Sum-Product Laws and Efficient Algorithms for Imprecise Markov Chains

Jasper De Bock Alexander Erreygers Thomas Krak

We propose two sum-product laws for imprecise Markov chains, and use these laws to derive two algorithms to efficiently compute lower (and upper) expectations of inferences that have a corresponding sum-product decomposition.

Markov chain P

initial mass function p_{\square} $p_{\square}(X_1) = P(X_1)$

transition matrix T_n $T_n(X_n, X_{n+1}) = P(X_{n+1} \mid X_n, X_{1:n-1})$

stochastic process P

 p_{\square}

transition matrix $T_{n,X_{1:n-1}}$ $T_{n,X_{1:n-1}}(X_n,X_{n+1}) = P(X_{n+1} \mid X_n,X_{1:n-1})$

consistent stochastic process P

$$p_{\square} \in \mathscr{M}_{\square}$$

 $T_{n,X_{1:n-1}} \in \mathscr{T}_n$

set of consistent stochastic processes \mathscr{P}

set of initial mass functions \mathcal{M}_{\square}

 $\underline{E}_{\square} \colon \mathbb{R}^{\mathscr{X}} \to \mathbb{R}$ defined for all $f \in \mathbb{R}^{\mathscr{X}}$ by

$$\underline{E}_{\square}(f) := \inf_{p_{\square} \in \mathscr{M}_{\square}} \sum_{x \in \mathscr{X}} p_{\square}(x) f(x)$$

set of transition matrices \mathcal{T}_n

 $\underline{T}_n \colon \mathbb{R}^\mathscr{X} \to \mathbb{R}^\mathscr{X}$ defined for all $f \in \mathbb{R}^\mathscr{X}$ by

$$\underline{T}_n f(x) := \inf_{T_n \in \mathscr{T}_n} \sum_{x \in \mathscr{X}} [T_n f](x) \text{ for all } x \in \mathscr{X}$$

Lower (and upper) expectations

For any set \mathscr{P} of consistent stochastic processes, we are interested in lower and upper expectations of the form

$$\underline{E}_{\mathscr{P}}(f(X_{1:n})) := \inf_{P \in \mathscr{P}} E_P(f(X_{1:n}))$$

and

$$\overline{E}_{\mathscr{P}}(f(X_{1:n})) := \sup_{P \in \mathscr{P}} E_P(f(X_{1:n})).$$

Because $\overline{E}_{\mathscr{P}}(f(X_{1:n})) = -\underline{E}_{\mathscr{P}}(-f(X_{1:n}))$, it suffices to study the lower expectation $\underline{E}_{\mathscr{P}}$.

Examples of variables $f(X_{1:n})$ include

- \star variables on a single time point $g(X_n)$,
- ★ temporal averages

$$\frac{1}{n}\sum_{k=1}^{n}g(X_k),$$

★ truncated hitting times

$$\min (\{k \in \{1,\ldots,n\}: X_k \in A\} \cup \{n+1\}),$$

- ★ indicators of time-bounded until events,
- the number of 'interesting transitions'

$$|\{k \in \{1,\ldots,n\}: (X_{k-1},X_k) \in A\}|,$$

with A a subset of \mathcal{X}^2 .

A set ${\mathscr P}$ is compatible with ${\mathscr M}_\square$ if

$$\underline{E}_{\mathscr{P}}(f(X_1)) = \underline{E}_{\square}(f) \text{ for all } f \in \mathbb{R}^{\mathscr{X}}.$$

This is the case for \mathscr{P}^{M} and \mathscr{P}^{EI} .

Imprecise Markov chains

 \mathscr{P}^{M} is the set of *all* consistent Markov chains \mathscr{P}^{EI} is the set of *all* consistent stochastic processes

First algorithm

Consider a variable $f(X_{1:n})$ with a \star first order sum-product decomposition \star

$$f(X_{1:n}) = \sum_{k=1}^{n} g_k(X_k) \prod_{\ell=1}^{k-1} h_{\ell}(X_{\ell}),$$

with $h_1, ..., h_{n-1} \ge 0$.

