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Abstract

This work investigates convex expectations, mainly in the setting of uncertain processes with countable state
space. In the general setting it shows how, under the assumption of downward continuity, a convex expec-
tation on a linear lattice of bounded functions can be extended to a convex expectation on the measurable
extended real functions. This result is especially relevant in the setting of uncertain processes: there, an
easy way to obtain a convex expectation on the linear lattice of finitary bounded functions is to combine
an initial convex expectation with a convex transition semigroup. Crucially, this work presents a sufficient
condition on this semigroup which guarantees that the induced convex expectation is downward continuous,
so that it can be extended to the set of measurable extended real functions. To conclude, this work looks
at existing results on convex transition semigroups from the point of view of the aforementioned sufficient
condition, in particular to construct a sublinear Poisson process.
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1. Introduction

This article is part of the recent push towards generalising the theory of (continuous-time) Markov
processes from the measure-theoretic framework [1–5] to the two closely-related frameworks of nonlinear
expectations and imprecise probabilities, which both intend to model uncertainty in a (more) robust manner.

The framework of nonlinear—sublinear or even convex—expectations was initially put forward by Peng
[6], and has gained a lot of traction in the setting of robust (mathematical) finance. It dealt with Markov
processes from its conception, and since then the following (and quite possibly more) Markov processes have
been generalised to this framework: those with finite state space [7], countable state space [8] and Rd as
state space [6], Lévy processes with Rd as state space [9–11] and Feller processes with a Polish state space
[12]. Most authors only consider bounded functions on the set of all paths that are measurable with respect
to the product σ-algebra, which is a domain that is not very rich. Neufeld and Nutz [10] are a notable
exception to this; while they do assume càdlàg paths, they essentially never go beyond functions of the state
in a single time point.

The theory of imprecise probabilities, which is actually a collection of frameworks including those of
coherent lower/upper previsions and sets of (coherent conditional) probabilities, was popularised by Walley
[13]. This theory often comes with a subjectivist interpretation in terms of betting behaviour, but can also
be thought of as allowing partial specification of linear (or precise) uncertainty models. In this framework
much has been done for Markov processes with finite state space [14–18], but to the best of my knowledge,
the only work regarding a non-finite state space is mine on the Poisson process [19].

This work builds on and continues the aforementioned work by investigating convex expectations for
countable-state uncertain processes in general and Markov processes in particular, with a particular focus

⋆© 2024. This manuscript version is made available under the CC-BY-NC-ND 4.0 cbnd license
Email address: alexander.erreygers@ugent.be (Alexander Erreygers)

1This work is supported by the Research Foundation–Flanders (FWO) (project number 3G028919).

Preprint submitted to Elsevier October 21, 2024

https://creativecommons.org/licenses/by-nc-nd/4.0/


on the usefulness of their domain. On the one hand, it builds on and extends some of the results in the
framework of nonlinear expectations, while on the other hand it essentially extends the approach in [17]
from the finite-state and sublinear setting to the countable-state and convex one. The remainder of this
work is structured as follows.

Section 2 rids the extension results in [20, Section 3] for downward continuous convex expectations from
the restriction that all functions in the extended domain are bounded. The key result there is Theorem 1,
which improves on Theorem 3.10 in [20]. Theorem 2, the final result in Section 3, establishes a more
useful version of the robust Daniell–Kolmogorov Extension Theorem [20, Section 4] in the specific case of
a countable state space: the domain is changed from the bounded measurable functions on the set of all
paths to the much richer set of extended real measurable functions on the set of càdlàg paths.

Section 4 investigates how to construct a ‘consistent collection of finite-dimensional (downward continu-
ous) convex expectations’, which forms the starting point in Theorem 2. This then leads to the final result in
Theorem 4 that given an initial downward continuous convex expectation and a convex Markov semigroup
that has uniformly bounded rate, there is a corresponding convex expectation on (a large part of) the set
of extended real measurable functions on the set of càdlàg paths.

The present article is a significantly extended version of an earlier conference contribution by the au-
thor [21]. Section 2 is largely the same as its counterpart in the conference contribution, although the proofs
there were hidden away in the Supplementary Material. In contrast, Sections 3 and 4 differ significantly
from their counterparts in [21]: instead of being limited to sublinear expectations, all results now deal with
the more general convex expectations. Section 5 has been expanded to incorporate some of my recent results
on uniformly continuous semigroups of transition operators [22], which in its turn allowed me to simplify
the exposition in Section 6.

2. Nonlinear expectations and their extensions

A (linear) expectation is a linear, normed and order preserving real—or even extended real—functional
on a suitable domain. Examples include the Lebesgue integral with respect to a probability measure [4,
Chapter 8] and (linear) previsions in the style of de Finetti [23]—see also [24]. A nonlinear expectation,
then, generalises this notion by relaxing the requirement of linearity. Two examples of such classes of
functionals are the convex expectations that appear in (robust) mathematical finance [6] and the coherent
upper previsions that are at the core of the theory of imprecise probabilities [13, 25]; see [26] and references
therein for connections between the two. In Section 2.1 we will formally introduce these well-known notions
for domains that may include unbounded and even extended real functions, while Section 2.2 deals with
extending these nonlinear expectations in such a way that their properties are (partially) preserved. First,
however, we introduce some necessary terminology and notation.

Consider some (non-empty) sets Y,Z. We denote the set of all maps from Y to Z by ZY . For any
real-valued function f on Y, we let

∥f∥∞ := sup|f | = sup{|f(y)| : y ∈ Y},

and we say that f is bounded whenever ∥f∥∞ < +∞. We collect the bounded real-valued functions on Y
in L(Y) ⊆ RY . The bounded real-valued functions on Y include the indicator functions: for any subset Y
of Y, the corresponding indicator 1Y ∈ L(Y) maps y ∈ Y to 1 if y ∈ Y and to 0 otherwise; for any y ∈ Y,
we shorten 1{y} to 1y.

Fix some non-empty subset D of RY . An (extended real) functional Φ (on D) is an extended real map
on D. We call a functional Φ positively homogeneous if Φ(µf) = µΦ(f) for all f ∈ D and µ ∈ R≥0 such
that µf ∈ D, and homogeneous if the same equality holds for all f ∈ D and µ ∈ R such that µf ∈ D.
Furthermore, we call a functional Φ convex if Φ(λf + (1− λ)g) ≤ λΦ(f) + (1− λ)Φ(g) for all f, g ∈ D and
λ ∈ [0, 1] such that λf +(1−λ)g is meaningful2 and in D and λΦ(f)+(1−λ)Φ(g) is meaningful, subadditive

2We follow the standard conventions in that the sum or difference of two extended reals is meaningful if it does not lead to
(+∞)− (+∞) or (+∞) + (−∞)—see for example [25, Appendix D], [4, Definition 4.8] or [27, Table 8.1].

2



if Φ(f + g) ≤ Φ(f) + Φ(g) for all f, g ∈ D such that f + g is meaningful and in D and Φ(f) + Φ(g) is
meaningful, and additive if this inequality always holds with equality whenever it is meaningful. Finally, Φ
is said to be order preserving (sometimes also ‘monotone’ or ‘isotone’) if Φ(f) ≤ Φ(g) for all f, g ∈ D such
that f ≤ g.

We are especially interested in the behaviour of (order-preserving) functionals with respect to monotone
sequences. A sequence (fn)n∈N of extended real functions on Y is said to be monotone if it is either increasing
or decreasing, where the sequence is increasing if fn ≤ fn+1 for all n ∈ N and decreasing if fn ≥ fn+1 for
all n ∈ N. Any monotone sequence (fn)n∈N converges pointwise to a limit limn→+∞ fn ∈ RY ; (fn)n∈N ↗ f
denotes an increasing sequence with pointwise limit f , while (fn)n∈N ↘ f denotes a sequence that decreases
to f .

Now consider a functional Φ on D. If Φ is order preserving, then for any monotone sequence (fn)n∈N ∈
DN, the derived sequence (Φ(fn))n∈N is also monotone, and therefore converges to a limit; if furthermore
the pointwise limit f of (fn)n∈N belongs to the domain D, then

lim
n→+∞

Φ(fn) = inf
{
Φ(fn) : n ∈ N

}
≥ Φ(f).

We call the (not necessarily order-preserving) functional Φ downward continuous3 on C ⊆ D if for all
CN ∋ (fn)n∈N ↘ f ∈ C, limn→+∞ Φ(fn) = Φ(f), and simply downward continuous if it is downward
continuous on D. Similarly, we call Φ upward continuous4 on C ⊆ D if for all CN ∋ (fn)n∈N ↗ f ∈ C,
limn→+∞ Φ(fn) = Φ(f), and simply upward continuous if it is upward continuous on D.

2.1. Nonlinear, convex, sublinear and linear expectations
A nonlinear expectation is a functional Φ whose domain D, a subset of RY , includes all constant real

functions on Y and which is order preserving and constant preserving (or ‘normalised’), meaning that
Φ(µ) = µ5 for all µ ∈ R. Due to its properties, any nonlinear expectation Φ dominates the infimum and is
dominated by the supremum; hence, a nonlinear expectation Φ with domain D ⊆ L(Y) is a real functional.

This contribution exclusively deals with nonlinear expectations that are convex, sublinear or even linear.
A convex expectation is a convex nonlinear expectation, a sublinear expectation is a sublinear—so subadditive
and positively homogeneous—nonlinear expectation and a (linear) expectation is a nonlinear expectation that
is, well, linear; we will always denote convex, sublinear and linear expectations by (variants on) Ě, E and E,
respectively. Clearly, any linear expectation is a sublinear expectation as well, and any sublinear expectation
is also a convex one. While these notions are well-established in the theory of nonlinear expectations—see
for example [6, Section 2.2], [20, Section 1] or [8, Section 2]—they are, to the best of my knowledge, always
stated for domains D of bounded real functions.

Example 1. For all examples in this section, we’ll assume Y = N = {1, 2, . . .} and consider the set of
bounded functions for the domain D := L(N). For any natural number n, we define the corresponding real
functionals

Ěn : L(N) → R : f 7→ sup{f(m) : m ∈ N,m ≤ n} ∪ {f(m)− arctan(m) : m ∈ N,m > n},
En : L(N) → R : f 7→ sup{f(m) : m ∈ N,m ≤ n}

and
En : L(N) → R : f 7→ f(n).

These are clearly constant and order preserving, and therefore nonlinear expectations. Furthermore, it is
not difficult to verify that Ěn is convex, En is sublinear and En is linear, so these are convex, sublinear and
linear expectations, respectively. Note that for all n ∈ N and f ∈ L(N), En(f) ≤ En(f) ≤ Ěn(f).

3The term ‘continuous from above’ is also used frequently.
4Some authors prefer the terminology ‘continuous from below’.
5 We identify any µ ∈ R with the corresponding constant function ‘µ’ on Y whose range is {µ}.
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Instead of a convex or sublinear expectation Ě on D, it may be more convenient or appropriate to
investigate the corresponding conjugate functional Φ on −D := {−f : f ∈ D}, defined by the conjugacy
relation

Φ(f) := −Ě(−f) for all f ∈ −D.

