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discrete-time
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We consider an infinite sequence
P I T S S

of uncertain variables that take values in the finite state space 2".



We consider an infinite sequence
P I T S S

of uncertain variables that take values in the finite state space 2".

Example _ _
X,, is the weather in Oviedo n days from now, and

X ={®,7, 4.}
We want to make inferences, for example answer the following questions:

e What is the probability of ..,. in 4 days?
e What is the expected number of days until the next day?
e Should | bring an “™ tomorrow?



Modelling our uncertainty

First, we construct a tree with nodes (or situations)

s=(x1,...,%n), xi€Z.

For example,
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Modelling our uncertainty

First, we construct a tree with nodes (or situations)

s=(x1,...,x), x, €Z.

Second, we turn this into a probability tree by specifying a local probability mass
function ps: 2" — [0,1] for every situation s = (x1, ..., x,):

PG — it 12X =00 X — 10 ) — a6 i e






This way, we construct a probability measure P and

&, we can make inferences
—that is, compute Ep(f | s) for sufficiently nice functions f on Q—
by using backwards recursion due to the law of total probability (aka the law of
iterated expectation);
** we need to specify a countable number of local probability mass functions:
one p; for every situation s.



To make this tractable, one may assume that the local models

P(x1,...xn) = Prxn

1. only depend on the present, [Markovianity]



To make this tractable, one may assume that the local models

P(x1,...n) = Prxn = Py

1. only depend on the present, [Markovianity]

2. do not change over time. [time homogeneity]



To make this tractable, one may assume that the local models

P(x1,...n) = Prxn = Py

1. only depend on the present, [Markovianity]

2. do not change over time. [time homogeneity]
This way, we end up with a homogeneous Markov chain and

& we only need to specify | 27| + 1 local probability mass functions:
the initial one pg and one p, for every state x.






What if we cannot specify
the local models p, precisely?



What if we cannot specify
the local models p; precisely?
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Imprecise probabilities is a collection of theories

that aim to generalise classical probability theory to allow for partial specification.
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Let .# denote the real vector space of all real-valued functions on .27,
and let X 4- denote the subset of all probability mass functions on 2™

Z%:{pegzpzo, Zg{p(x)zl}.
xXe
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Let .# denote the real vector space of all real-valued functions on .27,
and let X 4- denote the subset of all probability mass functions on 2™
Z%:{peiﬂ:pzo, Y. p(x)zl}.
xed
A probability mass function p induces an expectation operator E,: £ — R,

defined by
Ep(f) =) p(x)f(x) forall fe 2.

XeX
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Let .# denote the real vector space of all real-valued functions on .27,
and let X 4- denote the subset of all probability mass functions on 2™

Z%:{pegzpzo, Zg{p(x)zl}.
xXe

A probability mass function p induces an expectation operator E,: £ — R,
defined by

E,(f) = 2 p(x)f(x) forall f e Z.

xex
Recall that
E1l. E,(f) > min f forall f € .&; [boundedness]
E2. E,(f +8) = Ex(f) +Ep(g) forall f,g € &; [additivity]

E3. E,(Af) = AE,(f) forall f € £ and A € R. [homogeneity]
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Credal set

Instead of a single probability mass function p, we now consider
acredalset .7 C X 4,
a non-empty, closed and convex set of probability mass functions.
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Credal set

Instead of a single probability mass function p, we now consider
acredalset .7 C X 4,
a non-empty, closed and convex set of probability mass functions.

A credal set is defined by constraints of the form

cr < Y p(x)f(x) = Ep(f).

xed
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Credal set

Instead of a single probability mass function p, we now consider
acredal set 7 C X g4,
a non-empty, closed and convex set of probability mass functions.

