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NOGLE KONSTRUKTIONER VEDRORENDE KURVER AF 2. G 3. ORDEN. 33

i Planen, som af to givne Keglesnitsbundter skzres
i den samme Involution. Vinkelspidserne i den
Trekant, de danner, er de tre Skaringspunkter mel-
lem to Keglesnit, et af hvert Bundt, og det fjerde
Skaringspunkt er Restpunktet til de 4 + 4 Punkter,
der bestemmer Bundterne. Endepunkterne af hver
Trekantside danner et Punktpar i Involutionen paa
samme Side.

og T
Af A K. Erlang.

Skont der i Telefonien paa flere Punkter opstaar Sporgs-
maal, hvis Losning horer under Sandsynlighedsregningen, er
denne, saavidt man kan se, hidtil ikke bleven brugt meget paa
dette Omraade. I saa Henseende danner det kebenhavnske
Telefonselskab en Undtagelse, idet Hr. Telefondirektor F. Jo-
hannsen i flere Aar har benyttet Sandsynlighedsregningens
Metoder til Losning af forskellige Opgaver af praktisk Betyd-
ning og ligeledes sat andre i Arbejde med Undersogelser af
lignende Art. Da et og andet heraf maaske kan vare af In-
teresse, og da der til Forstaaelsen aldeles ikke kraves serligt
Kendskab til Telefonsager, vil jeg meddele det her.

1. Sandsynligheden for et givet Antal Opringninger i et
Tidsrum af given Langde.

Det forudsattes, at der ikke er storre Sandsynlighed for
Opringning paa det ene Tidspunkt end paa ethvert andet. Lad
a vare den givne Tid, » Middelantallet af Opringninger i Tids-
enheden. Vi vil soge Sandsynligheden S, for o Opringninger
i Tiden a og derefter Sandsynligheden S, for netop x Op-
ringninger i Tiden a. Da

na
a
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698 Prof. E. Rutherford and Dr. H. Geiger on the

the scintillations were as bright if not brighter than those
from a thin film of uranium. Boltwood has found that the
range of the « particle from ionium is 2:8 cms., so that it
appeared grobabi that the range of the « particles from
uranium had been overestimated. This conclusion was
confirmed by finding that the a rays from a thin film of
uranium were more readily absorbed by aluminium than
those from fonium. By a special mcthm‘{ the range of the
« particle from uranium has been measured and found to be
about 27 cms., while the range of the « particle from ionium
is a millimetre or two longer. Further experiments are in
progress to determine the range of the « particle from
uranium accurately, and to examine carefully whether two
sets of « particles of different range can be detected.
Univensity of Manchester,

LXXVI The Probability Variations in the Distribution o/'

« Particles. By Professor E. Rurnerroro, F.R.S., a

H. GeiGer, Ph.D. With a Note by H. BATEMAN *
T counting the « particles emitted from radioactive

substances either by the scintillation or electric method,
it is observed that, while the average number of particles
from a steady source is nearly constant, when a large number
is counted, the number appeéaring in a given short interval
is subject to wide fluctuations. These variations are especially
noticeable when only a few scintillations appear per minute.
For example, during a considerable interval it may h.lppen
that no « particle appears; then follows a group of « par-
ticles in rapid succession ; then an occasion] a particle, fd
soon. Ttisofi lmpun.mcu to settle whether these variations
in il with the laws of p
i e, whother the distribation of particles on an average is
that to be anticipated if the « particles aro expelled at random
both in regard to space and time. It might be conceived,
for_exam ﬁ, that the emission of an « particle might pre-
cipitate the disintegration of neighbouring atoms, and so
lead w a distribution of « particles at variance with the
slm le probability law.
e magnitude of the probability variations in the number
oE « particles was first drawn attention to by B. v. Schweidler t.
He showed that the average error from the mean number of
a particles was /N . ¢, where N was the number of particles
cmitted per second and ¢ the interval under consideration.
This conclusion has bm sxperimcnlally verified by several
* Communicated by the Autho
+ v, Schweidler, Congrés Tnternationale de Radiologie, L

,1905.
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The Poisson process
a la Probability 101

The inter-® times AT;, AT, ... are independent and identically distributed;
AT, is exponentially distributed with mean 1/A.
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The Poisson process
a la Probability 101

The inter-® times AT;, AT, ... are independent and identically distributed;
AT, is exponentially distributed with mean 1/A.

the process starts in 0, so N, =0;

the increments N,, - N,, and N, - N,, are independent whenever ¢, <t, < t; <t1,;
N,, — N,, is Poisson distributed with mean A(z, - ;).