Clearly, the conjugate functional of a convex expectation is a nonlinear expectation that is concave instead
of convex, while that of a sublinear expectation is a nonlinear expectation that is superlinear instead of
sublinear.

If the domain D of the sublinear expectation Ě is a linear space of real functions, its properties make it
a ‘coherent upper prevision’.6 Coherent upper previsions have an interesting interpretation (and definition)
in terms of rationality requirements on supremum selling prices of bets, but pursuing this would lead us too
far astray; I invite the interested reader to consult the excellent manuscripts by Walley [13] or Troffaes and
de Cooman [25], see also [28] for a more gentle introduction. In the context of this article, the following
definition in terms of three coherence properties will suffice [25, Theorems 4.15 and 13.34]; note that for this
definition, it is essential that the domain D is a linear space of real functions.

Definition 1. Let D ⊆ RY be a linear space. A coherent upper prevision E (on D) is a sublinear real
functional on D such that E(f) ≤ sup f for all f ∈ D.

Lemma 1. Let D ⊆ RY be a linear space that contains all constant functions. A real functional E on D is
a sublinear expectation if and only if it is a coherent upper prevision.

Proof. That any coherent upper prevision is a sublinear expectation follows immediately from [25, Theo-
rem 4.13 and Theorem 13.31].

For the converse implication, assume that E is a sublinear expectation. Then E is a coherent upper
prevision because it is sublinear and bounded by the supremum because E is order and constant preserving:

E(f) ≤ E(sup f) = sup f for all f ∈ D.

Example 2. Since L(N) is a linear space that contains all constant functions, for all n ∈ N the sublinear
expectation En as defined in Example 1 is a coherent upper prevision by Lemma 1. Another example is the
so-called vacuous coherent upper prevision [13, Section 2.3.7], which in general is given by

D → R : f 7→ sup f.

In the remainder of this section, we fix some linear space D ⊆ L(Y) that contains all constant real
functions. Recall from before that this means that any convex expectation Ě on D is real valued. Moreover,
it turns out that a convex expectation is then always convergent with respect to uniform convergence—for
proofs, see [25, Theorem 4.13 (xiii)] and [8, Lemma 2.5].

Lemma 2. Suppose D ⊆ L(Y) is a linear space that includes all constant functions, and consider a convex
expectation Ě on D. Then for any sequence (fn)n∈N ∈ DN that converges uniformly to some f ∈ D, meaning
that limn→+∞∥fn − f∥∞ = 0,

lim
n→+∞

Ě(fn) = Ě(f).

Pointwise continuity is equivalent to uniform continuity whenever Y is finite, so in that case Lemma 2
implies that any convex expectation Ě on D is downward and upward continuous. Things are more com-
plicated when Y is infinite, but then we can resort to a necessary and sufficient condition for downward
continuity; to state it, we need to introduce some additional notation. Let ED be the set of all linear
expectations on D. With any convex expectation Ě on D, we associate the conjugate function

Ě∗ : ED → R≥0 ∪ {+∞} : E 7→ sup{E(f)− Ě(f) : f ∈ D},

6Its conjugate functional is what is known as a ‘coherent lower prevision’. Note that for many reference works in the field
of imprecise probabilities, including [13, 25, 28], ‘coherent lower previsions’ are the primal object under study.
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and we collect all linear expectations on D whose image under this conjugate function is real in

EĚ := {E ∈ ED : Ě∗(E) < +∞}.

This conjugate function Ě∗ and the derived set EĚ play an important role in the following two results.
The first result, taken from [20, Lemma 3.2], links the downward continuity of a convex expectation Ě

to the downward continuity of the linear expectations E in EĚ—so those with Ě∗(E) < +∞; Miranda and
Zaffalon [29, Proposition 5.1.2] give a similar result for the particular case of sublinear expectations.

Lemma 3. Suppose D ⊆ L(Y) is a linear space that includes all constant functions. A convex expectation Ě
on D is downward continuous if and only if every linear expectation E ∈ EĚ is downward continuous.

Lemma 3 is crucial in the proof of Theorem 3.10 in [20], and consequently also in our extension of it. We
will see why in due course.

The second result in which we encounter EĚ is the following representation result, taken from [20,
Lemma 2.4]; for sublinear expectations, it is known as the Upper Envelope Theorem [25, Theorem 4.38].

Lemma 4. Suppose D ⊆ L(Y) is a linear space that includes all constant functions. For any convex
expectation Ě on D,

Ě(f) = max
{
E(f)− Ě∗(E) : E ∈ EĚ

}
for all f ∈ D.

Moreover, for any sublinear expectation E on D,

E(f) = max
{
E(f) : E ∈ EE

}
for all f ∈ D,

where now
EE = {E ∈ ED : E

∗
(E) = 0} = {E ∈ ED : (∀f ∈ D) E(f) ≤ E(f)}.

Lemma 4 leads to the sensitivity analysis interpretation of convex and sublinear expectations. On this
interpretation, we assume that our uncertainty can be accurately modelled by a linear expectation, but we
do not have enough information to determine or specify this expectation exactly. For a convex expectation Ě,
we can then think of Ě∗(E) as a penalty which indicates our degree of belief that the linear expectation E
is the ‘correct’ one. For a sublinear expectation E, then, we can think of EE as the set of all ‘feasible’
linear expectations. Note that we can also go the other way around: we can define a sublinear (or convex)
expectation by specifying some set E ⊆ ED of linear expectations (and some penalty function α : E → R≥0)—
as we effectively did in Example 1. For more details, I refer the interested reader to [13, Section 3.3], [25,
Section 4.6] and [30, Section 4.2].

Example 3. Fix some n ∈ N. Then for all m ∈ N with m ≤ n,

Em(f)− Ěn(f) ≤ Em(f)− Em(f) = 0 for all f ∈ L(N),

and therefore Ě∗
n(Em) = 0 < +∞. Similarly, for all m ∈ N with m > n,

Em(f)− Ěn(f) ≤ Em(f)− Em(f) + arctan(m) = arctan(m) for all f ∈ L(N),

whence in this case Ě∗
n(Em) = arctan(m) < +∞. So for all m ∈ N, Em ∈ EĚn

. In fact, in this case it even
holds that EĚn

= EL(N). To see why, fix any E ∈ EL(N). Then for all f ∈ L(N) and ϵ ∈ R>0, there is some
k ∈ N such that 0 ≤ sup f − f(k) < ϵ, and therefore

E(f)− Ěn(f) ≤ sup f − Ěn(f);

if k ≤ n, then E(f)−Ěn(f) ≤ sup f−f(k) < ϵ, while if k > n then E(f)−Ěn(f) ≤ sup f−f(k)+arctan(k) <
ϵ+ π

2 . Since f ∈ L(N) and ϵ ∈ R>0 were arbitrary, we conclude that Ě∗
n(E) ≤ π

2 , so indeed E ∈ EĚn
.

Similarly, it’s easy to see that E
∗
n(Em) = 0 for all m ∈ N with m ≤ n. In contrast, E

∗
n(Em) = +∞ for

m ∈ N with m > n, as α1m ∈ L(N) for any α ∈ R>0 and

Em(α1m)− En(α1m) = α1m(m)− sup{α1m(k) ∈ N, k ≤ n} = α− 0 = α.
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Here too, it is possible to determine the set EEn
: we leave it to the reader to verify that

EEn
=

{
n∑

k=1

αkEk : αk ∈ R≥0,

n∑
k=1

αk = 1

}
⊊ EL(N) = EĚn

. (1)

Now any E =
∑n

k=1 αkEk ∈ EEn
is downward continuous: for any L(N)N ∋ (fm)m∈N ↘ f ∈ L(N),

lim
m→+∞

E(fm) = lim
m→+∞

n∑
k=1

αkEk(fm) = lim
m→+∞

n∑
k=1

αkfm(k) =

n∑
k=1

αkf(k) = E(f).

Hence, it follows from Lemmas 3 and 4 that En is downward continuous. In contrast, Ěn is not downward
continuous, as EĚn

= EL(N) definitely contains expectations that are not downward continuous—for but
one example, see [31, Examples 2.1.3 (8)]. Alternatively, take the sequence (fk)k∈N ∈ L(N) where fk maps
m ∈ N to fk(m) = 2m−k if m ≤ k and fk(m) = 2 otherwise. Then for all k ∈ N,

Ěn(fk) = sup{fk(m) : m ∈ N,m ≤ n} ∪
{
fk(m)− 1

m
: m ∈ N,m > n

}
= sup

{
2m−k : m ≤ n, k

}
∪ {2: k < m ≤ n}

∪
{
2m−k − arctan(m) : n < m ≤ k

}
∪ {2− arctan(m) : n, k < m}

≥ 2− π

2
.

Since (fk)k∈N ↘ 0 ∈ L(N) but
lim

k→+∞
Ěn(fk) ≥ 2− π

2
> 0 = Ěn(0),

this also shows that Ěn is not downward continuous.

2.2. Extending convex expectations
For the remainder of this section, we assume that the linear subspace D of L(Y) not only includes all

constant functions, but is also closed under pointwise minima (and then maxima), meaning that for all
f, g ∈ D, f ∧g ∈ D (and then f ∨g = −((−f)∧ (−g)) ∈ D); this makes D a linear lattice [25, Definition 1.1].
We let σ(D) denote the smallest σ-algebra Σ in Y such that every f ∈ D is Σ/B(R)-measurable—see, for
example, [32, Definition I.5 b)].

Due to our assumptions, the Daniell–Stone Theorem [32, Theorem III.35] establishes that if a linear
expectation E on D is downward continuous, then there is a unique probability measure PE on σ(D) such
that

E(f) =

∫
fdPE for all f ∈ D.

This means that we can extend E to the domain of the Lebesgue integral with respect to PE . In this work
we’ll use the Lebesgue integral as defined by Fristedt and Gray [4, Definition 4.8 and Definition 8.2], so the
domain of the Lebesgue integral with respect to a probability measure P on σ(D) is the set of P -integrable
functions

I(P ) :=
{
f ∈ M(D) :

∫
f+ dP −

∫
f− dP meaningful

}
,

where M(D) collects all extended real functions on Y that are σ(D)/B(R)-measurable;7 the integral is
allowed to take the values +∞ and −∞, and is real-valued on the set of absolute P -integrable functions

A(P ) :=

{
f ∈ M(D) :

∫
f+ dP,

∫
f− dP < +∞

}
=

{
f ∈ M(D) :

∫
|f |dP < +∞

}
.