The credal set .# induces a set of expectations:
{Ep(f):pe A}
Specifically of interest are the bounds

E,(f) =min{E,(f): pe.#} and E ,(f) =max{E,(f): p € .4}
Note that these are conjugate: E_,(f) = —E_,(—f).
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Lower expectation

An operator E: ¥ — Ris called a lower expectation (coherent lower prevision) if

LE2. E(f+g) > E(f) + E(g) forall f,g € .%; [super-additivity]
LE3. E(Af) = AE(f) forall f € £ and A € Rx. [positive homogeneity]

LE1. E(f) > min f forall f € .&; [boundedness]
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Lower expectation

An operator E: ¥ — Ris called a lower expectation (coherent lower prevision) if

LE1. E(f) > minf forall f € .Z; [boundedness]
LE2. E(f+g) > E(f) + E(g) forall f,g € .%; [super-additivity]
LE3. E(Af) = AE(f) forall f € £ and A € Rx. [positive homogeneity]
Theorem

An operator E: . — R is a lower expectation if and only if it is the lower envelope of
some credal set .# C % 4, meaning that

E(f) = E4(f) = min{E,(f): p € 4} forallf € 2.
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Lower expectation

An operator E: ¥ — Ris called a lower expectation (coheren

LE1. E(f) > min f forall f € .&;

LE2. E(f +g) > E(f) + E(g) forall f, ¢
LE3.

prevision) if

ndedness]

Theorem -
An operatgidl Pind only if it is the lower envelope of

some cred
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Assume that we can only assess that
pD € %D and p(xl,...,xn) € %xn’

where .7 and .#, for all x € 2" are credal sets.
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% % % % % % % % %
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Assume that we can only assess that

po € ///D and p(XL---,Xn) € //xn. (1)

We consider three nested sets of probability trees that satisfy (1):

o 2“HM: 3|l compatible homogeneous Markov chains;
e ZM: all compatible Markov chains:
e 2C: all compatible probability trees.

Can we compute

°T Ey(f |'s) = inf{Ep(f | s): P € 2}

— and
" Ep(f | s) = sup{Ep(f | 5): P € P2

16



Imprecise Markov chains

Computing these tight lower and upper bounds turns out to be

** intractable for QCHM,

intractable for 2“M—at least in general,

o\
&7,

)

o\
)

% tractable for 2C, because we can use backwards recursion due to the
imprecise law of iterated expectation.
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continuous-time
stochastic processes



We consider the collection

of uncertain variables that take values in the finite state space 2".
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We consider the collection

of uncertain variables that take values in the finite state space 2".

Example . . _ .
X is the weather in Oviedo T time units from now, and

'%' — { 7 3 o0 }
We want to make inferences, for example answer questions like:

e What is the probability of .., after 4 days?
e How long do | have to wait until it is again?

e Do | have to bring an 4™ tomorrow?
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Imprecise continuous-time Markov chains

DTMC imprecise DTMC
pos {px}rea My, { My rea
CTMC imprecise CTMC

po, {‘h}xeﬁ&” M, {e@x}xe%
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Imprecise continuous-time Markov chains

®-. Similar results as for imprecise discrete-time Markov chains,
‘9 but—for now—Ilimited to inferences that depend on a finite number of time

points.

[ Damjan Skulj. “Efficient computation of the bounds of continuous time
imprecise Markov chains”. In: AMC 250 (2015), pp. 165-180

[ Thomas Krak, Jasper De Bock, and Arno Siebes. “Imprecise continuous-time
Markov chains”. In: IJAR 88 (2017), pp. 452-528
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A counting process is a model for a stream of events
X¢: the number of events that have occurred up to time 7, so 2" = Z .
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A counting process is a model for a stream of events
X¢: the number of events that have occurred up to time 7, so 2" = Z .

Example

X+: the number of lightning strikes that have hit the cathedral of Oviedo.

We want to answer questions like:

e What is the probability of at least one in some time period?
e What is the expected number of in the following year?
e What is the expected time until the next <-?
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Counting processes in general

We model our beliefs by means of the transition probabilities

P(XH—A =Y | Xf = x,\th = xn,...,th = X1/>

Xy = xy

23



The Poisson process in particular

Xy =x Xt, = Xy X;

o |
0 tH tn

x Xita =Y

t+ A

=T

For the Poisson process, we additionally assume that the transition probabilities

P(Xpin=y| Xt = x, Xy = xy)

24



The Poisson process in particular

X;=x Xin =Yy

t+ A

4+
0

=T

For the Poisson process, we additionally assume that the transition probabilities
PXpipn=y| Xt =x,Xy=xy) = P(Xpyn =y | Xt = x)

1. only depend on the present, [Markovianity]
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The Poisson process in particular

For the Poisson process, we additionally assume that the transition probabilities
PXpipn=y | Xe=x,Xy=x,) = P(Xp=y]| Xo=x)

