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Model for a system whose state 𝑋𝑡

takes values in some finite state space 𝒳

and changes over time 𝑡 in some infinite time domain 𝕋⊆ℝ in an uncertain manner.

2



Some notation

1. Fix some set of paths Ω⊆𝒳𝕋.
2. For all 𝒯⊆𝕋, let

𝑋𝒯 ∶ Ω→𝒳𝒯 ∶ 𝜔↦𝜔|𝒯.

3. Let 𝔘 the set of all non-empty and finite subsets of 𝕋.
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The starting point

We consider a set ℳ of expectations on the vector lattice of finitary variables

𝔽≔ span({𝕀𝐴 ∶ 𝐴 ∈ℱ}) = {𝑓 ∘𝑋𝒰 ∶ 𝒰 ∈ 𝔘,𝑓 ∈ ℝ𝒳
𝒰
} ⊆ ℝΩ.

We consider a set 𝒫 of probability charges on the algebra of cylinder events

ℱ≔{{𝑋𝒰 ∈ �̃�} ∶ 𝒰 ∈ 𝔘,�̃� ∈ ℘(𝒳𝒰)} ⊆℘(Ω).
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The starting point

We consider a set ℳ of expectations on the vector lattice of finitary variables

𝔽≔ span({𝕀𝐴 ∶ 𝐴 ∈ℱ}) = {𝑓 ∘𝑋𝒰 ∶ 𝒰 ∈ 𝔘,𝑓 ∈ ℝ𝒳
𝒰
} ⊆ ℝΩ.

We are interested in the corresponding upper expectation

𝐸ℳ ∶ 𝔽→ ℝ∶ 𝑓 ↦𝐸ℳ(𝑓)≔ sup{𝐸(𝑓) ∶ 𝐸 ∈ℳ}.
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The issue

����� Many interesting variables are not included in 𝔽! �����

For example, 𝔽 does not include
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The issue

����� Many interesting variables are not included in 𝔽! �����

For example, 𝔽 does not include
������ the hitting time of 𝐻 ⊆𝒳, so

𝜏𝐻 ∶ Ω→ℝ∶ 𝜔↦ inf{𝑡 ∈ 𝕋∶ 𝜔(𝑡) ∈ 𝐻}.
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The issue

����� Many interesting variables are not included in 𝔽! �����

For example, 𝔽 does not include
��� if 𝕋=ℕ, (the indicator of) the event that ‘the limit of the average of ℎ(𝑋𝑡) exists’, so

{𝜔 ∈Ω∶ limsup
𝑛→+∞

1
𝑛

𝑛
∑
𝑘=1

ℎ(𝜔(𝑘)) = liminf
𝑛→+∞

1
𝑛

𝑛
∑
𝑘=1

ℎ(𝜔(𝑘))}.
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The issue

����� Many interesting variables are not included in 𝔽! �����

For example, 𝔽 does not include
��� if [𝑠,𝑟] ⊆ 𝕋, the ‘average of ℎ(𝑋𝑡) over [𝑠,𝑟]’, so

1
𝑟 −𝑠 ∫

𝑟

𝑠
ℎ(𝑋𝑡)d𝑡 ∶ Ω→ℝ∶ 𝜔↦

1
𝑟 −𝑠 ∫

𝑟

𝑠
ℎ(𝜔(𝑡))d𝑡

– in fact, this Riemann integral may not even exist!
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Two possible solutions

1. Extend every 𝐸 ∈ℳ to the same larger domain and then take the upper envelope of
these extensions.

2. Directly extend 𝐸 to some larger domain.
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Daniell’s extension

An expectation 𝐸 on 𝔽 is called continuous from above at 0 if

lim
𝑛→+∞

𝐸(𝑓𝑛) = 0 for all 𝔽ℕ ∋ (𝑓𝑛)𝑛∈ℕ ↘0.
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Daniell’s extension

If an expectation 𝐸 on 𝔽 is continuous from above at 0, then it has an extension

𝐸D(𝑓)≔
⎧
⎨
⎩

sup{ lim
𝑛→+∞

𝐸(ℎ𝑛) ∶ 𝔽ℕ ∋ (ℎ𝑛)𝑛∈ℕ ↘≤𝑓}

inf{ lim
𝑛→+∞

𝐸(ℎ𝑛) ∶ 𝔽ℕ ∋ (ℎ𝑛)𝑛∈ℕ ↗≥𝑓}
for all 𝑓 ∈ 𝔻

on some domain 𝔽 ⊆ 𝔻⊆ ℝΩ such that
����� 𝐸D is linear – on the part of 𝔻 where this makes sense;
������ inf𝑓 ≤ 𝐸D(𝑓) ≤ sup𝑓 for all 𝑓 ∈ 𝔻.
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������ inf𝑓 ≤ 𝐸D(𝑓) ≤ sup𝑓 for all 𝑓 ∈ 𝔻;
��� 𝔻 and 𝐸D are continuous from below, meaning that

lim
𝑛→+∞

𝐸D(𝑓𝑛) = 𝐸D( lim
𝑛→+∞

𝑓𝑛) for all 𝔻ℕ ∋ (𝑓𝑛) ↗ such that 𝐸D(𝑓1) > −∞;

