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Summary ✽
This dissertation covers several theoretical and practical aspects of Marko-
vian imprecise jump processes. A Markovian imprecise jump process is a
particular type of stochastic process, meaning that it is a mathematical model
for a dynamical system whose state evolves over time in an uncertain manner.
In particular, it is a specific type of stochastic process for a system that evolves
in continuous time and whose state assumes values in a finite state space.

Because a Markovian imprecise jump process models uncertainty, we
begin this dissertation with a brief overview of some of the mathemati-
cal tools that can be used to model uncertainty. We adhere to the coher-
ence framework for modelling uncertainty as conceived by de Finetti (1970),
P. M. Williams (1975), and Walley (1991), and not to the more conventional
measure-theoretical framework advanced by Kolmogorov (1933). In partic-
ular, we use coherent conditional probabilities as elementary uncertainty
models. Unlike with the probability measures that are used in the measure-
theoretical framework, this allows us to condition on events with probability
zero without any issue or ambiguity.

Next, we present our take on the framework of (im)precise jump pro-
cesses, which was originally put forward by Krak et al. (2017). We define a
(precise) jump process as a coherent conditional probability on a specific
domain: we consider finitary events – events that depend on the state of
the system at a finite number of future time points – in combination with
conditioning events that fix the state of the system at a finite number of (past)
time points. Under the classical Markovianity and (time-)homogeneity as-
sumptions – and a mild continuity assumption – a jump process is uniquely
defined by two parameters: its probability mass function and its rate opera-
tor. Thus, given these two parameters, we can determine the (conditional)
probability of any finitary event, and therefore the (conditional) expectation
of any simple variable – a simple variable depends on the state of the system
at a finite number of time points. Note that (conditional) probabilities are a
special case of (conditional) expectations, so we can focus on the latter.

Specifying precise values for the parameters of a (homogeneous) Marko-
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vian jump process can be infeasible if not impossible, especially if these are
learned from data and/or are elicited from an expert. This is where Marko-
vian imprecise jump processes come in, as they generalise Markovian jump
processes to allow for partial parameter specification. Whereas a Markovian
jump process is fully determined by an initial probability mass function and
a rate operator, a Markovian imprecise jump process is determined by a set of
initial probability mass functions and a bounded set of rate operators. How-
ever, there is not one Markovian imprecise jump process, but there are three
that we consider. All three of them are defined as sets of jump processes that
are consistent with the set of initial probability mass functions and the set
of rate operators, but they differ in the type of processes that are considered:
the first contains all consistent homogeneous and Markovian jump process,
the second contains all consistent Markovian homogeneous jump processes
– so it includes the homogeneous ones – and the third simply contains all
consistent jump process – so it includes the Markovian ones.

Because we work with sets of jump processes, there is not a single value
for the (conditional) expectation of a simple variable, but a set of values;
our aim is not to determine this set, but to determine tight lower and upper
bounds, which we call lower and upper expectations. Whether or not we can
compute these lower and upper bounds in a tractable manner depends on
the structure of the set of rate operators. If this set is infinite, which usually is
the case, then computing lower and upper expectations of simple variables
is computationally intractable for the set of consistent homogeneous and
Markovian jump processes. Quite remarkably, it turns out that if the set of
rate operators is separately specified (and convex), then we can nevertheless
tractably compute tight lower and upper bounds for the other two sets of
consistent jump processes. Krak et al. (2017) identify two such cases: (i) sepa-
rately specified is sufficient for simple variables that depend on the state of
the system at a single future time point; and (ii) separately specified rows and
convexity are sufficient for general simple variables, although only for the set
of all consistent jump process. We identify a third case that sits somewhere
between the previous two extreme ones: if the set of rate operators is sepa-
rately specified, then we can tractably compute lower and upper expectations
for simple variables that have a so-called sum-product representation.

In many applications, the variables of interest depend on the state of
the system at all time points in a (bounded) time period, so on the state of
the system at more than a finite number of time points. One of the more
important contributions of this dissertation is that we extend the domain of
Markovian imprecise jump processes to deal with such variables. Crucial to
our extension is that we consider càdlàg sample paths from the start. Many
important variables are then the point-wise limit of a sequence of simple vari-
ables, and we call these idealised variables; examples are temporal averages,
hitting times and indicators of until events. We show that for any (bounded)
set of rate operators, the (conditional) expectation corresponding to any
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consistent jump process satisfies monotone convergence, so we can extend
the domain of this expectation through Daniell’s (1918) method of integra-
tion. Even more, we show that the tight lower and upper bounds on these
extended expectations satisfy (imprecise generalisations of) the Monotone
Convergence Theorem and Lebesgue’s Dominated Convergence theorem. In
general, this convergence might be to conservative bounds, but we show that
the convergence is tight for three important types of idealised variables – in-
dicators of time-bounded until events, truncated hitting times and temporal
averages. Even more, these idealised variables are the point-wise limits of
sequences of simple variables that have a sum-product representation, and
we can therefore tractably compute their lower and upper expectations, at
least for the set of all consistent (Markovian) jump processes, whenever the
set of rate operators is separately specified.

After this theoretical part, we turn to a – still rather theoretical – setting
where parameter indeterminacy arises naturally. In many applications with
homogeneous and Markovian jump process models, the state space is so
large that computing expectations becomes intractable. Lumping the states –
sometimes also called grouping or aggregating states – can then significantly
reduce the number of states. Unfortunately, characterising the resulting
lumped jump process exactly is not possible due to loss of information – at
least not in general. We show that this lumped jump process is consistent
with a set of initial probability mass functions on the lumped state space that
follows naturally from the original initial probability mass functions, and
that this lumped jump process is consistent with a set of rate operators on
the lumped state space that is induced by the original rate operator. Conse-
quently, we can use the corresponding Markovian imprecise jump process to
tractably compute lower and upper bounds on expectations that we could
not tractably compute otherwise.

Finally, we show that all of the aforementioned theory serves a purpose.
To this end, we consider the problem of spectrum fragmentation in a single
optical link, which is an example where the state space of the exact homoge-
neous Markovian jump process model is too large. Kim, Yan, et al. (2015) only
consider the random allocation policy, and they reduce the number of states
by lumping; they deal with the resulting parameter indeterminacy through an
approximate homogeneous and Markovian model, and they use this model
to approximate the blocking ratios. With our method, we obtain guaranteed
lower and upper bounds on the blocking ratios instead of approximations,
and we do so for the random allocation policy but also for two other policies.
Even more, we can determine lower and upper bounds on the blocking ratios
that hold for any allocation policy.
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Samenvatting ✾
Dit proefschrift behandelt verscheidene theoretische en praktische aspecten
van Markoviaanse imprecieze sprongprocessen. Een Markoviaans imprecies
sprongproces is een type stochastisch proces, wat betekent dat het een wis-
kundig model is voor een dynamisch systeem waarvan de toestand op een
onzekere manier evolueert in de tijd. Meer specifiek is het een type stochas-
tisch proces voor een systeem dat evolueert in continue tijd en waarvan de
toestand waarden aanneemt in een eindige toestandsruimte.

Omdat een Markoviaans imprecies sprongproces onzekerheid model-
leert, beginnen we dit proefschrift met een bondig overzicht van enkele
wiskundige manieren om onzekerheid te modelleren. We houden ons aan de
aanpak om onzekerheid te modelleren van de Finetti (1970), Walley (1991)
en P. M. Williams (1975) die op coherentie is gebaseerd, en dus niet aan de
meer conventionele maattheoretische aanpak van Kolmogorov (1933). In het
bijzonder maken we gebruik van coherente conditionele waarschijnlijkheden
als elementaire onzekerheidsmodellen. In tegenstelling tot de waarschijn-
lijkheidsmaten die gebruikt worden in de maattheoretische waarschijnlijk-
heidsleer, maakt dat het mogelijk om te conditioneren op gebeurtenissen
met waarschijnlijkheid nul, en dit zonder enig probleem of enige ambiguïteit.

Vervolgens presenteren we het kader van (im)precieze sprongprocessen
zoals voorgesteld door Krak e.a. (2017), maar dan vanuit een eigen insteek.
We definiëren een (precies) sprongproces als een coherente conditionele
waarschijnlijkheid met een specifiek domein: we beschouwen zogenoemde
eindige gebeurtenissen – gebeurtenissen die afhangen van de toestand van
het systeem op een eindig aantal tijdspunten – in combinatie met conditio-
nerende gebeurtenissen die de toestand van het systeem vastleggen op een
eindig aantal tijdspunten (in het verleden). Onder de klassieke aannames van
Markovianiteit en (tijds-)homogeniteit – en onder een milde continuïteits-
aanname – is een sprongproces uniek gedefinieerd door twee parameters:
zijn initiële massafunctie en zijn transitietempo-operator. Bijgevolg kun-
nen we met deze twee parameters de (conditionele) waarschijnlijkheid van
elke eindige gebeurtenis bepalen, en daarom ook de (conditionele) verwach-
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tingswaarde van elke eindige toevallige veranderlijke – een eindige toevallige
veranderlijke is een toevallige veranderlijke die afhangt van de toestand van
het systeem op een eindig aantal tijdspunten. Merk op dat (conditionele)
waarschijnlijkheden een speciaal geval zijn van (conditionele) verwachtings-
waarden, dus kunnen we ons beperken tot die laatste.

