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Comparative judgements

Consider a finite possibility space 2~ with cardinality n := | 27|.

We are given m comparative judgements of the form

Ac=Be e Y p(x) > ) p(y) with Ay, By C 2.
XEAL YyEBy

This comparative assessment
6 = {(Ak,Bk)Z k e {1,...,71’1}}
induces the set of compatible probability mass functions

My = {papmf: (V(4,B) € %) NOE ZBp(y)}.
xX€ yeE



What has already been done?

Classical works by de Finetti, Koopman, Good or Savage assume that
% is a total order > on P(4Z").

Following Walley and Miranda & Destercke, we allow that
% is a partial order.



What has already been done?

Classical works by de Finetti, Koopman, Good or Savage assume that
% is a total order > on P(4Z").

Following Walley and Miranda & Destercke, we allow that
% is a partial order.

The work of Miranda & Destercke is most closely related to ours, but they
consider comparisons between atoms instead of events.

They show that

> Ay is always non-empty;
> has at most 2"~ extreme points;
> these extreme points can be easily determined.



When is .#Z4, non-empty?



Compatibility of a comparative assessment

The comparative assessment ¢ corresponds to the set of desirable gambles
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Compatibility of a comparative assessment

The comparative assessment ¢ corresponds to the set of desirable gambles

Ky = {I[A —Ip: (A,B) S (5}

From Walley's theory, we know that

My # D <= K¢ avoids sure loss

k
<= max ) f, >0 forallke N, f, € K¢
=S

<—— max Z A(A,B)(H/l = HB) >0 forall )\'(A,B) € Z>o.
(A,B)e¥



Redundant and saturated constraints

Assume that .7, # @.
The constraint (A, B) € € is redundant—that is, .4y = M4\ (4,8, —if and only if
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Redundant and saturated constraints

Assume that .7, # @.
The constraint (A, B) € € is redundant—that is, .4y = M4\ (4,8, —if and only if

Iy—1pe€e posi (IC%\{(A,B)} U {l[x: X € %})
If no constraint is redundant, then

(V(A,B) € 6)(3p € M) ZAP(X) = ZBP(E/),
x€ yE

and vice versa.



Can we say something about the structure of .#Z,?



M as a convex polytope

We interpret real-valued functions on 2~ as vectors in R".

Then .#y is the convex polytope defined by n + m + 1 half spaces:

pt1=1,
pTlIxZO forallx € 2,
pT(Iy —13) >0  forall (A B) € %.

Therefore, it is also uniquely defined by its extreme points ext(.#).



Properties of the extreme points

Miranda & Desctercke show that for comparisons between atoms,

> every extreme point is a uniform distribution; and

> there are at most 2("~1) extreme points (and this bound can be reached).



Properties of the extreme points

Miranda & Desctercke show that for comparisons between atoms,

> every extreme point is a uniform distribution; and

> there are at most 2("~1) extreme points (and this bound can be reached).

We show that for comparisons between events,

> an extreme point is not necessarily a uniform distribution; and

> there can be more than 2" extreme points.



Can we bound the number of extreme points of .Z,?



Miranda & Destercke show that for comparisons between atoms,

lext(Ay)| < 207D,
By McMullens’s theorem,

lext( )| < (’”“* WzJ) 4 (’”* Wﬂ).

m—+1 m-+1



Miranda & Destercke show that for comparisons between atoms,

lext(Ay)| < 207D,

Modifying an argument of Derks & Kuipers and Wallner, we show that

lext(Ay)| < n!2".



Can we easily determine the extreme points of .7.?



A helpful graphical representation

Inspired by Miranda & Destercke, we represent the assessment ¢ as
a digraph Ge.

We add one node for every atom x in the possibility space 2.
For every judgement (A, B) € ¢, we add
> an auxiliary node ¢,

> a directed edge from every x in A to ¢, and

> a directed edge from ¢ to every y in B.



A helpful graphical representation

Inspired by Miranda & Destercke, we represent the assessment ¢ as
a digraph Ge.
For example, {1,2,3} = {4,5} yields

o

of



Acyclic digraph

> If the digraph G is acyclic and
> every atom-node has no more than 1 incoming edge,

every extreme point corresponds to an “extreme arborescence” and vice versa,

and these “extreme arborescences” can be easily generated procedurally.

10



Acyclic digraph

> If the digraph G is acyclic and
> every atom-node has no more than 1 incoming edge,
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Acyclic digraph

> If the digraph G« is acyclic,
> every atom-node has no more than 1 incoming edge, and
> every auxiliary-node has precisely 1 incoming edge,

then all the extreme points correspond to uniform distributions.

10



There is more...

Our results extend easily to a number of more general scenarios:

> when % is associated with a muti-level partition of .27;
> when we consider strict probability comparisons;

> by decomposing G« in terms of its connected components.

11



There is more...

Our results extend easily to a number of more general scenarios:

> when % is associated with a muti-level partition of .27;
> when we consider strict probability comparisons;

> by decomposing G« in terms of its connected components.
Still, there are plenty of things to be done:

> Lower the general bound on the number of extreme points.
> Consider other particular cases of acyclic digraphs.

> Check if other graphical representations are more effective.

11
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