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 Sandsynlighedsregning og Telefonsamtaler.
 Af A. K. Erlang.
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The Poisson process
à la Probability 101

The inter- times Δ𝑇1, Δ𝑇2, ... are independent and identically distributed;

Δ𝑇𝑘 is exponentially distributed with mean 1/𝜆.

the process starts in 0, so 𝑁0 = 0;
the increments 𝑁𝑡2 −𝑁𝑡1 and 𝑁𝑡4 −𝑁𝑡3 are independent whenever 𝑡1 ≤ 𝑡2 ≤ 𝑡3 ≤ 𝑡4;
𝑁𝑡2 −𝑁𝑡1 is Poisson distributed with mean 𝜆(𝑡2−𝑡1).
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A stochastic process 𝑃 with state space ℕ is completely defined—under some

technical conditions—by the probabilities of the form

𝑃(𝑁𝑡1 =𝑛1,…,𝑁𝑡𝑘 =𝑛𝑘)

with 𝑘 ∈ℕ>0, 𝑡1 <⋯< 𝑡𝑘 ∈ ℝ≥0 and 𝑛1,…,𝑛𝑘 ∈ ℕ.
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The Poisson process
as a stochastic process

The Poisson process 𝑃 with rate 𝜆 is defined by

𝑃(𝑁𝑡1 =𝑛1,…,𝑁𝑡𝑘 =𝑛𝑘) =
𝑘
∏
ℓ=1

𝜓𝜆(𝑡ℓ−𝑡ℓ−1)(𝑛ℓ−𝑛ℓ−1)

with 𝑡0 ≔0, 𝑛0 ≔0 and 𝜓𝜆(𝑡ℓ−𝑡ℓ−1) ∶ ℤ→ [0,1] the Poisson distribution with

mean 𝜆(𝑡ℓ−𝑡ℓ−1).
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What if we do not know the rate 𝜆 exactly?
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Abstract

The Poisson process is the most elementary
continuous-time stochastic process that models a
stream of repeating events. It is uniquely character-
ised by a single parameter called the rate. Instead of a
single value for this rate, we here consider a rate inter-
val and let it characterise two nested sets of stochastic
processes. We call these two sets of stochastic process
imprecise Poisson processes, explain why this is jus-
tified, and study the corresponding lower and upper
(conditional) expectations. Besides a general theoret-
ical framework, we also provide practical methods to
compute lower and upper (conditional) expectations
of functions that depend on the number of events at a
single point in time.
Keywords: Poisson process, counting process,
continuous-time Markov chain, imprecision

1. Introduction

The Poisson process is arguably one of the most basic
stochastic processes. At the core of this model is our sub-
ject, who is interested in something specific that occurs
repeatedly over time, where time is assumed to be continu-
ous. For instance, our subject could be interested in the
arrival of a customer to a queue, to give an example from
queueing theory. For the sake of brevity, we will call such a
specific occurrence a Poisson-event,1 whence our subject is
interested in a stream of Poisson-events. The time instants
at which subsequent Poisson-events occur are uncertain to
our subject, hence the need for a probabilistic model. This
set-up is not exclusive to queueing theory; it is also used
in renewal theory and reliability theory, to name but a few
applications.

There is a plethora of alternative but essentially equi-
valent characterisations of this Poisson process. Some of
the more well-known and basic characterisations are as the
limit of the Bernoulli process [5, Chapter VI, Sections 5 and
6] or as a sequence of mutually independent and exponen-
tially distributed inter-Poisson-event times [6, Chapter 5,
Section 3.A]. An alternative way to look at the Poisson

1. We use the term “Poisson-event” rather than just “event” to avoid
confusion with the standard usage of event in probability theory,
where event refers to a subset of the sample space; we are indebted
to an anonymous reviewer for pointing out this potential confusion,
and to Gert de Cooman for suggesting the adopted terminology.

process is as a random dispersion of points in some gen-
eral space—that need not be the real number line—see for
instance [1, Sections 2.1 and 2.2] or [8, Chapter 2]. More
theoretically involved characterisations that are relevant to
our set-up are as a counting process or as a continuous-
time Markov chain, see for example [5, Chapter XVII, Sec-
tion 2], [7, Section 1], [10, Section 2.4], [12, Section 2.1]
or [13, Section 3].

Broadly speaking, these characterisations all make the
same three assumptions: (i) orderliness, in the sense that
the probability that two or more Poisson-events occur at
the same time is zero; (ii) independence, more specific-
ally the absence of after-effects or Markovianity; and (iii)
homogeneity. It is essentially well-known that these three
assumptions imply the existence of a parameter called the
rate, and that this rate uniquely characterises the Poisson
process. We here weaken the three aforementioned assump-
tions. First and foremost, we get rid of the implicit assump-
tion that our subject’s beliefs can be accurately modelled
by a single stochastic process; instead, we assume that her
beliefs only allow us to consider a set of stochastic pro-
cesses. Specifically, we consider a rate interval instead of
a precise value for the rate, and examine two distinct sets:
(i) the set of all Poisson processes whose rate belongs to
this rate interval; and (ii) the set of all processes that are
orderly and “consistent” with the rate interval. We then
define lower and upper conditional expectations as the in-
fimum and supremum of the conditional expectations with
respect to the stochastic processes in these respective sets.
Aside from this general theoretical framework, we focus
on computing the lower and upper expectation of functions
that depend on the number of occurred Poisson-events at a
single future time point. For the set of Poisson processes,
we show that this requires the solution of a one-parameter
optimisation problem; for the second set, we show that this
can be computed using backwards recursion. Furthermore,
we argue that both sets can be justifiably called imprecise
Poisson processes: imprecise because their lower and upper
expectations are not equal, and Poisson because their lower
and upper expectations satisfy imprecise versions of the
defining properties of the (precise) Poisson process. The
interested reader can find proofs for all our results in the
Appendix of the extended pre-print of this contribution [4],
which is available on arXiv.

