Sum-Product Laws and Efficient Algorithms
for Imprecise Markov Chains

We propose two sum-product laws for imprecise Markov chains, and use these laws to
derive two algorithms to efficiently compute lower (and upper) expectations of inferences
that have a corresponding sum-product decomposition.

Markov chain P

stochastic process P

consistent stochastic process P

setl of consistent stochastic
processes &

Lower (and upper) expectations

For any set & of consistent stochastic pro-
cesses, we are Iinterested in lower and upper
expectations of the form

E(f(X1)) = inf Ep(f(X1:r)
and

Eo(f(Xin)) = ]félngP(f(Xl:n))-

Because E(f(Xi.,)) = —E»(—f(Xi,)), it
suffices to study the lower expectation E .

Examples of variables f(Xj.,) include

* variables on a single time point

g(Xy),

* temporal averages

1 n

- g(Xk)7
% truncated hitting times

min ({k € {1,...,n}: Xk € A} U{n+1}),

* indicators of time-bounded until events,
@ the number of ‘interesting transitions’

{ke{l,...,n}: (X1, X) €A}
with A a subset of 272,

)

A set &2 is compatible with .7 If
E »(f(X1)) = Eq(f) forall f e R

This is the case for 2ZM and £EL.

initial mass function p
po(Xi) = P(Xi)
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transition matrix 7,
Tn(Xn7Xn+1) — P(Xn+1 melzn—l)

transition matrix 7, x,. ,

PO
Tn,Xl;n_l(Xan—l—l) — P(Xn—l—l ‘ Xle:n—l)
X X5 X3 X, X1
| | | >
I | |
| 2 3 n n-+1
po € A0 Th X, € I

set of initial mass functions .7
E-: R* — R defined for all f € R* by

Eq(f) = inf

set of transition matrices .7,

T :R* —R* defined for all f € R* by

T,f(x) = inf

T1,.f](x) for all x e 2
xeX

Imprecise Markov chains

2M is the set of all consistent Markov chains
2"l is the set of all consistent stochastic processes

First algorithm

Consider a variable f(X;.,) with a % first order
sum-product decomposition %

n k—1
fXim) = Y &e(Xe) [ [ re(Xe),
k=1 /=1
with hy,...,h,_1 > 0.
letr, =g, and, forall 1 <k <n—1,
=gt il T
Then in general,

E@(][(Xlrn)) > ED(El)-

It &7 Is compaltible with .7 and satisfies the
(first-order) sum-product law, then

E@(f(xlrn)) — ED(El)-

A set & satisfies the (first-order) sum-
product law if for all » € N, f € R* and
g h e R*" with h > 0,

This is the case for 22M and £2F! if for all
neN, feR* and € >0,

(AT, € 7,)(Vxe Z) T.f(x) <T,f(x)+ €.

Second algorithm

Consider a variable f(X;.,) with a & second
order sum-product decomposition &

n k—1
F(Xim) = Y &K1, Xi) | [ 1e(Xe),

with hi,...,h,_1 > 0.

letxr :=0and,foralll1 <k<n—landxe %,
Ty (x) = hy(x) [Ik(ng(X, )) +Ek+1}'

Then in general,

E@(][(Xlrn)) > ED(Tcl)-

It &2 I1s compatible with .7, and satisfies the
second-order sum-product law, then

E@(f(xltn)) — ED(Tcl)-

A set &7 satisfies the second-order sum-
product law if foralln € N, f € R?" and
g h e R*" with h > 0,

E(g(Xln) + h(Xln)f(Xn7Xn+1))
— E(g(Xlzn) + h(Xln)znf(Xn)) 9

with T, f(x) = |T (f(x,-))](x) for all x € Z .
This is the case for 22M and 22F! if for all
neN, (frwea € R®)#and e >0,

(3T, € 7,)(Vx e Z) T.fo(x) < T, f(x)+E€.