A stochastic process P with state space N is completely defined—under some
technical conditions—by the probabilities of the form

PN, = ny, ., Ny, = )

with keN,, t; <-- <t €R,y and ny,...,n; €N.



The Poisson process
as a stochastic process

The Poisson process P with rate A is defined by

k
P(]th =Ny, ..., Ny = ng) = H W/'l(t[—tg_l)(nf —Nnyy)
/=1

with #,:= 0, ny:=0and y,,_,,_,,: Z— [0,1] the Poisson distribution with
mean /1([[ - ti—l)'



What if we do not know the rate A exactly?
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A stochastic process P with state space N is completely defined—under some
technical conditions—by the probabilities of the form

PN, = ny, ., Ny, = )

with keN,, t; <-- <t €R,y and ny,...,n; €N.

A stochastic process P with state space N is completely defined—under some
technical conditions—by its corresponding expectations of the form

Ep(f(N;,, ..., ;)

with k €Ny, £; < <t € Ry, f € L(NF).



A stochastic process P with state space N is completely defined—under some
techo:;t;\;\;addww tions—by the probabilities of the form

PN, = ny, ., Ny, = )

with keN,, t; <-- <t €R,y and ny,...,n; €N.

*
Daniell-Stone Theorem
v
A stochastic process P with state space N is completely defined—under some

ter::’;;a}éconmmw “ions—by its corresponding expectations of the form
0'

Ep(f(N;,, ..., ;)

with k €Ny, £; < <t € Ry, f € L(NF).



The Poisson process
as a stochastic process ... revisited

The Poisson process P with rate 1 is the unique process corresponding to the
expectation E, on 2 defined recursively by

Ep(f(N)) = g:%(k)f(k) Forall t e R, f € L(N).



The Poisson process
as a stochastic process ... revisited

The Poisson process P with rate 1 is the unique process corresponding to the
expectation E, on 2 defined recursively by

Ep(f(N)) = L wask)f (k) Forallr e, f € £ ()
=0
and forall k e Ny, £; < -+ <ty < t;;; € Ry and f € L(NFH)

Ep(f(Neys oo Nips Ny, ) = Ep(Ep(F (N oo N N D [N, NG )

Wlth A= tk+1 — tk and

+o00
Ep(f(Nys-oos Niy Ny ) | e 1) = [Z a0 f(ny, ..., ng, ny + 0).
0



For any s € R, let T;: Z(N)

T[f1(n) :=

— Z(N) be defined by

Z%S(E)f(rwé) forall f e £(N),neN.



Forany s e R, let T;: £(N) — £(N) be defined by

T,[f](n) = Z%S(E)f(rwé) forall f e £(N),neN.

Thenit is ‘well-known’ that for all s e R, f € Z(N)and n e N,

Ts[f1(n) = AT [f](n + 1) = AT,[f](n).



Forany s e R, let T;: £(N) — £(N) be defined by

T,[f](n) = Z%S(E)f(rwé) forall f e £(N),neN.

Thenit is ‘well-known’ that for all s e R, f € Z(N)and n e N,

o
ds
where Q,: Z(N) — £(N) is defined by

Ts[f1(n) = QuTs[f1(n),

Q,lgl(m):=Ag(m+1)-Ag(m) forallge £(N),meN.



Forany s e R, let T;: £(N) — £(N) be defined by

T,[f](n) = Z%S(E)f(rwé) forall f e £(N),neN.

