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Abstract We consider the problem of estimating the transition rate
matrix of a continuous-time Markov chain from a finite-duration real-
isation of this process. We approach this problem in an imprecise prob-
abilistic framework, using a set of prior distributions on the unknown
transition rate matrix. The resulting estimator is a set of transition rate
matrices that, for reasons of conjugacy, is easy to find. To determine the
hyperparameters for our set of priors, we reconsider the problem in dis-
crete time, where we can use the well-known Imprecise Dirichlet Model.
In particular, we show how the limit of the resulting discrete-time estim-
ators is a continuous-time estimator. It corresponds to a specific choice of
hyperparameters and has an exceptionally simple closed-form expression.

1 Introduction

Continuous-time Markov chains (CTMCs) are mathematical models that de-
scribe the evolution of dynamical systems under (stochastic) uncertainty [9].
They are pervasive throughout science and engineering, finding applications in
areas as disparate as medicine, mathematical finance, epidemiology, queueing
theory, and others. We here consider time-homogeneous CTMCs that can only
be in a finite number of states.

The dynamics of these models are uniquely characterised by a single trans-
ition rate matriz Q. This @ describes the (locally) linearised dynamics of the
model, and is the generator of the semi-group of transition matrices Ty = exp(Qt)
that determines the conditional probabilities P(X; = y | Xo = z) = Ty (z,y). In
this expression, X; denotes the uncertain state of the system at time ¢, and so
T; contains the probabilities for the system to move from any state x at time
zero to any state y at time t.

In this work, we consider the problem of estimating the matrix @ from a
single realisation of the system up to some finite point in time. This problem is
easily solved in both the classical frequentist and Bayesian frameworks, due to
the likelihood of the corresponding CTMC belonging to an exponential family;
see e.g. the introductions of [3,7]. The novelty of the present paper is that we
instead consider the estimation of @ in an imprecise probabilistic [1,14] context.



Specifically, we approach this problem by considering an entire set of Bayesian
priors on the likelihood of @, leading to a set-valued estimator for ). In order
to obtain well-founded hyperparameter settings for this set of priors, we recast
the problem by interpreting a continuous-time Markov chain as a limit of dis-
crete-time Markov chains. This allows us to consider the imprecise-probabilistic
estimators of these discrete-time Markov chains, which are described by the pop-
ular Imprecise Dirichlet Model (IDM) [10]. The upshot of this approach is that
the IDM has well-known prior hyperparameter settings which can be motivated
from first principles [4,15].

This leads us to the two main results of this work. First of all, we show that
the limit of these IDM estimators is a set of transition rate matrices that can be
described in closed-form using a very simple formula. Secondly, we identify the
hyperparameters of our imprecise CTMC prior such that the resulting estimator
is equivalent to the estimator obtained from this discrete-time limit. For reas-
ons of brevity, the proofs of our results are omitted. They are available in the
appendix of an online extended version.!

The immediate usefulness of our results is two-fold. From a domain-analysis
point of view, where we are interested in the parameter values of the process
dynamics, our imprecise estimator provides prior-insensitive information about
these values based on the data. If we are instead interested in robust inference
about the future behaviour of the system, our imprecise estimator can be used
as the main parameter of an imprecise continuous-time Markov chain [5,6,8,13].

2 A Brief Refresher on Stochastic Processes

Intuitively, a stochastic process describes the uncertainty in a stochastic system’s
behaviour as it moves through some state space X as time ¢ progresses over
some time dimension T. A fundamental choice is whether we are considering
processes in discrete time, in which case typically T = INg, or in continuous
time, in which case T = IR>o. Here we write IN for the natural numbers, and
let INy := IN U {0}. The real numbers are denoted by IR, the positive reals by
IR~0, and the non-negative reals by IR>¢. We briefly recall the basic definitions
of stochastic processes below; for an introductory work we refer to e.g. [9].