© 2019 A. Erreygers & J. De Bock.
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Continuous-time Markov chains are mathematical models that are used to describe 

the state-evolution of dynamical systems under stochastic uncertainty, and have found 

widespread applications in various fields. In order to make these models computationally 

tractable, they rely on a number of assumptions that—as is well known—may not be 

realistic for the domain of application; in particular, the ability to provide exact numerical 

parameter assessments, and the applicability of time-homogeneity and the eponymous 

Markov property. In this work, we extend these models to imprecise continuous-time Markov 

chains (ICTMC’s), which are a robust generalisation that relaxes these assumptions while 

remaining computationally tractable.

More technically, an ICTMC is a set of “precise” continuous-time finite-state stochastic 

processes, and rather than computing expected values of functions, we seek to compute 

lower expectations, which are tight lower bounds on the expectations that correspond to 

such a set of “precise” models. Note that, in contrast to e.g. Bayesian methods, all the 

elements of such a set are treated on equal grounds; we do not consider a distribution 

over this set. Together with the conjugate notion of upper expectation, the bounds that we 

provide can then be intuitively interpreted as providing best- and worst-case scenarios 

with respect to all the models in our set of stochastic processes.

The first part of this paper develops a formalism for describing continuous-time finite-state 

stochastic processes that does not require the aforementioned simplifying assumptions. 

Next, this formalism is used to characterise ICTMC’s and to investigate their properties. The 

concept of lower expectation is then given an alternative operator-theoretic characterisation, 

by means of a lower transition operator, and the properties of this operator are investigated 

as well. Finally, we use this lower transition operator to derive tractable algorithms (with 

polynomial runtime complexity w.r.t. the maximum numerical error) for computing the 

lower expectation of functions that depend on the state at any finite number of time 

points.

 2017 Elsevier Inc. All rights reserved.

1. Introduction

Continuous-time Markov chains are mathematical models that can describe the behaviour of dynamical systems under 

stochastic uncertainty. In particular, they describe the stochastic evolution of such a system through a discrete state space 

and over a continuous time-dimension. This class of models has found widespread applications in various fields, includ-

* Corresponding author.

E-mail addresses: t.e.krak@uu.nl (T. Krak), jasper.debock@ugent.be (J. De Bock), a.p.j.m.siebes@uu.nl (A. Siebes).
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Abstract
Sublinear expectations for uncertain processes have

received a lot of attention recently, particularly methods

to extend a downward-continuous sublinear expectation

on the bounded finitary functions to one on the non-

finitary functions. In most of the approaches the domain

of the extension is not very rich because it is limited

to bounded measurable functions on the set of all

paths. This contribution alleviates this problem in

the countable-state case by extending, under a mild

condition, to the extended real measurable functions

on the set of càdlàg paths, and investigates when

a sublinear Markov semigroup induces a sublinear

expectation that satisfies this mild condition.
Keywords: convex expectation, (coherent) upper ex-

pectation, monotone convergence, sublinear Markov

process, sublinear Markov semigroup
1. Introduction

This contribution is part of the recent push to generalise

the theory of (continuous-time) Markov processes from

the measure-theoretic framework [3, 18, 32, 19] to two

closely-related frameworks: those of nonlinear expectations

and imprecise probabilities. These two frameworks have

a common aim: to model uncertainty in a (more) robust

manner.
The framework of nonlinear—sublinear or even convex—

expectations was initially put forward by Peng [31], and it

dealt with Markov processes from its conception. Since then

the following (and quite possibly more) Markov processes

have been generalised to this framework: those with finite

state space [26], countable state space [27] and R3 as

state space [31], Lévy processes with R3 as state space

[21, 29, 10] and Feller processes with a Polish state space

[28]. Most authors only consider bounded functions on

the set of all paths that are measurable with respect to

the product f-algebra, which is a domain that is not very

rich. Neufeld and Nutz [29] are a notable exception to this;

while they do assume càdlàg paths, they never go beyond

functions of the state in a single time point though.

The theory of imprecise probabilities, which is actually

a collection of frameworks including those of coherent

lower/upper probabilities and sets of (coherent conditional)

probabilities, was popularised by Walley [36]. In this frame-

work much has been done for Markov processes with finite

state space [38, 6, 22, 17], but to the best of my knowledge,

the only work regarding a non-finite state space is that on

the Poisson process [14].This contribution builds on and continues the aforemen-

tioned work by investigating sublinear expectations for

countable-state uncertain processes in general and Markov

processes in particular on a sufficiently rich domain of

functions on the set of càdlàg paths. On the one hand, it

builds and extends some of the aforementioned work in the

framework of nonlinear expectations: Section 2 rids the ex-

tension results in [9, Section 3] from the requirement that all

functions in the domain are bounded, Section 3 establishes

a more useful version of the robust Daniell–Kolmogorov

Extension Theorem [9, Section 4] in the specific case of a

countable state space by ensuring càdlàg paths, and Sec-

tion 4 deals with semigroups following Denk et al. [9,

Section 5] and Nendel [26, 27]. On the other hand, Sec-

tions 3 and 4 essentially extend the approach in [17] from

the finite-state case to the countable-state case and the ap-

proach in [14] from the Poisson process to general Markov
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In order to meet the page limit, I have relegated almost all

of the proofs to the Supplementary Material; these proofs

can also be found in Appendix A of the extended arXiv

preprint [12] of this contribution.
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functional on a suitable domain. Examples include the Le-

besgue integral with respect to a probability measure and

(linear) previsions in the style of de Finetti [7]—see also

[37]. A nonlinear expectation, then, generalises this notion

by relaxing the requirement of linearity. Two examples of

such classes of functionals are the convex expectations that

appear in (robust) mathematical finance [31] and the coher-

ent upper—or sublinear—expectations that are at the core

of the theory of imprecise probabilities [35, 36]; see also

[30] and references therein. In Section 2.1 we will formally

introduce these well-known notions for domains that may

include unbounded and even extended real functions, while
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Abstract

