes:
S1 ≺ S2 if and only if 𝑥 ⇝ 𝑦 for one (and then all)
(𝑥, 𝑦) ∈ S1 × S2. Now we say that 𝐹 has a top class if
there is a communication class that dominates all other
communication classes in the partial order ≺; T’Joens and
De Bock [18, Section 5] show that this is the case if and
only if the set

{𝑥 ∈ X : (∀𝑦 ∈ X) 𝑦⇝ 𝑥}

is non-empty, in which case this set is the top class. Further-
more, whenever it exists, the top class is the unique closed
communication class.

We also need the notion of lower reachability. Let 𝐾 B
|X|. For all non-empty 𝐴 ⊆ X and 𝑥 ∈ X, we say that 𝐴 is
lower reachable from 𝑥 if 𝑥 ∈ 𝐴𝐾 , where (𝐴0, . . . , 𝐴𝐾 ) is
the sequence defined by the initial condition 𝐴0 B 𝐴 and,
for all 𝑘 ∈ {0, . . . , 𝐾 − 1}, by the recursive relation

𝐴𝑘+1 B 𝐴𝑘 ∪
{
𝑥 ∈ X \ 𝐴𝑘 : 𝐹 [−𝕀𝐴𝑘

] (𝑥) < 0
}
.

Finally, a (non-empty) set S ⊆ X is said to be 𝐹-absorbing
if S is lower reachable from all 𝑥 ∈ X \ S.

4.2. The Main Result

As previously mentioned, we are by no means the first to
use the notions of upper and lower reachability. For an
upper rate operator 𝑄, the corresponding notions of upper
and lower reachability are precisely those introduced by
De Bock [4, Defintions 7 and 8] – the equivalence holds
because for all 𝐴 ⊆ X, 𝑄 [𝕀𝐴] > 0 ⇔ 𝑄 [−𝕀𝐴] < 0. They
use these notions to establish a necessary and sufficient
condition for ergodicity, defined as follows [4, Definition 6].

Definition 6 An upper rate operator 𝑄 is called ergodic
if for all 𝑓 ∈ L, lim𝑡→+∞ 𝑒𝑡𝑄 [ 𝑓 ] exists and is a constant
function.

Their Theorem 19, then, establishes that 𝑄 is ergodic if and
only if 𝑄 has a top class that is 𝑄-absorbing.

The notions of ergodicity and weak ergodicity of 𝑄 are
quite different. It is therefore quite remarkable that, due
to [4, Theorem 19] and the following result, which is the
main contribution of our paper, they actually turn out to be
equivalent.

Theorem 7 An upper rate operator 𝑄 is weakly ergodic if
and only if 𝑄 has a top class that is 𝑄-absorbing.

From a practical point of view, it is good to know that
the two conditions in this result can be easily checked; we
refer to [4, Algorithms 1 and 2] for more details. We also
point out the following two corollaries, which follow by
combining Theorem 7 with Corollary 4 and Theorem 19
in [4], respectively.

Corollary 8 Consider an imprecise jump process P such
that PM

M,Q ⊆ P ⊆ PM,Q , and suppose that Q has sepa-
rately specified rows. Then P is weakly ergodic if and only
if 𝑄Q has a top class that is 𝑄Q-absorbing.

Corollary 9 An upper rate operator 𝑄 is weakly ergodic
if and only if it is ergodic.

5
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The remainder of this contribution is devoted to our proof
of Theorem 7. We show the sufficiency (or the converse
implication) in Section 5 and the necessity (or the forward
implication) in Section 6. Throughout these proofs, we will
repeatedly rely on the notion of weak ergodicity for upper
transition operators, the discrete-time counterpart of upper
rate operators. It is for this reason that we discuss this notion
in the following section.

4.3. Upper Transition Operators

An upper transition operator is to an imprecise Markov chain
[3, 11, 18] what an upper rate operator is to a Markovian
imprecise jump process.

Definition 10 An upper transition operator 𝑇 is a map from
L to L such that for all 𝑓 , 𝑔 ∈ L and 𝜆 ∈ ℝ≥0,

T1. 𝑇 [ 𝑓 + 𝑔] ≤ 𝑇 [ 𝑓 ] + 𝑇 [𝑔];
T2. 𝑇 [𝜆 𝑓 ] = 𝜆𝑇 [ 𝑓 ];
T3. 𝑇 [ 𝑓 ] ≤ max 𝑓 .

It is well known – see, for example, [3, Appendix], [11,
Section 1] or [18, Section 4] – that an upper transition
operator 𝑇 has the following properties: for all 𝑓 , 𝑔 ∈ L
and 𝜇 ∈ ℝ,

T4. min 𝑓 ≤ 𝑇 [ 𝑓 ] ≤ max 𝑓 ;
T5. 𝑇 [𝜇 + 𝑓 ] = 𝜇 + 𝑇 [ 𝑓 ];
T6. 𝑇 [ 𝑓 ] ≤ 𝑇 [𝑔] whenever 𝑓 ≤ 𝑔;
T7. ∥𝑇 [ 𝑓 ] ∥ ≤ ∥ 𝑓 ∥;
T8. ∥𝑇 [ 𝑓 ] − 𝑇 [𝑔] ∥ ≤ ∥ 𝑓 − 𝑔∥.

An upper transition operator 𝑇 is called ergodic if for all
𝑓 ∈ L, lim𝑛→+∞ 𝑇

𝑛 [ 𝑓 ] exists and is a constant function [11,
Definition 2]; note the resemblance between this definition
and Definition 6. The notion of weak ergodicity of upper
rate operators (Definition 5) also has a counterpart for upper
transition operators. To state it, T’Joens and De Bock [18,
Section 4] introduce the following derived operator: for any
upper transition operator 𝑇 and any 𝑓 ∈ L, they define

𝑇 𝑓 : L → L : 𝑔 ↦→ 𝑇 𝑓 [𝑔] B 𝑓 + 𝑇 [𝑔] .

Then an upper transition operator 𝑇 is weakly ergodic if
for all 𝑓 ∈ L, lim𝑛→+∞

1
𝑛
𝑇
𝑛

𝑓 [0] exists and is a constant
function [18, Section 4]. Again, this notion is similar to
our counterpart for upper rate operators (Definition 5); this
should not come as a surprise since T’Joens and De Bock
[18, Section 3] also motivate their notion of weak ergodicity
through the limit for 𝑛→ +∞ of the upper expectation (with
respect to some imprecise Markov chain) of 1

𝑛

∑𝑛
𝑘=1 𝑓 (𝑋𝑘).