Formally, a realisation of a stochastic process is a sample path, which is a
map w : T — X. Here w(t) € X represents the state of the process at time
t € T. We collect all sample paths in the set 2 and, when T = IR>g, these
paths are assumed to be cadlag under the discrete topology on X. With this
domain in place, we then consider some abstract underlying probability space
(£2,F, P), where F is some appropriate (o-)algebra on (2, and where P is a
(countably-)additive probability measure.

The stochastic process can now finally be defined as a family of random
variables { X} }:er associated with this probability space. In particular, for fixed
t € T, the quantity X; is a random variable 2 — X : w — w(t). Conversely, for
a fixed realisation w € 2, X;(w) is a deterministic map T — X : t — w(?).
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Well-known and popular kinds of stochastic processes are Markov chains:

Definition 1 (Markov Chain). Fiz T € {INg,IR>o}, and let {X;}ier be a
stochastic process. We call this process a Markov chain if, for all sg, ..., sn,s,t €
T for which sg < -+ < 85, < 8 < t, it holds that P(X: = x4 | Xsg = Tsgy .-, Xs, =
Ts,, Xs = x5) = P(Xy = x| Xs = x5) for all gy, ..., 25, , 25,24 € X. If then
T = WNo, we call {Xi}er @ discrete-time Markov chain (DTMC). If instead
T =1R>o, we call it a continuous-time Markov chain (CTMC).

Furthermore, attention is often restricted to homogenous Markov chains:

Definition 2 (Homogeneous Markov Chain). Let {X:}ier be a Markov
chain. We call this Markov chain (time-)homogeneous if, for all s,t € T, s <'t,
and all x,y € X, it holds that P(X; =y | Xs = 2) = P(X¢—s) = y| Xo = ).

This homogeneity property makes such processes particularly easy to describe.

In what follows, we will say that a |X| X |X| matrix T is a transition mat-
riz, if it is a real-valued and row stochastic matrix, i.e. if T(z,y) > 0 and
Y exT(x,2) = 1 for all z,y € X. We write T for the space of all transition
matrices. The elements T of ¥ can be used to describe the single-step conditional
probabilities of a (homogeneous) DTMC:

Proposition 3 ([9]). Let {X;}iew, be a homogeneous DTMC. Then this pro-
cess is completely and uniquely characterised by a probability mass function p
on X and some T € X. In particular, P(Xo) = p and, for all t € Ny and all
v,y €X, P(Xy =y|Xo=1x) =T"x,y), where T* is the t'™* matriz power of T.

On the other hand, to describe CTMCs we need the concept of a (transition)
rate matriz: a |X| x |X| real-valued matrix @ with non-negative off-diagonal
elements and zero row-sums, i.e. Q(z,y) > 0 and > _, Q(z,2) = 0 for all
x,y € X such that x # y. We write Q for their entire space. A rate matrix
describes the “speed” with which a CTMC moves between its states:

Proposition 4 ([9]). Let {X:}iem., be a homogeneous CTMC. Then this pro-
cess is completely and uniquely characterised by a probability mass function p
on X and some Q € Q. In particular, P(Xo) = p and, for all t € R>¢ and
all z,y € X, P(X: = y| Xo = x) = exp(Qt)(x,y), where exp(Qt) is the matriz
exponential of Qt. Furthermore, for small enough A € R>o and all x,y € X, it
holds that P(Xa =y | Xo = o) = (I + AQ)(x,y), where I is the identity matriz.

3 Estimation of a CTMC’s Rate Matrix

In what follows, we will derive methods to estimate the rate matrix @ of a
homogeneous CTMC from a realisation w € 2 that was observed up to some
finite point in time tmax € IR>0. We denote with @ the restriction of w to this
interval [0, tmax] C IR>0, and we consider this (finite-duration) observation to be
fixed throughout the remainder of this paper.