The Poisson process is the most elementary
continuous-time stochastic process that models a
stream of repeating events. It is uniquely character-
ised by a single parameter called the rate. Instead of a
single value for this rate, we here consider a rate inter-
val and let it characterise two nested sets of stochastic
processes. We call these two sets of stochastic process
imprecise Poisson processes, explain why this is jus-
tified, and study the corresponding lower and upper
(conditional) expectations. Besides a general theoret-
ical framework, we also provide practical methods to
compute lower and upper (conditional) expectations
of functions that depend on the number of events at a
single point in time.
Keywords: Poisson process, counting process,
continuous-time Markov chain, imprecision

1. Introduction

The Poisson process is arguably one of the most basic
stochastic processes. At the core of this model is our sub-
ject, who is interested in something specific that occurs
repeatedly over time, where time is assumed to be continu-
ous. For instance, our subject could be interested in the
arrival of a customer to a queue, to give an example from
queueing theory. For the sake of brevity, we will call such a
specific occurrence a Poisson-event,1 whence our subject is
interested in a stream of Poisson-events. The time instants
at which subsequent Poisson-events occur are uncertain to
our subject, hence the need for a probabilistic model. This
set-up is not exclusive to queueing theory; it is also used
in renewal theory and reliability theory, to name but a few
applications.

There is a plethora of alternative but essentially equi-
valent characterisations of this Poisson process. Some of
the more well-known and basic characterisations are as the
limit of the Bernoulli process [5, Chapter VI, Sections 5 and
6] or as a sequence of mutually independent and exponen-
tially distributed inter-Poisson-event times [6, Chapter 5,
Section 3.A]. An alternative way to look at the Poisson

1. We use the term “Poisson-event” rather than just “event” to avoid
confusion with the standard usage of event in probability theory,
where event refers to a subset of the sample space; we are indebted
to an anonymous reviewer for pointing out this potential confusion,
and to Gert de Cooman for suggesting the adopted terminology.

process is as a random dispersion of points in some gen-
eral space—that need not be the real number line—see for
instance [1, Sections 2.1 and 2.2] or [8, Chapter 2]. More
theoretically involved characterisations that are relevant to
our set-up are as a counting process or as a continuous-
time Markov chain, see for example [5, Chapter XVII, Sec-
tion 2], [7, Section 1], [10, Section 2.4], [12, Section 2.1]
or [13, Section 3].

Broadly speaking, these characterisations all make the
same three assumptions: (i) orderliness, in the sense that
the probability that two or more Poisson-events occur at
the same time is zero; (ii) independence, more specific-
ally the absence of after-effects or Markovianity; and (iii)
homogeneity. It is essentially well-known that these three
assumptions imply the existence of a parameter called the
rate, and that this rate uniquely characterises the Poisson
process. We here weaken the three aforementioned assump-
tions. First and foremost, we get rid of the implicit assump-
tion that our subject’s beliefs can be accurately modelled
by a single stochastic process; instead, we assume that her
beliefs only allow us to consider a set of stochastic pro-
cesses. Specifically, we consider a rate interval instead of
a precise value for the rate, and examine two distinct sets:
(i) the set of all Poisson processes whose rate belongs to
this rate interval; and (ii) the set of all processes that are
orderly and “consistent” with the rate interval. We then
define lower and upper conditional expectations as the in-
fimum and supremum of the conditional expectations with
respect to the stochastic processes in these respective sets.
Aside from this general theoretical framework, we focus
on computing the lower and upper expectation of functions
that depend on the number of occurred Poisson-events at a
single future time point. For the set of Poisson processes,
we show that this requires the solution of a one-parameter
optimisation problem; for the second set, we show that this
can be computed using backwards recursion. Furthermore,
we argue that both sets can be justifiably called imprecise
Poisson processes: imprecise because their lower and upper
expectations are not equal, and Poisson because their lower
and upper expectations satisfy imprecise versions of the
defining properties of the (precise) Poisson process. The
interested reader can find proofs for all our results in the
Appendix of the extended pre-print of this contribution [4],
which is available on arXiv.

© 2019 A. Erreygers & J. De Bock.
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Continuous-time Markov chains are mathematical models that are used to describe 

the state-evolution of dynamical systems under stochastic uncertainty, and have found 

widespread applications in various fields. In order to make these models computationally 

tractable, they rely on a number of assumptions that—as is well known—may not be 

realistic for the domain of application; in particular, the ability to provide exact numerical 

parameter assessments, and the applicability of time-homogeneity and the eponymous 

Markov property. In this work, we extend these models to imprecise continuous-time Markov 

chains (ICTMC’s), which are a robust generalisation that relaxes these assumptions while 

remaining computationally tractable.

More technically, an ICTMC is a set of “precise” continuous-time finite-state stochastic 

processes, and rather than computing expected values of functions, we seek to compute 

lower expectations, which are tight lower bounds on the expectations that correspond to 

such a set of “precise” models. Note that, in contrast to e.g. Bayesian methods, all the 

elements of such a set are treated on equal grounds; we do not consider a distribution 

over this set. Together with the conjugate notion of upper expectation, the bounds that we 

provide can then be intuitively interpreted as providing best- and worst-case scenarios 

with respect to all the models in our set of stochastic processes.

The first part of this paper develops a formalism for describing continuous-time finite-state 

stochastic processes that does not require the aforementioned simplifying assumptions. 

Next, this formalism is used to characterise ICTMC’s and to investigate their properties. The 

concept of lower expectation is then given an alternative operator-theoretic characterisation, 

by means of a lower transition operator, and the properties of this operator are investigated 

as well. Finally, we use this lower transition operator to derive tractable algorithms (with 

polynomial runtime complexity w.r.t. the maximum numerical error) for computing the 

lower expectation of functions that depend on the state at any finite number of time 

points.

