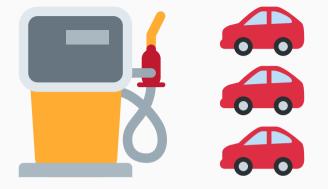
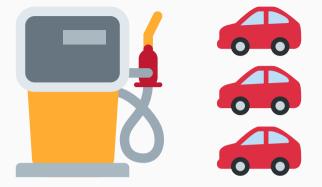
Extending the domain of Markovian imprecise jump processes

Alexander Erreygers Jasper De Bock UQOP 2020

Ghent University, ELIS, Foundations Lab for imprecise probabilities





The manager is interested in things like

- the expected average number of \longleftrightarrow over the following 24 hours;
- the expected duration of \bigcirc in the following hour;
- the expected time until ;
- the probability of \bigcirc in the following hour.

We want to make inferences about the state of some system igsqcup

which evolves over continuous time in a non-deterministic manner.

The state X_t at the time point t in $\mathbb{R}_{\geq 0}$ is an uncertain variable, and we assume that it takes values in a finite state space \mathscr{X} (\blacksquare : {0,1,2,3}).

We are interested in the expectation/probability of idealised variables/events like

- temporal averages: $\frac{1}{T} \int_0^T f(X_t) dt;$
- hitting times: $\inf \{t \in \mathbb{R}_{\geq 0} : X_t \in A\};$
- hitting events: $\bigcup_{t \in \mathcal{T}} \{ X_t \in A \}.$

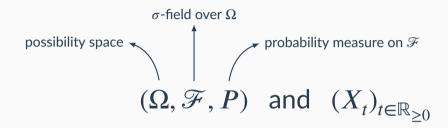
(📑: avg. # of 🛻, dur. of 🔵)

 $(\blacksquare: \bigcirc in the following hour)$

(📑: time until 🔵)

(Ω, \mathcal{F}, P) and $(X_t)_{t \in \mathbb{R}_{\geq 0}}$

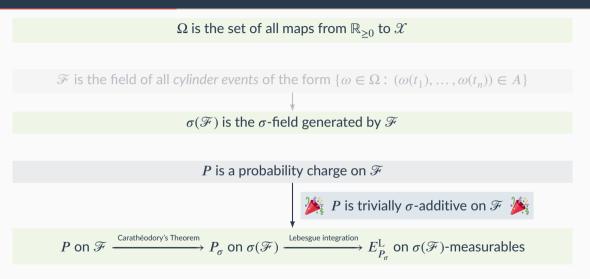
The measure-theoretic model



$$(\Omega, \mathcal{F}, P)$$
 and $(X_t)_{t \in \mathbb{R}_{\geq 0}}$
 \downarrow
 X_t is an \mathcal{F} -measurable map from Ω to \mathcal{X}

 Ω is the set of all maps from $\mathbb{R}_{\geq 0}$ to \mathscr{X}

 \mathscr{F} is the field of all cylinder events of the form $\{\omega \in \Omega : (\omega(t_1), \dots, \omega(t_n)) \in A\}$ \checkmark $\sigma(\mathscr{F})$ is the σ -field generated by \mathscr{F}



 $(\Omega, \sigma(\mathscr{F}), P_{\sigma})$ is a probability space, and for all time points t in $\mathbb{R}_{\geq 0}$,

 $X_t: \Omega \to \mathcal{X}: \omega \mapsto \omega(t)$ is trivially $\sigma(\mathcal{F})$ -measurable.

 $(\Omega, \sigma(\mathscr{F}), P_{\sigma})$ is a probability space, and for all time points t in $\mathbb{R}_{\geq 0}$,

 $X_t: \Omega \to \mathcal{X}: \omega \mapsto \omega(t)$ is trivially $\sigma(\mathcal{F})$ -measurable.

 $(\Omega, \sigma(\mathscr{F}), P_{\sigma})$ is a probability space, and for all time points *t* in $\mathbb{R}_{>0}$,

 $X_t: \Omega \to \mathcal{X}: \omega \mapsto \omega(t)$ is trivially $\sigma(\mathcal{F})$ -measurable.

*

Unfortunately, the idealised variables w.r.t. $(X_t)_{t \in \mathbb{R}_{>0}}$ are not $\sigma(\mathcal{F})$ -measurable!