��� 𝔻 and 𝐸D are continuous from above, meaning that

lim
𝑛→+∞

𝐸D(𝑓𝑛) = 𝐸D( lim
𝑛→+∞

𝑓𝑛) for all 𝔻ℕ ∋ (𝑓𝑛) ↘ such that 𝐸D(𝑓1) < +∞.
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Daniell’s extension

If an expectation 𝐸 on 𝔽 is continuous from above at 0, then it has an extension

𝐸D(𝑓)≔
⎧
⎨
⎩

sup{ lim
𝑛→+∞

𝐸(ℎ𝑛) ∶ 𝔽ℕ ∋ (ℎ𝑛)𝑛∈ℕ ↘≤𝑓}

inf{ lim
𝑛→+∞

𝐸(ℎ𝑛) ∶ 𝔽ℕ ∋ (ℎ𝑛)𝑛∈ℕ ↗≥𝑓}
for all 𝑓 ∈ 𝔻

on some domain 𝔽 ⊆ 𝔻⊆ ℝΩ such that
�� 𝔻 includes all 𝜎(ℱ)-measurable variables that are bounded above or below.
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If every 𝐸 ∈ℳ is continuous from above at 0, we can consider the upper envelope

𝐸Dℳ ∶ 𝕄b∪𝕄b →ℝ∶ 𝑓 ↦ sup{𝐸D(𝑓) ∶ 𝐸 ∈ℳ},

where
𝕄b is the set of all 𝜎(ℱ)-measurable variables that are bounded below and
𝕄b is the set of all 𝜎(ℱ)-measurable variables that are bounded above.
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If every 𝐸 ∈ℳ is continuous from above at 0, we can consider the upper envelope

𝐸Dℳ ∶ 𝕄b∪𝕄b →ℝ∶ 𝑓 ↦ sup{𝐸D(𝑓) ∶ 𝐸 ∈ℳ},

which
����� is sublinear on the part of 𝔻 where this makes sense;
������ dominates inf and is dominated by sup.

��� is continuous from below – provided 𝐸Dℳ(𝑓1) > −∞;
��� converges conservatively from above:

lim
𝑛→+∞

𝐸Dℳ(𝑓𝑛) ≥ 𝐸Dℳ(𝑓) for all (𝑓𝑛)𝑛∈ℕ ↘𝑓 such that 𝐸Dℳ(𝑓1) < +∞;
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ABSTRACT
We do a thorough mathematical study of the notion of full conglom-
erability, that is, conglomerability with respect to all the partitions of
an infinite possibility space, in the sense considered by Peter Walley.
We consider both the cases of precise and imprecise probability (sets
of probabilities). We establish relations between conglomerability
and countable additivity, continuity, super-additivity, and marginal
extension. Moreover, we discuss the special case where a model is
conglomerable with respect to a subset of all the partitions, and try
to sort out the different notions of conglomerability present in the
literature. We conclude that countable additivity, which is routinely
used to impose full conglomerability in the precise case, appears to
be the most well-behaved way to do so in the imprecise case as well
by taking envelopes of countably additive probabilities. Moreover, we
characterize these envelopes by means of a number of necessary and
sufficient conditions.
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1. Introduction

If you decide to work with probabilistic (or statistical) models in infinite spaces of
possibilities, you should also decide whether or not to require these models to be
conglomerable.

Conglomerability of a probability P was first discussed by de Finetti (1930). If we
consider a partition B of the possibility space Ω such that PðBÞ > 0 for every B 2 B,
conglomerability means that

ð"A # ΩÞ inf
B2B

PðAjBÞ $ PðAÞ $ sup
B2B

PðAjBÞ: (1)

This notion, in a slightly stronger form, was later studied by Dubins, with the name
disintegrability (Dubins 1974), and also by Schervisch et al. (1984; 2014), Seidenfeld et al.
(1998), Armstrong and Prikry (1982), and Armstrong (1990), among many others.

Conglomerability holds trivially when Ω is finite, as a consequence of the common
axioms of probability. In the infinite case it does not, and therefore one has to decide
whether or not to impose it. In fact, one could say that conglomerability is the essential
difference in probability between the finite and infinite cases.

If you wonder why you have never heard of conglomerability or felt the need to take a
stance about it, in spite of its peculiar role, that may be because there is a consolidated
habit to work with countably additive probabilities; in fact, countable additivity with

CONTACT Marco Zaffalon zaffalon@idsia.ch Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA),
Lugano, Switzerland.

JOURNAL OF STATISTICAL THEORY AND PRACTICE
http://dx.doi.org/10.1080/15598608.2017.1295890

© 2017 Grace Scientific Publishing, LLC
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𝕋=ℕ

If Ω=𝒳ℕ, then every expectation 𝐸 on 𝔽 is trivially continuous from above at 0!