 2017 Elsevier Inc. All rights reserved.

1. Introduction

Continuous-time Markov chains are mathematical models that can describe the behaviour of dynamical systems under 

stochastic uncertainty. In particular, they describe the stochastic evolution of such a system through a discrete state space 

and over a continuous time-dimension. This class of models has found widespread applications in various fields, includ-
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Abstract
Sublinear expectations for uncertain processes have

received a lot of attention recently, particularly methods

to extend a downward-continuous sublinear expectation

on the bounded finitary functions to one on the non-

finitary functions. In most of the approaches the domain

of the extension is not very rich because it is limited

to bounded measurable functions on the set of all

paths. This contribution alleviates this problem in

the countable-state case by extending, under a mild

condition, to the extended real measurable functions

on the set of càdlàg paths, and investigates when

a sublinear Markov semigroup induces a sublinear

expectation that satisfies this mild condition.
Keywords: convex expectation, (coherent) upper ex-

pectation, monotone convergence, sublinear Markov

process, sublinear Markov semigroup
1. Introduction

This contribution is part of the recent push to generalise

the theory of (continuous-time) Markov processes from

the measure-theoretic framework [3, 18, 32, 19] to two

closely-related frameworks: those of nonlinear expectations

and imprecise probabilities. These two frameworks have

a common aim: to model uncertainty in a (more) robust

manner.
The framework of nonlinear—sublinear or even convex—

expectations was initially put forward by Peng [31], and it

dealt with Markov processes from its conception. Since then

the following (and quite possibly more) Markov processes

have been generalised to this framework: those with finite

state space [26], countable state space [27] and R3 as

state space [31], Lévy processes with R3 as state space

[21, 29, 10] and Feller processes with a Polish state space

[28]. Most authors only consider bounded functions on

the set of all paths that are measurable with respect to

the product f-algebra, which is a domain that is not very

rich. Neufeld and Nutz [29] are a notable exception to this;

while they do assume càdlàg paths, they never go beyond

functions of the state in a single time point though.

The theory of imprecise probabilities, which is actually

a collection of frameworks including those of coherent

lower/upper probabilities and sets of (coherent conditional)

probabilities, was popularised by Walley [36]. In this frame-

work much has been done for Markov processes with finite

state space [38, 6, 22, 17], but to the best of my knowledge,

the only work regarding a non-finite state space is that on

the Poisson process [14].This contribution builds on and continues the aforemen-

tioned work by investigating sublinear expectations for

countable-state uncertain processes in general and Markov

processes in particular on a sufficiently rich domain of

functions on the set of càdlàg paths. On the one hand, it

builds and extends some of the aforementioned work in the

framework of nonlinear expectations: Section 2 rids the ex-

tension results in [9, Section 3] from the requirement that all

functions in the domain are bounded, Section 3 establishes

a more useful version of the robust Daniell–Kolmogorov

Extension Theorem [9, Section 4] in the specific case of a

countable state space by ensuring càdlàg paths, and Sec-

tion 4 deals with semigroups following Denk et al. [9,

Section 5] and Nendel [26, 27]. On the other hand, Sec-

tions 3 and 4 essentially extend the approach in [17] from

the finite-state case to the countable-state case and the ap-

proach in [14] from the Poisson process to general Markov

processes.
In order to meet the page limit, I have relegated almost all

of the proofs to the Supplementary Material; these proofs

can also be found in Appendix A of the extended arXiv

preprint [12] of this contribution.
2. Nonlinear Expectations and Their

Extensions
A (linear) expectation is a linear, normed and isotone (real)

functional on a suitable domain. Examples include the Le-

besgue integral with respect to a probability measure and

(linear) previsions in the style of de Finetti [7]—see also

[37]. A nonlinear expectation, then, generalises this notion

by relaxing the requirement of linearity. Two examples of

such classes of functionals are the convex expectations that

appear in (robust) mathematical finance [31] and the coher-

ent upper—or sublinear—expectations that are at the core

of the theory of imprecise probabilities [35, 36]; see also

[30] and references therein. In Section 2.1 we will formally

introduce these well-known notions for domains that may

include unbounded and even extended real functions, while

Section 2.2 deals with extending these nonlinear expect-

© A. Erreygers.
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Abstract. We provide extension procedures for nonlinear expectations to the
space of all bounded measurable functions. We first discuss a maximal extension
for convex expectations which have a representation in terms of finitely additive
measures. One of the main results of this article is an extension procedure for
convex expectations which are continuous from above and therefore admit a
representation in terms of countably additive measures. This can be seen as a
nonlinear version of the Daniell–Stone theorem. From this, we deduce a robust
Kolmogorov extension theorem which is then used to extend nonlinear kernels
to an infinite-dimensional path space. We then apply this theorem to construct
nonlinear Markov processes with a given family of nonlinear transition kernels.

1. Introduction

Given a set M of bounded measurable functions X : ⌦ ! R which contains
the constants, a nonlinear expectation is a functional E : M ! R which satisfies
E(X)  E(Y ) whenever X(!)  Y (!) for all ! 2 ⌦, and E(↵1⌦) = ↵ for all
↵ 2 R. If a nonlinear expectation E is in addition sublinear, then ⇢(X) := E(�X),
X 2 M , is a coherent monetary risk measure as introduced by Artzner et al. [1]
and Delbaen [12], [13] (see also Föllmer and Schied [24] for an overview of convex
monetary risk measures). Other prominent examples of nonlinear expectations
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A stochastic process 𝑃 with state space ℕ is completely defined—under some

technical conditions—by the probabilities of the form

𝑃(𝑁𝑡1 =𝑛1,…,𝑁𝑡𝑘 =𝑛𝑘)

with 𝑘 ∈ℕ>0, 𝑡1 <⋯< 𝑡𝑘 ∈ ℝ≥0 and 𝑛1,…,𝑛𝑘 ∈ ℕ.