1. only depend on the present, [Markovianity]
2. only depend on the length of the time period, [time homogeneity]
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The Poisson process in particular

Xo=0 XpA=Yy—x

|
|
0 A

For the Poisson process, we additionally assume that the transition probabilities
PXpipn=y | Xe=x,Xy=x,) = PXp=y—x|Xo=0)

1. only depend on the present, [Markovianity]

2. only depend on the length of the time period, [time homogeneity]

3. only depend on the number of new events. [state homogeneity]
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The rate parameter

A Poisson process is uniquely characterised by a single parameter:
the rate A!
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The rate parameter

A Poisson process is uniquely characterised by a single parameter:
the rate A!

It has multiple interpretations, for instance:
Q the expected number of new events in any time period is proportional to A:

Ep(Xpgn | X =x, Xy = x) = x + AA;
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The rate parameter

A Poisson process is uniquely characterised by a single parameter:
the rate A!

It has multiple interpretations, for instance:
Q the expected number of new events in any time period is proportional to A:

EP(Xt+A ’ Xi=x,X, = xu) =x+ AA;

A is the (initial) rate at which the probability of a single event increases:
P(Xpipa=x+1|Xi=x,X, =x,) = AA+0(A).

25



What if we do not know the rate A precisely,
but only know that it belongs to
the rate interval [\, A]?



The general approach

Let & be a set of counting processes characterised by the rate interval [A, A],

and define the lower expectation

Es(f| Xe=xXy=xy) =inf{Ep(f | Xs =x,Xy, =x,): P € Z}.

Choose & such that
- (i) computing E»(f | X¢ = x, Xy, = xy) is tractable,
- (i) Ex» (- | -) is Poisson-like, in the sense that
(@) E »(g(X¢4+4)| Xt = x, Xy = xy,) is Markov and homogeneous,

(b) Exp(Xiya | Xi = x, Xy = x4) = x + AA.
26



A naive imprecise Poisson process

If 2 is the set of all Poisson processes with rate A in the rate interval [A, A], then

& computing E»(f | X; = x, Xy, = x,,) is a one-parameter optimisation
problem;

E (- | -) is Poisson-like;

(

** every Pin & is Markov and homogeneous.
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An alternative condition

(VP € 2)(3A € [AAD (V4 A, %, x4 ...

PXpia=x+4+1|Xi=x,Xy, =x4) = AA+0(A)

28



An alternative condition

(VP € 2)(3A € [AAD (V4 A, %, x4 ...

PXpia=x+4+1|Xi=x,Xy, =x4) = AA+0(A)

o

T

(VP € ) FAAAD(VE A, x, %y .. .)

A+ 0(A) K P(Xpop =x+1] X = x, Xy = x,) < AN +0(A)
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A more involved imprecise Poisson process

If 2 is the set of processes that are consistent with the rate interval [, A],
in the sense that

A+ 0(A) < P(Xpypn =x+1| Xi = x, Xy, = x,) < AA+0(A),
then

< aPin & is not necessarily Markov nor homogeneous;

?’ computing E »(f | X; = x, X, = x,,) is non-trivial (if not infeasible).
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A more involved imprecise Poisson process

If 2 is the set of processes that are consistent with the rate interval [, A],
in the sense that

A4 0(A) < P(Xpypn =x+1| Xi = x, Xy, = x,) < AA+0(A)

7

then

< aPin & is not necessarily Markov nor homogeneous;
?’ computing E »(f | X; = x, X, = x,,) is non-trivial (if not infeasible).
However, it turns out that

oo

¥ computing E 5 (9(Xi1a) | Xi = x, Xy = xy,) is tractable;
@9 E (- | -) is Poisson-like.
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[l Alexander Erreygers and Jasper De Bock. “First Steps Towards an Imprecise
Poisson Process”. In: Proc. of ISIPTA 2019. Vol. 103. PMLR. 2019, pp. 175-184
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| have not mentioned that

: the parameters of imprecise Markov chains can be learned;
‘s hidden imprecise Markov chains have been studied as well;

;’:XZ if state space explosion occurs in a precise Markov chain, we can use a
coarser imprecise Markov chain to tractably bound inferences.

| should also mention that

Q- more work is needed to allow for a larger class of inferences;

@ infinite state spaces are largely unexplored.
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