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The manager iz, is interested in things like

e the expected average number of ﬁ over the following 24 hours;
e the expected duration of Q in the following hour;

e the expected time until §;

e the probability of Q in the following hour.



The abstract framework

We want to make inferences about the state of some system ¢

which evolves over continuous time in a non-deterministic manner.

The state X, at the time point 7 in R, is an uncertain variable,

and we assume that it takes values in a finite state space & (£: {0, 1,2,3}).

We are interested in the expectation/probability of idealised variables/events like

e temporal averages: %/OT f(X,)dt (%: avg. # of ﬁ dur. of @)
e hitting times: inf{r € R.o: X, € A} (B: time until @)
e hitting events: | J,.,{X, € A}. (B: @ in the following hour)
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(Q,%,P) and (Xt)teﬂq{ZO
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The measure-theoretic model

(Q,%,P) and (Xt)teﬂq{ZO
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X, is an #-measurable map from Q to X
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Q is the set of all maps from R, to &
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Q is the set of all maps from R, to &

F is the field of all cylinder events of the form {w € Q: (w(t)), ..., w(t,)) € A}
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Constructing a measure-theoretic model

Q is the set of all maps from R, to &

o(F) is the o-field generated by #

P is a probability charge on #
B Pis trivially o-additive on & 8

o5 Carathéodory’s Theorem o5 Lebesgue integration
Pon¥F ——— P_ono(%F)

E}; on o(¥)-measurables
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(,0(F), P,) is a probability space, and for all time points  in R,

X, i Q- o o) is trivially o(#)-measurable.
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Constructing a measure-theoretic model

(&, 0(F), P,) is a probability space, and for all time points z in R,

X, Q> o o) is trivially o(#)-measurable.

Unfortunately, the idealised variables w.rt. (X)eg_, are not 6(%)-measurable!

Under some & continuity condition & on P, there is a modification (YDrer.,, of (Xier,,
— meaning that Y, : Q — & is o(F)-measurable and P (X, =Y,) =1 —
that has sample paths.



Cadlag paths

Apathw: R,y — Zis if it is continuous from the right and has limits from the left.

Vt € Ry limw(t+A) =w() and (Vte R,,) lim w(t — A) exists.
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Apathw: R,y — Zis if it is continuous from the right and has limits from the left.
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Cadlag paths

Apathw: R,y — Zis if it is continuous from the right and has limits from the left.
w(t), (1) 4
8 T o—e 8 T *—o
2+ o— ° 2T —o
1+ ° ~— 1+ ~—
0-——o0 ———e—o0—0 > 0O¢—o e—o0

Every cadlag path w: R,, — X is fully defined by
Q its values on any countable dense subset of R, Q



Constructing a measure-theoretic model

(,0(F), P,) is a probability space, and for all time points  in R,

X, i Q- o o) is trivially o(#)-measurable.
Unfortunately, the idealised variables w.r.t. (X/)rer,, are not o(F)-measurable!

Under some & continuity condition & on P, there is a modification Yrer., of (Xrer,,
that has sample paths.

B Therefore, the w.r.t. (¥,)er,, are o(%)-measurable! B



Constructing a measure-theoretic model

Q,6(F), P.) is a probabilit #~ “Nand fc oint. >
(Q,0(F),P;)isap X X ° 0 p 0

P 0
Xt Q- . ~ o(t) Avially ¢ . .easurable.

Unfortunately, the ide?/" "variables ;\ (X)ier ~ not o(%)-measurable!
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Under some & continuity conaition & on F, tnere is a moaimcation YDrer., of (Xrer,,
that has sample paths.
- -~ N\ \ , "
»: Therefore, the [ ) -~ Y @ @ 'F)-measurable! V.
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An alternative construction

Q is the set of all maps from R, to &

F., is the field of all cylinder events of the form {w € Q : (o(t)), ..., w(t,)) € A}

&

idealised variables are o(%;)-measurable



An alternative construction

Q is the set of all maps from R, to &

F., is the field of all cylinder events of the form {w € Q : (o(t)), ..., w(t,)) € A}

P is a probability charge on %

/

& continuity condition & = P is -additive on F
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An alternative construction

Q is the set of all maps from R, to &

F., is the field of all cylinder events of the form {w € Q : (o(t)), ..., w(t,)) € A}