Crucially, T’Joens and De Bock [18, Theorem 14] give a
necessary and sufficient condition on 𝑇 for weak ergodicity,

and their condition is one in two parts. The first part is
that 𝑇 has a top class, but the second part is a bit more
involved. With the help of results in [11] or [1], we can
translate this second part into one about 𝑇-absorption. To
this end, note that for any upper transition operator 𝑇 and
any 𝑓 ∈ L, it follows from (T5) and (T6) that both𝑇 and𝑇 𝑓
are what is known as a ‘topical map’ [18, (T1) and (T2)] or
a ‘monotone additively homogeneous map’ [1, Section 2.1];
𝑇 is furthermore convex due to (T1) and (T2).

Theorem 11 For any upper transition operator 𝑇 , the
following statements are equivalent.

(i) 𝑇 is weakly ergodic.

(ii) for all 𝑓 , ℎ ∈ L, lim𝑛→+∞
1
𝑛
𝑇
𝑛

𝑓 [ℎ] exists, is a constant
function and does not depend on ℎ.

(iii) 𝑇 has a top class S that is ‘absorbing’, meaning that

(∀𝑥 ∈ X \ S)(∃𝑛 ∈ ℕ) 𝑇𝑛 [𝕀Sc ] (𝑥) < 1.

(iv) 𝑇 has a top class that is 𝑇-absorbing.

(v) For all 𝑓 ∈ L, there is some pair (𝜇, 𝑔) ∈ ℝ×L such
that 𝑇 𝑓 [𝑔] = 𝜇 + 𝑔.

Proof Since 𝑇 𝑓 is a ‘topical map’, it follows from Lemma
3.1 in [10] that (i) implies (ii); (i) and (ii) are therefore
equivalent because (ii) trivially implies (i). The equivalence
between (i) and (iii) is exactly Theorem 14 in [18]. Since𝑇 is
a ‘monotone additively homogeneous map’, the equivalence
between (ii) and (v) follows from Theorem 2.1 in [1]. That
(iv) is equivalent to the other conditions, follows from [11]
or [1]: (iv) is equivalent to (iii) due to [11, Proposition 6],
and equivalent to (ii) due to [1, Corollary 4.4 and Theorem
2.1]. Neither of these may be immediately obvious though,
so let us elaborate this a bit.

To see why [11, Proposition 6] implies that (iv) is equiv-
alent to (iii), observe that for 𝐴 ⊆ X and 𝑥 ∈ X \ 𝐴, since
−𝕀𝐴 = 𝕀𝐴c − 1,

𝑇 [−𝕀𝐴] (𝑥) < 0
(T5)
⇔ 𝑇 [𝕀𝐴c ] (𝑥) < 1

(T4)
⇔ 𝑇 [𝕀𝐴c ] (𝑥) ≠ 1.

This makes the definition of lower reachability in Section 4.1
equivalent to the condition in [11, Proposition 6], provided
we take into account that the sets 𝐴𝑘 there correspond to
the sets 𝐴c

𝑘
here. There’s a caveat though, because [11,

Proposition 6] requires that the top class is regular. Going
through the proof of the result, however, it becomes clear
that this condition is in fact never used.

To see why [1, Corollary 4.4 and Theorem 2.1] imply the
equivalence between (iv) and (ii), observe that for 𝑥, 𝑦 ∈ X,

+∞ = lim
𝛼→+∞

𝑇 [𝛼𝕀𝑦] (𝑥)
(T2)
= lim

𝛼→+∞
𝛼𝑇 [𝕀𝑦] (𝑥)
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if and only if 𝑇 [𝕀𝑦] (𝑥) > 0. Hence, the ‘unique final class’
of G∞ (𝑇) (in their notation) is precisely the top class S
of 𝑇 . Similarly, for all 𝐴 ⊆ X and 𝑥 ∈ X \ 𝐴,

−∞ = lim
𝛼→−∞

𝑇 [𝛼𝕀𝐴] (𝑥)
(T2)
= lim

𝛼→−∞
−𝛼𝑇 [−𝕀𝐴] (𝑥)

if and only if 𝑇 [−𝕀𝐴] (𝑥) < 0. With a bit more work, and
taking into account the explanation in [1, Section 4.1] (their
edges are reversed compared to ours), we can verify that
reach(S,H−

∞ (𝑇)) (in their notation) is exactly the set of
states 𝑦 ∈ X such that S is lower reachable from 𝑦. So
reach(S,H−

∞ (𝑇)) = X (the second part of the condition in
[1, Corollary 4.4]) if and only if S is 𝑇-absorbing.

While we have seen in Corollary 9 that the notions of
weak ergodicity and ergodicity are equivalent for upper rate
operators, this is not the case for upper transition operators!
T’Joens and De Bock [18, Example 1] give an elegant
counterexample of an upper transition operator 𝑇 that is
weakly ergodic, but not ergodic.

That said, there are important connections between the
notions of weak ergodicity for upper rate operators and
upper transition operators. These connections stem from the
fact that we can use an upper rate operator 𝑄 to construct
an upper transition operator in the following way.

Lemma 12 Consider an upper rate operator 𝑄 and
some 𝛥 ∈ ℝ≥0. Then 𝐼 + 𝛥𝑄 is an upper transition op-
erator if and only if 𝛥∥𝑄∥ ≤ 2.

Proof Since ∥𝑄 [ 𝑓 ] ∥ = ∥𝑄 [− 𝑓 ] ∥, it is clear that ∥𝑄∥
as defined in (3) is equal to ∥𝑄∥ as used in [8]. Now
Proposition 3 in [8] says that (𝐼 + 𝛥𝑄) is a lower transition
operator (in the sense of their Definition 1) if and only if
𝛥∥𝑄∥ = 𝛥∥𝑄∥ ≤ 2. Our statement follows because 𝑇 is
an upper transition operator if and only if the conjugate
operator 𝑇 : L → L : 𝑓 ↦→ −𝑇 [− 𝑓 ] is a lower transition
operator.