Het is vaak onmogelijk om exact de waarden voor de parameters van een
(homogeen) Markoviaans sprongproces op te geven, zeker als ze geschat wor-
den uit data en/of als een expert ze aanlevert. Dit is waar Markoviaanse imp-
recieze sprongprocessen nut hebben, aangezien ze homogene Markoviaanse
sprongprocessen veralgemenen op een manier die onbepaaldheid van de
parameters toelaat. In tegenstelling tot een homogeen Markoviaans sprong-
proces, dat volledig bepaald wordt door één initiële massafunctie en één
transitietempo-operator, wordt een Markoviaans imprecies sprongproces
bepaald door een verzameling van initiële massafuncties en een (begrensde)
verzameling van transitietempo-operatoren. Er zijn echter meerdere Marko-
viaanse imprecieze sprongprocessen die gekarakteriseerd worden door deze
parameters, en we beschouwen er hier drie. Alle drie zijn ze gedefinieerd als
verzamelingen van sprongprocessen die consistent zijn met de verzameling
initiële massafuncties en de verzameling transitietempo-operatoren, maar
ze verschillen in het type processen dat in aanmerking komt: het eerste bevat
alle consistente homogene Markoviaanse sprongprocessen, het tweede bevat
alle consistente (niet noodzakelijk homogene) Markoviaanse sprongproces-
sen en het derde bevat alle consistente (niet noodzakelijk Markoviaanse)
sprongprocessen.

Aangezien we niet langer uitgaan van één sprongproces maar van een
verzameling, is er ook niet langer één verwachtingswaarde van een eindige
toevallige veranderlijke maar een verzameling van zulke verwachtingswaar-
den. Het is niet ons doel om deze verzamelingen te bepalen, maar wel hun
boven- en ondergrenzen. Of we al dan niet deze boven- en ondergrenzen kun-
nen berekenen hangt af van de structuur van de verzameling transitietempo-
operatoren. Als deze verzameling oneindig is, wat meestal het geval is, dan
is het praktisch onmogelijk om onder- en bovenverwachtingswaarden van
eindige toevallige veranderlijken te berekenen voor de verzameling van con-
sistente homogene Markoviaanse sprongprocesses. Merkwaardig genoeg
blijkt dat we de boven- en ondergrenzen wel kunnen berekenen voor de twee
andere verzamelingen van consistente sprongprocessen, of toch indien de
verzameling transitietempo-operatoren componentsgewijs beschreven (en
convex) is. Krak e.a. (2017) tonen dit aan voor twee ‘extreme’ gevallen: (i)
componentsgewijs beschreven is voldoende voor eindige toevallige veran-
derlijken die afhangen van de toestand van het systeem op één toekomstig
tijdspunt; en (ii) componentsgewijs beschreven en convex is voldoende voor
algemene eindige toevallige veranderlijken, maar wel enkel voor de verza-
meling van alle consistente sprongprocessen. Wij tonen dit aan voor een
derde geval: als de verzameling transitietempo-operatoren componentsge-
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wijs beschreven is, dan kunnen we de boven- en onderverwachtingswaarde
berekenen voor eindige toevallige veranderlijken die een som-productvorm
hebben.

In veel toepassingen hangen de toevallige veranderlijken waarin we geïn-
teresseerd zijn af van de toestand van het systeem in alle tijdspunten in een
(begrensde) tijdsperiode, en dus niet van de toestand van het systeem in een
eindig aantal tijdspunten. Een van de belangrijkere bijdragen van dit proef-
schrift is dat we het domein van Markoviaanse imprecieze sprongprocessen
uitbreiden naar zulke variabelen. Het is essentieel voor deze uitbreiding dat
we van bij het begin aannemen dat de paden in de mogelijkhedenruimte
càdlàg zijn. Veel relevante toevallige veranderlijken zijn dan de puntsgewijze
limiet van een rij eindige toevallige veranderlijken, en we noemen ze geïdea-
liseerde variabelen; voorbeelden zijn tijdsgemiddelden, de tijd tot bereiken
en de indicator van de gebeurtenis van bereiken. We tonen aan dat voor elke
(begrensde) verzameling transitietempo-operatoren en voor elk consistent
proces, de bijbehorende (conditionele) verwachtingswaardeoperator mono-
toon convergent is, waardoor we deze kunnen uitbreiden aan de hand van
Daniells (1918) integratiemethode. Meer nog, we tonen voor de uitgebreide
boven- en onderverwachtingswaardeoperatoren aan dat ze voldoen aan va-
rianten van monotone convergentie en gedomineerde convergentie. In het
algemeen is deze convergentie conservatief, maar we tonen aan dat deze
convergentie exact is voor drie belangrijke types van geïdealiseerde toevallige
veranderlijken – indicatoren van de gebeurtenis van bereiken, afgeknotte tijd
tot bereiken en tijdsgemiddelden. Meer nog, deze geïdealiseerde toevallige
veranderlijken zijn de puntsgewijze limiet van een rij van eindige toeval-
lige veranderlijken die een som-productvorm hebben, en daarom kunnen
we hun boven- en onderverwachtingswaarden berekenen, tenminste als de
verzameling transitietempo-operatoren componentsgewijs beschreven is.

Na deze brok theorie is het tijd voor een eerste – nog steeds redelijk
theoretische – ‘praktische’ toepassing waar de parameters op natuurlijke
wijze onbepaald zijn. Het komt vaak voor dat de toestandsruimte van een
homogeen Markoviaans sprongproces zo groot is, dat het uitrekenen van
verwachtingswaarden praktisch onmogelijk wordt. We kunnen dan de toe-
standsruimte verkleinen door toestanden op te hopen, of anders gezegd, door
toestanden samen te nemen. In het algemeen gaat dit ophopen gepaard met
een verlies aan informatie, waardoor we het ‘opgehoopte’ sprongproces niet
meer exact kunnen bepalen. Wij tonen aan dat dit opgehoopte sprongproces
consistent is met een verzameling initiële massafuncties op de opgehoopte
toestandsruimte die op natuurlijke wijze volgt uit de oorspronkelijke initiële
massafunctie, en ook dat dit opgehoopte sprongproces consistent is met
een verzameling transitietempo-operatoren die afgeleid is van de oorspron-
kelijke transitietempo-operator. Hierdoor kunnen we het overeenkomstige
Markoviaans imprecies sprongproces gebruiken om onder- en bovengrenzen
te berekenen op verwachtingswaarden die we anders niet hadden kunnen
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berekenen.
Tenslotte tonen we aan dat al deze theorie wel degelijk een – praktisch

– nut heeft. Hiervoor kijken we naar de spectrumversplintering in een op-
tische kabel. Dit kan bestudeerd worden met een homogeen Markoviaans
sprongproces, maar de toestandsruimte van dit proces is te groot om er bere-
keningen mee te kunnen maken. Kim, Yan e.a. (2015) beschouwen enkel de
willekeurige toewijzingsprocedure, en zij maken de toestandsruimte kleiner
door toestanden op te hopen. Ze omzeilen het verlies aan informatie door
met een benaderend homogeen Markoviaans sprongproces te werken, en
met dit proces benaderen ze de blokkeringsverhoudingen. Met onze methode
berekenen we boven- en ondergrenzen op de blokkeringsverhoudingen in
plaats van benaderingen, en dit voor de willekeurige toewijzingsprocedure en
nog twee andere toewijzingsprocedures. Meer nog, we kunnen zelfs boven-
en ondergrenzen op de blokkeringsverhoudingen berekenen die gelden voor
elke mogelijke toewijzingsprocedure.

xx



Introduction 1
The theory of Markovian imprecise jump processes has various fascinating
facets, and this dissertation aims to come to grips with some of the more
elementary ones. Not only does this dissertation extend the existing theory,
but it also aims to show that Markovian imprecise jump processes are a useful
(computational) tool in applications.

This introductory chapter starts off with some context on and motivation
for Markovian imprecise jump processes. It also contains some information
on the internal and external references in this work, a short overview of its
contents, a list of publications that led to this dissertation and some prelimi-
naries about (sequences of) natural, integer and (extended) real numbers.

1.1 Context and motivation

A Markovian imprecise jump process is a type of stochastic process, meaning
that it is a mathematical model for a dynamical system whose state evolves
over time in a non-deterministic manner. This concept of a ‘dynamical
system’ is perhaps a bit abstract, so let us consider an example that we are all
familiar with: a shop that is open 24 hours a day, 7 days a week. Suppose we
are interested in the evolution of the number of customers inside such a shop.
In this case, the state space of the system – the set of possible values for the
state – is discrete and the state evolves in continuous time. It is fair to say that
we do not know with certainty when a new customer will enter the shop nor
how long they will stay, so the temporal evolution of the state of this system –
the number of customers in the shop – is uncertain. Nevertheless, we may
still be interested in some derived quantities: straightforward examples are
the number of customers that are in the shop at noon tomorrow, or the
average number of customers in the shop over the following 24 hour period.
Then the idea is that a stochastic process models our uncertainty about
(the temporal evolution of) the number of customers, and that we can use
this mathematical model to make inferences about the system, that is, that
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we can use this model to determine the probability of relevant events – for
example, the event that at noon tomorrow there will be 10 customers – and
the expectation of relevant variables – for example, the temporal average of
the number of customers over the following 24 hours.

The number of customers is of course only one example of a ‘state’ for
our system. Alternatively, we could be interested in the temperature in the
shop or in the number of clients that visit the shop per day; the former is
an example of a state with a continuous state space, and the latter is an
example of a state that evolves in discrete time. This illustrates that we
can categorize systems – and therefore also the corresponding stochastic
processes – according to the nature of their state space and time axis. In this
dissertation, we consider a (finite) discrete state space and a continuous time
axis; in that case, a stochastic process is called a jump process.

Let us start with the basic case of a classical – or ‘precise’ – jump process.
To specify such a jump process, we need to specify two types of probabilities.
The first type of probabilities are the initial probabilities; these model the
uncertainty regarding the initial state of the system. The second type of
probabilities are the transition probabilities; these model the uncertainty
regarding the evolution of the state. In general, a transition probability gives
the probability that the system is in some state y at a future time point r ,
given that the state of the system is x at the current time point t and that the
system’s state was z1, . . . , zn at the past time points s1, . . . ,sn . For example,
the probability that there are 7 customers at 10:10 today given that there are
10 customers now at 10:00 and that there were 8 customers at 9:15 and 12
customers at 8:12. Specifying these transition probabilities is a nuisance,
because we have to specify a transition probability for all combinations of a
future time point and future state, current time point and current state and
past time points and past states; for this reason, it is customary to make the
following two simplifying assumptions.