7B(R) denotes the Borel σ-algebra generated by the ‘usual’ topology on R; for more details, see [4, Chapter 2 and Ap-
pendix C.2] or [27, Chapter 8].
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It is easy to verify [see 17, Lemma 24] that the set I(P ) of P -integrable functions definitely includes those
extended real functions f on Y that are σ(D)/B(R)-measurable and either bounded below, meaning that
inf f > −∞, or bounded above, meaning that sup f < +∞. For this reason, we collect all σ(D)/B(R)-
measurable extended real functions on Y that are bounded below in Mb(D) and those that are bounded
above in Mb(D). Note that Mb(D) ∩Mb(D) includes

Dδ,b :=
{
f ∈ L(Y) :

(
∃(fn)n∈N ∈ DN) (fn)n∈N ↘ f

}
.

Example 4. Note that L(N) is a linear lattice that includes all constant functions, and that σ(L(N)) = ℘(N)
is the power set of N. Then for any n ∈ N, Pn := PEn

is the Dirac measure on {n}, given by

Pn(A) = PEn(A) = 1A(n) for all A ∈ ℘(N).

Consequently, any function f ∈ RN
is Pn-integrable, while the absolute Pn-integrable functions are exactly

those functions f ∈ RN
for which f(n) is real-valued.

The following extension result generalises the extension result in Theorem 3.10 of Denk et al. [20] by
extending the domain of the extension from bounded measurable functions to—most but not all—extended-
real measurable functions. The proof remains largely the same, which is why I’ve chosen to relegate it to
Appendix A.

Theorem 1. Let D ⊆ L(Y) be a linear lattice that includes all constant functions, and consider a convex
expectation Ě on D that is downward continuous. Let

I(Ě) :=
⋂

E∈EĚ

I(PE) ⊇ Mb(D) ∪Mb(D)

and
Ě⊙ : I(Ě) → R : f 7→ Ě⊙(f) := sup

{∫
fdPE − Ě∗(E) : E ∈ EĚ

}
.

Then Ě⊙ is a convex expectation that extends Ě, is downward continuous on Dδ,b and upward continuous
on

Iuc(Ě) :=

{
f ∈ I(Ě) : (∀E ∈ EĚ)

∫
fdPE > −∞

}
⊇ Mb(D).

If Ě is a sublinear expectation, then so is Ě⊙.

Example 5. Fix some n ∈ N. Since the sublinear expectation En is downward continuous [Example 3],
we can use Theorem 1 to obtain the sublinear expectation E

⊙
n on I(En). With the help of Eqn. (1) in

Example 3, the reader will have no difficulty in verifying that

I(En) =
{
f ∈ RN

: f(1), . . . , f(n) < +∞
}
∪
{
f ∈ RN

: f(1), . . . , f(n) > −∞
}

and
E

⊙
n (f) = sup{f(m) : m ∈ N,m ≤ n} for all f ∈ I(En).

The continuity properties in Theorem 1 are relevant because they often allows us to determine Ě⊙(f)
for functions f ∈ I(Ě)\D without resorting to its definition. Indeed, we can derive Ě⊙(f) ‘directly’ from Ě
in at least two cases: (i) f is bounded below and the pointwise limit of a decreasing sequence (fn)n∈N ∈ DN;
and (ii) f is the pointwise limit of an increasing sequence (fn)n∈N ∈ DN. In both of these cases,

Ě⊙(f) = lim
n→+∞

Ě⊙(fn) = lim
n→+∞

Ě(fn).

We can, of course, continue this scheme, but now with functions f that are the pointwise limit of increasing
sequences (fn)n∈N of functions for which we have determined Ě⊙(fn), and so on.
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Example 6. We again fix some n ∈ N and consider the downward-continuous sublinear expectation En

on L(N) from Example 1 and its extension E
⊙
n from Example 5. For all k ∈ N, let fk ∈ L(N) be the function

given by fk(m) := k ∧m for all m ∈ N. Then (fk)k∈N is clearly increasing, and its pointwise limit is the
identity function f : N → N : m 7→ m, which is not bounded but is bounded below, that is, which is not
in L(N) but is in Mb(D) ⊆ I(En). As per the explanation above,

E
⊙
n (f) = lim

k→+∞
E

⊙
n (fk) = lim

k→+∞
En(fk) = lim

k→+∞
sup{k ∧m : m ∈ N,m ≤ n} = lim

k→+∞
k ∧ n = n.

Alternatively, from the expression for E
⊙
n in Example 5 it also follows that

E
⊙
n (f) = sup{f(m) : m ∈ N,m ≤ n} = sup{m : m ∈ N,m ≤ n} = n.

The extension Ě⊙ in Theorem 1 is the unique one with the given properties, at least when we restrict
its domain to the bounded below functions. This follows almost immediately from Theorem 3.10 in [20]. In
our ‘generalisation’ of this result, we write DN ∋ (fn)n∈N ↘≤ f to mean any decreasing (fn)n∈N ∈ DN such
that limn→+∞ fn ≤ f .

Lemma 5. Consider a convex expectation Ě on Mb(D) that is downward continuous on Dδ,b and upward
continuous. Then for all f ∈ Mb(D),

Ě(f) = sup

{
lim

n→+∞
Ě(fn) : DN ∋ (fn)n∈N ↘≤ f

}
.

Proof. From Theorem 3.10 in [20]—or the functional version of Choquet’s Capacitibility Theorem, see [33,
Proposition 2.1]—it follows that for all f ∈ Mb(D) ∩Mb(D) = M(D) ∩ L(Y),

Ě(f) = sup

{
lim

n→+∞
Ě(fn) : DN ∋ (fn)n∈N ↘≤ f

}
. (2)

It remains for us to prove the equality in the statement for all f ∈ Mb(D)\Mb(D), so let us fix any such f .
Then (f ∧ k)k∈N is an increasing sequence in Mb(D)∩Mb(D) that converges pointwise to f , and therefore

Ě(f) = lim
k→+∞

Ě(f ∧ k) = sup
{
Ě(f ∧ k) : k ∈ N

}
.

Because f ∧ k ∈ Mb(D) ∩Mb(D) for all k ∈ N, it follows from this equality and Eq. (2) that

Ě(f) = sup

{
lim

n→+∞
Ě(fn) : k ∈ N,DN ∋ (fn)n∈N ↘≤ f ∧ k

}
= sup

{
lim

n→+∞
Ě(fn) : DN ∋ (fn)n∈N ↘≤ f

}
,

as required.

3. Countable-state uncertain processes

With Theorem 1 under our belts, we can move from the general setting of convex expectations to the
more specific setting of convex expectations for uncertain processes, that is, ‘systems’—or phenomena—that
assume a state in each point in time. A ‘subject’ is uncertain about the state as it evolves over time, and
we want to model their uncertainty by means of a convex expectation.

As announced by the title, we will focus on uncertain processes whose state takes values in a countable
state space X . An outcome or realisation of such an uncertain process is a map from the time set T to X ,
which we call a path.
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In the discrete-time setting it is customary to choose T = N, which leads to X N as set of paths (and
hence outcome space). The set of bounded real functions on X N that depend on the state of the path in
a finite number of time points then form a linear lattice of bounded functions that includes the constants.
To construct a convex expectation on this linear lattice, one can follow the approach in [20, Example 5.3],
which leads to a ‘convex Markov chain’—see also [34–36] for the finite-state sublinear case. It is not all
too difficult to obtain a sufficient condition under which the constructed convex expectation is downward
continuous, but we will not pursue this matter. That said, in the particular setting of sublinear expectations,
it would be interesting to compare the resulting extended sublinear expectation to the sublinear expectation
as defined in the game-theoretic framework of Shafer and Vovk [37]; T’Joens [36] has essentially done so in
the particular case of a finite state space.

Things get more involved in the setting of continuous time, though, and this will be our main focus in the
remainder. Henceforth, we assume that time is indexed by the positive real numbers: T = R≥0. We make—
or our subject makes—the common assumptions that (i) after it transitions to a new state, the system stays
in its new state for some time; and (ii) the number of state transitions in every bounded interval is finite.
This is equivalent to assuming that the outcomes are càdlàg paths, meaning that they are continuous from
the right and have left-sided limits—see, for example, [2, Chapter 3, Section 5] or [4, Section 31.1]. Thus,
our outcome space is the set of all càdlàg paths, which we denote by Ω ⊆ X R≥0 . As will become clear at
the end of this section, the assumption of càdlàg paths ensures that the domain of the constructed convex
expectation is sufficiently rich.

Our starting point will be a convex expectation on the set of bounded functions on Ω that are finitary,
meaning that they only depend on the states that a path ω ∈ Ω assumes in a finite set of time points. To
formalise this, it will be convenient to introduce some notation.

For all U ⊆ V ⊆ R≥0, we let πV
U : X V → X U be the projection that maps any X -valued function on V

to its restriction to U [see 3, Section II.25]; if V = R≥0, we simply write πU and moreover restrict the domain
of πU to Ω ⊊ X R≥0 . Let U be the set of finite subsets of R≥0. Then given some U = {t1, . . . , tn} ∈ U , we
will sometimes identify x = (xt)t∈U ∈ X U with the n-tuple (x1, . . . , xn) := (x(t1), . . . , x(tn)) ∈ X n of its
values.

With this notation, we can formally define the set of finitary bounded functions on Ω:

D :=
{
f ◦ πU : U ∈ U , f ∈ L(X U )

}
. (3)

One easily verifies that D ⊆ L(Ω) is a linear lattice that includes all constants, so the results in Section 2.2
apply.

Before we get down to using Theorem 2, we should establish that a convex expectation Ě on D is in
one-to-one correspondence with a ‘consistent collection of finite-dimensional convex expectations’; especially
in Section 4.2 further on, it will be more convenient to work with the latter. This notion, essentially
taken from [20, Definition 4.2], is the counterpart of the well-known notion of a ‘consistent collection of
finite-dimensional distributions’ for probability measures [3, Section II.29].

Definition 2. A collection of finite-dimensional convex/sublinear/linear expectations is a collection (ĚU )U∈U

such that for all U ∈ U , ĚU is a convex/sublinear/linear expectation on L(X U ). Such a collection is con-
sistent if for all U, V ∈ U with U ⊆ V ,

ĚU (f) = ĚV

(
f ◦ πV

U

)
for all f ∈ L(X U ).

Proposition 1. Consider a consistent collection (ĚU )U∈U of finite-dimensional convex/sublinear/linear
expectations. Then there is a unique convex/sublinear/linear expectation Ě on D such that

Ě(f ◦ πU ) = ĚU (f) for all U ∈ U , f ∈ L(X U ).

Conversely, if Ě is a convex/sublinear/linear expectation on D and for all U ∈ U we let

ĚU : L(X U ) → R : f 7→ ĚU (f) := Ě(f ◦ πU ),

then (ĚU )U∈U is a consistent collection of finite-dimensional convex/sublinear/linear expectations.
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Proof. The first part of the statement follows almost immediately from the consistency of the collec-
tion (ĚU )U∈U —see for example the proof of Proposition 4.4 in [20]. The second part of the statement
follows immediately from the properties of convex/sublinear/linear expectations.