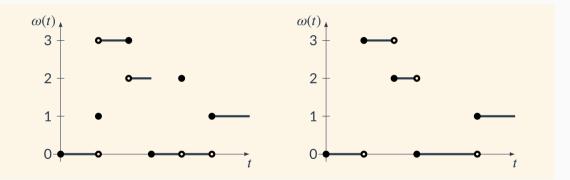
Under some \mathscr{R} continuity condition \mathscr{R} on P, there is a modification $(Y_t)_{t \in \mathbb{R}_{\geq 0}}$ of $(X_t)_{t \in \mathbb{R}_{\geq 0}}$ - meaning that $Y_t : \Omega \to \mathscr{X}$ is $\sigma(\mathscr{F})$ -measurable and $P_{\sigma}(X_t = Y_t) = 1 - that$ has càdlàg sample paths.

Càdlàg paths

A path ω : $\mathbb{R}_{\geq 0} \to \mathscr{X}$ is càdlàg if it is continuous from the right and has limits from the left. $(\forall t \in \mathbb{R}_{\geq 0}) \lim_{\Delta \searrow 0} \omega(t + \Delta) = \omega(t) \text{ and } (\forall t \in \mathbb{R}_{>0}) \lim_{\Delta \searrow 0} \omega(t - \Delta) \text{ exists.}$

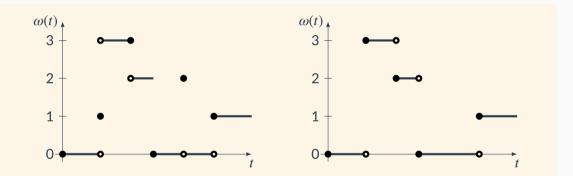
Càdlàg paths

A path $\omega : \mathbb{R}_{>0} \to \mathcal{X}$ is càdlàg if it is continuous from the right and has limits from the left.



Càdlàg paths

A path $\omega : \mathbb{R}_{>0} \to \mathcal{X}$ is càdlàg if it is continuous from the right and has limits from the left.



Every càdlàg path $\omega : \mathbb{R}_{\geq 0} \to \mathcal{X}$ is fully defined by its values on any countable dense subset of $\mathbb{R}_{>0}$.

 $(\Omega, \sigma(\mathscr{F}), P_{\sigma})$ is a probability space, and for all time points t in $\mathbb{R}_{\geq 0}$,

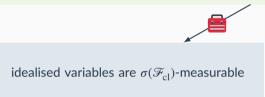
 $X_t: \Omega \to \mathcal{X}: \omega \mapsto \omega(t)$ is trivially $\sigma(\mathcal{F})$ -measurable.

Herefore the idealised variables w.r.t. $(X_t)_{t \in \mathbb{R}_{>0}}$ are not $\sigma(\mathscr{F})$ -measurable!

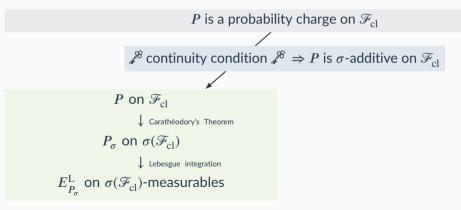
Under some \mathscr{A}^{\otimes} continuity condition \mathscr{A}^{\otimes} on P, there is a modification $(Y_t)_{t \in \mathbb{R}_{\geq 0}}$ of $(X_t)_{t \in \mathbb{R}_{\geq 0}}$ that has càdlàg sample paths.

Therefore, the idealised variables w.r.t. $(Y_t)_{t \in \mathbb{R}_{>0}}$ are $\sigma(\mathcal{F})$ -measurable!

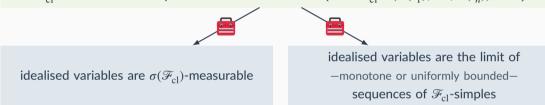
 Ω_{cl} is the set of all càdlàg maps from $\mathbb{R}_{\geq 0}$ to \mathscr{X}



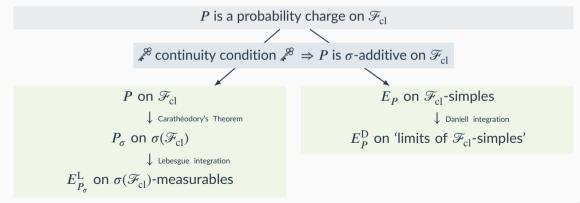
 Ω_{cl} is the set of all càdlàg maps from $\mathbb{R}_{>0}$ to \mathscr{X}



 Ω_{cl} is the set of all càdlàg maps from $\mathbb{R}_{>0}$ to \mathscr{X}



 Ω_{cl} is the set of all càdlàg maps from $\mathbb{R}_{>0}$ to \mathscr{X}



A jump process *P* on \mathcal{F}_{cl} is completely defined by the initial probabilities of the form

$$P(X_0 = x_0)$$

and the transition probabilities of the form

$$P(X_{t+\Delta} = y \mid X_{t_1} = x_1, \dots, X_{t_n} = x_n, X_t = x).$$

A Markovian jump process P on \mathcal{F}_{cl} is completely defined by the initial probabilities of the form

$$P(X_0 = x_0)$$

and the transition probabilities of the form

$$P(X_{t+\Delta} = y \mid X_{t_1} = x_1, \dots, X_{t_n} = x_n, X_t = x) = P(X_{t+\Delta} = y \mid X_t = x).$$

