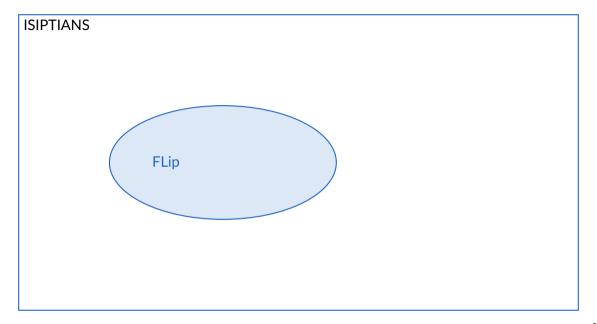
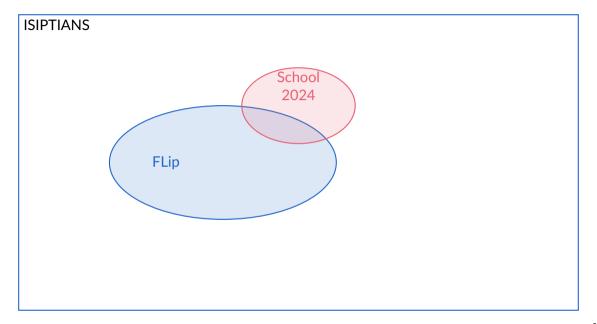
Sublinear Expectations for Countable-State Uncertain Processes

Alexander Erreygers

Foundations Lab for imprecise probabilities – Ghent University

ISIPTA 2023







ANALYSIS

Banach J. Math. Anal. 12 (2018), no. 3, 515–540

 $\rm https://doi.org/10.1215/17358787\text{-}2017\text{-}0024$

ISSN: 1735-8787 (electronic) http://projecteuclid.org/bjma

KOLMOGOROV-TYPE AND GENERAL EXTENSION RESULTS FOR NONLINEAR EXPECTATIONS

ROBERT DENK, MICHAEL KUPPER, * and MAX NENDEL

 $\{\alpha \in \mathbb{R}^{\Omega} : \alpha \text{ constant}\} \subseteq \mathcal{D}$

constant preserving:

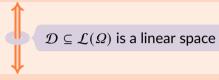
$$\overline{E}(\alpha) = \alpha$$
 for all $\alpha \in \mathbb{R}$ isotone:

$$\overline{E}(f) \leq \overline{E}(g) \text{ for all } f \leq g \in \mathcal{D}$$

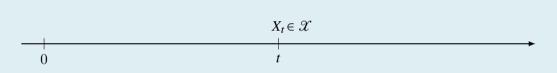
sublinear:

$$\overline{E}(\mu f + g) \leq \mu \overline{E}(f) + \overline{E}(g)$$
 for all $\mu \in \mathbb{R}_{\geq 0}$ and $f, g, \mu f + g \in \mathcal{D}$

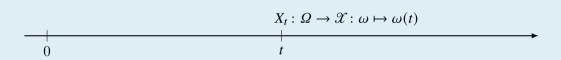
5



 $\overline{\it E}$ is a coherent upper prevision



$\varOmega\subseteq \mathscr{X}^{\mathbb{R}_{\geq 0}}$ 'some' set of paths $\omega\colon \mathbb{R}_{\geq 0} o \mathscr{X}$



$\Omega\subseteq \mathscr{X}^{\mathbb{R}_{\geq 0}}$ 'some' set of paths $\omega\colon \mathbb{R}_{\geq 0}\to\mathscr{X}$

$$\mathcal{D} := \left\{ g(X_{t_1}, \dots, X_{t_n}) \colon n \in \mathbb{N}, t_1 < \dots < t_n \in \mathbb{R}_{\geq 0}, g \in \mathcal{L}(\mathcal{X}^n) \right\}$$

$$\Omega \subseteq \mathcal{X}^{\mathbb{R}_{\geq 0}}$$
 'some' set of paths $\omega \colon \mathbb{R}_{\geq 0} \to \mathcal{X}$

$$\mathcal{D} := \left\{ g(X_{t_1}, \dots, X_{t_n}) \colon n \in \mathbb{N}, t_1 < \dots < t_n \in \mathbb{R}_{\geq 0}, g \in \mathcal{L}(\mathcal{X}^n) \right\}$$

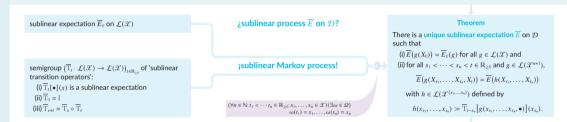
$$\Omega \subseteq \mathcal{X}^{\mathbb{R}_{\geq 0}}$$
 'some' set of paths $\omega \colon \mathbb{R}_{\geq 0} \to \mathcal{X}$

$$\mathcal{D} := \left\{ g(X_{t_1}, \dots, X_{t_n}) \colon n \in \mathbb{N}, t_1 < \dots < t_n \in \mathbb{R}_{\geq 0}, g \in \mathcal{L}(\mathcal{X}^n) \right\}$$

... for Countable-State Uncertain Processes

Let \mathcal{X} denote the countable state space. The possibility space Ω is some set of paths $\omega \colon \mathbb{R}_{\geq 0} \to \mathcal{X}$, and the domain \mathcal{D} are the finitary bounded variables:

$$0 := \{ g(X_t, \dots, X_t) : n \in \mathbb{N}, t_1 < \dots < t_n \in \mathbb{R}_{\geq 0}, g \in \mathcal{L}(\mathcal{X}^n) \} \text{ with } X_t : \Omega \to \Omega : \omega \mapsto \omega(t) \}$$



s this corresponding \overline{E} downward continuous on \mathcal{D} ?