Example 7. In all the examples in this section, we’ll assume X = Z≥0 = {0, 1, 2, . . .} and we’ll fix some
sequence (ωn)n∈N ∈ ΩN of càdlàg paths—take, for example, ωn : R≥0 → X : t 7→ n. For any U ∈ U , we
define the corresponding finite-dimensional convex expectation

ĚU : L(X U ) → R : f 7→ sup{[f ◦ πU ](ωn)− n+ 1: n ∈ N}.

The resulting collection (ĚU )U∈U of finite-dimensional convex expectations is clearly consistent: for all
U, V ∈ U with U ⊆ V and f ∈ L(X U ),

ĚU (f) = sup{[f ◦ πU ](ωn)− n+ 1: n ∈ N} = sup
{
[(f ◦ πV

U ) ◦ πV ](ωn)− n+ 1: n ∈ N
}
= ĚV (f ◦ πV

U ).

Hence, it follows from Proposition 1 that there is a unique convex expectation Ě on D corresponding
to (ĚU )U∈U , and one can readily see that this is given by

Ě(f) = sup{f(ωn)− n+ 1: n ∈ N} for all f ∈ D .

Our aim is to use Theorem 1 to extend the convex expectation Ě on the set D of finitary bounded
functions to (as much of) the set M(D) of σ(D)/B(R)-measurable functions (as possible). To this end, we
need to check whether the convex expectation Ě on D is downward continuous. Let us do so for the convex
expectation obtained in Example 7.

Example 8. To verify that Ě is downward continuous, we fix any DN ∋ (fk)k∈N ↘ f ∈ D , and set out to
show that

lim
k→+∞

Ě(fk) = Ě(f). (4)

Since f1 ≥ f2 ≥ · · · ≥ f are all bounded, there is some m ∈ N such that sup f1 − inf f + 1 ≤ m. Then for
all k ∈ N and n > m, fk(ωn)− n+ 1 ≤ sup fk − n+ 1 ≤ sup f1 − n+ 1 < inf f ≤ fk(ω1), whence

Ě(fk) = sup{fk(ωn)− n+ 1: n ∈ N} = max{fk(ωn)− n+ 1: n ∈ N, n ≤ m}.

A similar argument shows that

Ě(f) = sup{f(ωn)− n+ 1: n ∈ N} = max{f(ωn)− n+ 1: n ∈ N, n ≤ m}.

Since (fk)k∈N converges pointwise to f , the limit statement in Eqn. (4) follows from these two equalities.

While we can directly check downward continuity for simple convex expectations as the one in Example 7,
this approach becomes quite unwieldy for more complex convex expectations. For this reason, we set out to
find a sufficient condition for downward continuity that is easier to verify, and we’ll find this in the realm of
measure theory.

3.1. The classical measure-theoretic setting
Rather than a (convex) expectation on a sufficiently large set of functions on Ω, the measure-theoretical

approach aims to obtain a probability measure on the σ-algebra generated by the cylinder events, which
we’ll introduce now. A subset F of Ω is a cylinder event [3, Definition II.25.4]8 if there are some U ∈ U
and A ⊆ X U such that

F = π−1
U (A) :=

{
ω ∈ Ω: πU (ω) ∈ A

}
.

8In general, this definition assumes A ∈ XU , where X is a σ-algebra on X . Since X is countable, X = ℘(X ) and
XU = ℘(X U ).

10



We collect all cylinder events in F , and note that this can also be found as the trace σ-algebra on Ω of the
product σ-algebra on X R≥0 .

The reader who is familiar with (measure-theoretic) stochastic processes will probably wonder whether
the σ-algebra σ(D) generated by D is equal to σ(F ), the one generated by the cylinders. It is easy to verify
that

F =
{
F ∈ ℘(Ω): 1F ∈ D

}
, (5)

and that F is an algebra of subsets of Ω; since D is a linear space, this implies that

span({1F : F ∈ F}) ⊆ D .

Let us now verify that indeed
σ(F ) = σ(D). (6)

Due to Lemma 8.1 (and Lemma 8.3) in [27], σ(D) is generated by the collection of level sets

C :=
{
{ω ∈ Ω: f(ω) ≥ α} : f ∈ D , α ∈ R

}
.

Hence, it follows from Eq. (5) that every cylinder F ∈ F belongs to C, and therefore also to σ(D). Conse-
quently, σ(F ) ⊆ σ(D). To prove that σ(D) ⊆ σ(F ), it suffices to verify that any level set in C is a cylinder.
To this end, we fix any f ∈ D and α ∈ R. By definition of D , there are some U ∈ U and g ∈ L(X U ) such
that f = g ◦ πU . Let A := {x ∈ X U : g(x) ≥ α}. Then clearly

{ω ∈ Ω: f(ω) ≥ α} = {ω ∈ Ω: πU (ω) ∈ A}, (7)

so this level set is indeed a cylinder.
There even is a third way of getting to σ(D): since the countable set X equipped with the discrete metric

is a Polish space, Ω equipped with the so-called ‘Skorokhod metric’ is a Polish space, and the Borel σ-algebra
induced by this metric space is precisely σ(F ) = σ(D); the interested reader may consult Section 31.1 in [4]
or Section 5 in [2, Chapter 3] for the details.

Rather than extending a (convex) expectation on the set of finitary bounded functions, the measure-
theoretical approach seeks to extend a probability charge P—in the sense of [31, Definition 2.1.1], often also
called a finitely additive probability measure—on the cylinders, which is equivalent to a collection (PU )U∈U

of ‘finite-dimensional charges’ [38, Sections 2.2 and 2.3], where PU is a probability charge on ℘(X U ). If we
were to use the set of all paths X R≥0 as possibility space instead of the set of càdlàg paths Ω, then this
probability charge P can be extended to a probability measure on the σ-algebra generated by the cylinder
events if and only if for all U ∈ U , the corresponding probability charge PU : ℘(X U ) → [0, 1] : A 7→
P (π−1

U (A)) is countably additive. This result is known as the Daniell–Kolmogorov Extension Theorem [3,
Theorem II.34], see also [38, Theorem 2].

With the set of càdlàg paths Ω as possibility space, things are more difficult though, and this problem has
been studied intensively. For example, Billingsley [39, Section 13] treats this issue thoroughly, although they
consider R as state space and [0, 1] as time axis, and Stroock and Varadhan [5, Chapter 2] treat a related
issue with Rd as state space and R≥0 as time axis but continuous rather than càdlàg paths. Here too, one
needs that the probability charge P on the cylinders (for the set of all paths) is countably additive, and uses
Caratheodory’s Extension Theorem to extend it to a probability measure P ′ on the σ-algebra generated
by the cylinders on the set of all paths. The final and crucial step, then, is to construct a modification of
the canonical coordinate process that does have càdlàg sample paths (P ′ almost surely); alternatively, it
suffices to show that the set of càdlàg paths Ω has P ′ outer measure 1,9 as this then allows one to obtain a
probability measure P on σ(D) = σ(F ) [5, Lemma 2.1.1].

A more direct way of showing that the probability charge P on F is countably additive (and therefore
extendable to a probability measure on σ(F )), without the need to first construct a probability measure

9That is, for any sequence (Fn)n∈N of measurable subsets of the set of all paths such that Ω ⊆
⋃

n∈N Fn,
∑

n∈N P ′(Fn) = 1.
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on the set of all paths, can be found in [38]. Again, it’s necessary but not sufficient that for all U ∈ U ,
the corresponding finite-dimensional charge PU is downward continuous. For sufficiency, there is an extra
condition which essentially requires that the finite-dimensional charges agree with the càdlàg nature of the
paths [38, Theorem 10]. However, for the sake of simplicity, here we will rely on the sufficient (but not
necessary) condition in [38, Corollary 13]—comparable to the condition in what is known as Kolmogorov’s
Continuity Theorem, see [39, Theorem 13.6] or [5, Corollary 2.1.5]. The next result contains a translation
of this result to the context of the present article, with the help of Proposition 1, Eq. (5) and Theorem 10
in [38]. In it, as well as in Theorem 2 further on, we avail ourselves of the following notation: for all
U = {t1, t2} ∈ U , let d̸=U ∈ L(X U ) be defined for all x ∈ X U by d̸=U (x) := 1 if x(t1) ̸= x(t2) and d ̸=U (x) := 0

otherwise; similarly, let D ̸=
U := {x ∈ X U : x(t1) ̸= x(t2)} and note that d ̸=U = 1D ̸=

U
.

Lemma 6. Consider a probability charge R : F → [0, 1]. If

(i) for all U ∈ U , the derived set function

RU : ℘(X U ) → [0, 1] : A 7→ R
(
π−1
U (A)

)
is countably additive; and

(ii) for all n ∈ N, there is some λn ∈ R≥0 such that

lim sup
s→t

R{t,s}(D ̸=
{t,s})

|s− t|
≤ λn for all t ∈ [0, n];

then R is countably additive.

Rather than from a probability charge on F , we start from a linear expectation E on D . In order to
avail ourselves of results in the measure-theoretical literature, we focus on the induced set-function

RE : F → [0, 1] : A 7→ RE(A) := E(1A). (8)

It is not difficult to verify that this derived set-function is a probability charge. With a bit more work,
one can show that E is downward continuous if and only if RE is countably additive. This result follows
relatively easily from standard measure-theoretical results, but I could not immediately find a reference for
it; I give a formal proof here for the sake of completeness.

Lemma 7. Consider a linear expectation E on D . Then the derived set function

RE : F → [0, 1] : F 7→ E(1F )

is a probability charge. Furthermore, E is downward continuous if and only if RE is countably additive;
whenever this is the case, RE = PE |F , where PE is the probability measure corresponding to E according
to the Daniell–Stone Theorem.

Proof. That RE is positive and finitely additive with RE(Ω) = 1 follows immediately because E is a linear
expectation. Hence, we focus on the second part of the statement.

First, we assume that E is downward continuous. Then it follows immediately from the Daniell–Stone
Theorem [32, Theorem III.35] that RE = PE |F , and therefore RE is countably additive.

Second, we assume that RE is countably additive. Then it is well known—see for example Proposition 9
in [4, Chapter 7] or Lemma 4.3 in [3, Chapter II]—that for any decreasing (Fn)n∈N ∈ FN—meaning that
Fn ⊇ Fn+1 for all n ∈ N—with

⋂
n∈N Fn = ∅,

lim
n→+∞

RE(Fn) = 0. (9)
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To show that E is downward continuous, we fix any f ∈ D and any decreasing sequence (fn)n∈N ∈ DN that
converges pointwise to f . Then

E(fn)− E(f) = E(fn − f) ≥ 0 for all n ∈ N. (10)

Obviously, (fn − f)n∈N is a decreasing sequence in D that converges pointwise to 0.
Fix any ϵ ∈ R≥0, and let β := ∥f1 − f∥∞ = sup f1 − f . Then for all n ∈ N, we let Fn := {y ∈

Y : fn(y) − f(y) > ϵ}; since this is a level set for a function in D , we know from around Eqn. (7) that
Fn ∈ F . This way, (Fn)n∈N is a decreasing sequence in F with

⋂
n∈N Fn = ∅, and for all n ∈ N,

fn − f ≤ ϵ+ β1Fn
and therefore

E(fn − f) ≤ ϵ+ E(β1Fn
) = ϵ+ βRE(Fn).