The domain 𝕄b∪𝕄b of 𝐸Dℳ includes ‘most’ variables of interest; for example,
������ the hitting time of 𝐻 ⊆𝒳;
��� (the indicator of) the event that ‘the limit of the average of ℎ(𝑋𝑡) exists’.
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Under some conditions on ℳ, 𝐸Dℳ is
��� continuous from above on 𝔽.
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Abstract

We consider the problem of characterising expected
hitting times and hitting probabilities for imprecise
Markov chains. To this end, we consider three distinct
ways in which imprecise Markov chains have been de-
fined in the literature: as sets of homogeneous Markov
chains, as sets of more general stochastic processes,
and as game-theoretic probability models. Our first
contribution is that all these different types of impre-
cise Markov chains have the same lower and upper
expected hitting times, and similarly the hitting proba-
bilities are the same for these three types. Moreover,
we provide a characterisation of these quantities that
directly generalises a similar characterisation for pre-
cise, homogeneous Markov chains.
Keywords: imprecise Markov chain, hitting time, hit-
ting probability, lower and upper expectations

1. Introduction

Markov chains are mathematical models that probabilis-
tically describe the uncertain behaviour of a dynamical
system [19]. We here consider Markov chains that can only
be in a finite number of states, and that can only change
state at discrete steps in time. An important class of infer-
ences for Markov chains are the so called expected hitting
times and hitting probabilities for some subset A of the set
of all states X that the system can be in. Informally, their
aim is to answer the questions “How long will it take until
the system enters a state in A?” and “What is the proba-
bility of ever visiting a state in A?”, respectively. Under
some regularity conditions, closed-form solutions to these
questions are available in the literature [19, 9].

A generalisation of Markov chains that also incorpo-
rates (higher order) uncertainty about one’s knowledge
of the model description itself are imprecise Markov
chains [12, 2, 10, 22, 3, 4, 5, 11, 15]. Their theoretical
foundations are based on the theory of imprecise proba-
bilities [29, 1], and they allow one to incorporate uncer-
tainties about the numerical model parameters as well as
about structural assumptions, like history independence—
the canonical Markov property—and time homogeneity.

However, the generalisation of Markov chains to their
imprecise counterpart is not unambiguous [11]. There are

various ways in which this might be done, and they can
lead to different conclusions for particular inferences of
interest.

On the one hand we have what might be called the “sen-
sitivity analysis” interpretation of an imprecise Markov
chain. Here, one’s model essentially constitutes an en-
tire set of stochastic processes that are all compatible
with one’s assessments about the system’s uncertain be-
haviour. But there are multiple versions of this interpreta-
tion, depending on which models one chooses to include
in this set; for instance, do we only include all (time-
homogeneous) Markov chains that are compatible with
our assessments [12, 2], or do we also include more general
stochastic processes [5, 11]? Each choice has its own mer-
its, depending on the particular situation. Regardless of the
choice that one makes here, inferences for this “sensitivity
analysis” interpretation always consist in computing tight
lower and upper bounds on inferences for all the models
that are included in the chosen set [11].

An entirely different formalisation of imprecise Markov
chains is based on the game-theoretic probability frame-
work that was popularised by Shafer and Vovk [20]. These
models are not necessarily given an interpretation in terms
of compatible “precise” models; rather, this theory of
stochastic processes is based on rational betting behaviour
in repeated games with uncertain outcomes, and naturally
leads to imprecise probabilistic models[3, 15, 6]. The cor-
respondence between this framework and the “sensitivity
analysis” interpretation of imprecise Markov chains was
first explored in [3, 7].

In this present work, we consider the inference prob-
lems of computing lower and upper expected hitting times
and hitting probabilities for an imprecise Markov chain—
regardless of the specific interpretation that one chooses
for these models. In fact, the first of our main results is that
these inferences are the same for all of the different types
of imprecise Markov chains discussed above. Our second
main result is an exact generalisation to the imprecise set-
ting, of a well-known characterisation of these inferences
for precise, time-homogeneous Markov chains.

To the best of our knowledge, this problem has never
been considered in the literature at this level of generality.
The most closely related work that we are aware of is that
of Lopatatzidis et al. [16, 17], who prove similar proper-

© 2019 T. Krak, N. T’Joens & J. De Bock.

A Recursive Algorithm for Computing
Inferences in Imprecise Markov Chains

Natan T’Joens(B), Thomas Krak, Jasper De Bock, and Gert de Cooman
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Abstract. We present an algorithm that can efficiently compute a broad
class of inferences for discrete-time imprecise Markov chains, a gener-
alised type of Markov chains that allows one to take into account par-
tially specified probabilities and other types of model uncertainty. The
class of inferences that we consider contains, as special cases, tight lower
and upper bounds on expected hitting times, on hitting probabilities and
on expectations of functions that are a sum or product of simpler ones.
Our algorithm exploits the specific structure that is inherent in all these
inferences: they admit a general recursive decomposition. This allows us
to achieve a computational complexity that scales linearly in the number
of time points on which the inference depends, instead of the exponential
scaling that is typical for a naive approach.

Keywords: Imprecise Markov chains · Upper and lower expectations ·
Recursively decomposable inferences

1 Introduction

Markov chains are popular probabilistic models for describing the behaviour
of dynamical systems under uncertainty. The crucial simplifying assumption in
these models is that the probabilities describing the system’s future behaviour
are conditionally independent of its past behaviour, given that we know the
current state of the system; this is the canonical Markov property.