First and foremost, it is customary to assume that the transition proba-
bilities are Markovian,1 in the sense that they only depend on the state of
the system at the current time point t and not on the system’s state at the
past time points s1, . . . , sn . For our example from before, this means that the
probability that there are 7 customers at 10:10 today given that there are 10
customers now at 10:00 and that there were 8 customers at 9:15 and 12 cus-
tomers at 8:12, is equal to the probability that there are 7 customers at 10:10
today given that there are 10 customers at 10:00. Second, it is convenient to
assume that the transition probabilities are (time-)homogeneous, meaning
that it is only the length r − t of the period between the current time point t
and the future time point r that matters, and not the start (or end) point of
this time period. In our example, this means that the probability that there

1After Markov (1906), who popularised a similar assumption in his work on the Weak Law of
Large Numbers (Seneta, 1996, 2006).
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are 7 customers at 10:10 today given that there are 10 customers at 10:00 is
equal to the probability that there are 7 customers at 23:23 given that there
are 10 customers at 23:13.

We call a jump chain that satisfies these two assumptions a homoge-
neous Markovian jump chain. These were first studied by Kolmogorov (1931),
Doeblin (1938)2 and Fréchet (1938), and their theory was further developed
by Doob (1953), Chung (1960), Feller (1968) and many others. For a more
contemporary account of this theory, see (Iosifescu, 1980; Norris, 1997).

Due to the assumptions of Markovianity and homogeneity, we now only
need to specify the transition probabilities for the initial time point t = 0 and
any initial state x, and for any future time point r and any future state y . In
fact, it has been shown that – under a mild continuity assumption – these
transition probabilities are fully determined by their initial rate of change,
so by their derivatives at r = 0. Thus, a homogeneous Markovian jump
process is fully determined by its initial probabilities and its transition rates.
Notwithstanding this succinct parameterisation, a homogeneous Markovian
jump process can be used to make various non-trivial inferences: from the
probability of an event that depends on the state of the system at a finite
number of future time points – for example, the probability that there is no
customer in the shop at noon tomorrow – to the expectation of a variable
that depends on the state of the system at all future time points over some
(possibly unbounded) time period – for example, the expected temporal
average of the number of customers in the shop over the next 24 hours.

Homogeneous Markovian jump process have been used successfully in
an assortment of scientific fields, including biochemistry (Ganguly et al.,
2014), epidemiology (Kay, 1986), reliability analysis (Besnard et al., 2010;
Troffaes et al., 2015) and telecommunications engineering (Kim, Yan, et al.,
2015), mainly because of their simplicity. However, that is not to say that
there are no issues with using homogeneous Markovian jump process in
these applications. One issue that all of these applications have in common,
is that the defining parameters of the model – and in particular the transition
rates – are learned from data and/or elicited from experts. Usually, this results
in a single ‘exact’ estimate for each of the parameter values. However, the
inference of interest often depends on the parameters in a non-trivial way, so
it might occur that slightly different parameter values lead to widely different
conclusions. Thus, there is a clear need for a type of jump process that can
deal with partially specified parameters instead of exact parameter values. A
second issue is that the homogeneity and/or Markovianity assumptions may
not be justified. For instance, in our example of the shop, the homogeneity is
difficult to justify; to give just one possible issue, the number of customers
will evolve differently on a working day than on a bank holiday. Thus, there is

2Doeblin’s tragic life story is well worth the read; see for example Lévy’s (1955) account, or
the more recent one by Bru et al. (2002)
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a also a clear need for a type of jump process that does not need to assume
homogeneity and/or Markovianity.

Hartfiel (1985) was the first to investigate the dependency of the infer-
ences on the (rate) parameters of a (not necessarily homogeneous) Markovian
jump process – at least in a general setting – but he only considers inferences
that depend on a single future time point. Quite some time later, Škulj (2015)
did something similar; specifically, he provides an algorithm to compute
tight lower and upper bounds on inferences that depend on the state at
a single future time point. Krak et al. (2017) put Škulj’s (2015) work on a
sound theoretical basis, and in doing so they defined Markovian imprecise
jump processes – although they call them imprecise continuous-time Markov
chains. They define a Markovian imprecise jump process through a notion of
‘consistency’ with sets of parameters, and focus on three specific sets: (i) the
set of all consistent homogeneous and Markovian jump processes; (ii) the set
of all consistent (not necessarily homogeneous) Markovian jump processes;
and (iii) the set of all (not necessarily Markovian) jump processes. Thus,
they provide a way to deal with parameter indeterminacy, and at the same
time they are also able to let go of the homogeneity assumption and/or the
Markovianity assumption. That said, their theory can only deal with events
and variables that depend on the state of the system at a finite number of
future time points, and this significantly limits the applicability of Markovian
imprecise jump processes.

This brings us to the first main contribution of this dissertation, which is
to enlarge the scope of the theory of Markovian imprecise jump processes by
extending it to events and variables that depend on the state of the system
at all time points in some (unbounded) time period. Besides the necessary
theoretical framework, we also provide algorithms to determine (tight lower
and upper bounds on) the probability of such events or the expectation of
such variables.

The second main contribution of this dissertation addresses yet another
issue with homogeneous Markovian jump processes: the computational
methods to determine probabilities and expectations for such processes be-
come intractable if the state space is too large. Burke et al. (1958) propose
to solve this issue by lumping together states. Unfortunately, this lumping is
coupled with a loss of information, and this means that the resulting ‘lumped’
jump process is hard to characterise. This dissertation shows that lumping
essentially causes parameter indeterminacy and a loss of Markovianity and
homogeneity, and establishes that a ‘lumped’ Markovian imprecise jump
process can be used to capture this. This enables us to tractably compute
bounds on probabilities and expectations that we could not tractably com-
pute otherwise.
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1.2 References

As you have undoubtedly already noticed by now, we refer to other works
with the name of the (first) author and the year of publication. The full
bibliographical details of these references are available in the Bibliography,
which starts on page 485.

This dissertation also contains countless internal references – figuratively
speaking, that is – to chapters, (sub)sections, equations, figures, tables, theo-
rems, propositions, lemmas, corollaries and (running) examples. Locating
the referenced material can be a rather cumbersome affair, especially in a
work of this size. For this reason, we resort to Quaeghebeur’s (2009) system
of locational clues, as has become tradition for doctoral dissertations and
monographs written by members of FLip3 (Quaeghebeur, 2009; Troffaes et al.,
2014; De Bock, 2015; Lopatatzidis, 2017; Van Camp, 2017; Krak, 2021). When-
ever an internal reference is not located on the same double-page spread
as the material it references, we add a clue to the location of this material
as a subscript: ↶ or ↷ whenever the material is on the recto page or the
verso page, respectively, and a page number otherwise. For example: the
proof of Theorem 5.19230 – quite an important result in Section 5.2.1228 of
Chapter 5215 – has been relegated to Appendix 5.C252 and uses the termi-
nology and tools of measure-theoretic probability theory as introduced in
Appendix C461

1.3 Brief overview

Besides this introductory chapter and the conclusions in Chapter 9439, this
dissertation consists of seven chapters and three appendices. This section
gives a very brief overview of these chapters and appendices.

Chapter 211 introduces the basic mathematical tools that we will use to
model uncertainty. Especially important is Section 2.440 where we introduce
coherent conditional probabilities, as these are our elementary uncertainty
models for jump processes.

In Chapter 353, we introduce the framework of (im)precise jump process
as conceived by (Krak et al., 2017). First we define jump processes as coher-
ent conditional probabilities with a specific domain, second we consider
Markovian (and homogeneous) jump processes as a special case, and third
we define imprecise jump processes as sets of (consistent) jump processes.

Chapter 4157 is all about computing lower and upper expectations for
imprecise jump processes. Most important are the two algorithms we give
to compute the lower and upper expectation of simple variables. We also
investigate how we can evaluate the operator exponential of a lower rate
operator, and we have our first encounter with ergodicity.

3The Foundations Lab for imprecise probabilities; a research group at Ghent University
formerly known as SYSTeMS.
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Next, we move on from simple variables to idealised variables in Chap-
ter 5215. This chapter has two parts. In the first part, we discover how
Daniell’s (1918) integration method extends the expectation correspond-
ing to a generic countably additive probability charge. In the second part,
we use this extension method to extend the domain of a generic countably
additive jump process. We subsequently show that any (consistent) jump
process in an imprecise jump process is countably additive, and finally use
this result to extend the lower and upper expectations for an imprecise jump
process.

Chapter 6273 is to Chapter 5215 what Chapter 4157 was to Chapter 353: a
second chapter about computing lower and upper expectations, but in this
one we focus on four types of idealised variables.

Moving on, we consider lumping in Chapter 7337. First, we investigate the
issues that arise when lumping a single jump process. Second, we consider
the particular case of lumping a jump process that is consistent with a set
of rate operators, and we discover how in this case we can use a lumped
imprecise jump process to describe the original jump process. Third, we
propose two lumping-based methods to compute limit expectations for a
homogeneous Markovian jump process.

We put (our methods for) imprecise jump processes to the test in Chap-
ter 8403, where we model the problem of spectrum allocation in an optical
link.

Chapter 9439 concludes the main text of this dissertation. What remains
are three appendices, a list of symbols and the bibliography. Appendix A443

establishes compactness of the set of lower transition operators and any
bounded set of (lower) rate operators, Appendix B451 contains some extra ma-
terial – including relegated proofs – on Daniell’s (1918) extension method and
Appendix C461 gives a brief introduction to those parts of measure-theoretic
probability theory that we need.

