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Model for a system whose state X,
takes values in some finite state space &

and changes over time ¢ in some infinite time domain T <R in an uncertain manner.



Some notation

1. Fix some set of paths Q< ZT.

2. Forall T T, let
Xq7: Q—>Z7: 0~ o0ls.

3. Let U the set of all non-empty and finite subsets of T.



The starting point

We consider a set &2 of probability charges on the algebra of cylinder events

F={{XycA: u e Acp(x)} cpW.
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The starting point

We consider a set .4 of expectations on the vector lattice of finitary variables
F:= span({[IA: A€ 9}) = {foX%: U el fe [R%%} C R

|

We are interested in the corresponding upper expectation

E,:F—R: f—E,(f)=sup{E(f): E € .4}.



The issue

Many interesting variables are not included in [F!
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the hitting time of H € &, so
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The issue

Many interesting variables are not included in [!

For example, F does not include
Noif T=N, (the indicator of)) the event that ‘the limit of the average of h(X,) exists’, so

n—+oo N =1

{w €Q: llmsup Z h(w(k)) = hmlnf— Z h(w(k))}



The issue

Many interesting variables are not included in [!

For example, F does not include
W if [s,7r] T, the ‘average of h(X,) over [s,r]’, so
1
r—s

r 1 r
f h(X,)dt: Q—>R: w——— | h(w(t))dt
s r—S8Js

— in fact, this Riemann integral may not even exist!



Two possible solutions

1. Extend every E € ./ to the same larger domain and then take the upper envelope of
these extensions.

2. Directly extend E to some larger domain.
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Daniell’'s extension

An expectation E on F is called continuous from above at 0 if

lim E(f,) =0 forall F¥3 (f,),en \O.
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Daniell’'s extension

If an expectation E on F is continuous from above at 0, then it has an extension

sup{ lim E(h,): F¥ 3 (h,) 4en \<f}
EP(f) := n—+oo forall feD
inf{nl—l»IPooE(h"): N3 (hy) pen /2 f}

on some domain F <D € R” such that
& EP is linear — on the part of D where this makes sense;
inff < EP(f) < supf for all f eD;
EJ D and EP are continuous from below, meaning that
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Daniell’'s extension

If an expectation E on F is continuous from above at 0, then it has an extension

n—+oo

X sup{ lim E(h,): F¥ 3 (1) ey \= f}
EX(f) =1 _ N forall feD
inf{ lim E(h,): P> () ery /=

on some domain F <D < R" such that

“, D includes all o0 (%)-measurable variables that are bounded above or below.



If every E € ./ is continuous from above at 0, we can consider the upper envelope
M uMP — R: f D(fy.
s My —R: f—sup{E°(f): E €.},

where
M, is the set of all o(%)-measurable variables that are bounded below and

MP is the set of all o(%)-measurable variables that are bounded above.



If every E € ./ is continuous from above at 0, we can consider the upper envelope
M uMP — R: f D(fy.
s My —R: f—sup{E°(f): E €.},

which
& is sublinear on the part of D where this makes sense;

dominates inf and is dominated by sup.
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which
B is continuous from below — provided £, (f;) > —oo;

EJ converges conservatively from above:

lim Eo(f,) = Ey(f) for all (f,),en \\f such that £ ,(f;) < +oo.
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If Q=2N then every expectation E on F is trivially continuous from above at 0!
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If Q=2N then every expectation E on F is trivially continuous from above at 0!

The domain M, uUMP of EB{ includes ‘most’ variables of interest; for example,
the hitting time of H € &X;
~ (the indicator of) the event that ‘the limit of the average of h(X,) exists’.
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Under some conditions on .4, E , is

EJ continuous from above on F.
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T =R,

If Q=20 then every expectation E on F is trivially continuous from above at 0!
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T =R,

If Q=20 then every expectation E on F is trivially continuous from above at 0!

(o

The domain My, UM of EB{ does 5 of interest; for example, it does
not include ‘ ‘

the hitting time of H € &
"\ the ‘average of h(X,) over | -

The reason for this is that
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T =R,

A cadlag path w € Z®=0 is completel:

Hence, if Q = cédlég(%Rz"), the!
for example, it then includes

the hitting time of H € X
"\ the ‘average of h(X,) over

An expectation E on [ 1.