It is this Markov assumption that makes the parametrisation of a Markov
chain relatively straightforward—indeed, as we will discuss in Sect. 2, the uncer-
tain dynamic behaviour is then completely characterised by a transition matrix
T , whose elements T (xn, xn+1) = P(Xn+1 = xn+1|Xn = xn) describe the prob-
abilities that the system will transition from any state xn at time n, to any state
xn+1 at time n + 1. Note that T itself is independent of the time n; this is the
additional assumption of time homogeneity that is often imposed implicitly in
this context. An important advantage of these assumptions is that the resulting
matrix T can be used to solve various important inference problems, using one
of the many available efficient algorithms.

c© Springer Nature Switzerland AG 2019
G. Kern-Isberner and Z. Ognjanović (Eds.): ECSQARU 2019, LNAI 11726, pp. 455–465, 2019.
https://doi.org/10.1007/978-3-030-29765-7_38
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Jasper De Bock1 Alexander Erreygers1 Thomas Krak2
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Abstract

We propose two sum-product laws for imprecise
Markov chains, and use these laws to derive two
algorithms to efficiently compute lower and upper
expectations for imprecise Markov chains under
complete independence and epistemic irrelevance.
These algorithms work for inferences that have
a corresponding sum-product decomposition, and
we argue that many well-known inferences fit their
scope. We illustrate our results on a simple epi-
demiological example.

1 INTRODUCTION

Imprecise Markov chains are a generalisation of Markov
chains that allows them to deal with numerical parameters
that are only partially specified, as well as possible viola-
tions of structural assumptions like Markovianity [Hermans
and Škulj, 2014]. While different interpretations are pos-
sible, we will view an imprecise Markov chain as a set of
stochastic processes. Depending on what kind of processes
are included in this set, one obtains a different type of im-
precise Markov chain; we will consider two of them.

The first type is basically a set of (traditional) Markov chains.
These are now known as imprecise Markov chains under
complete independence,1 and were studied by e.g. Škulj
[2009]. The second type that we consider are imprecise
Markov chains under epistemic irrelevance, as introduced
by De Cooman and Hermans [2008]. Unlike the first
type, these sets of stochastic processes also contain non-
Markovian ones. The set as a whole does satisfy a Markov
property though, and this is why this second type of model
is called an imprecise Markov chain as well.

1Most authors refer to it as an imprecise Markov chain under
strong independence [Hermans and Škulj, 2014], but it should be
clear from [Cozman, 2012] that this is a misnomer.

The merits of both these models lie in their ability to model
the same kind of problems as (traditional) Markov chains,
but under much more general assumptions; in cases where
the dynamics under study are not completely known, they
can still provide meaningful, non-trivial bounds on infer-
ences of interest. In particular, this approach goes beyond
what is feasible using more classical sensitivity analysis
methods; not only can they capture the effect of perturbing
the numerical parameters that specify the model dynamics,
but they can also explicitly incorporate uncertainty about,
and evaluate the effect of, assumptions of homogeneity and
Markovianity. Specifically, the possibility of relaxing the
assumption of Markovianity becomes apparent by consider-
ing the distinction between imprecise Markov chains under
complete independence and epistemic irrelevance.

Perhaps surprisingly, it was the second of these two types
that led to the development of many efficient inference al-
gorithms; see e.g. the work of T’Joens et al. [2019] for a
recent efficient algorithm that encompasses most previous
algorithms as a special case, and that can be used to solve
a wide class of practically relevant inference problems. For
imprecise Markov chains under complete independence,
however, almost no algorithms are available. We find this
unfortunate, because that model is arguably more natural to
conceptualise from a practitioner’s point of view.

This brings us to the contributions of this work: we derive
two efficient algorithms to compute (different types of) in-
ferences for sets of stochastic processes, and we provide
sufficient conditions for the applicability of these algorithms
in terms of what we call sum-product laws. Crucially, we
show that under some relatively mild conditions on their
model parameters, imprecise Markov chains under com-
plete independence and imprecise Markov chains under
epistemic irrelevance both satisfy these sum-product laws,
which implies that our algorithms can be applied to either of
them. We illustrate the practical relevance of our algorithms
by sketching how they cover, as special cases, many well-
known inference problems, and apply them to a toy example
in epidemiology to demonstrate their performance.
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Abstract

We consider the problem of characterising expected
hitting times and hitting probabilities for imprecise
Markov chains. To this end, we consider three distinct
ways in which imprecise Markov chains have been de-
fined in the literature: as sets of homogeneous Markov
chains, as sets of more general stochastic processes,
and as game-theoretic probability models. Our first
contribution is that all these different types of impre-
cise Markov chains have the same lower and upper
expected hitting times, and similarly the hitting proba-
bilities are the same for these three types. Moreover,
we provide a characterisation of these quantities that
directly generalises a similar characterisation for pre-
cise, homogeneous Markov chains.
Keywords: imprecise Markov chain, hitting time, hit-
ting probability, lower and upper expectations

1. Introduction

Markov chains are mathematical models that probabilis-
tically describe the uncertain behaviour of a dynamical
system [19]. We here consider Markov chains that can only
be in a finite number of states, and that can only change
state at discrete steps in time. An important class of infer-
ences for Markov chains are the so called expected hitting
times and hitting probabilities for some subset A of the set
of all states X that the system can be in. Informally, their
aim is to answer the questions “How long will it take until
the system enters a state in A?” and “What is the proba-
bility of ever visiting a state in A?”, respectively. Under
some regularity conditions, closed-form solutions to these
questions are available in the literature [19, 9].

A generalisation of Markov chains that also incorpo-
rates (higher order) uncertainty about one’s knowledge
of the model description itself are imprecise Markov
chains [12, 2, 10, 22, 3, 4, 5, 11, 15]. Their theoretical
foundations are based on the theory of imprecise proba-
bilities [29, 1], and they allow one to incorporate uncer-
tainties about the numerical model parameters as well as
about structural assumptions, like history independence—
the canonical Markov property—and time homogeneity.