A stochastic process 𝑃 with state space ℕ is completely defined—under some

technical conditions—by its corresponding expectations of the form

𝐸𝑃(𝑓(𝑁𝑡1 ,…,𝑁𝑡𝑘))

with 𝑘 ∈ℕ>0, 𝑡1 <⋯< 𝑡𝑘 ∈ ℝ≥0, 𝑓 ∈ℒ(ℕ𝑘).

Daniell–Stone Theorem

11
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The Poisson process
as a stochastic process ... revisited

The Poisson process 𝑃 with rate 𝜆 is the unique process corresponding to the

expectation 𝐸𝑃 on 𝒟 defined recursively by

𝐸𝑃(𝑓(𝑁𝑡)) =
+∞
∑
𝑘=0

𝜓𝜆𝑡(𝑘)𝑓(𝑘) for all 𝑡 ∈ ℝ≥0,𝑓 ∈ℒ(ℕ).

and for all 𝑘 ∈ℕ>0, 𝑡1 <⋯< 𝑡𝑘 < 𝑡𝑘+1 ∈ ℝ≥0 and 𝑓 ∈ℒ(ℕ𝑘+1)

𝐸𝑃(𝑓(𝑁𝑡1 ,…,𝑁𝑡𝑘 ,𝑁𝑡𝑘+1)) = 𝐸𝑃(𝐸𝑃(𝑓(𝑁𝑡1 ,…,𝑁𝑡𝑘 ,𝑁𝑡𝑘+1) |𝑁𝑡1 ,…,𝑁𝑡𝑘))

with Δ≔ 𝑡𝑘+1−𝑡𝑘 and

𝐸𝑃(𝑓(𝑁𝑡1 ,…,𝑁𝑡𝑘 ,𝑁𝑡𝑘+1) |𝑛1,…,𝑛𝑘) =
+∞
∑
ℓ=0

𝜓𝜆Δ(ℓ)𝑓(𝑛1,…,𝑛𝑘,𝑛𝑘+ℓ).
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For any 𝑠 ∈ ℝ≥0, let T𝑠 ∶ ℒ(ℕ)→ℒ(ℕ) be defined by

T𝑠[𝑓](𝑛)≔
+∞
∑
𝑘=0

𝜓𝜆𝑠(ℓ)𝑓(𝑛+ℓ) for all 𝑓 ∈ℒ(ℕ),𝑛 ∈ ℕ.

Then for all 𝑠 ∈ ℝ≥0
T𝑠 = lim

𝑘→+∞
(I+

𝑠
𝑘
Q𝜆)

𝑘
≕𝑒𝑠Q𝜆 ,

and (𝑒𝑠Q𝜆)𝑠∈ℝ≥0 is a ‘semigroup of transition operators’.
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+∞
∑
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Operator semigroups

An operator S is a map fromℒ(ℕ) toℒ(ℕ).

A semigroup is a family (S𝑠)𝑠∈ℝ≥0 of operators such that

👁 S0 = I;
👪 S𝑠1+𝑠2 = S𝑠1S𝑠2 for all 𝑠1, 𝑠2 ∈ ℝ≥0.

A linear transition operator S is an operator that is

• constant preserving, so S[𝛼] = 𝛼 for all constant 𝛼 ∈ℒ(ℕ),
• isotone, so S[𝑓] ≤ S[𝑔] for all 𝑓,𝑔 ∈ℒ(ℕ) such that 𝑓 ≤ 𝑔, and
• linear, so S[𝜇𝑓+𝑔] = 𝜇S[𝑓]+S[𝑔] for all 𝑓,𝑔 ∈ℒ(ℕ) and 𝜇 ∈ ℝ.
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The Poisson process
as a stochastic process ... revisited

The Poisson process 𝑃 with rate 𝜆 is the unique process corresponding to the

expectation 𝐸𝑃 on 𝒟 defined recursively by

𝐸𝑃(𝑓(𝑁𝑡)) =
+∞
∑
𝑘=0

𝜓𝜆𝑡(𝑘)𝑓(𝑘) for all 𝑡 ∈ ℝ≥0,𝑓 ∈ℒ(ℕ)

.

and for all 𝑘 ∈ℕ>0, 𝑡1 <⋯< 𝑡𝑘 < 𝑡𝑘+1 ∈ ℝ≥0 and 𝑓 ∈ℒ(ℕ𝑘+1)

𝐸𝑃(𝑓(𝑁𝑡1 ,…,𝑁𝑡𝑘 ,𝑁𝑡𝑘+1)) = 𝐸𝑃(𝐸𝑃(𝑓(𝑁𝑡1 ,…,𝑁𝑡𝑘 ,𝑁𝑡𝑘+1) |𝑁𝑡1 ,…,𝑁𝑡𝑘))

with Δ≔ 𝑡𝑘+1−𝑡𝑘 and

𝐸𝑃(𝑓(𝑁𝑡1 ,…,𝑁𝑡𝑘 ,𝑁𝑡𝑘+1) |𝑛1,…,𝑛𝑘) =
+∞
∑
ℓ=0

𝜓𝜆Δ(ℓ)𝑓(𝑛1,…,𝑛𝑘,𝑛𝑘+ℓ).
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What if we do not know the rate 𝜆 exactly?
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Given is a rate interval [𝜆,𝜆].

Consider the set {𝐸𝜆 ∶ 𝜆 ∈ [𝜆,𝜆]} of corresponding Poisson processes, and take

lower/upper envelopes:

𝐸(𝑓(𝑁𝑡1 ,…,𝑁𝑡𝑘)) = inf
𝜆∈[𝜆,𝜆]

𝐸𝜆(𝑓(𝑁𝑡1 ,…,𝑁𝑡𝑘)) and 𝐸(𝑓(…)) = sup
𝜆∈[𝜆,𝜆]

𝐸𝜆(𝑓(…)).

