Sublinear Expectations ...

For a domain $\mathcal{D} \subseteq \overline{\mathbb{R}}^{\Omega}$ which includes all constant functions, a sublinear/linear expectation on \mathcal{D} is a functional $\overline{E}/E: \mathcal{D} \to \overline{\mathbb{R}}$ that is constant preserving, isotone and ...

... sublinear, meaning that ... linear, meaning that $\overline{E}(\alpha f + g) \le \alpha \overline{E}(f) + \overline{E}(g)$ $E(\alpha f + g) = \alpha E(f) + E(g)$ for all $f, g \in \mathcal{D}$ and $\alpha \in \mathbb{R}_{\geq 0}$ with $\alpha f + g \in \mathcal{D}$. for all $f, g \in \mathcal{D}$ and $\alpha \in \mathbb{R}$ with $\alpha f + g \in \mathcal{D}$.

Such a sublinear expectation \overline{E} is said to be **downward continuous** on $S \subseteq D$ if

 $\lim_{n \to +\infty} \overline{E}(f_n) = \overline{E}(f) \text{ for all } S^{\mathbb{N}} \ni (f_n)_{n \in \mathbb{N}} \searrow f \in S$

and **upward continuous** on $S \subseteq D$ if

 $\lim \overline{E}(f_n) = \overline{E}(f) \text{ for all } \mathcal{S}^{\mathbb{N}} \ni (f_n)_{n \in \mathbb{N}} \nearrow f \in \mathcal{S}.$ $n \rightarrow +\infty$

 \overline{E} is downward (& then upward) continuous on \mathcal{D} iff every dominated linear expectation in

 $\mathbb{E}_{\overline{E}} \coloneqq \left\{ E \in \mathbb{E}(\mathcal{D}) \colon (\forall f \in \mathcal{D}) \ E(f) \le \overline{E}(f) \right\}$

is downward continuous.

Suppose $\mathcal{D} \subseteq \mathcal{L}(\Omega)$ is a linear lattice.

E is downward (& then upward) continuous on \mathcal{D} iff there is a unique probability measure P_E on $\sigma(\mathcal{D})$ such that

$$E(f) = \int f \, \mathrm{d}P_E \quad \text{for all } f \in \mathcal{D}.$$

Theorem

The sublinear expectation \overline{E}^{σ} extends \overline{E} , is downward continuous on $\mathcal{D}_{\delta} \cap \mathcal{L}(\Omega)$ and upward continuous on $\mathcal{M}_{b}(\mathcal{D})$.

On $\mathcal{M}_{b}(\mathcal{D})$, this extension is unique.

Let $\mathcal{M}(\mathcal{D}) := \mathcal{M}_{b}(\mathcal{D}) \cup \mathcal{M}^{b}(\mathcal{D})$ be the set of $\sigma(\mathcal{D})$ -measurable variables $f \in \mathbb{R}^{\Omega}$ that are bounded below/above and let

$$\overline{E}^{\sigma} \colon \mathcal{M}(\mathcal{D}) \to \overline{\mathbb{R}} \colon f \mapsto \sup \left\{ \int f \, \mathrm{d}P_E \colon E \in \mathbb{E}_{\overline{E}} \right\}.$$

... for Countable-State Uncertain Processes

Let \mathscr{X} denote the countable state space. The possibility space Ω is some set of paths $\omega \colon \mathbb{R}_{\geq 0} \to \mathscr{X}$, and the domain \mathscr{D} are the finitary bounded variables:

 $\mathcal{D} \coloneqq \{g(X_{t_1}, \ldots, X_{t_n}) \colon n \in \mathbb{N}, t_1 < \cdots < t_n \in \mathbb{R}_{\geq 0}, g \in \mathcal{L}(\mathcal{X}^n)\} \text{ with } X_t \colon \Omega \to \mathcal{X} \colon \omega \mapsto \omega(t).$

sublinear expectation \overline{E}_0 on $\mathcal{L}(\mathcal{X})$

¿sublinear process \overline{E} on \mathcal{D} ?

There is a unique sublinear expectation E on \mathcal{D} such that

Theorem

(i) $\overline{E}(g(X_0)) = \overline{E}_0(g)$ for all $g \in \mathcal{L}(\mathcal{X})$ and (ii) for all $s_1 < \cdots < s_n < t \in \mathbb{R}_{\geq 0}$ and $g \in \mathcal{L}(\mathcal{X}^{n+1})$, **sublinear Markov process!** semigroup $(\overline{T}_t \colon \mathcal{L}(\mathcal{X}) \to \mathcal{L}(\mathcal{X}))_{t \in \mathbb{R}_{>0}}$ of 'sublinear transition operators': $\overline{E}(g(X_{s_1},\ldots,X_{s_n},X_t)) = \overline{E}(h(X_{s_1},\ldots,X_{s_n}))$ (i) $\overline{T}_t[\bullet](x)$ is a sublinear expectation with $h \in \mathcal{L}(\mathcal{X}^{\{s_1,\ldots,s_n\}})$ defined by (ii) $T_0 = I$ $(\forall n \in \mathbb{N}; t_1 < \cdots t_n \in \mathbb{R}_{\geq 0}; x_1, \ldots, x_n \in \mathscr{X}) (\exists \omega \in \Omega)$ $h(x_{s_1},\ldots,x_{s_n}) \coloneqq \overline{\mathrm{T}}_{t-s_n} [g(x_{s_1},\ldots,x_{s_n},\bullet)](x_{s_n}).$ (iii) $\overline{\mathrm{T}}_{s+t} = \overline{\mathrm{T}}_s \circ \overline{\mathrm{T}}_t$ $\omega(t_1) = x_1, \ldots, \omega(t_n) = x_n$ Is this corresponding \overline{E} downward continuous on \mathcal{D} ? $\boldsymbol{\varOmega}\coloneqq \operatorname{cdlg}(\mathscr{X}^{\mathbb{R}_{\geq 0}}) \subsetneq \mathscr{X}^{\mathbb{R}_{\geq 0}}$ $arOmega \coloneqq \mathscr{X}^{\mathbb{R}_{\geq 0}}$ A semigroup $(\overline{T}_t)_{t \in \mathbb{R}_{>0}}$ of sublinear transition operators ... E_0 is downward continuous \overline{E}_0 is downward continuous ... has uniformly bounded rate if $T_t[\bullet](x)$ is downward continuous $T_t[\bullet](x)$ is downward continuous $\limsup_{t \ge 0} \frac{1}{t} \sup \left\{ \overline{\mathrm{T}}_t [1 - \mathbb{I}_x](x) \colon x \in \mathcal{X} \right\} < +\infty,$ $(\overline{T}_t)_{t \in \mathbb{R}_{>0}}$ has uniformly bounded rate or we equivalently, $\limsup_{t \ge 0} \frac{1}{t} \|\overline{T}_t - I\| < +\infty \mathbb{N}$.