1.4 List of publications

This dissertation gathers my research on the topic of Markovian imprecise
jump processes in one coherent – and largely self-contained – narrative.
Hence, many of the results that it presents have previously appeared else-
where. For example, many of the results in Chapters 4157, 7337 and 8403

appeared in, or are preceded by work in, the following publications.

(i) Cristina Rottondi, Alexander Erreygers, Giacomo Verticale & Jasper De
Bock (2017). Modelling spectrum assignment in a two-service flexi-grid
optical link with imprecise continuous-time Markov chains. In: Pro-
ceedings of the 13th International Conference on the Design of Reliable
Communication Networks (DRCN 2017) [best paper award]
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(ii) Alexander Erreygers & Jasper De Bock (2017a). Imprecise continuous-
time Markov chains: Efficient computational methods with guaranteed
error bounds. In: Proceedings of the Tenth International Symposium on
Imprecise Probability: Theories and Applications (ISIPTA 2017)

(iii) Alexander Erreygers & Jasper De Bock (2018a). Computing inferences
for large-scale continuous-time Markov chains by combining lumping
with imprecision. In: Uncertainty Modelling in Data Science (Proceed-
ings of SMPS 2018) [best paper award]

(iv) Alexander Erreygers, Cristina Rottondi, Giacomo Verticale & Jasper
De Bock (2018b). Imprecise Markov models for scalable and robust
performance evaluation of flexi-grid spectrum allocation policies. In:
IEEE Transactions on Communications

(v) Alexander Erreygers & Jasper De Bock (2019a). Bounding inferences
for large-scale continuous-time Markov chains: A new approach based
on lumping and imprecise Markov chains. In: International Journal of
Approximate Reasoning

The results in Chapters 5215 and 6273 are entirely new, but some of them
appear (without proof) in the proceedings of ISIPTA 2021.

(vi) Alexander Erreygers & Jasper De Bock (2021). Extending the domain of
imprecise jump processes from simple variables to measurable ones.
In: Proceedings of the Twelfth International Symposium on Imprecise
Probabilities: Theories and Applications (ISIPTA 2021)

Furthermore, I have also done research on the topic of learning Markovian
imprecise jump processes. While these results are relevant to the material
in this dissertation, I have chosen not to include them because statistical
estimation is not directly related to the main goals of this dissertation.

(vii) Thomas Krak, Alexander Erreygers & Jasper De Bock (2018). An
imprecise probabilistic estimator for the transition rate matrix of a
continuous-time Markov chain. In: Uncertainty Modelling in Data
Science (Proceedings of SMPS 2018)

During my time as a doctoral candidate, I have also endeavoured research on
topics other than Markovian imprecise jump processes. This has led to the
following publications, some of which are tangentially related to the material
in this dissertation.

(viii) Alexander Erreygers, Jasper De Bock, Gert de Cooman & Arthur Van
Camp (2019). Optimal control of a linear system subject to partially
specified input noise. In: International Journal of Robust and Nonlinear
Control

(ix) Alexander Erreygers & Jasper De Bock (2019b). First steps towards
an imprecise Poisson process. In: Proceedings of the Eleventh Interna-
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tional Symposium on Imprecise Probabilities: Theories and Applications
(ISIPTA 2019)

(x) Alexander Erreygers & Enrique Miranda (2020). A study of the set of
probability measures compatible with comparative judgements. In:
Information Processing and Management of Uncertainty in Knowledge-
Based Systems (Proceedings of IPMU 2020)

(xi) Jasper De Bock, Alexander Erreygers & Thomas Krak (2021). Sum-
product laws and efficient algorithms for imprecise Markov chains. In:
Proceedings of the 37th Conference on Uncertainty in Artificial Intelli-
gence (UAI 2021)

(xii) Alexander Erreygers & Enrique Miranda (2021). A graphical study of
comparative probabilities. In: Journal of Mathematical Psychology

1.5 Mathematical preliminaries

We denote the set of integers by Z; additionally, Z≥0 denotes the set of non-
negative integers andN :=Z>0 that of the natural numbers, that is, the pos-
itive integers. Similarly, R denotes the set of real numbers, R≥0 that of the
non-negative real numbers and R>0 that of the positive real numbers.

We will also need the set of extended real numbersR :=R∪{+∞,−∞}, and
we extend the binary relations ‘=’, ‘≤’ and ‘<’ and the arithmetic operations
of addition ‘+’ and multiplication ‘×’ to the extended real numbers in the
usual way – see also (Taylor, 1985, Sections 1-7 and 4-1) or (Troffaes et al.,
2014, Appendix D). That is, we say that +∞=+∞, −∞=−∞ and −∞<+∞,
that a ≤+∞ and −∞≤ a for all a in R and that a <+∞ and −∞< a for all
a in R. As far as the arithmetic operations are concerned, we extend the
addition ‘+’ from R to R as follows:

(+∞)+ (+∞) =+∞, (−∞)+ (−∞) =−∞,

a + (+∞) = (+∞)+a =+∞, a + (−∞) = (−∞)+a =−∞,

where a is any real number in R. This way, the addition ‘+’ on R is commuta-
tive and associative. Note that we do not define +∞+ (−∞) or −∞+ (+∞);
whenever a sum of extended real numbers cannot be reduced to one of
these two cases, we call it well-defined. Furthermore, we extend the binary
relation ‘×’ from R to R as follows:

(+∞)× (+∞) = (−∞)× (−∞) =+∞, (+∞)× (−∞) = (−∞)× (+∞) =−∞,

0× (+∞) = (+∞)×0 = 0, 0× (−∞) = (−∞)×0 = 0;

for any positive real number a in R>0, we let

a × (+∞) = (+∞)×a =+∞, a × (−∞) = (−∞)×a =−∞,
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and for any negative real number a in R<0, we let

a × (+∞) = (+∞)×a =−∞, a × (−∞) = (−∞)×a =+∞.

Note that the multiplication ‘×’ on R is commutative and associative.
If (an)n∈N is a sequence of (extended) real numbers, then we say that it is

non-decreasing whenever an ≤ an+1 for all n inN, and increasing whenever
these inequalities are strict; for non-increasing and decreasing sequences,
the relation is an ≥ an+1 and an > an+1.
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Modelling uncertainty 2
At its very core, this dissertation is about jump processes, a type of math-
ematical models for systems that evolve over time in a non-deterministic
or, better, uncertain fashion. In other words, jump processes are a specific
model for uncertainty. Thus, it is certainly worthwhile to first take a look at
the bigger picture of modelling uncertainty in general, and this is precisely
what we set out to do in this chapter.

We start this chapter in Section 2.1 with some general remarks concern-
ing mathematical models of uncertainty. We subsequently introduce the
coherence-centred approach to modelling uncertainty in Section 2.216. In
Section 2.331, we will see how classical probability theory uses probability
charges to model uncertainty, how this is related to coherence and how condi-
tioning works for probability charges. Finally, we turn to coherent conditional
probabilities in Section 2.440.

This chapter is rather technical, and is for a large part made up of – more
or less – standard concepts, definitions and results in the mathematical
theory of modelling uncertainty. In order to make the process of reading this
rather technical material as pleasant as possible, we will illustrate most of the
material with a running example. In choosing this running example, we have
drawn inspiration from Doob (1953), Feller (1968), and Billingsley (1995) –
and virtually every other treatise on probability theory.

Bruno’s Example 2.1. Bruno, a brilliant scientist, comes into possession of a
very precious golden coin – a florin, to be more precise – on what he will later
describe as the best day of his life. The first thing he does after acquiring his
golden treasure, is to flip it. í

2.1 Modelling uncertainty in general

The aim of probability theory – or, more generally, uncertainty theory – is,
of course, to model uncertainty. More specifically, with uncertainty theory
we mean the entire collection of mathematical tools that aim to model the
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uncertainty of ‘someone’ about the outcome of some ‘experiment’ that he or
she is interested in. Common examples of experiments are flipping a coin –
as in Bruno’s Example 2.1↶ – rolling a die, or the weather tomorrow; but ex-
periments can be way more involved, as we will see in Bruno’s Example 2.3131

or Chapter 353 further on.

2.1.1 Outcomes and the possibility space

The first step in obtaining a mathematical model of uncertainty is to set up
an abstract framework. In this dissertation, we will make exclusive use of the
well-known abstract framework that deals with a fixed possibility space. For
alternative abstract frameworks that do not require a (fixed) possibility space,
we refer to (de Finetti, 2017) or (P. M. Williams, 1975, 2007).

Central to our abstract framework is the uncertain outcome of an ex-
periment, denoted by X ; an example is the tossing of a coin, as in Bruno’s
Example 2.1↶. We denote a generic realisation or outcome by x, and we
collect the possible outcomes of our experiment in the possibility space X.
A possibility space X is supposed to be exhaustive – that is, at least one of
the outcomes occurs – and mutually exclusive – that is, at most one of the
outcomes occurs. Thus, a possibility space is a non-empty set.

Bruno’s Example 2.2. For a single coin toss, the possibility space isX = {H,T},
where H and T denote the outcome ‘the coin lands with heads facing up’ and
‘the coin lands with tails facing up’, respectively. í

Note that even in the most basic case of a single coin toss, we make an
idealisation. For example, we exclude the possibility that the coin lands
precisely on its side and stays upright. That being said, a single coin flip is
not the most interesting experiment, and it certainly does not allow us to
illustrate all the intricacies involved in the remainder. We therefore slightly
alter the setting of our running example.

Bruno’s Example 2.3. Bruno is so excited by his discovery, that he cannot
keep himself to flipping the coin only once. Therefore, we will consider
n consecutive coin flips, with n a natural number. The outcome of this
experiment is the n-tuple X1:n := (X1, . . . , Xn), where Xk is the (uncertain)
outcome of the k-th coin flip. Consequently, the possibility spaceX consists
of all n-tuples in {H,T}:

X := {H,T}n .