For any z,y € A such that x # y, we let n,, denote the number of transitions
from state x to state y in w. Furthermore, we let d, denote the total duration



spent in state x, that is, we let d,, == fot"‘"x I.(@w(t)) dt, where I, is the indicator of
{z}, defined by I, (@(t)) := 1 if @(t) = « and L. (&(¢t)) := 0 otherwise. We assume
in the remainder that d, > 0 for all x € X. Finally, for notational convenience,
we define ¢y == Q(z,y) for all z,y € X.

3.1 Precise Estimators

Under the assumption that the realisation w was generated by a homogeneous
continuous-time Markov chain with rate matrix @, it is well known that the
process dynamics can be modelled using exponentially distributed random vari-
ables whose parameters are given by the elements of Q. For various of such
interpretations, we refer to e.g. [9]. What matters to us here is that, regardless
of the interpretation, we can use this to obtain the following likelihood result
(see e.g. [7]): for a given w, the likelihood for a rate matrix Q is

L@ Q)= T (guy)evetont. (1)

z,yeX

TFy
The corresponding maximum-likelihood estimator QMY is easily found [7]: q%L =
nay/d, if x # y and ¢MF = — 2 yex\ {2} qny”, where the final expression follows

from the (implicit) constraint that the rows of a rate matrix should sum to zero.

Inspection of the likelihood in (1) reveals that it belongs to an exponential
family. This implies that there exists a conjugate prior for the rate matrix @,
such that its posterior distribution, given w, belongs to the same family as this
prior. This prior is given by a product of Gamma distributions, specifically on
the off-diagonal elements ¢,, © # y, of the corresponding rate matrix [3]. We
here use a slightly more general joint prior on ) whose “density” f is given by

f(Q ‘ «, /6) = H (qu)azyflequyﬁm X H Gamma(‘]acy | Ay, /Bx)v (2)
z,yeX z,yeX
TzFY zH#Y

with shapes ay, and rates 5, in R>q; we write o, 3 for the joint parameters.

Note that we have only defined the prior to equal a product of Gamma
distributions up to normalisation, so that the prior f(Q | e, 3) may be improper.
This has the advantage that it allows us to close the parameter domains and allow
prior hyperparameters o, = 0 and 3, = 0, for which the Gamma distribution
is not properly defined. We acknowledge that the use of such improper priors is
not entirely uncontroversial, and that their interpretation as a prior probability
(which it indeed is not) leaves something to be desired. We will nevertheless,
in this specific setting, be able to motivate their use here as a consequence of
Theorem 5 further on.

Also, despite being improper, we can of course combine the prior (2) with
the likelihood (1) and fix the normalisation in the posterior. As is well known,
the means of the marginals of this posterior are then of the form?

~ zy T Na
Efgey |0, 0,8] = “5-

2 The assumption d, > 0 prevents division by zero in (3). However, ngy, might be
zero and, if then also ayy = 0, the posterior cannot be normalised and will still be

Vr,y € X,x #y. (3)



Furthermore, the (joint) posterior mean is well-known to be a Bayes estimator
for @ under quadratic loss and given the prior f(-|ea,3) [2].

The question now remains of how to a priori settle on a “good” choice for
these hyperparameters «, 3, in the sense that they should adequately represent
our prior beliefs. This is a non-trivial problem, and no general solution can
be given. A popular (but not uncontroversial) attempt to characterise a non-
informative prior consists in choosing the improper prior with ¢ = 3 = 0; the
posterior mean (Bayes) estimator then equals QMb.

3.2 An Imprecise Probabilistic Estimator

Generalising the above Bayesian approach, we here suggest an imprecise probab-
ilistic treatment. Following for example [11,14], this approach consists in using
an entire set of prior distributions. Specifically, we consider a set of the form

{r¢1a.p) @B ect, @)

with f(-|a,B) as in (2), and where C is a set of possible prior parameters.
In this way, we do not have to restrict our attention to one specific choice of
the parameters a, 3; rather, we can include all the parameter settings that we
deem reasonable, by collecting them in C. Inference from w is then performed
by point-wise updating each of these priors; we thereby obtain a set of posterior
distributions on the space of all rate matrices. Each of these posteriors has a
mean of the form (3), which is a Bayes estimator for () under a specific prior in
the set (4). This leads us to consider the imprecise, i.e., set-valued, estimator

