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Continuous-time Markov chain refresher

Xstate space

initial distribution π0initial conditions

transition rate matrix Qdynamics

homogeneous continuous-time Markov chain (Xt)t∈R≥0

marginal expectations limit expectations time averages

all kinds of inferences
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Marginal expectation

Fix some f : X → R and t ∈ R≥0.

It is well-known that
E( f (Xt)) = π0 Tt f

Tt := etQ = lim
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State space explosion

system dimensions

|X
|

problem
computing E( f (Xt)) becomes intractable

solution
reduce the number of states somehow
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Lumping

Informally
Taking together (lumping, aggregating) states yields the lumped stochastic process,
which has a (significantly) smaller state space.

Formally
The lumped state space X̂ is a partition of X . [1 < |X̂ | ≪ |X |]

The lumping map Λ : X → X̂ maps states to corresponding lumps. [Λ is a surjection]

The lumped stochastic process is defined as

X̂t := Λ(Xt) for all t ∈ R≥0.
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Λ

Λ

original model lumped model

1A

1B 1C

2A

2B 2C

1

2

f (1A) = f (1B)
= f (1C)

=: f̂ (1)

f (2A) = f (2B)
= f (2C)

=: f̂ (2)

q(1A,2A)q(1B,2B)
q(1B,2A)

q(1C,2C)
q(1C,2A)

? q̂(1,2) ?Λ
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Marginal expectation » A trick with lumping

Fix some f : X → R and f̂ : X̂ → R such that f̂ ◦ Λ = f .

Then since X̂t = Λ(Xt),
E( f (Xt)) = E( f̂ (X̂t)).

If we cannot compute E( f (Xt)) tractably,
can we compute E( f̂ (X̂t)) tractably?
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The lumped stochastic process

In general, the lumped stochastic process (X̂t)t∈R≥0

- has dynamics that cannot be determined “immediately” from Q and Λ, and
- is not homogeneous nor Markov.

We therefore consider the set Pπ0,Q,Λ of consistent stochastic processes, that
• contains the lumped stochastic process,
+ takes the form of an imprecise continuous-time Markov chain and
+ is fully parameterised by

π̂0 the lumped initial distribution, and
Q̂ the set of possible lumped transition rate matrices,

which in turn are fully defined by π0, Q and Λ.
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The lumped stochastic process » Building blocks

Essential to our computations are the lumped initial distribution π̂0, given by

π̂0(x̂) = ∑
x∈Λ−1(x̂)

π0(x) for all x̂ ∈ X̂ ,

and the lower transition rate operator Q̂ that, for all g ∈ L (X̂ ), is given by

[Q̂g](x̂) = min

 ∑
ŷ∈X̂

g(ŷ) ∑
y∈Λ−1(ŷ)

Q(x, y) : x ∈ Λ−1(x̂)

 for all x̂ ∈ X̂ .

[Λ−1 is the set-valued inverse of Λ]

Note: in practice, this optimisation usually simplifies considerably
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Marginal expectation » Lower and upper bound

Fix some f : X → R and f̂ : X̂ → R such that f̂ ◦ Λ = f .

Then
π̂0 T̂t f̂ ≤ E( f̂ (X̂t)) = E( f (Xt)) = π0 Tt f

≤ −π̂0 T̂t (− f̂ ).

T̂t := lim
n→+∞
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A queueing example » Set up

(Cardoen, 2018) studies a system of parallel queues with processor sharing.

shared
service capacity

1

2

...
...

N

Full system description

• state is (i1, i2, . . . , iN)

- |X | = (K + 1)N

Only interested in i1

- (i1, i2, . . . , iN) contains too much
information

¿ lumped state space ?
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A queueing example » Trade-off between imprecision and computation time

Figure taken from (Cardoen, 2018) 13
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