We will denote a generic outcome in X by x1:n = (x1, . . . , xn). Note that our
use of X1:n and x1:n is in line with the general convention of using X for the
uncertain outcome of the experiment and x for a generic outcome. í
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2.1.2 Events

In practice, an event is a statement about the outcome of the experiment
that is either true or false, depending on the realisation x of the uncertain
outcome X . For this reason, we identify an event with the subset of outcomes
for which this statement is true. In our theory, we simply call any subset A of
the possibility spaceX an event. Thus, the set of all events P(X) is simply the
power set ofX.

Two obvious examples of events are the degenerate ones ∅ andX, often
called the impossible event and the sure event, respectively. When it is neces-
sary to exclude the impossible event from the set of all events, we will write
P(X)⊃∅ :=P(X) \ {∅}.

Bruno’s Example 2.4. Bruno is bursting with excitement after finding his
florin. Among other things, he is very curious whether the k-th of the n coin
flips will result in heads, with k a natural number such that k ≤ n. In the
formalism that we have set up, he is interested in the event

{Xk = H} := {x1:n ∈X : xk = H}.

Furthermore, he wonders if all of the first k flips will produce heads; in our
formalism, this corresponds to the event

Hk := {
x1:n ∈X : (∀ℓ ∈ {1, . . . ,k}) xℓ = H

}
.

Observe that

Hk =
k⋂
ℓ=1

{Xℓ = H}. í

2.1.3 Variables

In practice, a variable is a quantity that is determined by the outcome of
the experiment. In our theory, a variable corresponds to a function on the
possibility spaceX. Such a variable is said to be an extended real variable, a
real variable or a non-negative real variable if its codomain is the extended
set of real numbers R, the set of real numbers R or the set of non-negative
real numbers R≥0, respectively. We collect all extended real variables inV(X)
and all real variables in V(X).

We extend all binary operations on the extended real numbers to the
extended real variables – and therefore also to the real variables – in a point-
wise manner. For any extended real variables f and g , and with ∗ denoting
one of the binary operations on the extended real numbers – that is, addition,
subtraction, multiplication or division – we let f ∗ g be the extended real
variable defined by

[ f ∗ g ](x) := f (x)∗ g (x) for all x ∈X,
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Modelling uncertainty

whenever the right-hand side of this inequality is well-defined for all out-
comes x in the possibility spaceX. We will often use more than these binary
operations to construct extended real variables. One prevalent way is to take
the absolute value; more concretely, we let | f | be the non-negative extended
real variable that maps every outcome x to the absolute value | f (x)| of its
image under f . Another way is to take point-wise minima and maxima. If f
and g are extended real variables on X, then their point-wise minimum is
the extended real variable

f ∧ g : X→R : x 7→ [ f ∧ g ](x) := min
{

f (x), g (x)
}

(2.1)

and similarly, their point-wise maximum is

f ∨ g : X→R : x 7→ [ f ∨ g ](x) := max
{

f (x), g (x)
}
. (2.2)

Finally, we will often use real variables that take on the value µ everywhere,
with µ any real number. For the sake of brevity, we denote this constant
variable by µ as well whenever it is clear from the context whether µ is a real
number or the corresponding constant real variable.

In a similar point-wise manner, we also extend the binary relations ‘=’,
‘≤’, ‘≥’ to extended real variables. A notable exception are the binary relations
‘<’ and ‘>’; we denote their point-wise extensions by ‘⋖’ and ‘⋗’, and reserve
‘<’ and ‘>’ for the standard strict order corresponding to ‘≤’ and ‘≥’. More
precisely, we write f < g whenever f ≤ g and f ̸= g , and f > g if g < f .

To shorten our notation, we will write sup f and inf f instead of
sup{ f (x) : x ∈X} and inf{ f (x) : x ∈X}, respectively, and the same holds for
max f and min f , if applicable. An extended real variable f is bounded above
whenever sup f <+∞, and bounded below whenever inf f >−∞. If the ex-
tended real variable g is both bounded above and below it is simply called
bounded; we often refer to bounded real variables as gambles. Because gam-
bles will play an import role in Section 2.216, we denote the real vector space
of all gambles by G(X). Note that any constant real variable is bounded, so it
is a gamble.

An important subclass of gambles are the indicator variables. With any
event A in P(X), we associate the indicator IA of A, which takes the value 1
on A and 0 elsewhere:

IA : X→ {0,1} : x 7→ IA(x) :=
{

1 if x ∈ A,

0 otherwise.
(2.3)

Besides providing a way to go from events to variables, indicators also provide
a mnemonic for the notation of taking point-wise minima and maxima: for
any two events A and B , IA ∧ IB = IA∩B and IA ∨ IB = IA∪B .

While indicators allow us to go from events to variables, level sets allow
us to go the other way around. For any extended real variable f and any real
number α, we define the level set

{ f ⋗α} := {x ∈X : f (x) >α}. (2.4)

14



2.1 Modelling uncertainty in general

Note that in this definition, we use some of the notational conventions dis-
cussed in the previous: on the left-hand side, we identify the real number α
with the corresponding constant real variable (or gamble) and the relation
‘⋗’ is the point-wise extension of ‘>’.

Bruno’s Example 2.5. Alicia, who shares an office with Bruno, is interested in
the number of times Bruno will flip heads in the first k flips, with k a natural
number such that k ≤ n. This corresponds to the variable

hk : {H,T}n → {0, . . . ,k} : x1:n 7→ ∣∣{ℓ ∈ {1, . . . ,k} : xℓ = H
}∣∣.

Note that hk is a non-negative gamble. Furthermore, hk can be written as a
sum of indicators:

hk =
k∑
ℓ=1

I{Xℓ=H}.

Observe that for any real number α such that 0 ≤α< 1, the level set {hk ⋗
α} corresponds to the union of the events {X1 = H}, . . . , {Xk = H}. Similarly, ifα
is a real number such that k−1 ≤α< k, then the level set {hk⋗α} corresponds
to the intersection of the events {X1 = H}, . . . , {Xk = H}. Finally, if α≥ k, then
the level set {hk ⋗α} is clearly empty. í

2.1.4 Interpretation

A model, and consequently also the inferences that we can make with it, only
make sense if we decide on an interpretation. Interpretations of mathemati-
cal models of uncertainty are available in abundance. According to Walley
(1991, Section 1.3) and Hájek (2019, Section 3), there are two main types of
interpretations: those that are focused on aleatory uncertainty and those for
which uncertainty is epistemic.

In the aleatoric interpretation, uncertainty is something that occurs em-
pirically. One example is the frequentist interpretation, in which probability
is interpreted as the limit of the relative frequency. Therefore, we can only
use frequentism to interpret models of uncertainty for experiments that
can be repeated infinitely – or at least often enough – under the same exact
circumstances.

This is in contrast with the epistemic interpretation of uncertainty, in
which uncertainty is subjective, representing someone’s personal beliefs. An
important example is the class of behavioural interpretations, in which some-
one’s behavioural dispositions – for example, her or his betting behaviour –
are used to quantify their uncertainty.

Important to emphasise here is that the results in this dissertation hold
regardless of the adopted interpretation. We will, however, avail ourselves
of the subjective and behavioural interpretation to motivate the coherence
framework in this section and, more importantly, in order to motivate specific
choices when modelling jump processes in Chapter 353 further on.
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2.2 Modelling uncertainty using coherence

The approach of modelling uncertainty using coherence was popularised
by de Finetti (1970) in his seminal work, in which he lays out a subjective
and behavioural theory for modelling uncertainty by means of fair prices in a
betting situation, giving them the name coherent previsions. As a convenience
to the reader – who (hopefully) understands English but might not have
sufficiently mastered the Italian language just yet – we will refer to the recently
republished version (de Finetti, 2017) of the English translation (de Finetti,
1974, 1975) instead of de Finetti’s (1970) original book in Italian.

Many authors later expanded and generalised de Finetti’s initial ideas.
For example, Regazzini (1985), Berti et al. (1991), Berti et al. (2002) and many
others extended his work to conditional previsions. Other authors have
generalised this theory to allow for imprecision, by relaxing the concepts
of fair price and prevision to supremum buying price and lower prevision
– or their conjugates, infimum selling price and upper prevision. This was
essentially initiated by P. M. Williams (1975, 2007) in his pioneering work,
which in turn inspired the formative works of Walley (1991) and Troffaes et al.
(2014); see also (Augustin et al., 2014) for a good introductory-level overview.

Our treatment of modelling uncertainty using coherence more or less
follows that of Troffaes et al. (2014). One key difference – at least when it
comes down to language – is that we prefer to use ‘expectation’ instead of
‘prevision’, because this will allow us to link back more easily when discussing
the classical approach in Sections 2.331 and 5.1216 further on. In this section,
we first discuss acceptable gambles, the foundation of the theory, in Sec-
tion 2.2.1. In Section 2.2.219, we then use this theory to introduce coherent
expectations. Section 2.2.324 concerns extending coherent expectations, and
we conclude this section in Section 2.2.427 with a discussion of coherent
lower expectations.

2.2.1 Acceptable gambles

Essential to the motivation of modelling uncertainty using coherence is that
a gamble g in G(X) is interpreted as an uncertain reward. This uncertain
reward is expressed in some predetermined linear utility scale, and we inter-
pret a negative reward as a loss of utility. Examples of linear utility scales are
‘sufficiently small’ amounts of money (de Finetti, 2017, Section 3.2) or lottery
tickets of a lottery with a single prize (Walley, 1991, Section 2.2.2).