Quite remarkably, the condition on 𝑄 in Theorem 7 is
necessary and sufficient to guarantee that the constructed
upper transition operator (𝐼 + 𝛥𝑄) is weakly ergodic.

Theorem 13 Consider an upper rate operator 𝑄 and
some 𝛥 ∈ ℝ>0 such that 𝛥∥𝑄∥ ≤ 2. Then 𝐼 + 𝛥𝑄 is weakly
ergodic if and only if 𝑄 has a top class that is𝑄-absorbing.

Due to Theorem 11, we can divide our proof in the following
two lemmas.

Lemma 14 Consider an upper rate operator 𝑄 and some
𝛥 ∈ ℝ>0. Then the notions of upper reachability for 𝑄
and 𝐼+𝛥𝑄 are equivalent. Consequently, the communication
classes of 𝑄 and 𝐼 + 𝛥𝑄 are equivalent; in particular, 𝑄
has a top class if and only if 𝐼 + 𝛥𝑄 has one, and these are
necessarily equal if they exist.

Proof Observe that for all 𝑥, 𝑦 ∈ X such that 𝑥 ≠ 𝑦,

0 < 𝑄 [𝕀𝑦] (𝑥) ⇔ 0 < 𝕀𝑦 (𝑥)+𝛥𝑄 [𝕀𝑦] (𝑥) = (𝐼+𝛥𝑄) [𝕀𝑦] (𝑥).

It follows immediately from this equality that the notions of
upper reachability for 𝑄 and 𝐼 + 𝛥𝑄 are equivalent, which
implies the statement.

Lemma 15 Consider an upper rate operator 𝑄 and some
𝛥 ∈ ℝ>0. A (non-empty) subset 𝐴 of X is 𝑄-absorbing if
and only if it is (𝐼 + 𝛥𝑄)-absorbing.

Proof Observe that for all 𝐵 ⊆ X and 𝑥 ∈ X \ 𝐵,

𝛥𝑄 [−𝕀𝐵] (𝑥) = −𝕀𝐵 (𝑥)+𝛥𝑄 [−𝕀𝐵] (𝑥) = (𝐼+𝛥𝑄) [−𝕀𝐵] (𝑥).

It follows immediately from this equality that the notions
of lower reachability for 𝑄 and 𝐼 + 𝛥𝑄 are equivalent, and
this implies the statement.

Proof of Theorem 13 Recall from Lemma 12 that 𝐼 + 𝛥𝑄 is
an upper transition operator. Due to Theorem 11, the result
therefore follows immediately from Lemmas 14 and 15.

At first sight, one might be tempted to think that Theo-
rem 13 provides a direct path to Theorem 7. Recall from
Definition 5 and (6) that 𝑄 is weakly ergodic if and only if
for all 𝑓 ∈ L,

lim
𝑡→+∞

1
𝑡
𝑒𝑡𝑄 𝑓 [0] = lim

𝑡→+∞
lim
𝑛→+∞

𝑛

𝑡

1
𝑛

(
𝐼 + 𝑡

𝑛
𝑄 𝑓

)𝑛
[0] (7)

exists and is constant. Now if 𝑄 has a top class that is
𝑄-absorbing, then for all 𝑡 ∈ ℝ>0 and 𝑛 ∈ ℕ such that
𝑡∥𝑄∥ ≤ 2𝑛, Theorem 13 implies that for all 𝑓 ∈ L,

lim
𝑛→+∞

1
𝑛

(
𝐼 + 𝑡

𝑛
𝑄 𝑓

)𝑛
[0]

exists and is constant. Unfortunately, this does not immedi-
ately help us to prove (7). Theorem 13 would help us if we
could establish that

lim
𝑡→+∞

1
𝑡
𝑒𝑡𝑄 𝑓 [0] = lim

𝛥↘0
lim
𝑛→+∞

1
𝑛𝛥

(
𝐼 + 𝛥𝑄 𝑓

)𝑛 [0],
but this is no easy feat. For this reason, we choose to
pursue an avenue that builds on Theorem 13, but also on
Theorem 11 and some intermediary results in [18].

5. Proof of the Sufficiency
The goal of this section is to prove the sufficiency in
Theorem 7, so the following result.
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Proposition 16 Consider an upper rate operator 𝑄. If
𝑄 has a top class that is 𝑄-absorbing, then 𝑄 is weakly
ergodic.

Suppose 𝑄 satisfies the condition in Proposition 16, fix
some 𝛥 ∈ ℝ>0 such that 𝛥∥𝑄∥ ≤ 2 and let 𝑇 B 𝐼 + 𝛥𝑄.
Then we know from Theorem 13 that 𝑇 = 𝐼 + 𝛥𝑄 is
weakly ergodic. Hence, for all 𝑓 ∈ L, it follows from
Theorem 11 (with 𝛥 𝑓 here as 𝑓 there) that 𝑇𝛥 𝑓 = 𝐼 + 𝛥𝑄 𝑓

has an additive eigenvector, in the sense that there is some
couple (𝛼, 𝑔) ∈ ℝ × L such that (𝐼 + 𝛥𝑄 𝑓 ) [𝑔] = 𝛼 + 𝑔.
With 𝜇 B 𝛼/𝛥, this implies that 𝑄 𝑓 [𝑔] = 𝜇. Let us use
this information to prove Proposition 16.

As an intermediary step, we set out to prove that under
our conditions on 𝑄, 𝑒𝑡𝑄 𝑓 has an additive eigenvector for
all 𝑡 ∈ ℝ≥0 and 𝑓 ∈ L. In our proof, we use the following
property of the upper rate operator 𝑄 [4, R6]:

R6. 𝑄 [ 𝑓 + 𝜇] = 𝑄 [ 𝑓 ] for all 𝑓 ∈ L and 𝜇 ∈ ℝ.

Lemma 17 Consider an upper rate operator 𝑄, and sup-
pose 𝑄 has a top class that is 𝑄-absorbing. Then for
all 𝑓 ∈ L, there is a couple (𝜇, 𝑔) ∈ ℝ × L such that
𝑒𝑡𝑄 𝑓 [𝑔] = 𝑡𝜇 + 𝑔 for all 𝑡 ∈ ℝ≥0.

