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Comparative judgements

Consider a possibility space X .

We are given m comparative judgements of the form

Ak � Bk ⇔ P(Ak) ≥ P(Bk) with Ak, Bk ⊆ X .

This comparative assessment

C := {(Ak, Bk) : k ∈ {1, . . . , m}}

induces the set of compatible probability mass functions

MC :=
{

p a pmf : (∀(A, B) ∈ C ) ∑
x∈A

p(x) ≥ ∑
y∈B

p(y)
}

.
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What has already been done?

Classical works by de Finetti, Koopman, Good or Savage assume that
C is a total order � on P(X ).

Following Walley and Miranda & Destercke, we allow that
C is a partial order.

The work of Miranda & Destercke is most closely related to ours, but they
consider comparisons between atoms instead of events.

They show that
. MC is always non-empty;
. has at most 2(n−1) extreme points;
. these extreme points can be easily determined.
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When is MC non-empty?
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Compatibility of a comparative assessment

The comparative assessment C corresponds to the set of desirable gambles

KC := {IA − IB : (A, B) ∈ C }.

From Walley’s theory, we know that

MC 6= ∅ ⇐⇒ KC avoids sure loss

⇐⇒ max
k

∑
`=1

f` ≥ 0 for all k ∈N, f` ∈ KC

⇐⇒ max ∑
(A,B)∈C

λ(A,B)(IA − IB) ≥ 0 for all λ(A,B) ∈ Z≥0.
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Redundant and saturated constraints

Assume that MC 6= ∅.

The constraint (A, B) ∈ C is redundant—that is, MC = MC \{(A,B)}—if and only if

IA − IB ∈ posi
(
KC \{(A,B)} ∪ {Ix : x ∈ X }

)
.

If no constraint is redundant, then

(∀(A, B) ∈ C )(∃p ∈MC ) ∑
x∈A

p(x) = ∑
y∈B

p(y),

and vice versa.
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Can we say something about the structure of MC ?
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MC as a convex polytope

We interpret real-valued functions on X as vectors in Rn.

Then MC is the convex polytope defined by n + m + 1 half spaces:

pT1 = 1,

pTIx ≥ 0 for all x ∈ X ,

pT(IA − IB) ≥ 0 for all (A, B) ∈ C .

Therefore, it is also uniquely defined by its extreme points ext(MC ).
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Properties of the extreme points

Miranda & Desctercke show that for comparisons between atoms,

. every extreme point is a uniform distribution; and

. there are at most 2(n−1) extreme points (and this bound can be reached).

We show that for comparisons between events,

. an extreme point is not necessarily a uniform distribution; and

. there can be more than 2n extreme points.
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Can we bound the number of extreme points of MC ?
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Miranda & Destercke show that for comparisons between atoms,

|ext(MC )| ≤ 2(n−1).

By McMullens’s theorem,

|ext(MC )| ≤
(

m + 1 + bn/2c
m + 1

)
+

(
m + dn/2e

m + 1

)
.

Modifying an argument of Derks & Kuipers and Wallner, we show that

|ext(MC )| ≤ n! 2n.
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Can we easily determine the extreme points of MC ?
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A helpful graphical representation

Inspired by Miranda & Destercke, we represent the assessment C as
a digraph GC .

We add one node for every atom x in the possibility space X .

For every judgement (A, B) ∈ C , we add

. an auxiliary node ξ,

. a directed edge from every x in A to ξ, and

. a directed edge from ξ to every y in B.
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A helpful graphical representation

Inspired by Miranda & Destercke, we represent the assessment C as
a digraph GC .

For example, {1, 2, 3} � {4, 5} yields

ξ

1

2

3

4

5
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Acyclic digraph

. If the digraph GC is acyclic and

. every atom-node has no more than 1 incoming edge,

. every auxiliary-node has precisely 1 incoming edge,

every extreme point corresponds to an “extreme arborescence” and vice versa,

and these “extreme arborescences” can be easily generated procedurally.

then all the extreme points correspond to uniform distributions.
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There is more...

Our results extend easily to a number of more general scenarios:

. when C is associated with a muti-level partition of X ;

. when we consider strict probability comparisons;

. by decomposing GC in terms of its connected components.

Still, there are plenty of things to be done:

. Lower the general bound on the number of extreme points.

. Consider other particular cases of acyclic digraphs.

. Check if other graphical representations are more effective.
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