Also fundamental is the idea that the beliefs that ‘someone’ has about
the experiment are reflected in their betting behaviour. We will refer to this
‘someone’ as the subject, and from here on we are interested in those gambles
on (the outcome of) the experiment that she1 is disposed to accept. Following

1Throughout this dissertation, we will consistently use the pronouns ‘she’, ‘her’ and ‘hers’
when referring to the subject.
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2.2 Modelling uncertainty using coherence

Troffaes et al. (2014, Section 3.3), we say that the subject accepts the gamble g
– or, alternatively, that g is an acceptable gamble to her – if she is disposed to
agree to the transaction where first the outcome x inX of our experiment is
determined, and she is subsequently rewarded g (x).

In this light, it is important to realise that not all gambles – that is,
bounded real variables – actually allow this gambling interpretation. More
precisely, the gambling interpretation only makes sense for those gambles
that are determinable,2 which, in the words of de Finetti (2017, Section 2.3.2),
means that they ‘should be specified in such a way that a possible bet based
upon it can be decided without question’. That being said, we will introduce
the mathematical theory of coherence without paying much attention to this
distinction, mainly because the mathematics are valid regardless of the bet-
ting interpretation. We will, however, bring this distinction back to the fore
occasionally, especially all the way at the end of this chapter in Section 2.4.451,
and also in Sections 3.155 and 5.1.1217 further on.

Rationality criteria

We assume that the subject’s behaviour is rational, and characterise this
assumption through the four formal rationality criteria as posited by Troffaes
et al. (2014, Axiom 3.1). First and foremost, we require that she avoids partial
loss, that is,

A1. she should not be disposed to accept any gamble that never increases
but can decrease her utility,

and that she accepts partial gain, that is,

A2. she should be disposed to accept any gamble that cannot decrease her
utility.

Second, we have the following two consequences of the linearity of the utility
scale.

A3. If she accepts the gamble g , then she should also be disposed to accept
the gamble λg for any non-negative real number λ.

A4. If she accepts the gambles g and h, then she should also be disposed
to accept g +h.

These four rationality criteria are not the only rationality criteria that we
could use, and in fact many alternatives have been proposed and/or used.
The main difference is that not all authors consider the zero gamble 0 to be
acceptable; this is reflected in their slightly different versions of (A1), (A2)
and/or (A3). For an overview and discussion of possible alternatives, we refer
to (Quaeghebeur, 2014) and references therein. That being said, Troffaes
et al. (2014, Section 3.4.1) argue that these differences are only essential to

2The translators use the term ‘well-determined’ instead of determinable.
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the study of acceptable gambles themselves, and that they do not influence
the study of coherent (lower) expectations in any significant way.

Avoiding partial loss

It is clearly infeasible if not impossible to ask the subject to specify for every
gamble g onX whether or not she deems it acceptable. Therefore, we always
start from a partial assessment of acceptability; for example, an assessment
that is obtained through elicitation will only consist of a finite number of
gambles for practical reasons. More concretely, we assume that we have some
set A of gambles on X that the subject is disposed to accept; for obvious
reasons, we will call such a subset A of G(X) a set of acceptable gambles.
Because it is only a partial assessment, the setA of acceptable gambles need
not be – and, usually, will not be – exhaustive, that is, not every gamble g that
is not included inA is necessarily unacceptable to the subject.

Any partial assessmentA can be enlarged with gambles that are implied
by any of the four rationality criteria listed above. Note that the criterion of
avoiding partial loss is not constructive, but we will come back to this in a
minute. First, we observe that the other three criteria imply that the subject
should be disposed to accept the gambles in

E(A) :=
{

h +
n∑

k=1
λk gk : h ∈G(X)≥0,n ∈N,λk ∈R≥0, gk ∈A

}
. (2.5)

We still have to check if the subject can be forced to accept a partial loss
though. Observe that a gamble g incurs partial loss whenever g ≤ 0 and g ̸= 0;
this can be written more concisely as g < 0, using the notational conventions
introduced in Section 2.1.313.

Definition 2.6. A setA of acceptable gambles on some possibility spaceX
avoids partial loss if for all natural numbers n, all non-negative real num-
bers λ1, . . . , λn and all g1, . . . , gn inA,

n∑
k=1

λk gk ̸< 0.

The following result follows almost immediately from the previous defini-
tion and Eq. (2.5).

Proposition 2.7. A set A of acceptable gambles on some possibility space X
avoids partial loss if and only if E(A) avoids partial loss.

One – trivial – example of a set of acceptable gambles that avoids partial
loss is the vacuous one.
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2.2 Modelling uncertainty using coherence

Vacuous Example 2.8. Consider any possibility space X. A trivial example
of a set of acceptable gambles that avoids partial loss is G(X)≥0, the set of
non-negative gambles. Clearly, for all natural numbers n, all non-negative
real numbers λ1, . . . , λn and all g1, . . . , gn in G(X)≥0,

n∑
k=1

λk gk ≥ 0. ¤

For a more involved example, we return to the familiar setting of our
running example.

Bruno’s Example 2.9. When dealing with acceptable gambles, the case of
a single coin toss, corresponding to n = 1, is interesting. Therefore, we will
restrict us to this case in this running example until further notice.

One reason that the case of a binary possibility space is interesting, is
that gambles and sets of acceptable gambles then have a clarifying graphical
representation. Quaeghebeur (2014) explains that to obtain this well-known
graphical representation, it suffices to identify the gamble g on {H,T} with the
point (g (H), g (T)) in the (H,T)-plane.

Consider a set of acceptable gamblesA. Then with its graphical repre-
sentation, we can determine E as the convex hull ofA and the first quad-
rant G({H,T})≥0. Furthermore, it follows from Definition 2.6↶ and Proposi-
tion 2.7↶ that with this graphical representation, the setA avoids partial loss
if and only if E(A) excludes the third quadrant – G({H,T})<0, to be more pre-
cise. We can use these observations to graphically check whetherA avoids
partial loss.

To see how this works, we consider the set

A := {
g⋆, g∗}

,

where we let g⋆ be the gamble on {H,T} that maps H to −1 and T to 1, and we
let g∗ :=−g⋆. It is quite easy to formally check thatA avoids partial loss, but
verifying this becomes trivial when looking at the graphical representation
of E(A), as depicted in Fig. 2.1↷. í

2.2.2 Coherent expectations

We now move from the realm of acceptable gambles to that of real-valued
maps on a subset of the set of gambles G(X). Let us consider a real-valued
map E on a subset G of G(X). Following de Finetti (2017), we think of E(g )
as the subject’s fair price for the gamble g . This means that she accepts to
pay any price α < E(g ) in exchange for the reward g , and that she accepts
to receive any price β> E(g ) in exchange for the reward −g . Because she is
disposed to buying g for any price α< E(g ) and selling g for any price β>
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We use shading to indicate the relevant set of gambles and thick lines to indicate
their border. A filled circle indicates an included gamble and an open circle one
that is excluded. The gambles g⋆ = (−1,1) and g∗ = (1,−1) are indicated by ⋆ and ∗,
respectively.

Figure 2.1 Graphical representation of the sets of (acceptable) gambles in
Bruno’s Example 2.9↶.

E(g ), we associate with the real-valued map E the set of acceptable gambles

AE := {
(g −α) : g ∈G,α ∈R,α< E(g )

}
∪{

(β− g ) : g ∈G,β ∈R,β> E(g )
}
. (2.6)

Bruno’s Example 2.10. As in Bruno’s Example 2.9↶, we consider the case of a
singe coin flip. Recall from Bruno’s Example 2.9↶ that g⋆ is the gamble that
maps H to −1 and T to 1, and that g∗ =−g⋆. Here, we consider the real-valued
map E1 on G1 := {g⋆} defined by E1(g⋆) = 0. Additionally, we also define the
expectation E2 on G2 := {g⋆, g∗} as E2(g⋆) = 0 and E2(g∗) = 0. By Eq. (2.6),
the set of acceptable gambles associated with E1 is

AE1 =
{
(g⋆−α) : α ∈R,α< E1(g⋆) = 0

}∪{
(β− g⋆) : β ∈R,β> E1(g⋆) = 0

}
.

Similarly, we find that

AE2 =
{
(g⋆−α) : α ∈R,α< 0

}∪{
(g∗−α) : α ∈R,α< 0

}
∪{

(β− g⋆) : β ∈R,β> 0
}∪{

(β− g∗) : β ∈R,β> 0
}
.

Because g∗ =−g⋆, it is obvious thatAE1 =AE2 . í

Avoiding partial loss for expectations

Now that we have laid down how a real-valued map E on G corresponds
to a set of acceptable gambles AE , the natural question to ask is whether
this set AE avoids partial loss. It is not difficult to see that by combining
Definition 2.618 with Eq. (2.6), we end up with the following necessary and
sufficient condition – see (de Finetti, 2017, Section 3.3.5) or (Walley, 1991,
Definition 2.8.1).
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Besides the graphical conventions of Fig. 2.1↶, we use thick dotted lines to indicate
that the border is excluded.

Figure 2.2 Graphical representation of the sets of acceptable gambles in
Bruno’s Example 2.10↶.

Theorem 2.11. Consider a possibility space X and a real-valued map E on
a subset G of G(X). ThenAE avoids partial loss if and only if for all natural
numbers n, all real numbers µ1, . . . ,µn and all g1, . . . , gn in G,

sup

(
n∑

k=1
µk

(
gk −E(gk )

))≥ 0. (2.7)

Whenever a real-valued map E satisfies any of the two equivalent con-
ditions in Theorem 2.11, we call it a (coherent) expectation. As mentioned
before at the beginning of Section 2.216, our use of the term expectation is
somewhat atypical; de Finetti (2017, Section 3.3.5) prefers the term prevision,
while Walley (1991, Definition 2.8.1) and Troffaes et al. (2014, Definition 4.11)
use the term linear prevision.

Definition 2.12. Consider a possibility space X and a subset G of G(X). A
(coherent) expectation on G is a real-valued map on G such thatAE avoids
partial loss. We denote the set of all coherent expectations on G by EG .