Then

😀 computing lower/upper probabilities and expectations is essentially a

one-parameter optimisation problem, but

😵‍💫 in general there is no iterative way to compute 𝐸(𝑓(𝑁𝑡1 ,…,𝑁𝑡𝑘)).
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Abstract

The Poisson process is the most elementary
continuous-time stochastic process that models a
stream of repeating events. It is uniquely character-
ised by a single parameter called the rate. Instead of a
single value for this rate, we here consider a rate inter-
val and let it characterise two nested sets of stochastic
processes. We call these two sets of stochastic process
imprecise Poisson processes, explain why this is jus-
tified, and study the corresponding lower and upper
(conditional) expectations. Besides a general theoret-
ical framework, we also provide practical methods to
compute lower and upper (conditional) expectations
of functions that depend on the number of events at a
single point in time.
Keywords: Poisson process, counting process,
continuous-time Markov chain, imprecision

1. Introduction

The Poisson process is arguably one of the most basic
stochastic processes. At the core of this model is our sub-
ject, who is interested in something specific that occurs
repeatedly over time, where time is assumed to be continu-
ous. For instance, our subject could be interested in the
arrival of a customer to a queue, to give an example from
queueing theory. For the sake of brevity, we will call such a
specific occurrence a Poisson-event,1 whence our subject is
interested in a stream of Poisson-events. The time instants
at which subsequent Poisson-events occur are uncertain to
our subject, hence the need for a probabilistic model. This
set-up is not exclusive to queueing theory; it is also used
in renewal theory and reliability theory, to name but a few
applications.

There is a plethora of alternative but essentially equi-
valent characterisations of this Poisson process. Some of
the more well-known and basic characterisations are as the
limit of the Bernoulli process [5, Chapter VI, Sections 5 and
6] or as a sequence of mutually independent and exponen-
tially distributed inter-Poisson-event times [6, Chapter 5,
Section 3.A]. An alternative way to look at the Poisson

1. We use the term “Poisson-event” rather than just “event” to avoid
confusion with the standard usage of event in probability theory,
where event refers to a subset of the sample space; we are indebted
to an anonymous reviewer for pointing out this potential confusion,
and to Gert de Cooman for suggesting the adopted terminology.

process is as a random dispersion of points in some gen-
eral space—that need not be the real number line—see for
instance [1, Sections 2.1 and 2.2] or [8, Chapter 2]. More
theoretically involved characterisations that are relevant to
our set-up are as a counting process or as a continuous-
time Markov chain, see for example [5, Chapter XVII, Sec-
tion 2], [7, Section 1], [10, Section 2.4], [12, Section 2.1]
or [13, Section 3].

Broadly speaking, these characterisations all make the
same three assumptions: (i) orderliness, in the sense that
the probability that two or more Poisson-events occur at
the same time is zero; (ii) independence, more specific-
ally the absence of after-effects or Markovianity; and (iii)
homogeneity. It is essentially well-known that these three
assumptions imply the existence of a parameter called the
rate, and that this rate uniquely characterises the Poisson
process. We here weaken the three aforementioned assump-
tions. First and foremost, we get rid of the implicit assump-
tion that our subject’s beliefs can be accurately modelled
by a single stochastic process; instead, we assume that her
beliefs only allow us to consider a set of stochastic pro-
cesses. Specifically, we consider a rate interval instead of
a precise value for the rate, and examine two distinct sets:
(i) the set of all Poisson processes whose rate belongs to
this rate interval; and (ii) the set of all processes that are
orderly and “consistent” with the rate interval. We then
define lower and upper conditional expectations as the in-
fimum and supremum of the conditional expectations with
respect to the stochastic processes in these respective sets.
Aside from this general theoretical framework, we focus
on computing the lower and upper expectation of functions
that depend on the number of occurred Poisson-events at a
single future time point. For the set of Poisson processes,
we show that this requires the solution of a one-parameter
optimisation problem; for the second set, we show that this
can be computed using backwards recursion. Furthermore,
we argue that both sets can be justifiably called imprecise
Poisson processes: imprecise because their lower and upper
expectations are not equal, and Poisson because their lower
and upper expectations satisfy imprecise versions of the
defining properties of the (precise) Poisson process. The
interested reader can find proofs for all our results in the
Appendix of the extended pre-print of this contribution [4],
which is available on arXiv.

© 2019 A. Erreygers & J. De Bock.

Let Q ∶ ℒ(ℕ)→ℒ(ℕ) be defined for all 𝑓 ∈ℒ(ℕ) and 𝑛 ∈ℕ by

Q[𝑓](𝑛)≔ sup
𝜆∈[𝜆,𝜆]

Q𝜆[𝑓](𝑛) = sup
𝜆∈[𝜆,𝜆]

𝜆𝑓(𝑛+1)−𝜆𝑓(𝑛).

Then for all 𝑠 ∈ ℝ≥0,

𝑒𝑠Q ≔ lim
𝑘→+∞

(I+
𝑠
𝑘
Q)

𝑘

is a sublinear transition operator.

Furthermore, (𝑒𝑠Q)𝑠∈ℝ≥0 is a semigroup, and

d
d𝑠
𝑒𝑠Q =Q𝑒𝑠Q.
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(I+
𝑠
𝑘
Q)

𝑘

is a sublinear transition operator, so an operator S that is
• constant preserving, so S[𝛼] = 𝛼 for all constant 𝛼 ∈ℒ(ℕ),
• isotone, so S[𝑓] ≤ S[𝑔] for all 𝑓,𝑔 ∈ℒ(ℕ) such that 𝑓 ≤ 𝑔, and
• sublinear, so S[𝜇𝑓+𝑔] ≤ 𝜇S[𝑓]+S[𝑔] for all 𝑓,𝑔 ∈ℒ(ℕ) and 𝜇 ∈ ℝ≥0.
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The sublinear Poisson process

The sublinear Poisson process with rate interval [𝜆,𝜆] is the sublinear

expectation 𝐸 on𝒟 defined recursively by

𝐸(𝑓(𝑁𝑡)) ≔ 𝑒𝑡Q[𝑓](0) for all 𝑡 ∈ ℝ≥0,𝑓 ∈ℒ(ℕ)

and for all 𝑘 ∈ℕ>0, 𝑡1 <⋯< 𝑡𝑘 < 𝑡𝑘+1 ∈ ℝ≥0 and 𝑓 ∈ℒ(ℕ𝑘+1)

