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Precise continuous-time Markov chains

General stochastic processes

We are interested in making inferences about the state of some system.
The state at time t ∈ R≥0 is denoted byXt, and takes values in a finite state spaceX .
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To make inferences, we need to specify probabilities of the form

P(X0 = x)

and

P(Xt+∆ = y|Xt1 = x1, . . . , Xtn = xn, Xt = x),

where x1, . . . , xn, x, y ∈ X , 0 ≤ t1 < · · · < tn < t and∆ ∈ R≥0.
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Precise continuous-time Markov chains

The Markov property
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A stochastic process is called a continuous-time Markov chain (CTMC) if (our beliefs
about) the future only depends on (our knowledge of) the present and not on the past:

P(Xt+∆ = y|Xt1 = x1, . . . , Xtn = xn, Xt = x) = P(Xt+∆ = y|Xt = x).

Under some regularity conditions, we then have that

lim
δ→0+

P(Xt+δ = y|Xt = x)− I(x, y)

δ
= Qt(x, y).

This time-dependent matrix Qt is called the transition rate matrix, as

P(Xt+δ = y|Xt = x) ≈ I(x, y) + δQt(x, y).
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Precise continuous-time Markov chains

Homogeneity
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A CTMC is homogeneous or stationary if the transition rate matrix does not depend on
time, that is if

Qt = Q for all t ∈ R≥0.

An alternative but equivalent condition is that

P(Xt+∆ = y|Xt = x) = P(X∆ = y|X0 = x).

In practice, we define a homogeneous CTMC by specifying

its state spaceX ;

its initial distribution π0, such that π0(x) = P(X0 = x);

its transition rate matrix Q.
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Precise homogeneous CTMCs

Making inferences

How do we get from (π0 and) Q to E(f(Xt)|X0 = x) for some f : X → R, t ∈ R≥0

and x ∈ X ?

It is well-known that

E(f(Xt)|X0 = x) = [Ttf ](x),

where for all t ∈ R≥0 the matrix Tt is the solution to the backward Kolmogorov
differential equation

d

dt
Tt = QTt with initial condition T0 := I.

The solution to this differential equation is given by the matrix exponential

Tt = etQ := lim
n→+∞

n∑
k=0

tkQk

k!
= lim
n→+∞

(
I +

t

n
Q

)n
.

In general, Tt = etQ has to be numerically approximated!
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Modelling the spectrum assignment in a two-service optical grid

We consider an optical link that serves to transmit type 1 and type 2 messages.

The total available frequency spectrum S is divided intom1 separate channels.

Arriving messages are assigned to a number of contiguous channels:

type 1 messages require 1 channel,

type 2 messages require n2 channels.

We combine n2 contiguous channels into superchannels as follows

F n2F

S = m1F

An incoming type 1 (or type 2) message is blocked if it cannot be assigned to a free
(super)channel.

How should we assign incoming messages in order to keep the number of blocked

messages as low as possible?

We compare three assignment policies: random (R), least-filled (L) and most-filled (M).
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Modelling the spectrum assignment in a two-service optical grid

Detailed state description

If we assume Poisson arrivals and exponentially distributed service times, the optical

grid can be exactly modelled by a homogeneous CTMC with state space

Xdet :=
{

(i0, . . . , in2) ∈ N(n2+1) :

n2∑
k=0

ik ≤ (m1/n2)
}
,

where ik counts the superchannels that are currently assigned k type 1messages.
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Precise homogeneous CTMCs

State space explosion

State space explosion

Under some assumptions, many systems can be “exactly”modelled by a

homogeneous CTMC. Unfortunately, the number of required states often grows

exponentially with the dimensions of the system.

This makes numerically approximating etQ infeasible if not impossible.
Key to our solution is that many inferences only require a reduced or less-detailed
state description.
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Lumping to reduce the number of states

We lump (or group or aggregate) states x, y, ... in the detailed state spaceX to

“superstates” or lumps x̂ ⊂ X , ŷ ⊂ X , . . . .

These lumps x̂ form the lumped state space X̂ , which is actually a partition ofX .

Consider the lumped stochastic process X̂t, defined as

(X̂t = x̂i)⇔ (Xt ∈ x̂i) for all x̂ ∈ X̂ .

Can we say something about the dynamics of this process?
Can we determine E(f(X̂t)|X̂0 = x̂)?
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Lumping to reduce the number of states

The lumped process is an inhomogeneous CTMC

We prove that—given an initial distribution π0—the lumped process X̂t is actually an
inhomogeneous CTMC, with (time-dependent) transition rate matrix

Q̂t(x̂, ŷ) =

∑
x∈x̂ P(Xt = x)

∑
y∈ŷ Q(x, y)∑

x∈x̂ P(Xt = x)
,

where

P(Xt = x) =
∑
y∈X

P(X0 = y)P(Xt = x|X0 = y) =
∑
y∈X

π0(y)[TtIx](y).