Then it is ‘well-known’ that for all s e R,
d
ds

where Q,: Z(N) — £(N) is defined by

T, =Q, T,

Q,lgl(m):=Ag(m+1)-Ag(m) forallge £(N),meN.



Forany s e R, let T;: £(N) — £(N) be defined by

T,[f](n) = Z%S(E)f(rwé) forall f e £(N),neN.

Then for all s € R,

k—+o0

k
T, = lim (I+ —QA) = e,



Forany s e R, let T;: £(N) — £(N) be defined by

T,[f](n):= Jf%s(f)f(nh?) forall fe £(N),neN.
k=0

Then forall s e R,
k
Ts = lim (I+ %Qﬂ) =: eSQA;

k—+o0

and (eSQfL)SE[R)0 is a ‘semigroup of transition operators’.



Operator semigroups

An operator S is a map from Z(N) to Z(N).



Operator semigroups

An operator S is a map from Z(N) to Z(N).

A semigroup is a family (S,),er_, Of operators such that
® S =1
- S :SSISSZ FOF all. Sl’SZ EREO'

S1+S2



Operator semigroups

An operator S is a map from Z(N) to Z(N).

A semigroup is a family (S);cg_, Of operators such that
® S =1
- S = SSISSZ FOI' all. Sl’ Sz € REO'

S1+S2

A linear transition operator S is an operator that is
e constant preserving, so S[a] = a for all constant a € £(N),
e isotone, so S[f] <S[g] For all f,g € £(N) such that f < g, and

e linear, so S[uf +g]=uS[f]+S[g] forall f,ge £(N)and ueR.



The Poisson process
as a stochastic process ... revisited

The Poisson process P with rate A is the unique process corresponding to the
expectation E, on 2 defined recursively by

Ep(f(N)) = kz ya(k)f(k) ForallteRyg,f e L(N)
-0
and forall k e Ny, £; < -+ <t} < ;4 € Ry and f € L(NFH)

Ep(f(Niyy s Nos Ny, )) = Ep(Ep(F (N oo Nepy Ny ) [N 0N )

W|th A= tk+1 - tk and

+00
Ep(f(Nys-oos Ny Ny ) | 10 ) = [Z Yan(O)f(ny, ..., g, g+ 0).
)



The Poisson process
as a stochastic process ... revisited

The Poisson process P with rate 1 is the unique process corresponding to the
expectation E, on 2 defined recursively by

Ep(f(Nt)) = e'A[f](0) forallzeR,feL(N)
and forall k e N, £ < -+ <t < 41 € Ryg and f € L(NFH)
Ep(f(Nyys - s Nopo Nego)) = Ep(Ep(F (N oo Nes N ) | Ny )
with A:=¢,.,, — ¢, and

Ep(f(N;), s Ny Ny ) [ s 1) = e*U[f(ny,..., ng, o) ().



What if we do not know the rate A exactly?



Given is a rate interval [, A].



Given is a rate interval [, A].

Consider the set {E;: A € [A, 1]} of corresponding Poisson processes, and take
lower/upper envelopes:

E(f(Ny, -, N, )) = inf Ej(f(N;,,...N,)) and E(f(...)) = sup Ex(f(..))
Ae[A,A] A€



Given is a rate interval [, A].

Consider the set {E;: A € [A, 1]} of corresponding Poisson processes, and take
lower/upper envelopes:

E(f(Ny, -, N, )) = inf Ej(f(N;,,...N,)) and E(f(...)) = sup Ex(f(..))
Ae[A,A] A€

Then

& computing lower/upper probabilities and expectations is essentially a
one-parameter optimisation problem, but

¢ in general there is no iterative way to compute E(f(Ntl, ,Ntk)).
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Let Q: £(N) — £(N) be defined for all f € £(N) and n e N by

Qlf1(n):= sup Qu[f1(n)= sup Af(n+1)=Af(n).

A€M A A€M



Let Q: £(N) — £(N) be defined for all f € £(N) and n e N by

QIf1(n):= sup Qu[f1(n)= sup Af(n+1)=Af(n).