It follows from this and Eq. (9) that

lim sup
n→+∞

E(fn − f) ≤ lim
n→+∞

ϵ+ βRE(Fn) = ϵ.

Since this inequality holds for any strictly positive real number ϵ, we infer from it and the one in Eq. (10)
that

lim
n→+∞

E(fn) = E(f),

as required.

3.2. Back to convex expectations
It is time to return to convex expectations after our little excursion to the land of measure theory.

Recall that our starting point is a consistent collection (ĚU )U∈U of finite-dimensional convex expectations
that are downward continuous. The question at hand is whether we can use Theorem 1 to extend the
unique corresponding convex expectation Ě on D of Proposition 1, or equivalently, whether Ě is downward
continuous.

To check this, we essentially follow the same strategy as the one Denk et al. [20] use to prove their
Theorem 4.6: by Lemmas 4 and 3 it suffices to show that every linear expectation E ∈ EĚ—so any E ∈ ED
with Ě∗(E) < +∞—is downward continuous. The path forward is clear: we will show that every E ∈ EĚ

is downward continuous with the help of Lemmas 7 and 6.

Theorem 2. Consider a consistent collection (ĚU )U∈U of finite-dimensional convex expectations that are
downward continuous. If for all n ∈ N there is some λn ∈ R≥0 such that

lim sup
s→t

Ě{s,t}

(
d̸={s,t}

|s− t|

)
≤ λn for all t ∈ [0, n],

then the corresponding convex expectation Ě on D of Proposition 1 is downward continuous.

Proof. To prove that Ě is downward continuous, we recall from Proposition 1 that Ě is a convex expecta-
tion, and from right after Eq. (3) that its domain D is a linear lattice of bounded functions that includes the
constants. By Lemmas 4 and 3, it suffices to verify that every E ∈ EĚ—so every linear expectation E on D
with Ě∗(E) < +∞—is downward continuous. So fix any E ∈ EĚ , and consider the induced set function

RE : F → [0, 1] : F 7→ E(1F ).

We know from Lemma 7 that RE is a probability charge, and that E is downward continuous if and only
if RE is countably additive. In its turn, Proposition 6 provides a sufficient condition for the countable
additivity of RE , which we set out to verify.
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For the first part of the condition, fix any U ∈ U , and let

EU : L(X U ) → R : g 7→ E(g ◦ πU ).

Then EU is a linear expectation [Proposition 1], and it is easy to see that its corresponding set function is

RU
E : ℘(X U ) → [0, 1] : A 7→ EU (1A) = E

(
1A ◦ πU

)
= RE

(
π−1
U (A)

)
.

Furthermore, it follows from the definition of EU and Eq. (3) that

Ě∗
U (EU ) = sup

{
EU (g)− ĚU (g) : g ∈ X U

}
= sup

{
E(g ◦ πU )− Ě(g ◦ πU ) : g ∈ X U

}
≤ sup

{
E(f)− Ě(f) : f ∈ D

}
= Ě∗(E)

< +∞.

Since ĚU is downward continuous by the assumptions in the statement, it follows from this inequality
and Lemma 3 that EU is downward continuous. It now follows from Lemma 7—with Y = X U and
D = L(X U )—that RU

E is countably additive.
For the second part of the condition, we fix some n ∈ N and t ∈ [0, n] Then for all s ∈ R≥0 \ {t}, it

follows from the preceding that

R
{t,s}
E

(
D ̸=

{t,s}
)

|s− t|
=
E{t,s}

(
d ̸={t,s}

)
|s− t|

= E{t,s}

(
d ̸={t,s}

|s− t|

)
≤ Ě{t,s}

(
d̸={t,s}

|s− t|

)
+ Ě∗

{t,s}(E{t,s}).

We have shown before that Ě∗
{t,s}(E{t,s}) ≤ Ě∗(E) < +∞ for all s ∈ R≥0 \ {t}. Hence, it follows from the

preceding inequality, and with λ′n := λn + Ě∗(E) ∈ R≥0, that

lim sup
s→t

R
{t,s}
E (D ̸=

{t,s})

|s− t|
≤ lim sup

s→t
Ě{t,s}

(
d ̸={t,s}

|s− t|

)
+ Ě∗

{t,s}(E{t,s}) ≤ λ′n,

which verifies the second condition in Lemma 6 and finishes our proof.

I would like to emphasise that while the assumption that the outcomes are càdlàg paths makes it more
difficult to prove downward continuity, it is also crucial to ensure that the ‘domain’ Mb(D) ∪ Mb(D)
of the extensions is sufficiently rich. Indeed, it is well-known—see, for example, [38, Section 3.2] or [3,
Lemma II.25.9]—that with the set X R≥0 of all paths as outcome space, the σ-algebra σ(D) = σ(F )
generated by the cylinder events only contains events that depend on the state of the system in a countable
subset of R≥0. This then implies that Mb(D) ∪Mb(D) essentially only contains functions that depend on
the state of the system in a countable subset of R≥0, excluding important functions like stopping times and
time averages.

Let us use Theorem 2 to check whether the convex expectation obtained in Example 7 is downward
continuous.

Example 9. If all of the paths in the sequence (ωn)n∈N are constant, then for all s, t ∈ R≥0 and n ∈ N,
ωn(t) = ωn(s) and therefore [d ̸={s,t} ◦ π{s,t}](ωn) = 0. Hence, for all s, t ∈ R≥0 with s ̸= t,

Ě{s,t}

(
d ̸={s,t}

|s− t|

)
= sup

{
[d ̸={s,t} ◦ π{s,t}](ωn)

|s− t|
− n+ 1: n ∈ N

}
= sup{−n+ 1: n ∈ N} = 0,

so it follows from Theorem 2 that Ě is downward continuous.
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If on the other hand there is some path ωn that is not constant, then there is some time point t ∈ R>0

and δ ∈ ]0, t[ such that for all s ∈ ]t−δ, t[, ωn(t) ̸= ωn(s) and therefore [d̸={s,t}◦π{s,t}](ωn) = 1. Consequently,
for all s ∈ ]t− δ, t[,

Ě{s,t}

(
d ̸={s,t}

|s− t|

)
= sup

{
[d ̸={s,t} ◦ π{s,t}](ωn)

|s− t|
− n+ 1: n ∈ N

}
≥ 1

|s− t|
− n+ 1.

Taking the limit superior for s ↗ t, we learn from this inequality that the condition in Theorem 2 cannot
be satisfied. However, the condition in Theorem 2 is only a sufficient one, so this does not mean that Ě
cannot be downward continuous. In fact, we’ve already done so in Example 8!

4. Constructing a collection of finite-dimensional convex expectations

Up to now, we’ve gone about constructing a consistent collection of finite-dimensional convex expectations
in a very weird, technical and rather unnatural manner. A more natural and elegant way to construct such a
collection is to glue together an ‘initial convex expectation’ and a ‘convex Markov semigroup’. This approach,
which was essentially put forward by Denk et al. [20] and is also used by Nendel [7, 8], is inspired by and a
generalisation of the well-known construction method for Markov processes, where an ‘initial distribution’
is glued to a ‘Markov semigroup’ to end up with a consistent collection of finite-dimensional distributions
(and then a probability measure)—see, for example, [3, Section III.7] or [4, Chapter 31] for more details.

We will get to this construction method in Section 4.2 further on, but only after we have discussed
operators in general and convex Markov semigroups in particular in Section 4.1.

4.1. Convex Markov semigroups
To simplify our notation, let us write L := L(X ). An operator A is a map from L to L , or differently

put, a transformation of L . One important operator is the identity operator I, which maps any f ∈ L to
itself.

We extend (almost) all of the terminology regarding properties of functionals to operators in the obvious
‘componentwise’ manner; for example, an operator A ∈ O is called subadditive if for all x ∈ X , the
corresponding component functional

[A•](x) : L → R : f 7→ [Af ](x)

is subadditve.

Definition 3. A convex transition operator10 Ť is an operator that is order preserving, constant preserving
and convex, or equivalently, such that for all x ∈ X , the corresponding component functional [Ť•](x) on L
is a convex expectation. Sublinear transition operators and (linear) transition operators are defined in a
similar manner.

The identity operator I is a trivial example of a (convex/sublinear/linear) transition operator. We will
be particularly concerned with convex transition operators that are downward continuous, of which the
aforementioned identity operator I is the easiest example. Recall from Lemma 2 that this requirement of
downward continuity is always satisfied whenever the state space X is finite.

We’ll never investigate a convex transition operator by itself, but will always consider a family of con-
vex transition operators indexed by R≥0. Families of operators indexed by R≥0 have been investigated
thoroughly, usually in the following setting [41–46]: a semigroup is a family (St)t∈R≥0

of operators such that

SG1. Ss+t = SsSt for all s, t ∈ R≥0, and

10The term ‘convex transition operator’ is a combination of the terminology for two related notions: the ‘(upper) transition
operators’ as introduced by Whittle [24, Chapter 9] and generalised by de Cooman and Hermans [40, Section 8] and the ‘convex
kernels’ as preferred by Denk et al. [20, Definition 5.1].
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SG2. S0 = I.

We’re only concerned with semigroups (Ťt)t∈R≥0
of convex/sublinear/linear transition operators, which we’ll

briefly call convex/sublinear/linear transition semigroups; in this context, the semigroup property (SG1) is
often called the ‘Chapman–Kolmogorov Equation.’ A convex/sublinear/linear Markov semigroup,11 then,
is a convex/sublinear/linear transition semigroup (Ťt)t∈R≥0

such that for all t ∈ R≥0, Ťt is downward
continuous.

It is customary to impose a notion of continuity on semigroups, and we will to the same. The most
prevalent notion—see for example [44, Chapter 3], [45, Chapter III] or [47]—is strong continuity, in the
sense that

lim
s→t

∥Ssf − Stf∥∞ = 0 for all t ∈ R≥0, f ∈ L ;

another common notion is that of uniform continuity, meaning that

lim
s→t

∥Ss − St∥ = 0 for all t ∈ R≥0,

where ∥•∥ is an operator norm—see for example [22, Section 2.1]. That said, we mainly need a—at least at
first sight—different requirement.

Definition 4. A convex transition semigroup (Ťt)t∈R≥0
has uniformly bounded rate12 if

lim sup
t↘0

sup

{[
Ťt

(
1− 1x
t

)]
(x) : x ∈ X

}
< +∞.

The condition of uniformly bounded rate might seem rather strong, but we are not the first to encounter
its usefulness and/or necessity. The strength of this condition will become clear in Section 5 further on,
where we go over some examples of linear, sublinear and even convex Markov semigroups that satisfy this
condition

4.2. From convex transition semigroup to finite-dimensional convex expectations
Now that we have properly introduced the necessary concepts, we can get down to glueing an initial

convex expectation to a convex transition semigroup in such a way that we end up with a consistent
collection of finite-dimensional convex expectations.