Q¢ = {QEQ‘ (Vx;yeXax#yZQxy:W)v(aw@)ec}'

Note that even in this imprecise probabilistic approach, we still need to some-
how specify the (now set-valued) prior model. That is, we need to be specific
about the set C. Inspired by the well-known imprecise Dirichlet model [15], we
may choose an “imprecision parameter” s € IR>(, which can be interpreted as
a number of “pseudo-counts”, to constrain 0 < ZyEX\{x} gy <sforallz e X,
and to then vary all 3, over their domain IR>(. Unfortunately, similar to what is
noted in [11], this leads to undesirable behaviour. For example, as is readily seen
from e.g. (3), including unbounded 3, allows the off-diagonal elements ¢, to get
arbitrarily close to zero, causing the model to a posteriori believe that transitions
leaving x may be impossible, no matter the number of such transitions that we
actually observed in w! Hence, we prefer a different choice of C.

One way to circumvent this undesired behaviour is to constrain the range

within which each 8, may be varied, to some interval [0, 3,], say. The downside

improper. Nevertheless, using an intuitive (but formally cumbersome) argument we
can still identify this posterior for gz, with the (discrete) distribution putting all
mass at zero. Alternatively, we can motivate (3) by continuous extension from the
cases where agy > 0, similarly yielding the estimate §zy = 0 at agy = ngy = 0.



is that this introduces a large number of additional hyperparameters; we then
need to (“reasonably”) choose a value 8, € R for each x € X. Fortunately, our
main result — Theorem 5 further on — suggests that setting 3, = 0 (and therefore
Bz = 0) is in fact a very reasonable choice. This identification is obtained in
the next section, using a limit result of discrete-time estimators, for which the
hyperparameter settings follow entirely from first principles.

In summary, we keep the “imprecision parameter” s € IR>¢ and the con-
straint 0 < ZyeX\{m} agzy < s for all x € X, and simply set 5, = 0 for all
x € X. We then define Cs to be the largest set of parameters that satisfies
these properties. Every «v in this set can be conveniently identified with the off-
diagonal elements of a matrix sA, with A € ¥ a transition matrix. Our set-valued
estimator Q. can thus be written as

A
(Vﬂc,yE/Kx;éy : quzs(x’y)Jr"’”y),Aez}. (5)

QS:Z{QEQ dr

4 Discrete-Time Estimators and Limit Relations

A useful intuition is that we can consider a CTMC as a limit of DTMCs, where
we assign increasingly shorter durations to the time steps at which the latter
operate. In this section, we will use this connection to relate estimators for
DTMCs to estimators for CTMCs. We start by discretising the observed path.

Because the realisation w was only observed up to some time ty,,x € IR>o,
we can discretise the (finite-duration) realisation @ into a finite number of steps.
For any m € IN, we write 6(™) = tmax/m, and we define the discretised path
w™ :{0,...,m} = X as w™ (i) = & (i6™) for all i € {0,...,m}.

For any m € IN and z,y € X, we let n%) =307 L (w™ (i — 1)L, (w™ (4))
denote the number of transitions from state z to y in w(™, and we let nzm) =
ZyGX né’;,”) denote the total number of time steps that started in state x.

4.1 Discrete-Time Estimators

For fixed m € IN, we can interpret the discretised path w(™) as a finite-duration
(m+1 steps long) realisation of a homogeneous discrete-time Markov chain with
transition matrix 70", with m keeping track of the discretisation level. Each
transition along the path w(™), from state = to y, say, is then a realisation of
a categorical distribution with parameters 7™ (z,-). The likelihood for 7™,
given w(™)| is therefore proportional to a product of independent multinomial
likelihoods. Hence, the maximum likelihood estimator follows straightforwardly
and as expected: T ME (g 4) = nl}) /ot for all 2,y € X; see [7] for details.