Proof Fix any 𝑓 ∈ L. Then as explained in the main
text, it follows from our assumptions that there is a couple
(𝜇, 𝑔) ∈ ℝ × L such that 𝑄 𝑓 [𝑔] = 𝜇.

Since the statement is trivial for 𝑡 = 0 – because 𝑒0𝑄 𝑓 = 𝐼

– we fix some 𝑡 ∈ ℝ>0. Then for all 𝑛 ∈ ℕ, it follows from
the preceding and (𝑛 − 1) applications of (R6) that(
𝐼 + 𝑡

𝑛
𝑄 𝑓

)𝑛
[𝑔] =

(
𝐼 + 𝑡

𝑛
𝑄 𝑓

)𝑛−1 (
𝑔 + 𝑡

𝑛
𝜇

)
= · · · = 𝑡𝜇 + 𝑔.

Due to (6), this implies that

𝑒𝑡𝑄 𝑓 [𝑔] = lim
𝑛→+∞

(
𝐼 + 𝑡

𝑛
𝑄 𝑓

)𝑛
[𝑔] = 𝑡𝜇 + 𝑔,

as required.

We are almost there, but not quite. Indeed, from
Lemma 17 we learn that under the condition on 𝑄 in Propo-
sition 16, for all 𝑓 ∈ L there is some couple (𝜇, 𝑔) ∈ ℝ×L
such that

lim
𝑡→+∞

1
𝑡
𝑒𝑡𝑄 𝑓 [𝑔] = lim

𝑡→+∞
𝑡𝜇 + 𝑔
𝑡

= 𝜇.

This is almost weak ergodicity, be it not that we need this
property for 𝑔 = 0. Fortunately, it is easy to prove that this
is implied.

Lemma 18 Consider an upper rate operator 𝑄 and some
𝑓 ∈ L. If the limit lim𝑡→∞

1
𝑡
𝑒𝑡𝑄 𝑓 [𝑔] exists for some 𝑔 ∈ L,

then

lim
𝑡→∞

1
𝑡
𝑒𝑡𝑄 𝑓 [ℎ] = lim

𝑡→∞
1
𝑡
𝑒𝑡𝑄 𝑓 [𝑔] for all ℎ ∈ L.

Proof Fix any 𝛥 ∈ ℝ≥0 such that 𝛥∥𝑄∥ ≤ 2, and recall
from Lemma 12 that 𝐼 + 𝛥𝑄 is an upper transition operator.
Then for all ℎ1, ℎ2 ∈ L,(𝐼 + 𝛥𝑄 𝑓 ) [ℎ1] − (𝐼 + 𝛥𝑄 𝑓 ) [ℎ2]


=

(𝐼 + 𝛥𝑄) [ℎ1] − (𝐼 + 𝛥𝑄) [ℎ2]
 ≤ ∥ℎ1 − ℎ2∥,

where the inequality follows from (T8).
For all 𝑡 ∈ ℝ>0 and 𝑛 ∈ ℕ such that 𝑡∥𝑄∥ ≤ 2𝑛, we infer

from repeated application of the preceding that(𝐼 + 𝑡

𝑛
𝑄 𝑓

)𝑛
[𝑔] −

(
𝐼 + 𝑡

𝑛
𝑄 𝑓

)𝑛
[ℎ]

 ≤ ∥𝑔 − ℎ∥.

It is now easy to use this observation and (6) to prove that
for all 𝑡 ∈ ℝ>0,

∥𝑒𝑡𝑄 𝑓 [𝑔] − 𝑒𝑡𝑄 𝑓 [ℎ] ∥ ≤ ∥𝑔 − ℎ∥.

Hence, we see that

lim
𝑡→+∞

1
𝑡
𝑒𝑡𝑄 𝑓 [𝑔] − 1

𝑡
𝑒𝑡𝑄 𝑓 [ℎ]


= lim
𝑡→+∞

1
𝑡

𝑒𝑡𝑄 𝑓 [𝑔] − 𝑒𝑡𝑄 𝑓 [ℎ]


≤ lim
𝑡→+∞

1
𝑡
∥𝑔 − ℎ∥ = 0,

as required.

Proof of Proposition 16 Follows immediately from Lem-
mas 17 and 18.

6. Proof of the Necessity
This section is devoted to the proof of the necessity in
Theorem 7, which is precisely the following result.

Proposition 19 If 𝑄 is weakly ergodic, then 𝑄 has a top
class that is 𝑄-absorbing.

Our proof uses similar arguments as those of T’Joens
and De Bock [18]. Their arguments are for the discrete time
setting, but we can nevertheless use them because of the
following quintessential result; since our proof is two pages
long, we have relegated it to the Supplementary Material.

Theorem 20 Consider an upper rate operator 𝑄, and fix
some 𝑓 ∈ L and 𝛥 ∈ ℝ>0. Then for all ℎ ∈ L,

lim
𝑛→+∞

1
𝑛𝛥

𝑒𝑛𝛥𝑄 𝑓 [ℎ] −
(
𝐼 + 𝛥

𝑛2𝑄 𝑓

)𝑛3

[ℎ]
 = 0.

Other than that, our proof of Proposition 19 also relies
on two lemmas. The first is Lemma 36 in [18], which we
repeat here for convenience.
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Lemma 21 Consider an upper transition operator𝑇 . Then
for any closed communication class S and any ℎ, 𝑔 ∈ L
such that ℎ(𝑥) = 𝑔(𝑥) for all 𝑥 ∈ S,

𝑇
𝑛

ℎ [0] (𝑥) = 𝑇
𝑛

𝑔 [0] (𝑥) for all 𝑛 ∈ ℕ, 𝑥 ∈ S.

The second is a ‘rephrasing’ – consequence is perhaps more
accurate – of Lemma 44 in [18].

Lemma 22 Consider an upper rate operator 𝑄 and some
𝛥 ∈ ℝ>0 such that 𝛥∥𝑄∥ ≤ 2. Suppose𝑄 has a top class S
that is not 𝑄-absorbing. Then there is a non-empty subset 𝐴
of Sc such that 𝕀𝐴 ≤ (𝐼 + 𝛥𝑄) [𝕀𝐴].

Proof It follows from the assumptions in the statement and
Lemmas 14 and 15 that (𝐼 + 𝛥𝑄) also has S as top class
and that S is not (𝐼 + 𝛥𝑄)-absorbing. Since we know from
Lemma 12 that (𝐼 + 𝛥𝑄) is an upper transition operator,
the statement now follows immediately from Theorem 11
((iii)⇔(iv)) and Lemma 44 in [18].