—_

" +es on a countable dense subset of T.
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T = R.y, Q = cadlag(Z =)

Consider an expectation E on F. If there is some A € R, such that

limsup —E(H{XFXS})

<A forall teR,,,
s—t |s — | 20

then E is continuous from above at 0.
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T = R.y, Q = cadlag(Z =)

Consider an expectation E on F. If there is some A € R, such that

lim sup —E(H{XFXS})

<A forall teR,,,
s—t |s — | 20

then E is continuous from above at 0.

& Recently, we found a necessary and sufficient condition for this.
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T = R.y, Q = cadlag(Z =)

If there is some A € R, such that
E |0
limsup —( {XHEXS})

<A forall teR,,,
s—t |s — | 20

then every E € ./ is continuous from above at 0.
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Two possible solutions

2. Directly extend E to some larger domain.
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@® limited to bounded variables and

={ often overly conservative.
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WILEY

Extension to previsible real variables
® limited to real variables and
#% starts from {f € R%: sup|f| < +oo}.
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that
< an extension of E to R should have some desirable
continuity properties.
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Essentially starting from an upper expectation E on F, he argues
that
< an extension of E to R should have some desirable
continuity properties;

this upper expectation Bis unique (through the
game-theoretic framework of Shafer and Vovk)

¢ and given for all fe@Q by
B = inf{limjnff(fn): N3 (f) ey —2= > inéinffn > —oo};
n—+oo ne

in particular, for all f e My UFg,

B |

E*(f) = sup{ lim E(f,): F'3 (f)en \= f-
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@ ‘convex expectations’ instead of only ‘sublinear expectations’

wm state space & can be a Polish space
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A robust version of Daniell’'s extension

An upper expectation E on F is called continuous from above at 0 if

lim E(f,) =0 for all F¥3 (f,),cn \ 0.

n—+oo
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A robust version of Daniell’'s extension

If an upper expectation E on F is continuous from above at 0, then there is a (unique)
extension to My, NMP that is

& sublinear

bounded below by inf and above by sup

EJ continuous from below on M, AMP and

EJ continuous from above on Fsp = 1f € Fs: inff > —oo},

and this extension is given by

EX(f) = sup{nl_iglooﬁ(fn): V> (f)pen NS £} for all f € My NP,
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Outline of the proof

the upper expectation E on F is continuous from above at 0

I

every dominated expectation in
M= {E an expectation on F: (Vf €F) E(f) <E(NH}

is continuous from above at 0
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C1. . ={E an expectation on F: (Vf€F) E(f) <E ()}
C2. every E € ./ is continuous from above at 0

l

=D .
E,isEBlon [,

If Q is the set of all paths, (C2) is always satisfied!
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C1. . ={E an expectation on F: (Vf€F) E(f) <E ()}
C2. every E € . is continuous from above at 0

FB, is E3 on Fy

If Q is the set of all paths, (C2) is always satisfied!

If Q is the set of all cadlag paths, (C2) is not always satisfied!
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C1. . ={E an expectation on F: (Vf€F) E(f) <E ()}
C2. every E € ./ is continuous from above at 0

l

=D .
E,isEBlon [,

l

B2 () = sup{nlierE(fn): Y 5 (f)uen \< f} forall f € M,
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? Can we also extend an upper expectation E on F directly in case T = R.o?
& What about the case of non-finite state spaces and non-bounded variables?

Are modifications or path regularity a thing in robust finance?
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Consider a countable state space &.

For all % ={t,,...,t,} €l — with 1, <--- <1, — let
n
= 0 eF.
N kX::Z {x,,_,#X..}

Then an expectation E on [ is continuous from above at 0 if and only if
R1. for all r € Ry,

l:{r}Pﬂ{Xt +X,})=0;
R2. for all n €N,
klim sup{Ps({ny, = k}): % € 4, max% < n} =0,
—+00

where Py is the corresponding probability charge on &.
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