However, the generalisation of Markov chains to their
imprecise counterpart is not unambiguous [11]. There are

various ways in which this might be done, and they can
lead to different conclusions for particular inferences of
interest.

On the one hand we have what might be called the “sen-
sitivity analysis” interpretation of an imprecise Markov
chain. Here, one’s model essentially constitutes an en-
tire set of stochastic processes that are all compatible
with one’s assessments about the system’s uncertain be-
haviour. But there are multiple versions of this interpreta-
tion, depending on which models one chooses to include
in this set; for instance, do we only include all (time-
homogeneous) Markov chains that are compatible with
our assessments [12, 2], or do we also include more general
stochastic processes [5, 11]? Each choice has its own mer-
its, depending on the particular situation. Regardless of the
choice that one makes here, inferences for this “sensitivity
analysis” interpretation always consist in computing tight
lower and upper bounds on inferences for all the models
that are included in the chosen set [11].

An entirely different formalisation of imprecise Markov
chains is based on the game-theoretic probability frame-
work that was popularised by Shafer and Vovk [20]. These
models are not necessarily given an interpretation in terms
of compatible “precise” models; rather, this theory of
stochastic processes is based on rational betting behaviour
in repeated games with uncertain outcomes, and naturally
leads to imprecise probabilistic models[3, 15, 6]. The cor-
respondence between this framework and the “sensitivity
analysis” interpretation of imprecise Markov chains was
first explored in [3, 7].

In this present work, we consider the inference prob-
lems of computing lower and upper expected hitting times
and hitting probabilities for an imprecise Markov chain—
regardless of the specific interpretation that one chooses
for these models. In fact, the first of our main results is that
these inferences are the same for all of the different types
of imprecise Markov chains discussed above. Our second
main result is an exact generalisation to the imprecise set-
ting, of a well-known characterisation of these inferences
for precise, time-homogeneous Markov chains.

To the best of our knowledge, this problem has never
been considered in the literature at this level of generality.
The most closely related work that we are aware of is that
of Lopatatzidis et al. [16, 17], who prove similar proper-
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Abstract. We present an algorithm that can efficiently compute a broad
class of inferences for discrete-time imprecise Markov chains, a gener-
alised type of Markov chains that allows one to take into account par-
tially specified probabilities and other types of model uncertainty. The
class of inferences that we consider contains, as special cases, tight lower
and upper bounds on expected hitting times, on hitting probabilities and
on expectations of functions that are a sum or product of simpler ones.
Our algorithm exploits the specific structure that is inherent in all these
inferences: they admit a general recursive decomposition. This allows us
to achieve a computational complexity that scales linearly in the number
of time points on which the inference depends, instead of the exponential
scaling that is typical for a naive approach.
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1 Introduction

Markov chains are popular probabilistic models for describing the behaviour
of dynamical systems under uncertainty. The crucial simplifying assumption in
these models is that the probabilities describing the system’s future behaviour
are conditionally independent of its past behaviour, given that we know the
current state of the system; this is the canonical Markov property.

It is this Markov assumption that makes the parametrisation of a Markov
chain relatively straightforward—indeed, as we will discuss in Sect. 2, the uncer-
tain dynamic behaviour is then completely characterised by a transition matrix
T , whose elements T (xn, xn+1) = P(Xn+1 = xn+1|Xn = xn) describe the prob-
abilities that the system will transition from any state xn at time n, to any state
xn+1 at time n + 1. Note that T itself is independent of the time n; this is the
additional assumption of time homogeneity that is often imposed implicitly in
this context. An important advantage of these assumptions is that the resulting
matrix T can be used to solve various important inference problems, using one
of the many available efficient algorithms.
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Abstract

We propose two sum-product laws for imprecise
Markov chains, and use these laws to derive two
algorithms to efficiently compute lower and upper
expectations for imprecise Markov chains under
complete independence and epistemic irrelevance.
These algorithms work for inferences that have
a corresponding sum-product decomposition, and
we argue that many well-known inferences fit their
scope. We illustrate our results on a simple epi-
demiological example.

1 INTRODUCTION

Imprecise Markov chains are a generalisation of Markov
chains that allows them to deal with numerical parameters
that are only partially specified, as well as possible viola-
tions of structural assumptions like Markovianity [Hermans
and Škulj, 2014]. While different interpretations are pos-
sible, we will view an imprecise Markov chain as a set of
stochastic processes. Depending on what kind of processes
are included in this set, one obtains a different type of im-
precise Markov chain; we will consider two of them.

The first type is basically a set of (traditional) Markov chains.
These are now known as imprecise Markov chains under
complete independence,1 and were studied by e.g. Škulj
[2009]. The second type that we consider are imprecise
Markov chains under epistemic irrelevance, as introduced
by De Cooman and Hermans [2008]. Unlike the first
type, these sets of stochastic processes also contain non-
Markovian ones. The set as a whole does satisfy a Markov
property though, and this is why this second type of model
is called an imprecise Markov chain as well.

1Most authors refer to it as an imprecise Markov chain under
strong independence [Hermans and Škulj, 2014], but it should be
clear from [Cozman, 2012] that this is a misnomer.