A€M A A€M
Then for all s € Ry,
_ k
Q.= | v}
¢ kl—IHloo(I-i- kQ)
is a sublinear transition operator, so an operator S that is
e constant preserving, so S[a] = a for all constant a € £(N),
e isotone, so S[f] < S[g] forall f,g € £(N) such that f < g, and
e sublinear, so S[uf +g] = uS[f] +S[g] forall f,g € £(N) and p € R,



Let Q: £(N) — £(N) be defined for all f € £(N) and n e N by

Qlf1(n):= sup Qu[f1(n)= sup Af(n+1)=Af(n).

A€M A A€M
Then for all s € Ry,
_ s_\k
e’?:= lim (I+— )
k—+o00 kQ

is a sublinear transition operator.

Furthermore, (eSQ)ﬁR)0 is a semigroup, and

di e = Qe
s



The sublinear Poisson process

The sublinear Poisson process with rate interval [A,A] is the sublinear
expectation E on 2 defined recursively by

E(f(M)) = e'Q[£](0) FforallzeR,,,f e L(N)
and forall k e N, t; <+ < ;. <t €Ryg and f € Z(NF)
E(f(Nys - s Nogo Negyo ) 1= E(EGF (N oo Ny Ney ) [ N oo N )
with A:=1¢;,, — 1, and

E(f(Neys oo N Ny )| o0 1) 1= 29[ (o g, )] ().
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@ ‘convex expectations’ instead of only ‘sublinear expectations’
ws state space can be a Polish space



Fix some set of paths Q < NR=o,

We investigate (sub)linear expectations on the set of Finitary bounded variables

.....

.....
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Fix some set of paths Q < N®=0,

We investigate (sub)linear expectations on the set of finitary bounded variables

.....

20



Fix some set of paths Q < N®=0,

We investigate (sub)linear expectations on the set of finitary bounded variables

.....

Many interesting variables are not included in 2!

For the (sublinear) Poisson process, for example, 2 does notinclude
£3 the number of ® between ¢, and t,, so

N, —N;,: Q= Z: 0~ o(5) - o(f).

20



Fix some set of paths Q < N®=0,

We investigate (sub)linear expectations on the set of finitary bounded variables

Many interesting variables are not included in 2!

For the (sublinear) Poisson process, for example, 2 does notinclude
£3 the number of ® between ¢, and t,, so

N, —N,: Q= Z: 0~ o(5) - o(h);
the time until the first ®, so
T: Q— Ry w—inf{r e Ryy: (1) = 1}.

20



Fix some set of paths Q < N®o,

We investigate (sub)linear -y bounded variables

P = { f ce(l\lk)}.
Many 'in 2!
For the (sublinear) F ude

E3 the number of #

the time until the First

Sussgt w(t) = 1}.

20



Statistical
Reasoning

with Imprecise
Probabilities

Peter Walley

Natural extension
% only to bounded variables
= often overly conservative
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Statistical
Reasoning

with Imprecise
Probabilities

Peter Walley

Natural extension
5% only to bounded variables
= often overly conservative
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s from all bounded variables

=~ tosome real variables
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WILEY SERIES IN PROBABILITY AND STATISTICS

Monographs
on Statistics and
Applied Probability 42

Statistical
Reasoning LOWER

with Imprecise PREVISIONS
Probabilities

Peter Walley

Natural extension Previsibility Kolmogorov-type extension
5% only to bounded variables 5% from all bounded variables sublinear processes
= often overly conservative =~ tosome real variables = downward continuity

21



A sublinear expectation E on 2 is called downward continuous

kl_lgl E(fi)=E(f) forall 2" > (fi)ren \f€2.

if

22



the sublinear expectation E on 2 is downward continuous

I

every dominated linear expectation in
M (E) := {E a linear expectation on 2: (Vf € 2) E(f) < E(f)}

is downward continuous on 2

22



the sublinear expectation E on 2 is downward continuous

I

For all E € .#(E), there is a unique probability measure P, on o(2) such that

E(f):ffdpE For all f €2
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the sublinear expectation E on 2 is downward continuous

