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The manager is interested in things like
• the expected average number of over the following 24 hours;
• the expected duration of in the following hour;
• the expected time until ;
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The abstract framework

We want to make inferences about the state of some system
which evolves over continuous time in a non-deterministic manner.
The state Xt at the time point t in ℝ≥0 is an uncertain variable,
and we assume that it takes values in a finite state spaceX ( : {0, 1, 2, 3}) .
We are interested in the expectation/probability of idealised variables/events like
• temporal averages: 1

T
∫ T
0 f (Xt) dt; ( : avg. # of , dur. of )

• hitting times: inf{t ∈ ℝ≥0 ∶ Xt ∈ A}; ( : time until )
• hitting events: ⋃t∈ {Xt ∈ A}. ( : in the following hour)
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The measure-theoretic model

(Ω,ℱ , P ) and (Xt)t∈ℝ≥0
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possibility space
�-field over Ω

probability measure on ℱ

3



The measure-theoretic model

(Ω,ℱ , P ) and (Xt)t∈ℝ≥0

Xt is an ℱ -measurable map from Ω to X
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Constructing a measure-theoretic model

Ω is the set of all maps from ℝ≥0 to X

ℱ is the field of all cylinder events of the form {! ∈ Ω∶ (!(t1),… , !(tn)) ∈ A}

�(ℱ ) is the �-field generated by ℱ

P is a probability charge on ℱ

P on ℱ
Carathéodory’s Theorem
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ P� on �(ℱ ) Lebesgue integration

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ ELP� on �(ℱ )-measurables
P is trivially �-additive on ℱ
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Constructing a measure-theoretic model

(Ω, �(ℱ ), P�) is a probability space, and for all time points t in ℝ≥0,
Xt ∶ Ω → X ∶ !↦ !(t) is trivially �(ℱ )-measurable.

Unfortunately, the idealised variables w.r.t. (Xt)t∈ℝ≥0
are not �(ℱ )-measurable!

Under some continuity condition on P , there is a modification (Yt)t∈ℝ≥0
of (Xt)t∈ℝ≥0that has càdlàg sample paths.

Therefore, the idealised variables w.r.t. (Yt)t∈ℝ≥0
are �(ℱ )-measurable!
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Càdlàg paths

A path !∶ ℝ≥0 → X is càdlàg if it is continuous from the right and has limits from the left.
(∀t ∈ ℝ≥0) limΔ↘0!(t + Δ) = !(t) and (∀t ∈ ℝ>0) limΔ↘0!(t − Δ) exists.

t

!(t)

0
1
2
3

t

!(t)

0
1
2
3

Every càdlàg path !∶ ℝ≥0 → X is fully defined by
its values on any countable dense subset of ℝ≥0.
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An alternative construction

Ωcl is the set of all càdlàg maps from ℝ≥0 to X

ℱcl is the field of all cylinder events of the form {! ∈ Ωcl ∶ (!(t1),… , !(tn)) ∈ A}

idealised variables are �(ℱcl)-measurable
idealised variables are the limit of
—monotone or uniformly bounded—

sequences of ℱcl-simples

EP on ℱcl-simples
↓ Daniell integration

EDP on ‘limits of ℱcl-simples’
P on ℱcl

↓ Carathéodory’s Theorem
P� on �(ℱcl)

↓ Lebesgue integration
ELP� on �(ℱcl)-measurables

continuity condition ⇒ P is �-additive on ℱcl
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Markovian jump process

A jump process P on ℱcl is completely defined by
the initial probabilities of the form

P (X0 = x0)

and the transition probabilities of the form
P (Xt+Δ = y ∣ Xt1 = x1,… , Xtn = xn, Xt = x).

Whenever it satisfies the continuity condition , the homogeneous Markovian jump
process P is completely defined by its

initial distribution p∶ p(x0) = P (X0 = x0)
(transition) rate matrix Q∶ Q(x, y) = d

dΔ
P (XΔ = y ∣ X0 = x).
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Imprecise jump process

Damjan Škulj. “Efficient computation of the bounds of continuous time imprecise Markov
chains”. In: AMC 250 (2015), pp. 165–180
Thomas Krak, Jasper De Bock, and Arno Siebes. “Imprecise continuous-time Markov
chains”. In: IJAR 88 (2017), pp. 452–528

Max Nendel.Markov chains under nonlinear expectation. 2019. arXiv: 1803.03695
[math.PR]
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Imprecise jump process

Thomas Krak, Jasper De Bock, and Arno Siebes. “Imprecise continuous-time Markov
chains”. In: IJAR 88 (2017), pp. 452–528

a set p of initial distributions and a set Q of rate matrices
Pp,Q consists of all jump processes P that are consistent with p and Q

Ep,Q is the lower envelope of {EP ∶ P ∈ Pp,Q}: for any ℱcl-simple variable f ,
Ep,Q(f ) ∶= inf{EP (f )∶ P ∈ Pp,Q}
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Extending a Markovian imprecise jump process

a set p of initial distributions and a set Q of rate matrices
Pp,Q is the set of all jump processes P that are consistent with p and Q

Q bounded⇒ every P in Pp,Q satisfies the continuity condition

(∀P ∈ Pp,Q) EP on ℱcl-simples Daniell integration
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ EDP on ‘limits of ℱcl-simples’

Ep,Q is the lower envelope of {EDP ∶ P ∈ Pp,Q}
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For a jump process P that satisfies the continuity condition , EDP
satisfies monotone convergence; [~ Monotone Convergence Theorem]
satisfies uniformly bounded convergence. [~ Lebesgue’s Dominated Convergence Theorem]

If Q is bounded, the lower envelope Ep,Q

satisfies monotone convergence from above;
is conservative for monotone convergence from below;
is conservative for uniformly bounded point-wise convergence;

is continuous for idealised inferences over [0, T ]. (temporal averages, hitting times and hitting events)
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Is Ep,Q continuous for idealised inferences over ℝ≥0?

Is Ep,Q continuous for a larger class of idealised inferences?

Why not extend Ep,Q directly?

How does this compare to the framework of (Nendel, 2018)?
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