For any coherent expectation E and any gamble g in its domain, we
call E(g ) the expectation of g . Furthermore, for any event A in P(X) whose
indicator IA belongs to the domain of E , we call P (A) := E(IA) the probability
of A. Let us look at an example of a coherent expectation in the setting of our
running example.

Bruno’s Example 2.13. Let E1 and E2 be the real-valued maps as defined
in Bruno’s Example 2.10↶. From the graphical representation depicted in
Fig. 2.2, we conclude immediately thatAE1 andAE2 avoid partial loss, so E1

and E2 are coherent expectations. í
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Properties of coherent expectations

Coherent expectations have some properties that are intuitive when E(g ) is
interpreted as a subject’s fair price for g . We summarise the most essential
properties in the following result; we refer to (Troffaes et al., 2014, Corol-
lary 4.14) for a proof and much more exhaustive lists of properties.

Proposition 2.14. Consider a possibility spaceX and a coherent expectation E
on a subset G of G(X). Then

E1. E(g ) ≥ inf g for all g ∈G;

E2. E(µg ) =µE(g ) for all µ ∈R and g ∈G such that µg ∈G;

E3. E(g +h) = E(g )+E(h) for all g ,h ∈G such that g +h ∈G.

Furthermore, if we let g and h be gambles in G and µ a real number, then the
following properties hold whenever every term is well-defined:

E4. inf g ≤ E(g ) ≤ sup g ;

E5. E(g +µ) = E(g )+µ;

E6. E(g ) ≤ E(h) whenever g ≤ h;

E7. |E(g )−E(h)| ≤ E(|g −h|).

Observe that (E1) is a straightforward consequence of accepting partial
gains (A2)17: if α< inf g , then g −α≥ 0 is a partial gain so the subject should
be disposed to accept it. Similarly, (E2) is justified through (A3)17. Finally,
(E3) is justified by (A4)17. To see this, we fix any αg < E(g ), αh < E(h), βg >
E(g ) and βh > E(h). Because the subject is disposed to accept (g −αg ) and
(h −αh), (A4)17 implies that she should also be disposed to accept (g +h −
αg −αh). Similarly, the subject is disposed to accept (βg − g ) and (βh −h), so
(A4)17 implies that she should also be disposed to accept (βg +βh − g −h).
Consequently, her fair price for g +h is E(g )+E(h).

Properties (E2) and (E3) ensure that the coherent expectation E is a linear
functional. The three properties (E1)–(E3) are necessary for a real-valued
map E on G to be a coherent expectation, but they are not sufficient in
general. That said, in case the domain G of the map E is a linear space, two
of the three turn out to suffice in order for E to be a coherent expectation;
this was essentially proven by de Finetti (2017), but also occurs in (Walley,
1991, Theorem 2.8.4) and (Troffaes et al., 2014, Theorem 4.16).

Proposition 2.15. Consider a possibility space X and a real-valued map E on
a linear subspace G of G(X). Then E is a coherent expectation if and only if it
satisfies (E1) and (E3) of Proposition 2.14.

Probability mass functions

One straightforward consequence of Proposition 2.15 is that it allows us to
characterise coherent expectations in terms of probability mass functions, at
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2.2 Modelling uncertainty using coherence

least for a finite possibility space.

Definition 2.16. Consider a finite possibility space X. A probability mass
function p onX is a real-valued map onX that is

M1. non-negative, in the sense that p(x) ≥ 0 for all x inX; and

M2. normalised, in the sense that
∑

x∈X p(x) = 1.

We denote the set of all probability mass functions onX by ΣX .

With any probability mass function p on some finite possibility spaceX,
we can associate the expectation

Ep : G(X) →R : g 7→ Ep (g ) := ∑
x∈X

p(x)g (x). (2.8)

Note that evaluating Ep (g ) corresponds to taking the normed weighted av-
erage of the values of g with the weights – or masses – given by p, or more
generally, that Ep (g ) is a convex mixture of the values of g . For this reason,
Ep satisfies (E1)↶ and (E3)↶. Because furthermore G(X) is a linear space,
we deduce with the help of Proposition 2.15↶ that Ep is coherent.

Corollary 2.17. Consider a finite possibility spaceX. Then for any probability
mass function p on X, the real-valued map Ep as defined by Eq. (2.8) is a
coherent expectation.

Proof. Follows immediately from Proposition 2.15↶.

Conversely, one can show that for every coherent expectation E on G,
there is at least one probability mass function p onX such that E (g ) = Ep (g )
for all g in G. In case G =G(X),3 this probability mass function is unique and
given by p(x) = E(I{x}) for all x inX.

Proposition 2.18. Consider a finite possibility spaceX. Then for any coherent
expectation E on G(X),

pE : X→R : x 7→ pE (x) := E(I{x})

is a probability mass function, and this is the unique probability mass func-
tion p onX such that E = Ep .

Proof. See (Troffaes et al., 2014, Section 5.1).

3Actually, all we need for there to be a unique probability mass function is that G contains a
basis for G(X); this is for example the case if the indicator I{x} of every outcome x inX belongs
to G.
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2.2.3 Extending coherent expectations

Consider a coherent expectation E on some subset G of G(X). Let us inves-
tigate whether we can use the subject’s fair prices for the gambles in G to
say something about some other gamble g in G(X) \G. Because we have
interpreted the corresponding setAE as a partial acceptability assessment
from the subject, it follows from the constructive rationality requirements
that she should be disposed to accept the gambles in E(AE ), as explained in
Section 2.2.116. Thus, for any4 gamble g in G(X), she should be disposed to
accept to buy the gamble g for any price strictly lower than

EE (g ) := sup
{
α ∈R : (g −α) ∈ E(AE )

}
, (2.9)

so we call this her (inferred) supremum acceptable buying price for g . Sim-
ilarly, she should be disposed to accept to sell the gamble g for any price
strictly greater than

EE (g ) := inf
{
β ∈R : (β− g ) ∈ E(AE )

}
, (2.10)

and we therefore call this her (inferred) infimum acceptable selling price
for g . Note that, by definition, EE and E are conjugate, in the sense that for
all g in G(X),

EE (g ) = sup
{
α ∈R : (g −α) ∈ E(AE )

}
= sup

{
α ∈R : ((−α)− (−g )) ∈ E(AE )

}
=− inf

{−α ∈R : ((−α)− (−g )) ∈ E(AE )
}

=−E(−g ).

Walley (1991, Definition 3.1.1 and Section 3.1.2) calls EE the natural extension
of E – and so do Troffaes et al. (2014, Definition 4.8) – and he shows that EE
is real-valued – and therefore, by conjugacy, so is EE .

Our theory would be contradictory were the subject’s fair price for g not to
coincide with her (inferred) supremum acceptable buying price and infimum
acceptable selling price; fortunately, this is not the case.

Proposition 2.19. Consider a possibility spaceX and a coherent expectation E
on a subset G of G(X). Then for all g in G,

E(g ) = sup
{
α ∈R : (g −α) ∈ E(AE )

}= inf
{
β ∈R : (β− g ) ∈ E(AE )

}
.

Proof. Follows immediately from (Troffaes et al., 2014, Definition 4.8 and Theo-
rem 4.42).

4Let us forget for a moment that we should really only use the implications of the rationality
requirements for determinable gambles.
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For all other gambles g in G(X) \G, Walley (1991, Section 3.1.2) proves
that

EE (g ) ≤ EE (g ).

If this inequality holds with equality, then the common value of EE (g ) and
EE (g ) is the subject’s (inferred) fair price for g . Thus, on the basis of our
rationality requirements, we could extend E to the (possibly) larger domain{

g ∈G(X) : EE (g ) = EE (g )
}

by setting E(g ) = EE (g ) = EE (g ). Clearly, we would then still have the inter-
pretation of E(g ) as being the subject’s fair price for g . Furthermore, it is not
all too difficult to show using Proposition 2.718 that the set of acceptable gam-
bles corresponding to this extension would avoid partial loss, thus making
this extension a coherent expectation. Here, we will follow a slightly different
route to prove this.

One convenient property of coherent expectations is that they can always
be extended to a coherent expectation on a larger domain. Troffaes et al.
(2014, Theorem 4.42) establish this, and we repeat their result here.

Proposition 2.20. Consider a possibility space X, a real-valued map E on a
subset G of G(X) and a superset K of G. Then E is a coherent expectation if
and only if it can be extended to a coherent expectation E⋆ onK .

Bruno’s Example 2.21. Let us again consider the two coherent expecta-
tions E1 and E2 as defined in Bruno’s Example 2.1020. First, let us determine
a coherent expectation E⋆

1 on G(X) that extends E1. Then by definition, we
need that E⋆

1 (g⋆) = E1(g⋆) = 0. Furthermore, because the possibility space
X = {H,T} is finite, we know from Proposition 2.1823 that for any such co-
herent expectation E⋆

1 , E⋆
1 = Ep with p a probability mass function on {H,T}.

Clearly, there is only one probability mass function p on {H,T} such that

0 = E1(g⋆) = E⋆
1 (g⋆) = Ep (g⋆) = p(H)g⋆(H)+p(T)g⋆(T) =−p(H)+p(T),

and that is the one that assigns mass 1/2 to H and to T. Thus, in this case Ep is
the only coherent expectation on G({H,T}) that extends E1.

A similar argument shows that Ep also is the unique coherent expectation
on G({H,T}) that extends E2. í

We should emphasise that in Proposition 2.20, the coherent expecta-
tion E⋆ that extends the coherent expectation E to the superset K of the
domain G of E need not be unique. Let us take a closer look at the set

MKE := {
E⋆ ∈ EK : (∀g ∈G) E⋆(g ) = E(g )

}
(2.11)

of coherent expectations onK that extend E . Fix any coherent extension E⋆

of E inMKE . Because E⋆ is a coherent expectation, we can interpret E⋆(g )
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as a fair price for the gamble g inK . De Finetti (2017, Section 3.10) proves
that this fair price is always greater than the subject’s (inferred) supremum
buying price for g and lower than her (inferred) infimum selling price for g .
Even more, he proves that these bounds are tight, and that any value in the
corresponding interval is attained by at least one coherent extension E⋆ of E .
Here, we repeat Walley’s (1991, Corollary 3.4.3) statement of this result.