The merits of both these models lie in their ability to model
the same kind of problems as (traditional) Markov chains,
but under much more general assumptions; in cases where
the dynamics under study are not completely known, they
can still provide meaningful, non-trivial bounds on infer-
ences of interest. In particular, this approach goes beyond
what is feasible using more classical sensitivity analysis
methods; not only can they capture the effect of perturbing
the numerical parameters that specify the model dynamics,
but they can also explicitly incorporate uncertainty about,
and evaluate the effect of, assumptions of homogeneity and
Markovianity. Specifically, the possibility of relaxing the
assumption of Markovianity becomes apparent by consider-
ing the distinction between imprecise Markov chains under
complete independence and epistemic irrelevance.

Perhaps surprisingly, it was the second of these two types
that led to the development of many efficient inference al-
gorithms; see e.g. the work of T’Joens et al. [2019] for a
recent efficient algorithm that encompasses most previous
algorithms as a special case, and that can be used to solve
a wide class of practically relevant inference problems. For
imprecise Markov chains under complete independence,
however, almost no algorithms are available. We find this
unfortunate, because that model is arguably more natural to
conceptualise from a practitioner’s point of view.

This brings us to the contributions of this work: we derive
two efficient algorithms to compute (different types of) in-
ferences for sets of stochastic processes, and we provide
sufficient conditions for the applicability of these algorithms
in terms of what we call sum-product laws. Crucially, we
show that under some relatively mild conditions on their
model parameters, imprecise Markov chains under com-
plete independence and imprecise Markov chains under
epistemic irrelevance both satisfy these sum-product laws,
which implies that our algorithms can be applied to either of
them. We illustrate the practical relevance of our algorithms
by sketching how they cover, as special cases, many well-
known inference problems, and apply them to a toy example
in epidemiology to demonstrate their performance.
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𝕋=ℝ≥0

If Ω=𝒳ℝ≥0 , then every expectation 𝐸 on 𝔽 is trivially continuous from above at 0!

The domain 𝕄b∪𝕄b of 𝐸Dℳ does not include the variables of interest; for example, it does
not include
������ the hitting time of 𝐻 ⊆𝒳 or
��� the ‘average of ℎ(𝑋𝑡) over [𝑠,𝑟]’.

The reason for this is that

𝐴 ∈ 𝜎(ℱ)⇔𝐴 = {𝑋𝒞 ∈ ̃𝐶} for countable 𝒞⊆𝕋 and ̃𝐶 ∈⨉
𝒞
℘(𝒳) ⊆℘(𝒳𝒞).
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𝕋=ℝ≥0

A càdlàg path 𝜔 ∈𝒳ℝ≥0 is completely defined by its values on a countable dense subset of 𝕋.

Hence, if Ω= càdlàg(𝒳ℝ≥0 ), then 𝕄b∪𝕄b does include ‘most’ of the variables of interest;
for example, it then includes
������ the hitting time of 𝐻 ⊆𝒳 or
��� the ‘average of ℎ(𝑋𝑡) over [𝑠,𝑟]’.
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𝕋=ℝ≥0,Ω = càdlàg(𝒳ℝ≥0 )

Consider an expectation 𝐸 on 𝔽. If there is some 𝜆 ∈ ℝ≥0 such that

limsup
𝑠→𝑡

𝐸(𝕀{𝑋𝑡≠𝑋𝑠})

|𝑠−𝑡|
≤ 𝜆 for all 𝑡 ∈ ℝ≥0,

then 𝐸 is continuous from above at 0.

�� Recently, we found a necessary and sufficient condition for this.
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The existing framework of Markovian imprecise jump processes, also known as imprecise 
continuous-time Markov chains, is limited to bounded real variables that depend on 
the state of the system at a finite number of (future) time points. This is an issue in 
many applications, because typically the variables of interest depend on the state of the 
system at all time points in some – possibly unbounded – (future) interval, and they 
can be unbounded or even extended real valued; examples of such variables are temporal 
averages, the number of (selected) jumps in some interval and hitting times. To eliminate 
this shortcoming, we assume that the sample paths are càdlàg and use measure theory 
to extend the domain of Markovian imprecise jump processes to extended real-valued 
variables that may depend on the state of the system at all (future) time points – that 
is, the extended real variables that are bounded below or above and are measurable 
with respect to the σ -algebra generated by the cylinder events. We investigate the 
continuity properties of the extended lower and upper expectations with respect to point-
wise convergent sequences, and this yields generalisations of the Monotone Convergence 
Theorem and Lebesgue’s Dominated Convergence Theorem. For two particular classes of 
variables, we strengthen these convergence theorems and present an iterative scheme to 
approximate their lower and upper expectations. The first class is the number of selected 
jumps in some interval, and the second class are real variables that take the form of a 
Riemann integral over some interval; this second class includes temporal averages and 
occupancy times.

 2022 Elsevier Inc. All rights reserved.

1. Introduction

Recently, several authors have independently proposed generalisations of Markovian jump processes – also called 
continuous-time Markov chains or Markov processes – that provide an elegant way of dealing with parameter uncertainty 
[1–3]. Whereas a (homogeneous) Markovian jump process is uniquely defined by its rate matrix and initial probability mass 
function, these ‘imprecise’ generalisations allow for partially specified parameters: they are defined through sets of rate 
matrices and/or sets of initial probability mass functions.