A homogeneous Markovian jump process P on \mathcal{F}_{cl} is completely defined by the initial probabilities of the form

$$P(X_0 = x_0)$$

and the transition probabilities of the form

$$P(X_{t+\Delta} = y \mid X_{t_1} = x_1, \dots, X_{t_n} = x_n, X_t = x) = P(X_{\Delta} = y \mid X_0 = x).$$

A homogeneous Markovian jump process P on \mathcal{F}_{cl} is completely defined by the initial probabilities of the form

$$P(X_0 = x_0)$$

and the transition probabilities of the form

$$P(X_{t+\Delta} = y \mid X_{t_1} = x_1, \dots, X_{t_n} = x_n, X_t = x) = P(X_{\Delta} = y \mid X_0 = x).$$

Whenever it satisfies the \mathscr{P} continuity condition \mathscr{P} , the homogeneous Markovian jump process *P* is completely defined by its

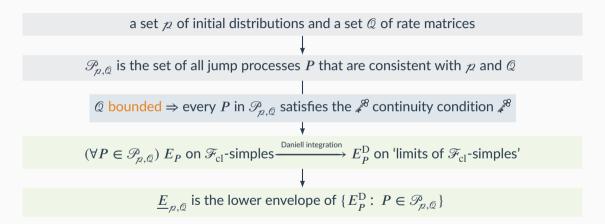
initial distribution
$$p$$
: $p(x_0) = P(X_0 = x_0)$
(transition) rate matrix Q : $Q(x, y) = \frac{d}{d\Delta}P(X_\Delta = y \mid X_0 = x)$.

- Damjan Škulj. "Efficient computation of the bounds of continuous time imprecise Markov chains". In: AMC 250 (2015), pp. 165–180
- Thomas Krak, Jasper De Bock, and Arno Siebes. "Imprecise continuous-time Markov chains". In: IJAR 88 (2017), pp. 452–528

Max Nendel. Markov chains under nonlinear expectation. 2019. arXiv: 1803.03695 [math.PR]

Thomas Krak, Jasper De Bock, and Arno Siebes. "Imprecise continuous-time Markov chains". In: IJAR 88 (2017), pp. 452–528

a set p of initial distributions and a set \hat{Q} of rate matrices $\mathscr{P}_{p,\hat{Q}}$ consists of all jump processes P that are consistent with p and \hat{Q} $\underbrace{E}_{p,\hat{Q}}$ is the lower envelope of $\{E_P: P \in \mathscr{P}_{p,\hat{Q}}\}$: for any \mathscr{F}_{cl} -simple variable f, $\underline{E}_{p,\hat{Q}}(f) := \inf\{E_P(f): P \in \mathscr{P}_{p,\hat{Q}}\}$



For a jump process *P* that satisfies the \mathcal{A}^{\otimes} continuity condition \mathcal{A}^{\otimes} , E_{P}^{D}

satisfies monotone convergence;

🔅 satisfies uniformly bounded convergence.

[~ Monotone Convergence Theorem]

[~ Lebesgue's Dominated Convergence Theorem]

For a jump process P that satisfies the \mathcal{A}^{\otimes} continuity condition \mathcal{A}^{\otimes} , E_{P}^{D}

satisfies monotone convergence;

satisfies uniformly bounded convergence.

[~ Monotone Convergence Theorem]

[~ Lebesgue's Dominated Convergence Theorem]

If Q is bounded, the lower envelope $\underline{E}_{\mathcal{P},Q}$

- 🙀 satisfies monotone convergence from above;
- is conservative for monotone convergence from below;
- ... is conservative for uniformly bounded point-wise convergence.

For a jump process P that satisfies the \mathcal{A}^{\otimes} continuity condition \mathcal{A}^{\otimes} , E_{P}^{D}

satisfies monotone convergence;

satisfies uniformly bounded convergence.

[~ Monotone Convergence Theorem]

[~ Lebesgue's Dominated Convergence Theorem]

If Q is bounded, the lower envelope $\underline{E}_{\mathcal{P},Q}$

- 🙀 satisfies monotone convergence from above;
- is conservative for monotone convergence from below;
- is conservative for uniformly bounded point-wise convergence;
- \mathfrak{G} is continuous for idealised inferences over [0, T].

(temporal averages, hitting times and hitting events)

How does this compare to the framework of (Nendel, 2018)?