N

idealised variables are the limit of
idealised variables are o(%;)-measurable —monotone or uniformly bounded—
sequences of % -simples



An alternative construction

Q is the set of all maps from R, to &
F., is the field of all cylinder events of the form {w € Q : (o(t)), ..., w(t,)) € A}

P is a probability charge on %

VAN

& continuity condition & = P is -additive on F

i N

P on &y Ep on & -simples
l Carathéodory’s Theorem l Daniell integration
P_on o(F,) ED on ‘limits of F-simples’

l Lebesgue integration

E% on o(%,)-measurables

o



Markovian jump process

A jump process P on % is completely defined by
the initial probabilities of the form

P(Xy = xg)
and the transition probabilities of the form

PXpya =yl X, =x1,.... X, =%, X; =X).



Markovian jump process

A Markovian jump process P on % is completely defined by
the initial probabilities of the form

P(Xy = xg)
and the transition probabilities of the form

PXoya=y1 X, =x1,.... X =%, X, =%x) = P(Xyp =y | X; =X).



Markovian jump process

A homogeneous Markovian jump process P on % is completely defined by
the initial probabilities of the form

P(Xy = xg)
and the transition probabilities of the form

PXia=y1 X, =xp,.... X =x,, X, =x)=P(Xp =y| Xy =2x).



Markovian jump process

A homogeneous Markovian jump process P on % is completely defined by
the initial probabilities of the form

and the transition probabilities of the form

PXia=y1 X, =xp,.... X =x,, X, =x)=P(Xp =y| Xy =2x).

Whenever it satisfies the & continuity condition &8 , the homogeneous Markovian jump
process P is completely defined by its

initial distribution p: p(xy) = P(X, = xg)

(transition) rate matrix Q : Q(x, y) = %P(XA =y| Xy, =x).



Imprecise jump process
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Imprecise jump process

[1 Thomas Krak, Jasper De Bock, and Arno Siebes. “Imprecise continuous-time Markov
chains”. In: IJAR 88 (2017), pp. 452-528

a set z of initial distributions and a set @ of rate matrices

.

9;2@ consists of all jump processes P that are consistent with 2 and @
Eﬁ’@ is the lower envelope of {Ep 1 P € &, 4} for any F-simple variable f,
E, o(f) i=inf{Ep(f): P € R, 4}
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Extending a Markovian imprecise jump process

a set » of initial distributions and a set @ of rate matrices

.

6 1s the set of all jump processes P that are consistent with »~ and @
|

@ bounded = every P in 9’72@ satisfies the &8 continuity condition &
v

Daniell integration

(VP € %, 4) Ep on F-simples—— El? on ‘limits of #-simples’

|

. D .
Eﬂ’@ is the lower envelope of {EP . Pe 9;],@}
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For a jump process P that satisfies the 8 continuity condition &8, Eg

L} satisfies monotone convergence; [~ Monotone Convergence Theorem]

Q‘ satisfies uniformly bounded convergence. [~ Lebesgue’s Dominated Convergence Theorem]
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For a jump process P that satisfies the 8 continuity condition &8, Eg

L} satisfies monotone convergence; [~ Monotone Convergence Theorem]
Q‘ satisfies uniformly bounded convergence. [~ Lebesgue’s Dominated Convergence Theorem]

If @ is bounded, the lower envelope E, .

b; satisfies monotone convergence from above;

«* is conservative for monotone convergence from below;

is conservative for uniformly bounded point-wise convergence.
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For a jump process P that satisfies the 8 continuity condition &8, Eg

L} satisfies monotone convergence; [~ Monotone Convergence Theorem]

Q‘ satisfies uniformly bounded convergence. [~ Lebesgue’s Dominated Convergence Theorem]

If @ is bounded, the lower envelope E, .

ﬁg satisfies monotone convergence from above;
** is conservative for monotone convergence from below;
L)

*¢ s conservative for uniformly bounded point-wise convergence;

©9 s continuous for idealised inferences over [0, T'].

(temporal averages, hitting times and hitting events)
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‘9 Is E_ continuous for idealised inferences over R.,,?
_ﬂa@ >
s Is E , ; continuous for a larger class of idealised inferences?
Why not extend E, . directly?

L. How does this compare to the framework of (Nendel, 2018)?
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