I

For all E € .#(E), there is a unique probability measure P, on o(2) such that

E(f):ffdpE For all f €2

let 2¢ = {f € R®: f bounded and o(2)-measurable} and

EX(f)= sup ffdPE For all f € 27
Ee .t (E)

Ey is the unique sublinear expectation on 2} that extends E,
is downward continuous and upward continuous

22



the sublinear expectation E on 2 is downward continuous

I

For all E € .#(E), there is a unique probability measure P, on o(2) such that

E(f):ffdpE For all f €2

let 2™ = {f € R: f bounded below or above and ¢(2)-measurable} and

E*(f) = sup ffdpE for all f € 2*
Ee((E)

E” is a sublinear expectation on 2* that extends E,
is downward continuous and upward continuous

22



Suppose Q is the set of all paths w: R,, — N. Then
' every linear expectation E on 2 is trivially downward continuous.
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Suppose Q is the set of all paths w: R,, — N. Then
 every linear expectation E on @ is trivially downward continuous, but
X the extended domain 2* is not sufficiently rich!
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Suppose Q is the set of all paths w: R,, — N. Then
 every linear expectation E on @ is trivially downward continuous, but
X the extended domain 2* is not sufficiently rich!

Let Q be the set of cadlag paths w: R,, — N, so those that are continuous from the
right and have left-sided limits. Then

 the extended domain 2* is sufficiently rich, but
4+ alinear expectation E on 2 is not necessarily downward continuous.

23



The sublinear Poisson process
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E is downward continuous!

|

E extends to a £ & EJ sublinear expectation E* on 2*.

q

-~y
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A sublinear Markov process

E, on £(N) & semigroup (TQSERzO of sublinear transition operators

l

sublinear expectation E on 2
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A sublinear Markov process

E, on £(N) & semigroup (TQSGRzO of sublinear transition operators

l

sublinear expectation E on 2

=3 Is E downward continuous?
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A sublinear Markov process

E, on £(N) & semigroup (TQSERzO of sublinear transition operators

l

sublinear expectation E on 2

|
Ba
:

°o Is E downward continuous? Yes it is!

l

B E extends to a £ & EJ sublinear expectation E* on 2*.

25



Uniform continuity

A semigroup (TS)SERZO of sublinear transition operators is called uniformly
continuous if B B

limT, =1« lim|T,-1I| =0.

s\.0 s\.0

26



Uniform continuity New

A semigroup (TS)SF_R>0 of sublinear transition operators is uniformly continuous if
and only if :

— _\k
T, = lim (I+%Q) forall s e R,

k—+o00

for some ‘bounded sublinear generator’ Q: £(N) — £(N).
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Uniform continuity New

A semigroup (TS)SF_R>0 of sublinear transition operators is uniformly continuous if
and only if :

— _\k
T, = lim (I+%Q) forall s e R,

k—+o00

for some ‘bounded sublinear generator’ Q: £(N) — £(N), or equivalently,

d-  ——
aTS:QTS fFor all s e R,,.
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Uniform continuity

A semigroup (TS)SEU%0 of sublinear transition operators is uniformly continuous if
and only if :

— _\k
T, = lim (I+%Q) forall s e R,

k—+o00

for some ‘bounded sublinear generator’ Q: £(N) — £(N), or equivalently,

d-  ——
aTS:QTS fFor all s e R,,.

A ‘sublinear generator’ Q: £(N) — £(N) is bounded if and only if there is a
‘uniformly bounded’ set 2 of ‘linear generators’ such that

Q[f1(n) =supQ[f](n) Forall fe L(N),neN.
Qe2

26



9 Do the 2019 and 2023 approaches yield the same upper/sublinear expectation?
@¢ How could one generalise the inter-# definition?
& What about Watanabe’s martingale characterization of Poisson processes?
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9 Do the 2019 and 2023 approaches yield the same upper/sublinear expectation?
@¢ How could one generalise the inter-# definition?
& What about Watanabe’s martingale characterization of Poisson processes?

2 What if (T,)seq,, is not uniformly continuous?

& What about uncountably infinite state spaces?

27