𝐸(𝑓(𝑁𝑡1 ,…,𝑁𝑡𝑘 ,𝑁𝑡𝑘+1)) ≔ 𝐸(𝐸(𝑓(𝑁𝑡1 ,…,𝑁𝑡𝑘 ,𝑁𝑡𝑘+1) |𝑁𝑡1 ,…,𝑁𝑡𝑘))

with Δ≔ 𝑡𝑘+1−𝑡𝑘 and

𝐸(𝑓(𝑁𝑡1 ,…,𝑁𝑡𝑘 ,𝑁𝑡𝑘+1) |𝑛1,…,𝑛𝑘) ≔ 𝑒ΔQ[𝑓(𝑛1,…,𝑛𝑘,•)](𝑛𝑘).
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KOLMOGOROV-TYPE AND GENERAL EXTENSION RESULTS

FOR NONLINEAR EXPECTATIONS
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Abstract. We provide extension procedures for nonlinear expectations to the
space of all bounded measurable functions. We first discuss a maximal extension
for convex expectations which have a representation in terms of finitely additive
measures. One of the main results of this article is an extension procedure for
convex expectations which are continuous from above and therefore admit a
representation in terms of countably additive measures. This can be seen as a
nonlinear version of the Daniell–Stone theorem. From this, we deduce a robust
Kolmogorov extension theorem which is then used to extend nonlinear kernels
to an infinite-dimensional path space. We then apply this theorem to construct
nonlinear Markov processes with a given family of nonlinear transition kernels.

1. Introduction

Given a set M of bounded measurable functions X : ⌦ ! R which contains
the constants, a nonlinear expectation is a functional E : M ! R which satisfies
E(X)  E(Y ) whenever X(!)  Y (!) for all ! 2 ⌦, and E(↵1⌦) = ↵ for all
↵ 2 R. If a nonlinear expectation E is in addition sublinear, then ⇢(X) := E(�X),
X 2 M , is a coherent monetary risk measure as introduced by Artzner et al. [1]
and Delbaen [12], [13] (see also Föllmer and Schied [24] for an overview of convex
monetary risk measures). Other prominent examples of nonlinear expectations
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Received Feb. 21, 2017; Accepted Jun. 19, 2017.
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linear kernels.
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📣 ‘convex expectations’ instead of only ‘sublinear expectations’

🇵🇱 state space can be a Polish space
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Fix some set of paths Ω⊆ℕℝ≥0 .

We investigate (sub)linear expectations on the set of finitary bounded variables

𝒟≔{𝑓 ∘𝜋{𝑡1,…,𝑡𝑘} ∶ 𝑘 ∈ ℕ>0, 𝑡1 <⋯< 𝑡𝑘 ∈ ℝ≥0,𝑓 ∈ℒ(ℕ𝑘)},

where 𝜋{𝑡1,…,𝑡𝑘} ∶ Ω→ℕ𝑘 maps any path 𝜔 ∈Ω to (𝜔(𝑡1),…,𝜔(𝑡𝑘)).

🚨 Many interesting variables are not included in 𝒟! 🚨

For the (sublinear) Poisson process, for example, 𝒟 does not include

#️⃣ the number of between 𝑡1 and 𝑡2, so

𝑁𝑡2 −𝑁𝑡1 ∶ Ω→ℤ∶ 𝜔↦𝜔(𝑡2)−𝜔(𝑡1);

⏱ the time until the first , so

𝜏∶ Ω→ℝ≥0 ∶ 𝜔↦ inf{𝑡 ∈ ℝ≥0 ∶ 𝜔(𝑡) ≥ 1}.
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Abstract. We provide extension procedures for nonlinear expectations to the
space of all bounded measurable functions. We first discuss a maximal extension
for convex expectations which have a representation in terms of finitely additive
measures. One of the main results of this article is an extension procedure for
convex expectations which are continuous from above and therefore admit a
representation in terms of countably additive measures. This can be seen as a
nonlinear version of the Daniell–Stone theorem. From this, we deduce a robust
Kolmogorov extension theorem which is then used to extend nonlinear kernels
to an infinite-dimensional path space. We then apply this theorem to construct
nonlinear Markov processes with a given family of nonlinear transition kernels.

1. Introduction

Given a set M of bounded measurable functions X : ⌦ ! R which contains
the constants, a nonlinear expectation is a functional E : M ! R which satisfies
E(X)  E(Y ) whenever X(!)  Y (!) for all ! 2 ⌦, and E(↵1⌦) = ↵ for all
↵ 2 R. If a nonlinear expectation E is in addition sublinear, then ⇢(X) := E(�X),
X 2 M , is a coherent monetary risk measure as introduced by Artzner et al. [1]
and Delbaen [12], [13] (see also Föllmer and Schied [24] for an overview of convex
monetary risk measures). Other prominent examples of nonlinear expectations
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A sublinear expectation 𝐸 on 𝒟 is called downward continuous on 𝒟 if

lim
𝑘→+∞

𝐸(𝑓𝑘) = 𝐸(𝑓) for all 𝒟ℕ ∋ (𝑓𝑘)𝑘∈ℕ ↘𝑓 ∈𝒟.
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every dominated linear expectation in

ℳ(𝐸)≔ {𝐸 a linear expectation on 𝒟∶ (∀𝑓 ∈𝒟) 𝐸(𝑓) ≤ 𝐸(𝑓)}

is downward continuous on 𝒟
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Suppose Ω is the set of all paths 𝜔∶ ℝ≥0 →ℕ. Then
✔ every linear expectation 𝐸 on𝒟 is trivially downward continuous.

❌ the extended domain 𝒟⋆ is not sufficiently rich!