Proof of Proposition 19 Fix some 𝛥 ∈ ℝ>0 such that
𝛥∥𝑄∥ ≤ 2. Then for all 𝑛 ∈ ℕ, with 𝛿𝑛 B 𝛥/𝑛2, it follows
from Lemma 12 that 𝐼 + 𝛿𝑛𝑄 is an upper transition operator.
We will use this implicitly throughout the proof.

Since 𝑄 is weakly ergodic, we know that for all 𝑓 ∈ L,
there is some 𝛼 𝑓 ∈ ℝ such that

lim
𝑡→+∞

1
𝑡
𝑒𝑡𝑄 𝑓 [0] (𝑥) = 𝛼 𝑓 for all 𝑥 ∈ X.

Due to Theorem 20, this implies that for all 𝑓 ∈ L,

lim
𝑛→+∞

1
𝑛𝛥

(
𝐼 + 𝛥

𝑛2𝑄 𝑓

)𝑛3

[0] (𝑥) = 𝛼 𝑓 for all 𝑥 ∈ X. (8)

Consider now any closed communication class C ⊆ X of𝑄
and any 𝛼 ∈ ℝ and 𝑓 ∈ L such that 𝑓 (𝑥) = 𝛼 for all 𝑥 ∈ C.
Then for all 𝑛 ∈ ℕ, due to Lemma 14, C is also a closed
communication class for 𝐼 + 𝛿𝑛𝑄, and it therefore follows
from Lemma 21 (with ℎ = 𝛿𝑛 𝑓 and 𝑔 = 𝛿𝑛𝛼) that, for all
𝑘 ∈ ℕ and 𝑥 ∈ C,

(𝐼 + 𝛿𝑛𝑄 𝑓 )𝑘 [0] (𝑥) = (𝐼 + 𝛿𝑛𝑄)𝑘𝛿𝑛 𝑓 [0] (𝑥)

= (𝐼 + 𝛿𝑛𝑄)𝑘𝛿𝑛𝛼 [0] (𝑥) = 𝑘𝛿𝑛𝛼,

where for the last equality we used (R3) 𝑘 times. In particular,
for 𝑘 = 𝑛3, we find that

1
𝑛𝛥

(
𝐼 + 𝛥

𝑛2𝑄 𝑓

)𝑛3

[0] (𝑥) = 1
𝑛𝛥
𝑛3 𝛥

𝑛2𝛼 = 𝛼

for all 𝑛 ∈ ℕ and 𝑥 ∈ C. Using (8), it therefore follows that

𝛼 𝑓 = 𝛼 for all 𝑥 ∈ C. (9)

Our proof will now be in two parts. In the first part, we
prove that 𝑄 has a top class, and we will do so by means
of a proof by contradiction – essentially using the same
strategy as the one in [18, Proof of Proposition 12]. So
assume ex absurdo that 𝑄 has no top class. Then by a
classic graph-theoretic argument, there are (at least) two
(disjoint) closed communication classes S1 and S2 – see for
example [18, Corollary 26]. Fix some 𝛼1, 𝛼2 ∈ ℝ such that
𝛼1 ≠ 𝛼2, and let 𝑓 B 𝛼1𝕀S1 + 𝛼2𝕀S2 . For ℓ ∈ {1, 2}, it then
follows from (9) (with C = Sℓ and 𝛼 = 𝛼ℓ) that 𝛼 𝑓 = 𝛼ℓ ,
contradicting the fact that 𝛼1 ≠ 𝛼2.

In the second part of this proof, we establish that the top
class S of𝑄 is𝑄-absorbing. Our proof will again be one by
contradiction, similar in spirit to the proof of Proposition 13
in [18]. Assume ex absurdo that the top class S is not
𝑄-absorbing. Then for all 𝑛 ∈ ℕ, we know from Lemma 22
that there is some non-empty subset 𝐴𝛿𝑛 of Sc such that
𝕀𝐴𝛿𝑛

≤ (𝐼 + 𝛿𝑛𝑄) [𝕀𝐴𝛿𝑛
].

Since Sc ⊆ X is finite, there is some non-empty subset 𝐴
of Sc that occurs infinitely often in the sequence (𝐴𝛿𝑛 )𝑛∈ℕ.
Let (𝑛𝑘)𝑘∈ℕ be the increasing sequence of indices 𝑛 ∈ ℕ

such that 𝐴𝛿𝑛 = 𝐴, and observe that by construction,

𝕀𝐴 ≤ (𝐼 + 𝛿𝑛𝑘𝑄) [𝕀𝐴] for all 𝑘 ∈ ℕ. (10)

Fix some 𝑘 ∈ ℕ. We set out to prove that

ℓ𝛿𝑛𝑘 𝕀𝐴 ≤ (𝐼 + 𝛿𝑛𝑘𝑄𝕀𝐴
)ℓ [0] for all ℓ ∈ ℕ. (11)

Due to (R3),

(𝐼 + 𝛿𝑛𝑘𝑄𝕀𝐴
) [0] = 𝛿𝑛𝑘 𝕀𝐴 + (𝐼 + 𝛿𝑛𝑘𝑄) [0] = 𝛿𝑛𝑘 𝕀𝐴,

so (11) clearly holds for ℓ = 1. For the inductive step, we
assume that (11) holds for some ℓ ∈ ℕ, and set out to show
that it also holds for ℓ+1. Observe that, by definition of𝑄𝕀𝐴

,

(𝐼 + 𝛿𝑛𝑘𝑄𝕀𝐴
)ℓ+1 [0] = 𝛿𝑛𝑘 𝕀𝐴 + (𝐼 + 𝛿𝑛𝑘𝑄) (𝐼 + 𝛿𝑛𝑘𝑄𝕀𝐴

)ℓ [0] .