A semigroup $\left(\overline{T}_t\right)_{t\in\mathbb{R}_{>0}}$ of sublinear transition operators ...

$$\limsup_{t \to \infty} \frac{1}{t} \sup \left\{ \overline{T}_t [1 - \mathbb{I}_x](x) : x \in \mathcal{X} \right\} < +\infty,$$

$$\Omega := \operatorname{cdlg}(\mathcal{X}^{\mathsf{R}_{20}}) \subseteq \mathcal{X}^{\mathsf{R}_{20}}$$

$$\overline{E}_0 \text{ is downward continuous } \bigotimes_{T_i[*](x) \text{ is downward continuous } \bigotimes_{T_i[*](x) \text{ box quiffermly bounded rate}} (\overline{T})$$

 $\mathcal{Q}:=\mathcal{X}^{\mathbb{R}_{\geq 0}}$ \overline{E}_0 is downward continuous $\underset{\mathbb{F}_1}{\&} \{\bullet\}(x) \text{ is downward continuous}$

Many interesting variables are not included in \mathcal{D} !

Many interesting variables are *not* included in \mathcal{D} !

D does not include

■ the average of $g(X_t)$ over [0,T] for some $g \in \mathcal{L}(\mathcal{X})$, so

$$\frac{1}{T} \int_0^T g(X_t) dt \colon \Omega \to \mathbb{R} \colon \omega \mapsto \frac{1}{T} \int_0^T g(\omega(t)) dt.$$

 \oplus the hitting time of $A \subseteq \mathcal{X}$, so

$$\tau_A \colon \Omega \to \overline{\mathbb{R}}_{\geq 0} \colon \omega \mapsto \inf \{ t \in \mathbb{R}_{\geq 0} \colon \omega(t) \in A \}.$$

8

Monographs on Statistics and Applied Probability 42

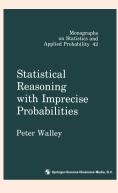
Statistical Reasoning with Imprecise Probabilities

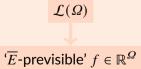
Peter Walley

Springer-Science+Business Media, B.V.

$$\mathcal{D} \subseteq \mathcal{L}(\Omega)$$

$$\mathcal{L}(\Omega)$$





WILEY SERIES IN PROBABILITY AND STATISTICS

Monographs on Statistics and Applied Probability 42

Statistical Reasoning

with Improci

JOURNAL of MATHEMATICAL

Banach J. Math. Anal. 12 (2018), no. 3, 515–540 https://doi.org/10.1215/17358787-2017-0024 ISSN: 1735-8787 (electronic) $_{\rm http://projecteuclid.org/bjma}$

KOLMOGOROV-TYPE AND GENERAL EXTENSION RESULTS ROBERT DENK, MICHAEL KUPPER,* and MAX NENDEL

 \overline{E} -previsible $f \in \mathbb{R}^{\Omega}$

downward continuous on $S \subseteq \mathcal{D}$ if

$$\lim_{n \to +\infty} \overline{E}(f_n) = \overline{E}(f) \text{ for all } S^{\mathbb{N}} \ni (f_n)_{n \in \mathbb{N}} \searrow f \in S$$

upward continuous on $S \subseteq \mathcal{D}$ if

$$\lim_{n \to +\infty} \overline{E}(f_n) = \overline{E}(f) \text{ for all } S^{\mathbb{N}} \ni (f_n)_{n \in \mathbb{N}} \nearrow f \in S$$

 \overline{E} is downward continuous on \mathcal{D}

 $\mathcal{D} \subseteq \mathcal{L}(\Omega)$ is a linear lattice

 $f \in \mathbb{R}^{\Omega}$ bounded & $\sigma(\mathcal{D})$ -measurable

There is a unique sublinear expectation \overline{E}^* on \mathcal{D}^* that

- \forall extends \overline{E} ,
- lacktriangle is downward continuous on $\mathcal{D}_{\delta} \cap \mathcal{L}(\Omega)$ and
- \square upward continuous on \mathcal{D}^* .

 \overline{E} is downward continuous on \mathcal{D}

 $\mathcal{D} \subseteq \mathcal{L}(\Omega)$ is a linear lattice

 $f \in \overline{\mathbb{R}}^{\Omega}$ bounded below/above & $\sigma(\mathcal{D})$ -measurable

There is a sublinear expectation \overline{E}^{σ} on \mathcal{D}^{σ} that

- \bigvee extends \overline{E} ,
- lacktriangle is downward continuous on $\mathcal{D}_\delta \cap \mathcal{L}(\Omega)$ and
- **■** upward continuous on $\{f \in \mathcal{D}^{\sigma} : \inf f > -\infty\}$.

¿Markovian \overline{E} downward continuous on \mathcal{D} ?

ن \mathcal{D}^{σ} sufficiently large?

Sublinear Expectations ...