In a Bayesian analysis, and following e.g. [10], for fixed m we can model our
uncertainty about the unknown 7™ by putting independent Dirichlet priors on
the rows T (xz,-). We write this prior as g(-|s, A), where s € R>q is a “prior
strength” parameter, and A € int(¥) is a prior location parameter. Note that
we take A in the interior of ¥ — under the metric topology on ¥ — so that each
row A(x,-) corresponds to a strictly positive probability mass function.



After updating with w("™)| the posterior mean is an estimator for 70" that is
Bayes under quadratic loss and for the specific prior g( - | s, A); due to conjugacy,
the posterior is again a product of independent Dirichlet distributions [10],
whence the elements of the posterior mean are

sA(z,y) +nly)

s+ n(zm)

What remains is again to determine a good choice for s and A. However, in
an imprecise probabilistic context we do not have to commit to any such choice:
the popular Imprecise Dirichlet Model generalises the above approach using a
set of Dirichlet priors. This set is given by IDM(-|s) := {g(-|s, A) | A € int(T)}
and can be motivated from first principles [4,15]. Observe that only a parameter
s € IR>( remains, which controls the “degree of imprecision”. In particular, we
no longer have to commit to a location parameter A; instead this parameter is
freely varied over its entire domain int(¥).

Element-wise updating with w(™ yields a set of posteriors which, due to
conjugacy, are again independent products of Dirichlet distributions. The cor-
responding set 7;(m) of posterior means thus contains estimators for 7™ that
are Bayes for a specific prior from the IDM, and is easily verified to be

(m)
(Vm,y eX:T(x,y) = W) JA € int(‘Z)} .

E[T(x,y) ‘ s,A,w(m)} = Ve,y e X .

s+ n&’")

T = {Te‘f

4.2 Limits of Discrete-Time Estimators

As noted in Proposition 4, a rate matrix () is connected to the transition prob-
abilities Th(z,y) == P(Xa = y| Xo = ) in the sense that Th ~ (I + AQ) for
small A. Hence, for small A, we have that Q ~ (T'a — I)!/A. This becomes exact
in the limit for A going to zero.

This interpretation can also be used to connect discrete-time estimators for
T(™) to estimators for Q. For example, if we let Q™) = (T(™)ML _[)1/5(m) then
QMY = lim,, s 400 Q™. Similarly, we can connect our set-valued estimators for
the discretised models to the set-valued continuous-time estimator in (5):

Theorem 5. For all m € IN, let ng) = {(T — I)1/s0m |T € ﬁ(m)}, Then the
Painlevé-Kuratowski [12] limit lim,,— 4o Q.Sm exists, and equals Q.

5 Discussion

We have derived a set-valued estimator Qg for the transition rate matrix of a
homogeneous CTMC. It can be motivated both as a set of posterior means of a
set of Bayesian models in continuous-time, and as a limit of set-valued discrete-
time estimators based on the Imprecise Dirichlet Model. The only parameter of
the estimator is a scalar s € IR>( that controls the degree of imprecision. In the
special case where s = 0 there is no imprecision, and then Qy = {QM"}.

The set-valued representation Q is convenient when one is interested in the
numerical values of the transition rates, e.g. for domain-analysis. If one aims to



use the estimator to describe an imprecise CTMC' [8,13], a representation using
the lower transition rate operator @ is more convenient. This operator is the
lower envelope of a set of rate matrices; for Qg it is given, for all h : X — IR, by

[@n](@) = jnf > "Q(r.y)h(y) = - min(h(y)=h(z))+ > T (hly)=h(x)).
fyex ¥ yex\{z} *

for all x € X. Hence, Qh is straightforward to evaluate. This implies that when

our estimator is used to learn an imprecise CTMC from data, the lower expect-

ations of this imprecise CTMC can be computed efficiently [6].
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