It follows from this, the induction hypothesis, (T6), (T2)
and (10) that

(𝐼 + 𝛿𝑛𝑘𝑄𝕀𝐴
)ℓ+1 [0] ≥ 𝛿𝑛𝑘 𝕀𝐴 + (𝐼 + 𝛿𝑛𝑘𝑄) [ℓ𝛿𝑛𝑘 𝕀𝐴]

= 𝛿𝑛𝑘 𝕀𝐴 + ℓ𝛿𝑛𝑘 (𝐼 + 𝛿𝑛𝑘𝑄) [𝕀𝐴]
≥ (ℓ + 1)𝛿𝑛𝑘 𝕀𝐴,

as required. Applying (11) for ℓ = 𝑛3
𝑘
, we find that

1
𝑛𝑘𝛥

(
𝐼 + 𝛥

𝑛2
𝑘

𝑄𝕀𝐴

)𝑛3
𝑘

[0] (𝑥) ≥ 1 for all 𝑥 ∈ 𝐴. (12)

Since (12) is true for any 𝑘 ∈ ℕ, and furthermore 𝐴 ≠ ∅ and
lim𝑘→+∞ 𝑛𝑘 = +∞, it follows follows from (8) that 𝛼𝕀𝐴 ≥ 1.
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On the other hand, since 𝐴 ⊆ Sc, we know that 𝕀𝐴(𝑥) = 0
for all 𝑥 ∈ S. Since the top class S is a closed commu-
nication class, it therefore follows from (9) (with 𝑓 = 𝕀𝐴,
𝛼 = 0 and C = S) that 𝛼𝕀𝐴 = 0, contradicting the fact that
𝛼𝕀𝐴 ≥ 1.

7. Conclusion
We introduced the notion of weak ergodicity for an imprecise
jump process P, and showed that in the case of Markovian
imprecise jump processes defined by a bounded set Q
of rate matrices with separately specified rows, this can
be translated into the question whether the induced upper
transition operator𝑄Q is weakly ergodic. Finally, we showed
that an upper transition operator is weakly ergodic if and
only if it is ergodic, or equivalently, if and only if it has a top
class that is top class absorbing. This is similar to results
in the discrete time setting, but with the crucial difference
that in that setting weak ergodicity is in fact weaker than
ergodicity.

In future work, we would like to see if we can extend
to the imprecise setting the Point-Wise Ergodic Theorem
that we started this paper with, mimicking similar such
generalisations in a discrete time setting [5, 6].
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[19] Damjan Škulj. Efficient computation of the bounds
of continuous time imprecise Markov chains. Applied
Mathematics and Computation, 250:165–180, 2015.
doi: 10.1016/j.amc.2014.10.092.

11



Expected Time Averages in Markovian Imprecise Jump Processes

Supplementary Material
Our proof for Theorem 20 builds on the following intermedi-
ary lemmata. In order not to unnecessarily repeat ourselves
in this section, we fix some upper rate operator 𝑄 for the
remainder. Furthermore, we let

𝐷 B {𝛿 ∈ ℝ>0 : 𝛿∥𝑄∥ ≤ 2}

and for all 𝛿 ∈ 𝐷, let 𝑇 (𝛿) B 𝐼 + 𝛿𝑄; due to Lemma 12,
𝑇 (𝛿) is an upper transition operator whenever 𝛿 ∈ 𝐷, and
henceforth we will use this fact implicitly.

Lemma 23 For all 𝛿 ∈ 𝐷, 𝑓 , ℎ ∈ L and 𝑛 ∈ ℕ,

∥(𝐼 + 𝛿𝑄 𝑓 )𝑛 [ℎ] ∥ ≤ 𝑛𝛿∥ 𝑓 ∥ + ∥ℎ∥. (13)

Proof Let us prove the result by induction. For the base
case 𝑛 = 1, it follows from the definition of 𝑄 𝑓 and (T7)
that

∥(𝐼 + 𝛿𝑄 𝑓 ) [ℎ] ∥ ≤ ∥𝛿 𝑓 ∥ + ∥𝑇 (𝛿) [ℎ] ∥ ≤ 𝛿∥ 𝑓 ∥ + ∥ℎ∥,

as required. For the inductive step, we assume that (13)
holds for 𝑛 = 𝑘 with 𝑘 ∈ ℕ, and set out to show that it then
also holds for 𝑛 = 𝑘 + 1. From the definition of 𝑄 𝑓 , (T7)
and the induction hypothesis, it follows immediately that

∥(𝐼 + 𝛿𝑄 𝑓 )𝑘+1 [ℎ] ∥ ≤ 𝛿∥ 𝑓 ∥ + ∥𝑇 (𝛿) (𝐼 + 𝛿𝑄 𝑓 )𝑘 [ℎ] ∥
≤ 𝛿∥ 𝑓 ∥ + ∥(𝐼 + 𝛿𝑄 𝑓 )𝑘 [ℎ] ∥
≤ 𝛿(𝑘 + 1)∥ 𝑓 ∥ + ∥ℎ∥,

as required.

The second intermediary lemma builds on Lemma 23.

Lemma 24 Fix some 𝛿 ∈ 𝐷 and 𝑓 , ℎ ∈ L. Then for all
𝑛 ∈ ℕ,

∥(𝐼 + 𝛿𝑄 𝑓 )𝑛 [ℎ] − ℎ∥ ≤ 𝑛𝛿𝑐1 + 𝑛2𝛿2𝑐2, (14)

with 𝑐1 B ∥ 𝑓 ∥ + ∥𝑄∥∥ℎ∥ and 𝑐2 B ∥𝑄∥∥ 𝑓 ∥.

Proof We again give a proof by induction. For the base
case 𝑛 = 1, note that

∥(𝐼 + 𝛿𝑄 𝑓 ) [ℎ] − ℎ∥ = ∥𝛿 𝑓 + ℎ + 𝛿𝑄 [ℎ] − ℎ∥
≤ 𝛿∥ 𝑓 ∥ + 𝛿∥𝑄∥∥ℎ∥ = 𝛿𝑐1,

which implies the inequality in the statement for 𝑛 = 1.
For the inductive step, we assume that (14) holds for

𝑛 = 𝑘 with 𝑘 ∈ ℕ, and set out to verify that it holds for
𝑛 = 𝑘 + 1 as well. Observe that

(𝐼 + 𝛿𝑄 𝑓 )𝑘+1 [ℎ] − ℎ

= 𝛿 𝑓 + (𝐼 + 𝛿𝑄 𝑓 )𝑘 [ℎ] − ℎ + 𝛿𝑄(𝐼 + 𝛿𝑄 𝑓 )𝑘 [ℎ] .

