A study of the set of probability measures compatible with comparative judgements

Alexander Erreygers & Enrique Miranda 15th June 2020

Ghent University & University of Oviedo

3 month research stay in Oviedo, Spain

expectation

reality

Comparative judgements

Consider a possibility space ${\mathscr X}$.

We are given *m* comparative judgements of the form

 $A_k \succeq B_k \Leftrightarrow P(A_k) \ge P(B_k) \quad \text{with } A_k, B_k \subseteq \mathscr{X}.$

Consider a finite possibility space \mathscr{X} with cardinality $n \coloneqq |\mathscr{X}|$.

We are given m comparative judgements of the form

$$A_k \succeq B_k \Leftrightarrow \sum_{x \in A_k} p(x) \ge \sum_{y \in B_k} p(y) \quad \text{with } A_k, B_k \subseteq \mathscr{X}.$$

Consider a finite possibility space \mathscr{X} with cardinality $n \coloneqq |\mathscr{X}|$.

We are given m comparative judgements of the form

$$A_k \succeq B_k \Leftrightarrow \sum_{x \in A_k} p(x) \ge \sum_{y \in B_k} p(y) \quad \text{with } A_k, B_k \subseteq \mathscr{X}.$$

This comparative assessment

$$\mathscr{C} \coloneqq \{(A_k, B_k) \colon k \in \{1, \ldots, m\}\}$$

induces the set of compatible probability mass functions

$$\mathscr{M}_{\mathscr{C}} \coloneqq \Big\{ p \text{ a pmf} \colon (\forall (A, B) \in \mathscr{C}) \ \sum_{x \in A} p(x) \ge \sum_{y \in B} p(y) \Big\}.$$

Classical works by de Finetti, Koopman, Good or Savage assume that \mathscr{C} is a total order \succeq on $\mathcal{P}(\mathscr{X})$.

Following Walley and Miranda & Destercke, we allow that

 \mathscr{C} is a partial order.

Classical works by de Finetti, Koopman, Good or Savage assume that \mathscr{C} is a total order \succeq on $\mathcal{P}(\mathscr{X})$.

Following Walley and Miranda & Destercke, we allow that

 \mathscr{C} is a partial order.

The work of Miranda & Destercke is most closely related to ours, but they consider comparisons between <u>atoms</u> instead of events.

They show that

- \triangleright $\mathcal{M}_{\mathscr{C}}$ is always non-empty;
- \triangleright has at most $2^{(n-1)}$ extreme points;
- ▷ these extreme points can be easily determined.

When is $\mathcal{M}_{\mathscr{C}}$ non-empty?

Compatibility of a comparative assessment

The comparative assessment ${\mathscr C}$ corresponds to the set of desirable gambles

$$\mathcal{K}_{\mathscr{C}} \coloneqq \{ \mathbb{I}_A - \mathbb{I}_B \colon (A, B) \in \mathscr{C} \}.$$

The comparative assessment ${\mathscr C}$ corresponds to the set of desirable gambles

$$\mathcal{K}_{\mathscr{C}} \coloneqq \{ \mathbb{I}_A - \mathbb{I}_B \colon (A, B) \in \mathscr{C} \}.$$

From Walley's theory, we know that

$$\begin{aligned} \mathscr{M}_{\mathscr{C}} \neq \emptyset \iff \mathcal{K}_{\mathscr{C}} \text{ avoids sure loss} \\ \iff \max \sum_{\ell=1}^{k} f_{\ell} \geq 0 \quad \text{for all } k \in \mathbb{N}, f_{\ell} \in \mathcal{K}_{\mathscr{C}} \\ \iff \max \sum_{(A,B) \in \mathscr{C}} \lambda_{(A,B)} (\mathbb{I}_{A} - \mathbb{I}_{B}) \geq 0 \quad \text{for all } \lambda_{(A,B)} \in \mathbb{Z}_{\geq 0}. \end{aligned}$$

Assume that $\mathscr{M}_{\mathscr{C}} \neq \emptyset$.

The constraint $(A, B) \in \mathscr{C}$ is *redundant*—that is, $\mathscr{M}_{\mathscr{C}} = \mathscr{M}_{\mathscr{C} \setminus \{(A,B)\}}$ —if and only if

$$\mathbb{I}_A - \mathbb{I}_B \in \text{posi}\left(\mathcal{K}_{\mathscr{C} \setminus \{(A,B)\}} \cup \{\mathbb{I}_x \colon x \in \mathscr{X}\}\right).$$

Assume that $\mathcal{M}_{\mathscr{C}} \neq \emptyset$.

The constraint $(A, B) \in \mathscr{C}$ is *redundant*—that is, $\mathscr{M}_{\mathscr{C}} = \mathscr{M}_{\mathscr{C} \setminus \{(A, B)\}}$ —if and only if

$$\mathbb{I}_A - \mathbb{I}_B \in \text{posi}\left(\mathcal{K}_{\mathscr{C} \setminus \{(A,B)\}} \cup \{\mathbb{I}_x \colon x \in \mathscr{X}\}\right).$$

If no constraint is redundant, then

$$(\forall (A,B) \in \mathscr{C}) (\exists p \in \mathscr{M}_{\mathscr{C}}) \sum_{x \in A} p(x) = \sum_{y \in B} p(y)$$

and vice versa.