Proposition 2. Consider a convex expectation Ě0 on L and a convex transition semigroup (Ťt)t∈R≥0
.

Then there is a unique consistent collection (ĚU )U∈U of finite-dimensional convex expectations such that

(i) Ě{0}(f) = Ě0(f) for all f ∈ L(X ); and

(ii) for all U = {s1, . . . , sn} ∈ U , t ∈ R≥0 such that s1 < · · · < sn < t and f ∈ L(X U∪{t}),

ĚU∪{t}(f) = ĚU

(
Ťt−snf

)
,

where Ťt−snf ∈ L(X U ) maps x = (xs)s∈U ∈ X U to

[Ťt−snf ](x) :=
[
Ťt−snf(xs1 , . . . , xsn , •)

]
(xsn).

Proof. The argument is the same as in the first part of the proof of Theorem 5.6 in [20]. The collec-
tion (ĚU )U∈U is constructed recursively, and the semigroup property (SG1) ensures that the constructed
family satisfies the condition for consistency in Definition 2.

11This definition generalises the notion of a ‘Markov semigroup’ in [3, Section III.3] to the convex case.
12After Anderson [48, Chapter 2, Eqn. (2.35)].
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The consistent collection of finite-dimensional convex expectations in Proposition 2 corresponds to a
unique convex expectation Ě on D due to Proposition 1. Now the question naturally arises whether Ě
is downward continuous, because then we can invoke Theorem 1 to extend Ě to a domain that includes
Mb(D) ∩Mb(D). With the help of Theorem 2 we get the following sufficient condition, which I believe to
be one of the main results in this article

Theorem 3. Consider a downward continuous convex expectation Ě0 on L and a convex Markov semi-
group (Ťt)t∈R≥0

with uniformly bounded rate. Then the unique corresponding sublinear expectation Ě on D
induced by Propositions 2 and 1 is downward continuous.

Proof. With Ě the convex expectation of Proposition 1, it suffices to verify that the corresponding con-
sistent collection of finite dimensional convex expectations (ĚU )U∈U [Proposition 1] satisfies the conditions
in Theorem 2.

First, we prove that for all U ∈ U , ĚU is downward continuous. For U = {0}, ĚU = Ě0 by Proposi-
tion 1 (i), so ĚU is downward continuous because Ě0 is downward continuous as per the assumptions in the
statement. Next, we fix any U = {t0, t1, . . . , tn} ∈ U with n ≥ 1 and 0 = t0 < t1 < · · · < tn.

For all h ∈ L(X U ), it follows from repeated application of Proposition 1 (ii) and a single application
of Proposition 1 (i) that

EU (h) = E0(g0), (11)

where the sequence g0, . . . , gn is derived recursively from the initial condition gn := h and, for all k ∈
{0, . . . , n− 1}, gk ∈ L(X {t0,...,tk}) is defined recursively for all x = (x0, . . . , xk) ∈ X {t0,...,tk} by

gk(x) :=
[
Ť(tk+1−tk)gk+1(x0, . . . , xk, •)

]
(xk). (12)

Fix any L(X U )N ∋ (fℓ)ℓ∈N ↘ f ∈ L(X U ). Then by Eq. (11) for h = f , EU (f) = E0(g0) with
(g0, . . . , gn) the sequence as defined in Eq. (12); similarly, for all ℓ ∈ N, EU (fℓ) = E0(gℓ,0) with (gℓ,0, . . . , gℓ,n)
defined as in Eq. (12) with initial condition gℓ,n = fℓ. Then for k = n− 1, and subsequently for k = n− 2
to k = 0, it follows from the downward continuity of Ť(tk+1−tk) that (gℓ,k)ℓ∈N ↘ gk. From this and the
downward continuity of Ě0, we infer that

lim
ℓ→+∞

ĚU (fℓ) = lim
ℓ→+∞

Ě0(gℓ,0) = Ě0(g0) = ĚU (f),

as required. Finally, for all U = {t1, . . . , tn} ∈ U with 0 < t1 < · · · < tn, the downward continuity
of Ě{0}∪U—which we have just proved—implies that of ĚU because (ĚV )V ∈U is consistent.

Second, we set out to prove that for all n ∈ N, there is some λn ∈ R≥0 such that

lim sup
s→t

Ě{s,t}

(
d̸={s,t}

|s− t|

)
≤ λn for all t ∈ [0, n]. (13)

Since (Ťt)t∈R≥0
has uniformly bounded rate, it follows from Definition 4 that for all t ∈ R≥0,

λ := lim sup
s→t

sup

{[
Ť|s−t|

(
1− 1x
|s− t|

)]
(x) : x ∈ X

}
< +∞. (14)

For all t1, t2 ∈ R≥0 such that t1 < t2 and (xt1 , xt2) ∈ X {t1,t2},

d ̸={t1,t2}(xt1 , xt2)

t2 − t1
=

1− 1xt1
(xt2)

t2 − t1
,

so it follows from Proposition 1 that, with ∆ := t2 − t1,

Ě{t1,t2}

(
d ̸={t1,t2}

∆

)
= Ě0

(
Ťt1

(
X → R : x 7→

[
Ť∆

(
1− 1x
∆

)]
(x)

))
.
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Since Ťt1 and Ě0 are bounded above by the supremum, it follows more or less immediately from the preceding
equality and Eq. (14) that

lim sup
s→t

Ě{s,t}

(
d̸={s,t}

|s− t|

)
≤ λ for all t ∈ R≥0.

So for all n ∈ N, Eq. (13) holds with λn = λ.

By combining Theorem 3 with Theorem 1 and Lemma 5, we get what I believe to be the second main
result in this article. In order to highlight the similarity to [20, Theorem 5.6], [7, Theorem 2.5] and [8,
Definition 5.5], for all t ∈ R≥0 we let Xt : Ω → X be the projector that maps ω ∈ Ω to ω(t). To simplify the
statement, we denote the set of σ(D)/B(R)-measurable functions that are bounded below by Mb := Mb(D)
and the set of those that are bounded above by M b := Mb(D); furthermore, we also let M := Mb ∪ M b.

Theorem 4. Consider a convex expectation Ě0 that is downward continuous and a convex Markov semi-
group (Ťt)t∈R≥0

with uniformly bounded rate. Then there is a convex expectation Ě on M such that

(i) for all f ∈ L(X ), Ě(f(X0)) = Ě0(f);

(ii) for all U = {s1, . . . , sn} ∈ R≥0 and t ∈ R≥0 such that s1 < · · · < sn < t and all f ∈ L(X n+1),

Ě(f(Xs1 , . . . , Xsn , Xt)) = Ě
(
[Ťt−snf ](Xs1 , . . . , Xsn)

)
;

(iii) Ě is downward continuous on Dδ,b; and

(iv) Ě is upward continuous on Mb.

Moreover, the restriction of Ě to Mb is the unique convex expectation that has these four properties.

Proof. Follows from Theorem 3, Propositions 2 and 1, Theorem 1 and Lemma 5.

In comparison to Theorem 5.6 in [20], Theorem 4 has a more limited scope, since the former involves a
Polish space as state space and a ‘two-parameter semigroup’. Theorem 4 is more useful though, since the
domain M of the convex expectation in this result is much richer than the one in [20, Theorem 5.6]—which
only includes bounded functions on the set of all paths that are measurable with respect to the (for many
purposes inadequate) product σ-algebra. A similar comparison can be made between Theorem 4 on the one
hand and Theorem 2.5 in [7] and Section 5 in [8]—which rely on Theorem 5.6 in [20]—on the other hand,
the difference with before being that all of these results assume a countable state space and start from a
one-parameter semigroup.

5. Constructing convex Markov semigroups

Theorem 4 is only useful if we can actually construct and/or determine a convex, sublinear or linear
Markov semigroup. Fortunately, there are plenty of existing results which allows us to do exactly that.

5.1. Linear Markov semigroups
Consider a (linear) Markov semigroup (Tt)t∈R≥0

, and fix some ordering (x1, x2, . . .) of the state space X .
Then it follows from our assumptions—and the Daniell–Stone Theorem—that the matrix representation
(with respect to the obvious basis {1x1

, 1x2
, . . .}) of (Tt)t∈R≥0

, given by

Tt(x, y) = [Tt1y](x) for all t ∈ R≥0, x, y ∈ X ,

is in one-to-one correspondence with what is known as a transition (matrix) function—sometimes also
‘transition matrix’, see [48, § 1.1], [3, Example III.3.6], [41, Section 23.10] and [1, Part II, §1]. The semi-
group (Tt)t∈R≥0

has uniformly bounded rate if and only if it is uniformly continuous—see for example [41,
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Section 23.11] or [1, Section II.19, Theorem 2]—and under this condition, the Markov semigroup (Tt)t∈R≥0

is generated by some operator Q, in the sense that

Tt = etQ = lim
n→+∞

(
I +

t

n
Q

)n

=

+∞∑
n=0

tnQn

n!
for all t ∈ R≥0. (15)

This operator Q is unique and given by

Q = lim
t↘0

Tt − I

t
;

moreover, it is (i) linear; (ii) downward continuous; (iii) bounded, in the sense that

∥Q∥ = sup

{
∥Qf∥∞
∥f∥∞

: f ∈ L , f ̸= 0

}
< +∞; (16)

and (iv) a rate operator, meaning that

R1. Qµ = 0 for all µ ∈ R;

R2. [Qf ](x) ≤ 0 for all f ∈ L and x ∈ X such that f(x) = sup f ≥ 0.

Conversely, any bounded linear rate operator Q—so a linear operator satisfying (R1), (R2) and Eq. (16)—
generates a semigroup (etQ)t∈R≥0

of transition operators that has uniformly bounded rate. Finally, it can
be verified that (etQ)t∈R≥0

is a Markov semigroup—or equivalently, that for all t ∈ R≥0, etQ is downward
continuous—if (and then only if) Q is downward continuous. For more details regarding linear (uniformly
continuous) semigroups and exponentials of bounded linear operators, we refer the reader to [41, 46] and
references therein.

5.2. Convex Markov semigroups with a finite state space
Suppose that the state space X is finite. Under this condition, Nendel [7, Theorem 2.5] shows that a

convex operator Q̌ is a rate operator—so satisfies (R1) and (R2)—if and only if there is a convex transition
semigroup (Ťt)t∈R≥0

such that

Q̌f = lim
t↘0

Ťtf − f

t
for all f ∈ L . (17)

Whenever this is the case, the semigroup (Ťt)t∈R≥0
is strongly continuous because for all f ∈ L , Ť•f : R≥0 →

L is the unique solution in C1(R≥0,L ) to the initial value problem{
g′(t) = Q̌g(t) for all t ∈ R≥0,

g(0) = f.

Since the solution to this initial value problem remains bounded, it can be approximated numerically by
means of Runge–Kutta methods [7, Remark 2.6.(g)]. Nendel also shows the following analogon to Lemma 4.