Recall from (R5) that

∥𝛿𝑄(𝐼 + 𝛿𝑄 𝑓 )𝑘 [ℎ] ∥ ≤ 𝛿∥𝑄∥∥(𝐼 + 𝛿𝑄 𝑓 )𝑘 [ℎ] ∥.

We infer from these two observations, the induction hypoth-
esis and Lemma 23 that

∥(𝐼 + 𝛿𝑄 𝑓 )𝑘+1 [ℎ] − ℎ∥
≤ 𝛿∥ 𝑓 ∥ + (𝑘𝛿𝑐1 + 𝑘2𝛿2𝑐2) + 𝛿∥𝑄∥(𝑘𝛿∥ 𝑓 ∥ + ∥ℎ∥)
= (𝑘 + 1)𝛿𝑐1 + 𝑘2𝛿2𝑐2 + 𝑘𝛿2𝑐2.

Since 𝑘2 + 𝑘 ≤ (𝑘 + 1)2, we infer from this that

∥(𝐼 + 𝛿𝑄 𝑓 )𝑘+1 [ℎ] − ℎ∥ ≤ (𝑘 + 1)𝛿𝑐1 + (𝑘 + 1)2𝛿2𝑐2,

which is the inequality we were after.

Our next step is to use Lemma 24 to prove a ‘generalisa-
tion’ of Lemma E.5 in [14]. In this result, we need the fact
that 𝑄 is Lipschitz:

R7. ∥𝑄 [ 𝑓 ] −𝑄 [𝑔] ∥ ≤ ∥𝑄∥∥ 𝑓 − 𝑔∥ for all 𝑓 , 𝑔 ∈ L;

this is trivial if ∥𝑄∥ = 0 and follows from Lemma 12 (with
𝛥 = 2/∥𝑄∥) and (T8) (for 𝐼 + 𝛥𝑄) otherwise, see also [4,
R11] or [7, LR8].

Lemma 25 Fix some 𝛿 ∈ 𝐷 and 𝑓 , ℎ ∈ L. Then for all
𝑛 ∈ ℕ,

∥(𝐼 + 𝛿𝑄 𝑓 )𝑛 [ℎ] − (𝐼 + 𝑛𝛿𝑄 𝑓 ) [ℎ] ∥ ≤ 𝑛2𝛿2𝑐3 + 𝑛3𝛿3𝑐4,

with 𝑐3 B ∥𝑄∥∥ 𝑓 ∥ + ∥𝑄∥2∥ℎ∥ and 𝑐4 B ∥𝑄∥2∥ 𝑓 ∥.

Proof Our proof will be one by induction. The base case
𝑛 = 1 is trivially satisfied. For the inductive step, we assume
that the inequality in the statement holds for 𝑛 = 𝑘 with
𝑘 ∈ ℕ. To prove that the inequality in the statement holds
for 𝑛 = 𝑘 + 1, we observe that

(𝐼 + 𝛿𝑄 𝑓 )𝑘+1 [ℎ] − (𝐼 + (𝑘 + 1)𝛿𝑄 𝑓 ) [ℎ]
= 𝛿 𝑓 + (𝐼 + 𝛿𝑄 𝑓 )𝑘 [ℎ] − (𝐼 + 𝑘𝛿𝑄 𝑓 ) [ℎ]

− 𝛿 𝑓 − 𝛿𝑄 [ℎ] + 𝛿𝑄(𝐼 + 𝛿𝑄 𝑓 )𝑘 [ℎ] .

It follows from this, the induction hypothesis, (R7) and
Lemma 24 that

∥(𝐼 + 𝛿𝑄 𝑓 )𝑘+1 [ℎ] − (𝐼 + (𝑘 + 1)𝛿𝑄 𝑓 ) [ℎ] ∥
≤ (𝑘2𝛿2𝑐3 + 𝑘3𝛿3𝑐4)

+ 𝛿∥𝑄∥∥(𝐼 + 𝛿𝑄 𝑓 )𝑘 [ℎ] − ℎ∥
≤ (𝑘2𝛿2𝑐3 + 𝑘3𝛿3𝑐4) + 𝛿∥𝑄∥(𝑘𝛿𝑐1 + 𝑘2𝛿2𝑐2)
= (𝑘2 + 𝑘)𝛿2𝑐3 + (𝑘3 + 𝑘2)𝛿3𝑐4
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≤ (𝑘 + 1)2𝛿2𝑐3 + (𝑘 + 1)3𝛿3𝑐4,

which is the inequality we were after.

As a final intermediary step, we generalise Lemma 25;
this result is to Lemma 25 what Lemma E.6 is to Lemma E.5
in [14].

Lemma 26 Fix some 𝛿 ∈ 𝐷, 𝑓 , ℎ ∈ L and 𝑘 ∈ ℕ. Then
for all 𝑛 ∈ ℕ,(𝐼 + 𝛿𝑘 𝑄 𝑓

)𝑛𝑘
[ℎ] − (𝐼 + 𝛿𝑄 𝑓 )𝑛 [ℎ]

 ≤ 𝑛𝛿2𝑐3 + 𝑛2𝛿3𝑐4,

with 𝑐3 and 𝑐4 as in Lemma 25.

Proof Let us prove the result by induction. For the base
case 𝑛 = 1, we apply Lemma 25 (with 𝛿/𝑘 ∈ 𝐷 here as 𝛿
there and 𝑘 here as 𝑛 there) to find that

∥(𝐼 + 𝛿
𝑘
𝑄 𝑓 )𝑘 [ℎ] − (𝐼 + 𝑘 𝛿

𝑘
𝑄 𝑓 ) [ℎ] ∥

≤ 𝑘2
(
𝛿

𝑘

)2
𝑐3 + 𝑘3

(
𝛿

𝑘

)3
𝑐4 = 𝛿2𝑐3 + 𝛿3𝑐4.