Let $\underline{\pi}_n := g_n$ and, for all $1 \le k \le n-1$,

$$\underline{\pi}_k := g_k + h_k \underline{T}_{k+1} \underline{\pi}_{k+1}$$
.

Then in general,

$$\underline{E}_{\mathscr{P}}(f(X_{1:n})) \geq \underline{E}_{\square}(\underline{\pi}_1).$$

If \mathscr{P} is compatible with \mathscr{M}_{\square} and satisfies the (first-order) sum-product law, then

$$\underline{E}_{\mathscr{P}}(f(X_{1:n})) = \underline{E}_{\square}(\underline{\pi}_1).$$

A set \mathscr{P} satisfies the (first-order) sumproduct law if for all $n \in \mathbb{N}$, $f \in \mathbb{R}^{\mathscr{X}}$ and $g,h \in \mathbb{R}^{\mathscr{X}^n}$ with $h \geq 0$,

$$\underline{E}(g(X_{1:n}) + h(X_{1:n})f(X_{n+1}))$$

$$= \underline{E}(g(X_{1:n}) + h(X_{1:n})\underline{T}_n f(X_n)).$$

This is the case for \mathscr{P}^{M} and $\mathscr{P}^{\mathrm{EI}}$ if for all $n \in \mathbb{N}$, $f \in \mathbb{R}^{\mathscr{X}}$ and $\varepsilon > 0$,

$$(\exists T_n \in \mathscr{T}_n)(\forall x \in \mathscr{X}) \ T_n f(x) \leq \underline{T}_n f(x) + \varepsilon.$$

Second algorithm

Consider a variable $f(X_{1:n})$ with a second order sum-product decomposition

$$f(X_{1:n}) = \sum_{k=2}^{n} g_k(X_{k-1}, X_k) \prod_{\ell=1}^{k-1} h_{\ell}(X_{\ell}),$$

with $h_1, ..., h_{n-1} > 0$.

Let $\underline{\pi}_n := 0$ and, for all $1 \le k \le n-1$ and $x \in \mathcal{X}$,

$$\underline{\pi}_k(x) := h_k(x) \left[\underline{T}_k(g_{k+1}(x,\cdot)) + \underline{\pi}_{k+1} \right].$$

Then in general,

$$\underline{E}_{\mathscr{P}}(f(X_{1:n})) \geq \underline{E}_{\square}(\underline{\pi}_1).$$

If $\mathscr P$ is compatible with $\mathscr M_\square$ and satisfies the second-order sum-product law, then

$$\underline{E}_{\mathscr{P}}(f(X_{1:n})) = \underline{E}_{\square}(\underline{\pi}_1).$$

A set \mathscr{P} satisfies the second-order sumproduct law if for all $n \in \mathbb{N}$, $f \in \mathbb{R}^{\mathscr{X}^2}$ and $g,h \in \mathbb{R}^{\mathscr{X}^n}$ with $h \geq 0$,

$$\underline{E}(g(X_{1:n}) + h(X_{1:n})f(X_n, X_{n+1}))$$

$$= \underline{E}(g(X_{1:n}) + h(X_{1:n})\underline{T}_n f(X_n)),$$

with
$$\underline{T}_n f(x) := [\underline{T}_n(f(x,\cdot))](x)$$
 for all $x \in \mathscr{X}$.

This is the case for \mathscr{P}^{M} and $\mathscr{P}^{\mathrm{EI}}$ if for all $n \in \mathbb{N}$, $(f_x)_{x \in \mathscr{X}} \in (\mathbb{R}^{\mathscr{X}})^{|\mathscr{X}|}$ and $\varepsilon > 0$,

$$(\exists T_n \in \mathscr{T}_n)(\forall x \in \mathscr{X}) \ T_n f_x(x) \leq \underline{T}_n f_x(x) + \varepsilon.$$