Lemma 8. An operator Q̌ is a convex rate operator if and only if there is some set Q of linear rate operators
and a family (αQ)Q∈Q ∈ L Q with αQ ≥ 0 for all Q ∈ Q and αQ = 0 for some Q ∈ Q such that

[Q̌f ](x) = sup{[Qf ](x)− αQ(x) : Q ∈ Q} for all f ∈ L . (18)

Of course, the question now is whether such a convex transition semigroup (Ťt)t∈R≥0
(i) is Markov,

meaning that Ťt is downward continuous for all t ∈ R≥0; and (ii) has uniformly bounded rate. Since X is
finite, pointwise convergence in L is equivalent to uniform convergence, so Ťt is downward continuous due
to Lemma 2. Answering the second question isn’t as easy, unfortunately. From Eq. (17), we infer that

lim
t↘0

[Ťt(1− 1x)](x)

t
= [Q̌(1− 1x)](x) < +∞ for all x ∈ X . (19)
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Unfortunately, the lack of positive homogeneity does not allow us to use this to draw conclusions about

lim sup
t↘0

sup

{[
Ťt

(
1− 1x
t

)]
(x) : x ∈ X

}
.

That said, we can use Nendel’s Lemma 4.5 [7] to obtain the following nice result.

Proposition 3. Consider a convex rate operator Q̌, denote the corresponding convex Markov semigroup by
(Ťt)t∈R≥0

and let Q and (αQ)Q∈Q be as in Lemma 8. If

sup
{
∥αQ∥∞ : Q ∈ Q

}
< +∞,

then Q is bounded in the sense that
sup
{
∥Q∥ : Q ∈ Q

}
< +∞,

and (Ťt)t∈R≥0
has uniformly bounded rate.

Proof. Nendel [7, Remark 4.3] proves that Q is bounded, so it remains for us to prove that (Ťt)t∈R≥0
has

uniformly bounded rate. To this end, note that for all t ∈ R>0 and x ∈ X ,[
Ťt

(
1− 1x
t

)]
(x) =

[
Ťt

(
1− 1x
t

)]
(x)−

[
1− 1x
t

]
(x) ≤

∥∥∥∥Ťt

(
1− 1x
t

)
−
(
1− 1x
t

)∥∥∥∥
∞
.

Because (αQ)Q∈Q is bounded by the assumptions in the statement, it follows from Lemma 4.5 in [7] that
for all t ∈ R>0 and x ∈ X∥∥∥∥Ťt

(
1− 1x
t

)
−
(
1− 1x
t

)∥∥∥∥
∞

≤ t sup

{∥∥∥∥Q(1− 1x
t

)
− αQ

∥∥∥∥
∞
: Q ∈ Q

}
.

Using some properties of norms, we see that for all t ∈ R>0 and x ∈ X , and briefly using different notation
for the supremum,

t sup
Q∈Q

∥∥∥∥Q(1− 1x
t

)
− αQ

∥∥∥∥
∞

≤ t sup
Q∈Q

(∥∥∥∥Q(1− 1x
t

)∥∥∥∥
∞

+ ∥αQ∥∞
)

≤ t sup
Q∈Q

∥∥∥∥Q(1− 1x
t

)∥∥∥∥
∞

+ t sup
Q∈Q

∥αQ∥∞

≤ t sup
Q∈Q

∥Q∥
∥∥∥∥1− 1x

t

∥∥∥∥
∞

+ t sup
Q∈Q

∥αQ∥∞

≤ sup
Q∈Q

∥Q∥+ t sup
Q∈Q

∥αQ∥∞.

From all this, we infer that for all t ∈ R>0,

sup

{[
Ťt

(
1− 1x
t

)]
(x) : x ∈ X

}
≤ sup{∥Q∥ : Q ∈ Q}+ t sup{∥αQ∥∞ : Q ∈ Q}.

Since sup{∥αQ∥∞ : Q ∈ Q} < +∞ by the assumptions in the statement and sup{∥Q∥ : Q ∈ Q} < +∞ by
the first part in the statement, it follows that

lim sup
t↘0

sup

{[
Ťt

(
1− 1x
t

)]
(x) : x ∈ X

}
≤ sup{∥Q∥ : Q ∈ Q} < +∞,

so (Ťt)t∈R≥0
does indeed have uniformly bounded rate.

20



We can get stronger results if we consider the sublinear instead of the convex case. In fact, all of the
aforementioned results in the linear case carry over to the sublinear case. In my doctoral dissertation [49,
Theorem 3.75 and Lemma 3.76], I show that a sublinear transition semigroup (Tt)t∈R≥0

has uniformly
bounded rate if and only if it is uniformly continuous, and in that case

Q := lim
t↘0

Tt − I

t

is the unique sublinear rate operator such that

Tt = etQ := lim
n→+∞

(
I +

t

n
Q

)n

for all t ∈ R≥0,

where the limits are with respect to a norm on the set Oph of ‘bounded’ positively homogeneous operators
given by

∥•∥ : Oph → R≥0 : A 7→ sup

{
∥Af∥∞
∥f∥∞

: f ∈ L , f ̸= 0

}
.

Conversely, for any sublinear rate operator Q, the corresponding family of exponentials (etQ)t∈R≥0
is

a sublinear Markov semigroup that has uniformly bounded rate (and therefore is uniformly continuous)
[14–16]. The latter also follows from Proposition 3 and the following analogon to (the sublinear part of)
Lemma 4; while this result is taken from [16, Propositions 7.5 and 7.6], it can be seen as a consequence of
Lemma 8 as well.

Lemma 9. An operator Q is a sublinear rate operator if and only if there is some bounded set Q of linear
rate operators such that

[Qf ](x) = sup{[Qf ](x) : Q ∈ Q} for all f ∈ L , x ∈ X .

Consider a sublinear rate operator Q, and let Q be a bounded set of linear rate operators as in Lemma 9.
Then Nendel [7, Theorem 2.5] shows that (etQ)t∈R≥0

is the pointwise smallest semigroup such that etQf ≤
etQf for all Q ∈ Q and t ∈ R≥0.

5.3. Convex Markov semigroups with a countably infinite state space
The case that X is countably infinite has received less attention. To the best of my knowledge, no

work has been done on convex transition groups; sublinear transition semigroups have been studied, though
[8, 19, 22].

Nendel [8, Section 5] constructs a strongly continuous sublinear transition semigroup (St)t∈R≥0
as follows.

His starting point is a set {(Ti
t)t∈R≥0

: i ∈ I} of (linear) Markov semigroups, from which he constructs the
induced Nisio semigroup (St)t∈R≥0

. He shows that this Nisio semigroup (St)t∈R≥0
is a sublinear transition

semigroup, and the pointwise smallest semigroup that dominates each of the Markov semigroups (Ti
t)t∈R≥0

.
Further on, he mentions that since X is infinite, establishing that St is downward continuous ‘is not trivial
and leads to restrictions’ on {(Ti

t)t∈R≥0
: i ∈ I}.

In the special case that (Ti
t)t∈R≥0

has uniformly bounded rate for all i ∈ I, we collect their generators in

R :=

{
Qi := lim

t↘0

Ti
t − I

t
: i ∈ I

}
.

Under the assumption that this set is bounded, in the sense that sup
{
∥Qi∥ : i ∈ I

}
< +∞, Nendel [8,

Remark 5.6] shows that

lim
t↘0

Stf − f

t
= Rf for all f ∈ L , (20)
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where R is the pointwise upper envelope of the (bounded) set R of generators of the Markov semigroups,
and that for all f ∈ L , S•f : R≥0 → L is the unique solution in C1(R≥0,L ) to the initial value problem{

g′(t) = Rg(t) for all t ∈ R≥0,

g(0) = f.

He does not investigate whether the Nisio semigroup (St)t∈R≥0
has uniformly bounded rate, but this is easy

to show using Eq. (20).

Lemma 10. Consider a uniformly bounded set Q of linear rate operators that are downward continuous.
Then the Nisio semigroup (St)t∈R≥0

corresponding to {(etQ)t∈R≥0
: Q ∈ Q} has uniformly bounded rate.

Proof. First, observe that for all t ∈ R≥0 and x ∈ X ,[
St

(
1− 1x
t

)]
(x) =

[St(1− 1x)](x)

t

=
[St(1− 1x)](x)− [1− 1x](x)

t

≤
∥∥∥∥ [St(1− 1x)](x)− [1− 1x](x)

t

∥∥∥∥
∞

≤
∥∥∥∥St(1− 1x)− (1− 1x)

t
− R(1− 1x)

∥∥∥∥
∞

+ ∥R(1− 1x)∥∞.

Second, fix some x ∈ X and ϵ ∈ R>0. Then there are some y ∈ X and Q ∈ Q such that

∥R(1− 1x)∥∞ − ϵ

2
< |[R(1− 1x)](y)| and |[R(1− 1x)](y)− [Q(1− 1x)](y)| <

ϵ

2
,

from which we infer that

∥R(1− 1x)∥∞ − ϵ < |[Q(1− 1x)](y)| ≤ ∥Q(1− 1x)∥∞ ≤ ∥Q∥.

Since this inequality holds for arbitrary ϵ ∈ R>0, we can conclude from it that

∥R(1− 1x)∥∞ ≤ sup{∥Q∥ : Q ∈ Q}.

Finally, it follows from our preceding two observations and Eq. (20) that

lim sup
t↘0

sup

{[
St

(
1− 1x
t

)]
(x) : x ∈ X

}
≤ sup{∥Q∥ : Q ∈ Q}.

Since Q is bounded, this proves that the Nisio semigroup (St)t∈R≥0
has uniformly bounded rate.

More recently, I’ve shown that as in the linear case and the sublinear finite-state case, (i) uniform
continuity is necessary and sufficient for a sublinear transition semigroup to be generated by a bounded
sublinear rate operator; (ii) this semigroup is Markov if and only if the corresponding bounded sublinear
rate operator is downward continuous; and (iii) uniform continuity is equivalent to uniformly bounded rate.
The interested reader can find the details in [22], but here I’ll summarise the more salient points. More
formally, Theorem 1 there establishes that a sublinear transition semigroup (Tt)t∈R≥0

is uniformly continuous
if and only if there is a bounded sublinear rate operator Q such that

Tt = etQ = lim
n→+∞

(
I +

t

n
Q

)n

for all n ∈ N.

Furthermore, from Proposition 24 in [22] we learn that the family (etQ)t∈R≥0
is a sublinear Markov semigroup—

meaning that the sublinear transition operator etQ is downward continuous for all t ∈ R≥0—if and only if Q
is downward continuous. To establish the equivalence between uniform continuity and uniformly bounded
rate, we simply need to string together a couple of results in [22].
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Lemma 11. A sublinear transition semigroup (Tt)t∈R≥0
is uniformly continuous if and only if it has uni-

formly bounded rate.

Proof. Proposition 19 in [22] tells us that (Tt)t∈R≥0
is uniformly continuous if and only if

lim sup
t↘0

sup

{
1

∥f∥∞

∥∥∥∥(Tt − I

t

)
f

∥∥∥∥
∞
: f ∈ L , f ̸= 0

}
< +∞.