There are two frameworks that obtain similar, and to some extent even equivalent, results. The first framework is the 
one advanced by Škulj [1] and Krak et al. [2], who use the theory of imprecise probabilities [4]. Škulj [1] starts from a set Q
of rate matrices (one that is convex and compact and has separately specified rows, to be exact), defines an ‘imprecise 
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E-mail address: alexander.erreygers@ugent.be (A. Erreygers).

https://doi.org/10.1016/j.ijar.2022.05.006
0888-613X/ 2022 Elsevier Inc. All rights reserved.

Hitting Times for Continuous-Time Imprecise-Markov Chains

Thomas Krak1

1Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract

We study the problem of characterizing the ex-
pected hitting times for a robust generalization of
continuous-time Markov chains. This generaliza-
tion is based on the theory of imprecise probabil-
ities, and the models with which we work essen-
tially constitute sets of stochastic processes. Their
inferences are tight lower- and upper bounds with
respect to variation within these sets.
We consider three distinct types of these models,
corresponding to different levels of generality and
structural independence assumptions on the con-
stituent processes.
Our main results are twofold; first, we demonstrate
that the hitting times for all three types are equiva-
lent. Moreover, we show that these inferences are
described by a straightforward generalization of a
well-known linear system of equations that charac-
terizes expected hitting times for traditional time-
homogeneous continuous-time Markov chains.

1 INTRODUCTION

We consider the problem of characterizing the ex-

pected hitting times for continuous-time imprecise-Markov

chains [Škulj, 2015, Krak et al., 2017, Krak, 2021, Er-
reygers, 2021]. These are robust, set-valued generalizations
of (traditional) Markov chains [Norris, 1998], based on the
theory of imprecise probabilities [Walley, 1991, Augustin
et al., 2014]. From a sensitivity-analysis perspective, we may
interpret these sets as hedging against model-uncertainties
with respect to a model’s numerical parameters and/or struc-
tural (independence) assumptions.

The inference problem of hitting times essentially deals with
the question of how long it will take the underlying system to
reach some particular subset of its states. This is a common
and important problem in such fields as, e.g., reliability anal-

ysis, where it can capture the expected time-to-failure of a
system; and epidemiology, to model the expected time-until-
extinction of an epidemic. For imprecise-Markov chains,
then, we are interested in evaluating these quantities in a
manner that is robust against, and conservative with respect
to, any variation that is compatible with one’s uncertainty
about the model specification.

Erreygers [2021] has recently obtained some partial results
towards characterizing such inferences, but has not been able
to give a complete characterization and has largely studied
the finite-time horizon case. The problem of hitting times
for discrete-time imprecise-Markov chains was previously
studied by Krak et al. [2019], Krak [2020]. In this present
work, we largely emulate and extend their results to the
continuous-time setting.

We will be concerned with three different types of imprecise-
Markov chains. These are all sets of stochastic processes
that are in a specific sense compatible with a given set of
numerical parameters, but the three types differ in the inde-
pendence properties of their elements. In particular, they cor-
respond to (i) a set of (time-)homogeneous Markov chains,
(ii) a set of (not-necessarily homogeneous) Markov chains,
and (iii) a set of general—not-necessarily homogeneous nor
Markovian—stochastic processes. It is known (and perhaps
not very surprising) that inferences with respect to these
three models do not in general agree; see e.g. [Krak, 2021]
for a detailed analysis of their differences.

However, our first main result in this work is that the ex-
pected hitting time is the same for these three different types
of models. Besides being of theoretical interest, we want
to emphasize the power of this result: it means that even
if a practitioner using Markov chains would be uncertain
whether the system they are studying is truly homogeneous
and/or Markovian, relaxing these assumptions would not
influence inferences about the hitting times in this sense.
Purely pragmatically, it also means that we can use com-
putational methods tailored to any one of these types of
models, to compute these inferences.

Accepted for the 38
th

Conference on Uncertainty in Artificial Intelligence (UAI 2022).
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Two possible solutions

1. Extend every 𝐸 ∈ℳ to the same larger domain and then take the upper envelope of
these extensions.

2. Directly extend 𝐸 to some larger domain.

17



Natural extension
�� limited to bounded variables and
������� often overly conservative.

Extension to previsible real variables
�� limited to real variables and
��� starts from {𝑓 ∈ ℝΩ ∶ sup|𝑓| < +∞}.
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𝕋=ℕ,Ω =𝒳𝕋

UppeS EYpecUaUionT foS DiTcSeUe-Time ImpSeciTe SUochaTUic PSoceTTeT: 
In PSacUice, TheZ ASe All Uhe SameÜ

NaUan T'JoenT

DPDUPSBM EJTTFSUBUJPO TVCNJUUFE UP PCUBJO UIF BDBEFNJD EFHSFF PG
DPDUPS PG MBUIFNBUJDBM EOHJOFFSJOH

PSPG. GFSU DF CPPNBO, PID - PSPG. JBTQFS DF BPDL, PID

DFQBSUNFOU PG EMFDUSPOJDT BOE IOGPSNBUJPO 4ZTUFNT
FBDVMUZ PG EOHJOFFSJOH BOE ASDIJUFDUVSF, GIFOU 6OJWFSTJUZ

SVpeSWiToST

JVOF 2022

Essentially starting from an upper expectation 𝐸 on 𝔽, he argues
that
��� an extension of 𝐸 to ℝΩ should have some desirable

continuity properties.