Let Ω be the set of càdlàg paths 𝜔∶ ℝ≥0 →ℕ, so those that are continuous from the

right and have left-sided limits. Then

✔ the extended domain𝒟⋆ is sufficiently rich, but

⚙ a linear expectation 𝐸 on𝒟 is not necessarily downward continuous.
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The sublinear Poisson process
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Sublinear Expectations for Countable-State Uncertain Processes
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Foundations Lab, Ghent University, Belgium

Abstract

Sublinear expectations for uncertain processes have
received a lot of attention recently, particularly methods
to extend a downward-continuous sublinear expectation
on the bounded finitary functions to one on the non-
finitary functions. In most of the approaches the domain
of the extension is not very rich because it is limited
to bounded measurable functions on the set of all
paths. This contribution alleviates this problem in
the countable-state case by extending, under a mild
condition, to the extended real measurable functions
on the set of càdlàg paths, and investigates when
a sublinear Markov semigroup induces a sublinear
expectation that satisfies this mild condition.
Keywords: convex expectation, (coherent) upper ex-
pectation, monotone convergence, sublinear Markov
process, sublinear Markov semigroup

1. Introduction

This contribution is part of the recent push to generalise
the theory of (continuous-time) Markov processes from
the measure-theoretic framework [3, 18, 32, 19] to two
closely-related frameworks: those of nonlinear expectations
and imprecise probabilities. These two frameworks have
a common aim: to model uncertainty in a (more) robust
manner.

The framework of nonlinear—sublinear or even convex—
expectations was initially put forward by Peng [31], and it
dealt with Markov processes from its conception. Since then
the following (and quite possibly more) Markov processes
have been generalised to this framework: those with finite
state space [26], countable state space [27] and R

3 as
state space [31], Lévy processes with R

3 as state space
[21, 29, 10] and Feller processes with a Polish state space
[28]. Most authors only consider bounded functions on
the set of all paths that are measurable with respect to
the product f-algebra, which is a domain that is not very
rich. Neufeld and Nutz [29] are a notable exception to this;
while they do assume càdlàg paths, they never go beyond
functions of the state in a single time point though.

The theory of imprecise probabilities, which is actually
a collection of frameworks including those of coherent
lower/upper probabilities and sets of (coherent conditional)
probabilities, was popularised by Walley [36]. In this frame-

work much has been done for Markov processes with finite
state space [38, 6, 22, 17], but to the best of my knowledge,
the only work regarding a non-finite state space is that on
the Poisson process [14].

This contribution builds on and continues the aforemen-
tioned work by investigating sublinear expectations for
countable-state uncertain processes in general and Markov
processes in particular on a sufficiently rich domain of
functions on the set of càdlàg paths. On the one hand, it
builds and extends some of the aforementioned work in the
framework of nonlinear expectations: Section 2 rids the ex-
tension results in [9, Section 3] from the requirement that all
functions in the domain are bounded, Section 3 establishes
a more useful version of the robust Daniell–Kolmogorov
Extension Theorem [9, Section 4] in the specific case of a
countable state space by ensuring càdlàg paths, and Sec-
tion 4 deals with semigroups following Denk et al. [9,
Section 5] and Nendel [26, 27]. On the other hand, Sec-
tions 3 and 4 essentially extend the approach in [17] from
the finite-state case to the countable-state case and the ap-
proach in [14] from the Poisson process to general Markov
processes.

In order to meet the page limit, I have relegated almost all
of the proofs to the Supplementary Material; these proofs
can also be found in Appendix A of the extended arXiv
preprint [12] of this contribution.

2. Nonlinear Expectations and Their

Extensions

A (linear) expectation is a linear, normed and isotone (real)
functional on a suitable domain. Examples include the Le-
besgue integral with respect to a probability measure and
(linear) previsions in the style of de Finetti [7]—see also
[37]. A nonlinear expectation, then, generalises this notion
by relaxing the requirement of linearity. Two examples of
such classes of functionals are the convex expectations that
appear in (robust) mathematical finance [31] and the coher-
ent upper—or sublinear—expectations that are at the core
of the theory of imprecise probabilities [35, 36]; see also
[30] and references therein. In Section 2.1 we will formally
introduce these well-known notions for domains that may
include unbounded and even extended real functions, while
Section 2.2 deals with extending these nonlinear expect-

© A. Erreygers.

😎 𝐸 is downward continuous! 😎

🥳 𝐸 extends to a ↘ & ↗ sublinear expectation 𝐸⋆
on 𝒟⋆. 🥳
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A sublinear Markov process

𝐸0 on ℒ(ℕ) & semigroup (T𝑠)𝑠∈ℝ≥0 of sublinear transition operators

sublinear expectation 𝐸 on 𝒟
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sublinear expectation 𝐸 on 𝒟

↘ &⚙

🤓 Is 𝐸 downward continuous? Yes it is! 🤓

🎉 𝐸 extends to a ↘ & ↗ sublinear expectation 𝐸⋆
on 𝒟⋆. 🎉
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Uniform continuity 🆕

A semigroup (T𝑠)𝑠∈ℝ≥0 of sublinear transition operators is called uniformly

continuous if

lim
𝑠↘0

T𝑠 = I⇔ lim
𝑠↘0

‖T𝑠− I‖ = 0.

A ‘sublinear generator’ Q ∶ ℒ(ℕ)→ℒ(ℕ) is bounded if and only if there is a

‘uniformly bounded’ set𝒬 of ‘linear generators’ such that

Q[𝑓](𝑛) = sup
Q∈𝒬

Q[𝑓](𝑛) for all 𝑓 ∈ℒ(ℕ),𝑛 ∈ ℕ.
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🧐 Do the 2019 and 2023 approaches yield the same upper/sublinear expectation?

🐟 How could one generalise the inter- definition?

🎲 What about Watanabe’s martingale characterization of Poisson processes?

👮‍♀️ What if (T𝑠)𝑠∈ℝ≥0 is not uniformly continuous?

♾ What about uncountably infinite state spaces?
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