It therefore suffices to observe that for all t ∈ R>0,{
1

∥f∥∞

∥∥∥∥(Tt − I

t

)
f

∥∥∥∥
∞
: f ∈ L , f ̸= 0

}
= 2 sup

{[(
Tt − I

t

)
(1− 1x)

]
(x) : x ∈ X

}
= 2 sup

{
(Tt − I)

(
1− 1x
t

)
(x) : x ∈ X

}
= 2 sup

{
Tt

(
1− 1x
t

)
(x) : x ∈ X

}
,

where for the first equality we used Proposition 9 in [22], which is relevant since (Tt−I)/t is a (bounded) sub-
linear rate operator for all t ∈ R>0 [22, Lemma 10], for the second equality we used the positive homogeneity
of Tt − I and for the third equality we used that [1− 1x](x) = 0 for all x ∈ X .

To compare these results with the aforementioned results by Nendel, I would like to mention that in [22,
Proposition 28, Lemma 31 and Proposition 18] I show that a sublinear rate operator is ‘bounded’ if and only
if it is the pointwise upper envelope of a uniformly bounded set or rate operators, and that e•Q : R≥0 →
L : t 7→ etQf is the unique solution in C1(R≥0,L ) to the initial value problem{

g′(t) = Qg(t) for all t ∈ R≥0,

g(0) = f.

Hence, the Nisio semigroup (St)t∈R≥0
—corresponding to {(etQ)t∈R≥0

: Q ∈ R} with R a uniformly bounded
set of rate operators that are downward continuous—coincides with the sublinear transition semigroup (etR)t∈R≥0

generated by the pointwise upper envelope R of R; consequently this Nisio semigroup is a sublinear Marko-
vian semigroup if and only if this upper envelope R is downward continuous.

6. The sublinear Poisson process

To wrap things up, let us revisit my initial approach towards constructing/defining sublinear Poisson
processes in [19] with the novel results that we have at our disposal now. Henceforth, we let X := Z≥0, and
we fix some rate interval Λ := [λ, λ] ⊂ R≥0. We define the sublinear Poisson generator G: L → L for all
f ∈ L by

Gf : Z≥0 → R : z 7→ max{λ(f(z + 1)− f(z)) : λ ∈ Λ}.

It is easy to verify that G is a sublinear rate operator that is downward continuous. Additionally, it is
obvious that the sublinear Poisson generator G is the pointwise upper envelope of a bounded set of bounded
rate operators, for example the sets {Gλ : λ ∈ Λ} and {Gλ,Gλ} of Poisson generators, where for all λ ∈ R≥0,
the corresponding Poisson generator Gλ is the linear rate operator that is defined for all f ∈ L by

Gλf : Z≥0 → R : z 7→ λ(f(z + 1)− f(z)).

I leave it to the reader to check that ∥Gλ∥ = 2λ; with this equality, we see that the sets {Gλ : λ ∈ Λ} and
{Gλ,Gλ} are uniformly bounded by 2λ, so G is ‘bounded’.
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Thanks to these properties of G and the aforementioned general results, we know that (etG)t∈R≥0
is a

sublinear Markov transition semigroup that has uniformly bounded rate. Note that in this particular case,
this was essentially already shown by Erreygers and De Bock [19, 50]. There, we defined a sublinear version
of the Poisson process in the setting of a sensitivity analysis: we (i) consider the ‘set of all counting/Poisson
processes that are consistent with Λ’, and (ii) define the sublinear expectation as the upper envelope of the
expectations corresponding to the processes in this set. In Section 6 there, we then explain how we can
use (etG)t∈R≥0

to determine the upper/sublinear expectation of any function of the form f(Xt), but we do
not go beyond that. While the results in Section 4 allow us to deal with more involved variables, note that
there’s a crucial difference between the approach there and the one here: there the (conditional) sublinear
expectations are a derived notion and can be conditional, while here we construct a sublinear expectation
directly.

To construct the sublinear Poisson process by means of Theorem 4, we define the initial sublinear
expectation

E0 : L → R : f 7→ E0(f) := f(0),

and recall that (etG)t∈R≥0
is a sublinear Markov semigroup with uniformly bounded rate. Theorem 4 now

tells us that there is a unique corresponding sublinear expectation E on M .
If λ = λ = λ, then (etG)t∈R≥0

= (etGλ)t∈R≥0
is a Markov semigroup and E is linear. It is essentially

well-known—see for example [50, Proposition 69] or [51, Section 2.4]—that

[etGλf ](z) =
∑
y≥z

f(y)ψλt(y − z) for all f ∈ L , z ∈ Z≥0.

It follows from this equality and the construction in Proposition 2 that E is a linear expectation that
coincides with the one that is obtained through the classical definition—for example in [52, Section 2.1]—in
terms of the distributions of the increments Xtk −Xsk for s1 < t1 ≤ s2 < t2 ≤ · · · ≤ sn < tn.

If λ < λ, then E can be thought of as a sublinear Poisson process. Besides the similar construction as
the Poisson process, the rate interval [λ, λ] has a similar interpretation as the rate λ of the Poisson process.
For example, for all s, t ∈ R≥0 with s < t,

E(Xt −Xs) = λ(t− s);

this is because
E(f(Xs, Xt)) = E([e(t−s)Qf ](Xs)) with f(Xs, Xt) = Xt −Xs

by Theorem 4 and [e(t−s)Qf ](Xs) = λ(t− s) by [19, Theorem 15 and Corollary 18]. For the Poisson process,
we also have that 1/λ is equal to the expected time between two arrivals/events. To investigate this for E,
one could use the construction and monotonicity properties of E. As this would lead us too far, we’ll not go
into this here; note, though, that it should be feasible by combining the results in [19, Sections 5.3 and 5.4]
regarding the computation of etG with the approach used to approximate hitting times in [49, Section 6.3].
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Appendix A. Proof of Theorem 1

Proof of Theorem 1. As Ě is downward continuous, Lemma 3 guarantees that every E ∈ EĚ is down-
ward continuous. Consequently, it follows from the Daniell–Stone Theorem that for all E ∈ EĚ , E = E⊙|D
with

E⊙ : I(PE) → R : g 7→
∫
gdPE .

It follows immediately from this and Lemma 4 that Ě⊙ is well defined and extends Ě.
On several occasions, we will need that for all f ∈ I(Ě) and E ∈ EĚ , Ě∗(E) ∈ R (due to Lemma 4) and

E⊙(f) ≤ Ě⊙(f) + Ě∗(E). (A.1)

Next, we show that Ě⊙ is a convex expectation. The extension Ě⊙ is a nonlinear expectation: (i) I(Ě)
includes all constant real functions because D ⊆ I(Ě) and D includes all constant real functions; (ii) Ě⊙ is
order preserving because the Lebesgue integral is order preserving [4, Theorem 4.2 (iv) or Theorem 8.5 (iv)];
and (iii) Ě⊙ is constant preserving because it extends Ě and Ě is constant preserving. To verify that
Ě⊙ is convex, we fix some f, g ∈ I(Ě) and λ ∈ [0, 1] such that f + g is meaningful and in I(Ě) and
λĚ⊙(f) + (1 − λ)Ě⊙(g) is meaningful. If λ = 0 or λ = 1, clearly Ě⊙(λf + (1 − λ)f) = λĚ⊙(f) + (1 −
λ)Ě⊙(g); hence, without loss of generality we may assume that 0 < λ < 1. Due to symmetry, and because
λĚ⊙(f)+(1−λ)Ě⊙(g) is meaningful, we need to distinguish three cases: (i) Ě⊙(f) = +∞ and Ě⊙(g) > −∞;
(ii) Ě⊙(f) and Ě⊙(g) both real; and (iii) Ě⊙(f) = −∞ and Ě⊙(g) < +∞. In the first case, the required
inequality holds trivially. In the second case, it follows from Eq. (A.1) that for all E ∈ EĚ , E⊙(f) < +∞ and
E⊙(g) < +∞, so λE⊙(f) + (1− λ)E⊙(g) is meaningful and, due to the linearity of E⊙ [4, Theorem 4.9 (i)
or Theorem 8.5 (i)], equal to E⊙(λf + (1− λ)g). Similarly, in the third case, it follows from Eq. (A.1) that
for all E ∈ EĚ , E⊙(f) = −∞ and E⊙(g) < +∞, so λE⊙(f) + (1− λ)E⊙(g) is meaningful and, due to the
linearity of E⊙, equal to E⊙(λf + (1− λ)g). Consequently, in the last two cases,

Ě⊙(λf + (1− λ)g) = sup
{
E⊙(λf + (1− λ)g)− Ě∗(E) : E ∈ EĚ

}
= sup

{
λE⊙(f) + (1− λ)E⊙(g)− Ě∗(E) : E ∈ EĚ

}
≤ λ sup

{
E⊙(f)− Ě∗(E) : E ∈ EĚ

}
+ (1− λ) sup

{
E⊙(g)− Ě∗(E) : E ∈ EĚ

}
= λĚ⊙(f) + (1− λ)Ě⊙(g),

as required.
Denk et al. [20, Theorem 3.10] show that the restriction of Ě⊙ to Mb(D)∩Mb(D) is downward continuous

on Dδ,b. Since Dδ,b ⊆ Mb(D) ∩Mb(D), this implies that Ě⊙ is downward continuous on Dδ,b as well.
Proving the upward continuity on Iuc(Ě) is straightforward. To this end, we fix any (Iuc(E))N ∋

(fn)n∈N ↗ f ∈ Iuc(E). For all E ∈ EĚ , E⊙ is upward continuous on{
f ∈ I(PE) : E

⊙(f) > −∞
}
⊇ Mb(D)

due to the Monotone Convergence Theorem—see for example [4, Corollary 4.13]—and therefore

lim
n→+∞

E⊙(fn) = sup
n∈N

E⊙(fn) = E⊙(f).
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From this it follows that, since Ě⊙ is order preserving,

lim
n→+∞

Ě⊙(fn) = sup
{
Ě⊙(fn) : n ∈ N

}
= sup

{
sup
{
E⊙(fn)− Ě∗(E) : E ∈ EĚ

}
: n ∈ N

}
= sup

{
sup
{
E⊙(fn)− Ě∗(E) : n ∈ N

}
: E ∈ EĚ

}
= sup

{
E⊙(f)− Ě∗(E) : E ∈ EĚ

}
= Ě⊙(f),

as required.
To prove the second part of the statement, we assume that Ě is sublinear. Recall from Lemma 4 that

Ě∗(E) = 0 for all E ∈ EĚ and that EĚ is the set of dominated linear expectations (on D). Hence, to see that
Ě⊙ is positively homogeneous, it suffices to additionally realise that E⊙ is homogeneous [4, Theorem 4.9 (i)
or Theorem 8.5 (i)] for all E ∈ EĚ . That Ě⊙ is subadditve follows immediately from its convexity and
positive homogeneity.
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