For the inductive step, we assume that the inequality
in the statement holds for 𝑛 = ℓ with ℓ ∈ ℕ, and set out
to establish the inequality in the statement for 𝑛 = ℓ + 1.
Observe that(

𝐼 + 𝛿
𝑘
𝑄 𝑓

) (ℓ+1)𝑘
[ℎ] − (𝐼 + 𝛿𝑄 𝑓 )ℓ+1 [ℎ]

=

(
𝐼 + 𝛿

𝑘
𝑄 𝑓

) 𝑘 (
𝐼 + 𝛿

𝑘
𝑄 𝑓

)ℓ𝑘
[ℎ]

−
(
𝐼 + 𝛿

𝑘
𝑄 𝑓

) 𝑘
(𝐼 + 𝛿𝑄 𝑓 )ℓ [ℎ]

+
(
𝐼 + 𝛿

𝑘
𝑄 𝑓

) 𝑘
(𝐼 + 𝛿𝑄 𝑓 )ℓ [ℎ]

− (𝐼 + 𝛿𝑄 𝑓 ) (𝐼 + 𝛿𝑄 𝑓 )ℓ [ℎ] .

Let us denote the norm of the first two terms on the right
hand side by 𝜂1:2 and that of the last two terms by 𝜂3:4, such
that(𝐼 + 𝛿𝑘 𝑄 𝑓

) (ℓ+1)𝑘
[ℎ] − (𝐼 + 𝛿𝑄 𝑓 )ℓ+1 [ℎ]

 ≤ 𝜂1:2 + 𝜂3:4.

Since 𝑇 (𝛿/𝑘) satisfies (T8) because 𝛿/𝑘 ∈ 𝐷, the same
is true for 𝑇 (𝛿/𝑘)𝛿 𝑓 /𝑘 – we leave this for the reader to
check – and therefore also for 𝑇 (𝛿/𝑘)𝑘

𝛿 𝑓 /𝑘 =
(
𝐼 + 𝛿

𝑘
𝑄 𝑓

) 𝑘 ;
consequently,

𝜂1:2 ≤
(𝐼 + 𝛿𝑘 𝑄 𝑓

)ℓ𝑘
[ℎ] − (𝐼 + 𝛿𝑄 𝑓 )ℓ [ℎ]



≤ ℓ𝛿2𝑐3 + ℓ2𝛿3𝑐4,

where the second inequality is exactly the induction hy-
pothesis. Moreover, it follows from Lemma 25 (with
(𝐼 + 𝛿𝑄 𝑓 )ℓ [ℎ] here as ℎ there, 𝑘 here as 𝑛 there and
𝛿/𝑘 ∈ 𝐷 here as 𝛿 there) and Lemma 23 (with ℓ here as 𝑛
there) that

𝜂3:4 ≤ 𝛿2 (∥𝑄∥∥ 𝑓 ∥ + ∥𝑄∥2∥(𝐼 + 𝛿𝑄 𝑓 )ℓ [ℎ] ∥
)
+ 𝛿3𝑐4

≤ 𝛿2 (∥𝑄∥∥ 𝑓 ∥ + ∥𝑄∥2ℓ𝛿∥ 𝑓 ∥ + ∥𝑄∥2∥ℎ∥
)
+ 𝛿3𝑐4

= 𝛿2𝑐3 + ℓ𝛿3𝑐4 + 𝛿3𝑐4.

Combining our observations, we find that(𝐼 + 𝛿𝑘 𝑄 𝑓

) (ℓ+1)𝑘
[ℎ] − (𝐼 + 𝛿𝑄 𝑓 )ℓ+1 [ℎ]


≤ ℓ𝛿2𝑐3 + ℓ2𝛿3𝑐4 + 𝛿2𝑐3 + ℓ𝛿3𝑐4 + 𝛿3𝑐4

= (ℓ + 1)𝛿2𝑐3 + (ℓ2 + ℓ + 1)𝛿3𝑐4

≤ (ℓ + 1)𝛿2𝑐3 + (ℓ + 1)2𝛿3𝑐4,

which is the inequality we were after.

Proving Theorem 20 is now simply a matter of combining
(6) and Lemma 26.
Proof of Theorem 20 Fix some 𝑛 ∈ ℕ. Then for all 𝑘 ∈ ℕ

𝑒𝑛𝛥𝑄 𝑓 [ℎ] −
(
𝐼 + 𝛥

𝑛2𝑄 𝑓

)𝑛3

[ℎ]

= 𝑒𝑛𝛥𝑄 𝑓 [ℎ] −
(
𝐼 + 𝑛𝛥

𝑘𝑛3𝑄 𝑓

) 𝑘𝑛3

[ℎ]

+
(
𝐼 + 𝑛𝛥

𝑘𝑛3𝑄 𝑓

) 𝑘𝑛3

[ℎ] −
(
𝐼 + 𝛥

𝑛2𝑄 𝑓

)𝑛3

[ℎ]

From (6) with 𝑡 = 𝛥𝑛, we know that

𝑒𝑛𝛥𝑄 𝑓 [ℎ] = lim
𝑘→+∞

(
𝐼 + 𝑛𝛥

𝑘
𝑄 𝑓

) 𝑘
[ℎ]

= lim
𝑘→+∞

(
𝐼 + 𝑛𝛥

𝑘𝑛3𝑄 𝑓

) 𝑘𝑛3

[ℎ] .

Furthermore, if 𝛥∥𝑄∥ ≤ 2𝑛2, it follows from Lemma 26
(with 𝛿 = 𝛥/𝑛2 and 𝑛3 here as 𝑛 there) that for all 𝑘 ∈ ℕ,(𝐼 + 𝑛𝛥

𝑘𝑛3𝑄 𝑓

) 𝑘𝑛3

[ℎ] −
(
𝐼 + 𝛥

𝑛2𝑄 𝑓

)𝑛3

[ℎ]


≤ 𝑛3
(
𝛥

𝑛2

)2
𝑐3 + 𝑛6

(
𝛥

𝑛2

)3
𝑐4

=
1
𝑛
𝛥2𝑐3 + 𝛥3𝑐4.
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Combining the preceding and taking the limit for 𝑘 →
+∞ gives that, for all 𝑛 ∈ ℕ such that 𝛥∥𝑄∥ ≤ 2𝑛2,

1
𝑛𝛥

𝑒𝑛𝛥𝑄 𝑓 [ℎ] −
(
𝐼 + 𝛥

𝑛2𝑄 𝑓

)𝑛3

[ℎ]
 ≤ 1

𝑛2 𝛥𝑐3 +
1
𝑛
𝛥2𝑐4.

The right hand side of this inequality vanishes as 𝑛→ +∞,
which implies the statement.
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