As we cannot (or do not want) to determine Tt = etQ, we cannot determine Q̂t.
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Lumping to reduce the number of states

The lumped CTMC is homogeneous

Current literature: only consider lumping in case the lumped chain X̂t is actually
homogeneous, i.e., if

Q̂t = Q̂ for all t ∈ R≥0.

This is the case (regardless of the initial distribution π0) if and only if for all x̂, ŷ ∈ X̂ ,∑
y∈ŷ

Q(x, y) =
∑
y∈ŷ

Q(x′, y) for all x, x′ ∈ x̂.
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Lumping to reduce the number of states

The lumped CTMC is not homogeneous

In all other cases, all we can say is that for all t ∈ R≥0 and all x̂, ŷ ∈ X̂ ,

min
x∈x̂

∑
y∈ŷ

Q(x, y) ≤ Q̂t(x̂, ŷ) ≤ max
x∈x̂

∑
y∈ŷ

Q(x, y).

Therefore, we consider the set PQ,X̂ of inhomogeneous CTMCs on X̂ with initial

distribution

π̂0(x̂) =
∑
x∈x̂

π0(x) for all x ∈ X

and time-dependent transition rate matrix R̂t such that

min
x∈x̂

∑
y∈ŷ

Q(x, y) ≤ R̂t(x̂, ŷ) ≤ max
x∈x̂

∑
y∈ŷ

Q(x, y) for all x̂, ŷ ∈ X̂ .

Then

E(f(X̂t+∆)|X̂t = x̂) := min
P∈P

Q,X̂

E(f(X̂t+∆)|X̂t = x̂) ≤ E(f(Xt+∆)|Xt ∈ x̂).
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The lumped chain naturally leads to an imprecise CTMC

The set PQ,X̂ actually characterises an imprecise CTMC, such that

E(f(X̂t+∆)|X̂t = x̂) = min
P∈P

Q,X̂

E(f(X̂t+∆)|X̂t = x̂)

can be numerically approximated pretty efficiently.

For more information, see

Thomas Krak, Jasper De Bock and Arno Siebes.

Imprecise continuous-time Markov chains.
International Journal of Approximate Reasoning, 88:452–528, 2017.
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Modelling the spectrum assignment in a two-service optical grid

Reduced state description

To determine the blocking probabilities, it suffices to consider the reduced state space

Xred :=
{

(i, j, e) ∈ N3 : m1/n2 ≤ i+ j + e, i+ (j + e)n2 ≤ m1

}
,

where i counts the assigned type 1messages, j counts the assigned type 2messages
and e counts the empty superchannels.

40 80 120 160 200 240

103

105

107

109

1011

Number of type 1 channelsm1

N
u
m
b
e
r
o
f
s
ta
te
s

n2 = 2 (detailed) n2 = 2 (reduced)

n2 = 4 (detailed) n2 = 4 (reduced)

n2 = 8 (detailed) n2 = 8 (reduced)

n2 = 10 (detailed) n2 = 10 (reduced)

13 / 15



Modelling the spectrum assignment in a two-service optical grid

Reduced state description

To determine the blocking probabilities, it suffices to consider the reduced state space

Xred :=
{

(i, j, e) ∈ N3 : m1/n2 ≤ i+ j + e, i+ (j + e)n2 ≤ m1

}
,

where i counts the assigned type 1messages, j counts the assigned type 2messages
and e counts the empty superchannels.

40 80 120 160 200 240

103

105

107

109

1011

Number of type 1 channelsm1

N
u
m
b
e
r
o
f
s
ta
te
s

n2 = 2 (detailed) n2 = 2 (reduced)

n2 = 4 (detailed) n2 = 4 (reduced)

n2 = 8 (detailed) n2 = 8 (reduced)

n2 = 10 (detailed) n2 = 10 (reduced)

13 / 15



Modelling the spectrum assignment in a two-service optical grid

Lower and upper bounds on blocking probabilities

We compare our bounds on the blocking probabilities for a system withm1 = 40,
n2 = 4, µ1 = µ2 = 1 and λ1 = λ2 = λ with some precise approximation.
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Some remaining questions

Want to join our imprecise continuous-time Markov chain fanclub?
Are there any other examples of CTMC (or DTMC) models where this approach would

be useful?

Is there another field (or set of results) of imprecise probabilities that we could

popularise as a computational tool instead of as a philosophically more appealing

theory?
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