� this upper expectation 𝐸A is unique (through the
game-theoretic framework of Shafer and Vovk)

����� and given for all 𝑓 ∈ ℝΩ by

𝐸A(𝑓) = inf{liminf
𝑛→+∞

𝐸(𝑓𝑛) ∶ 𝔽ℕ ∋ (𝑓𝑛)𝑛∈ℕ →≥𝑓, inf
𝑛∈ℕ

inf𝑓𝑛 >−∞};

��������� in particular, for all 𝑓 ∈𝕄b∪𝔽𝛿,

𝐸A(𝑓) = sup{ lim
𝑛→+∞

𝐸(𝑓𝑛) ∶ 𝔽ℕ ∋ (𝑓𝑛)𝑛∈ℕ ↘≤𝑓}.
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Abstract. We provide extension procedures for nonlinear expectations to the
space of all bounded measurable functions. We first discuss a maximal extension
for convex expectations which have a representation in terms of finitely additive
measures. One of the main results of this article is an extension procedure for
convex expectations which are continuous from above and therefore admit a
representation in terms of countably additive measures. This can be seen as a
nonlinear version of the Daniell–Stone theorem. From this, we deduce a robust
Kolmogorov extension theorem which is then used to extend nonlinear kernels
to an infinite-dimensional path space. We then apply this theorem to construct
nonlinear Markov processes with a given family of nonlinear transition kernels.

1. Introduction

Given a set M of bounded measurable functions X : ⌦ ! R which contains
the constants, a nonlinear expectation is a functional E : M ! R which satisfies
E(X)  E(Y ) whenever X(!)  Y (!) for all ! 2 ⌦, and E(↵1⌦) = ↵ for all
↵ 2 R. If a nonlinear expectation E is in addition sublinear, then ⇢(X) := E(�X),
X 2 M , is a coherent monetary risk measure as introduced by Artzner et al. [1]
and Delbaen [12], [13] (see also Föllmer and Schied [24] for an overview of convex
monetary risk measures). Other prominent examples of nonlinear expectations
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��� ‘convex expectations’ instead of only ‘sublinear expectations’
�� state space 𝒳 can be a Polish space
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A robust version of Daniell’s extension

An upper expectation 𝐸 on 𝔽 is called continuous from above at 0 if

lim
𝑛→+∞

𝐸(𝑓𝑛) = 0 for all 𝔽ℕ ∋ (𝑓𝑛)𝑛∈ℕ ↘0.
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A robust version of Daniell’s extension

If an upper expectation 𝐸 on 𝔽 is continuous from above at 0, then there is a (unique)
extension to 𝕄b∩𝕄b that is
����� sublinear
������ bounded below by inf and above by sup
��� continuous from below on 𝕄b∩𝕄b and
��� continuous from above on 𝔽𝛿,b ≔ {𝑓 ∈ 𝔽𝛿 ∶ inf𝑓 > −∞},

and this extension is given by

𝐸⋆(𝑓) = sup{ lim
𝑛→+∞

𝐸(𝑓𝑛) ∶ 𝔽ℕ ∋ (𝑓𝑛)𝑛∈ℕ ↘≤𝑓} for all 𝑓 ∈𝕄b∩𝕄b.
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Outline of the proof

the upper expectation 𝐸 on 𝔽 is continuous from above at 0

every dominated expectation in

ℳ𝐸 ≔{𝐸 an expectation on 𝔽∶ (∀𝑓 ∈ 𝔽) 𝐸(𝑓) ≤ 𝐸(𝑓)}

is continuous from above at 0
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C1. ℳ={𝐸 an expectation on 𝔽∶ (∀𝑓 ∈ 𝔽) 𝐸(𝑓) ≤ 𝐸ℳ(𝑓)}
C2. every 𝐸 ∈ℳ is continuous from above at 0

𝐸Dℳ is ��� on 𝔽𝛿

If Ω is the set of all paths, (C2) is always satisfied!

If Ω is the set of all paths, (C2) is always satisfied!If Ω is the set of all càdlàg paths, (C2) is not always satisfied!

��
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� Can we also extend an upper expectation 𝐸 on 𝔽 directly in case 𝕋=ℝ≥0?
�� What about the case of non-finite state spaces and non-bounded variables?
� Are modifications or path regularity a thing in robust finance?
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𝕋=ℝ≥0,Ω = càdlàg(𝒳ℝ≥0 )

Consider a countable state space 𝒳.

��

For all 𝒰= {𝑡1,…,𝑡𝑛} ∈ 𝔘 – with 𝑡1 <⋯< 𝑡𝑛 – let

𝜂𝒰 ≔
𝑛
∑
𝑘=2

𝕀{𝑋𝑡𝑘−1≠𝑋𝑡𝑘}
∈ 𝔽.

Then an expectation 𝐸 on 𝔽 is continuous from above at 0 if and only if
R1. for all 𝑡 ∈ ℝ≥0,

lim
𝑟↘𝑡

𝑃𝐸({𝑋𝑡 ≠𝑋𝑟}) = 0;

R2. for all 𝑛 ∈ℕ,
lim

𝑘→+∞
sup{𝑃𝐸({𝜂𝒰 ≥𝑘}) ∶ 𝒰 ∈ 𝔘,max𝒰≤𝑛} = 0,

where 𝑃𝐸 is the corresponding probability charge on ℱ.
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