Can we say something about the structure of $\mathcal{M}_{\mathscr{C}}$?

We interpret real-valued functions on \mathscr{X} as vectors in \mathbb{R}^n .

Then $\mathcal{M}_{\mathscr{C}}$ is the convex polytope defined by n + m + 1 half spaces:

$$p^{\mathrm{T}} 1 = 1,$$

 $p^{\mathrm{T}} \mathbb{I}_{x} \ge 0$ for all $x \in \mathscr{X},$
 $p^{\mathrm{T}} (\mathbb{I}_{A} - \mathbb{I}_{B}) \ge 0$ for all $(A, B) \in \mathscr{C}.$

Therefore, it is also uniquely defined by its extreme points $ext(\mathcal{M}_{\mathscr{C}})$.

Miranda & Desctercke show that for comparisons between atoms,

- $\triangleright\,$ every extreme point is a uniform distribution; and
- \triangleright there are at most $2^{(n-1)}$ extreme points (and this bound can be reached).

Miranda & Desctercke show that for comparisons between atoms,

- ▷ every extreme point is a uniform distribution; and
- \triangleright there are at most $2^{(n-1)}$ extreme points (and this bound can be reached).

We show that for comparisons between events,

- ▷ an extreme point is not necessarily a uniform distribution; and
- \triangleright there can be *more than* 2^n extreme points.

Can we bound the number of extreme points of $\mathcal{M}_{\mathscr{C}}$?

Miranda & Destercke show that for comparisons between atoms,

$$|\operatorname{ext}(\mathscr{M}_{\mathscr{C}})| \leq 2^{(n-1)}.$$

By McMullens's theorem,

$$|\operatorname{ext}(\mathscr{M}_{\mathscr{C}})| \leq \binom{m+1+\lfloor n/2 \rfloor}{m+1} + \binom{m+\lceil n/2 \rceil}{m+1}.$$

Miranda & Destercke show that for comparisons between atoms,

$$|\operatorname{ext}(\mathscr{M}_{\mathscr{C}})| \leq 2^{(n-1)}.$$

By McMullens's theorem,

$$|\operatorname{ext}(\mathscr{M}_{\mathscr{C}})| \leq \binom{m+1+\lfloor n/2 \rfloor}{m+1} + \binom{m+\lceil n/2 \rceil}{m+1}.$$

Modifying an argument of Derks & Kuipers and Wallner, we show that

$$|\operatorname{ext}(\mathscr{M}_{\mathscr{C}})| \leq n! \, 2^n.$$

Can we easily determine the extreme points of $\mathcal{M}_{\mathscr{C}}$?

Inspired by Miranda & Destercke, we represent the assessment ${\mathscr C}$ as a digraph ${\mathcal G}_{{\mathscr C}}.$

We add one node for every atom x in the possibility space \mathscr{X} .

For every judgement $(A, B) \in \mathcal{C}$, we add

- \triangleright an auxiliary node ξ ,
- \triangleright a directed edge from every x in A to ξ , and
- \triangleright a directed edge from ξ to every y in B.

Inspired by Miranda & Destercke, we represent the assessment ${\mathscr C}$ as a digraph ${\mathcal G}_{{\mathscr C}}.$

For example, $\{1, 2, 3\} \succeq \{4, 5\}$ yields

Acyclic digraph

- $\triangleright~$ If the digraph $\mathcal{G}_{\mathscr{C}}$ is acyclic and
- ▷ every atom-node has no more than 1 incoming edge,

every extreme point corresponds to an "extreme arborescence" and vice versa,

and these "extreme arborescences" can be easily generated procedurally.

Acyclic digraph

- $\triangleright~$ If the digraph $\mathcal{G}_{\mathscr{C}}$ is acyclic and
- ▷ every atom-node has no more than 1 incoming edge,

$$|\operatorname{ext}(\mathscr{M}_{\mathscr{C}})| \leq 2^{(n-1)}.$$

Acyclic digraph

- \triangleright If the digraph $\mathcal{G}_{\mathscr{C}}$ is acyclic,
- $\triangleright\,$ every atom-node has no more than 1 incoming edge, and
- \triangleright every auxiliary-node has precisely 1 incoming edge,

then all the extreme points correspond to uniform distributions.

Our results extend easily to a number of more general scenarios:

- \triangleright when \mathscr{C} is associated with a muti-level partition of \mathscr{X} ;
- ▷ when we consider *strict* probability comparisons;
- $\triangleright\,$ by decomposing $\mathcal{G}_{\mathscr{C}}$ in terms of its connected components.

Our results extend easily to a number of more general scenarios:

- \triangleright when \mathscr{C} is associated with a muti-level partition of \mathscr{X} ;
- ▷ when we consider *strict* probability comparisons;
- $\triangleright\,$ by decomposing $\mathcal{G}_{\mathscr{C}}$ in terms of its connected components.

Still, there are plenty of things to be done:

- ▷ Lower the general bound on the number of extreme points.
- > Consider other particular cases of acyclic digraphs.
- ▷ Check if other graphical representations are more effective.