Proposition 2.22. Consider a possibility spaceX, a coherent expectation E on
a subset G of G(X) and a superset K of G. Then for all g inK ,{

E⋆(g ) : E⋆ ∈MKE
}= [
EE (g ),EE (g )

]
,

and therefore

EE (g ) = min
{
E⋆(g ) : E⋆ ∈MKE

}
and EE (g ) = max

{
E⋆(g ) : E⋆ ∈MKE

}
.

Bruno’s Example 2.23. With Proposition 2.22, we can obtain the results in
Bruno’s Example 2.21↶ in a different manner. Here, we exclusively focus
on E1.

Our intention is to invoke Proposition 2.22, so we should determine
EE1

and EE1 . It is clear from Fig. 2.2(a)21 – or equivalently, it follows from
Eqs. (2.6)20 and (2.5)18 – that

E(AE1 ) =
{

g ∈G({H,T}) :
g (H)+ g (T)

2
> 0 or g = 0

}
.

For this reason, for all g in G({H,T}),

EE1
(g ) = sup

{
α ∈R : (g −α) ∈ E(AE1 )

}
= sup

{
α ∈R :

[g −α](H)+ [g −α](T)

2
> 0

}
∪ {α ∈R : g −α= 0}

= sup

{
α ∈R :

g (H)+ g (T)

2
>α

}
∪ {α ∈R : g =α}

= g (H)+ g (T)

2
= Ep (g ),

where, as in Bruno’s Example 2.21↶, p is the probability mass function
on {H,T} that assigns mass 1/2 to H and to T. Similarly, we see that for all
g in G({H,T}),

EE1 (g ) = inf

{
β ∈R :

[β− g ](H)+ [β− g ](T)

2
> 0

}
= g (H)+ g (T)

2
= Ep (g ).

Hence, it follows from Proposition 2.22 that Ep is the unique coherent
expectation on G({H,T}) that extends E1. Of course, this confirms our conclu-
sion in Bruno’s Example 2.21↶. í
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2.2 Modelling uncertainty using coherence

Let us again consider a coherent expectation E on G, and the (possibly
larger) domain {

g ∈G(X) : EE (g ) = EE (g )
}
. (2.12)

Then it follows immediately from Proposition 2.22↶ that there is a unique
coherent expectation E⋆ that extends E to this domain, and this extension is
given by E⋆(g ) = EE (g ) = EE (g ) for all g inK . In other words, this answers
our question whether it makes sense to extend the domain of E to include
those gambles g for which the (inferred) supremum buying price EE (g ) is
equal to the (inferred) infimum selling price EE (g ). We will come back to
this particular extension in Section 5.1.1217 further on. There, we also use the
following more convenient expression for the natural extension EE of E ; it is
due to Walley (1991, Theorem 3.1.4), but also occurs in (Troffaes et al., 2014,
Theorem 4.34).

Proposition 2.24. Consider a possibility spaceX, a coherent expectation E on
a subset G of G(X) and a superset K of G. If G is a linear space that contains
all constant gambles, then

EE (g ) = sup
{
E(h) : h ∈G,h ≤ g

}
for all g ∈G(X)

and, by conjugacy,

EE (g ) = inf
{
E(h) : h ∈G,h ≥ g

}
for all g ∈G(X).

Thus, if the domain G of the coherent expectation E is a linear space
that contains all constant gambles, then the natural extension corresponds
to inner and outer approximations. That is, determining the natural exten-
sion EE (g ) then corresponds to approximating g from below with gambles
in the domain G of E , or from above for EE (g ). This is an important general
concept in modelling uncertainty, and we will re-encounter it further down
the line, more specifically in Section 5.1216.

2.2.4 Lower envelopes of expectations

Next, let us consider a (non-empty) setM of coherent expectations, all with
the same domain G. We have just seen one setting where this is natural,
but there is a second one: the setting of a sensitivity analysis. In this setting,
we regard the setM of coherent expectations as a partial specification of
the ‘true’ coherent expectation E . More specifically, we take on the view
that the subject believes there is some ‘true’ coherent expectation E , but her
beliefs only permit her to say that it belongs to the credal set M – a term
coined by Levi (1983). For a more extensive discussion of the ideas behind
the sensitivity analysis setting, we refer to (Walley, 1991, Section 5.9).

As in Proposition 2.22↶, we are interested in the minimum and the
maximum of the coherent expectations in the credal setM. That is, we are
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interested in the lower envelope

EM : G→R : g 7→ EM(g ) := inf
{
E(g ) : E ∈M}

(2.13)

and the upper envelope

EM : G→R : g 7→ EM(g ) := sup
{
E(g ) : E ∈M}

. (2.14)

Observe that EM and EM are real-valued functions on G due to (E1)22. Fur-
thermore, it is obvious that EM and EM are conjugate, in the sense that for
all g in G such that −g belongs to G,

EM(g ) = sup
{
E(g ) : E ∈M}= sup

{−E(−g ) : E ∈M}=− inf
{
E(−g ) : E ∈M}

=−EM(−g ),

where for the second equality we used (E2)22. In most practical cases – in-
cluding the ones in this dissertation – the domain G is negation invariant, in
the sense that G =−G := {−g : g ∈G}. In that case, the upper envelope EM
is completely determined by the lower envelope EM through the conjugacy
relation, so we can focus on one of the two; in this dissertation, we typically
focus on the lower envelope EM .

For all g in G, we call EM(g ) the lower expectation of g and EM(g ) the
upper expectation of g . Moreover, for any event A in P(X) such that its indica-
tor IA belongs to the domainG, we call PM (A) := EM (IA) the lower probability
of A and PM(A) := EM(IA) the upper probability of A, respectively.

In general, we call every real-valued function on G that is a lower en-
velope of coherent expectations a coherent lower expectation, after Walley
(1991, Theorem 3.3.3) (see also Troffaes et al., 2014, Proposition 4.20 and
Theorem 4.38).

Definition 2.25. Consider a possibility space X and a subset G of G(X). A
real-valued map E on G is called a coherent lower expectation on G if there is
a non-empty setM of coherent expectations on G such that E = EM .

For any coherent lower expectation E on G, the corresponding conjugate
upper expectation E is the real-valued map on −G defined by

E(g ) :=−E(−g ) for all g ∈−G.

We have already encountered one example of a coherent lower expecta-
tion: by Proposition 2.2226, the natural extension EE of a coherent expecta-
tion E is a coherent lower expectation on G(X). For another example, we turn
to our running example.

Bruno’s Example 2.26. Bruno has had it with us restricting him to a single
coin flip, so we now again allow him to make two consecutive coin flips.
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2.2 Modelling uncertainty using coherence

Hence, we let n = 2 and X = {H,T}2 = {(H,H), (H,T), (T,H), (T,T)}. Following
Walley (1991, Section 2.7.3), we will define two coherent lower expectations
through a lower envelope.

First, we define three coherent expectations on G(X). These are defined
through the probability mass functions p1, p2 and p3 onX = {H,T}2, whose
values are slightly adapted from (Walley, 1991, Section 2.7.3) and are sum-
marised in the following table:

x1:2 (H,H) (H,T) (T,H) (T,T)

p1(x1:2) 3/7 1/7 1/7 2/7

p2(x1:2) 2/7 3/7 1/7 1/7

p3(x1:2) 3/7 2/7 1/7 1/7

For any k in {1,2,3}, we let Epk be the coherent expectation associated
with pk according to Eq. (2.8)23. LetM := {Ep1 ,Ep2 } andM′ := {Ep1 ,Ep2 ,Ep3 },
and denote their lower envelopes by E := EM and E ′ := EM′ . By definition,
both E and E ′ are coherent lower expectations.

We let g denote the gamble onX = {H,T}2 that represents the number of
tails in the two coin tosses; so g (H,H) = 0, g (H,T) = 1 = g (T,H) and g (T,T) = 2.
Then

E(g ) = min{6/7, 6/7} = 6/7 and E ′(g ) = min{6/7, 6/7, 5/7} = 5/7. í

One crucial – but perhaps a bit trivial – observation is that different sets
of non-empty coherent expectations can have the same lower envelope E .
Our running example elucidates this.

Bruno’s Example 2.27. We return to the setting of Bruno’s Example 2.26↶.
Additionally, we consider the set

M⋆ := {
Ep : α ∈ [0,1], p =αp1 + (1−α)p2

}= {
αEp1 + (1−α)Ep2 : α ∈ [0,1]

}
of linear expectations on G(X). It is not difficult to see that EM = EM⋆ , even
thoughM ̸=M⋆. í

So we have seen that for a given coherent lower expectation E on G, there
may be several sets of coherent expectations that have E as lower envelope; all
these sets have one thing in common, though: every coherent expectation E
in such a set must dominate E , in the sense that for all g in G, E(g ) ≥ E(g ).
For this reason, for any real-valued map E on G, it makes sense to consider
the set

ME := {
E ∈ EG : (∀g ∈G) E(g ) ≥ E(g )

}
(2.15)

of all coherent expectations on G that dominate E . Clearly, if E is a coherent
lower expectation, thenME is the largest set of coherent expectations on G
that has E as lower envelope. In fact, one can prove that for this particular
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credal set, the infimum in Eq. (2.13)28 is a minimum. For a proof of this result,
we refer to (Walley, 1991, Theorems 3.3.3 and 3.4.1) or (Troffaes et al., 2014,
Proposition 4.20 and Theorem 4.38).

Theorem 2.28. Consider a possibility space X and a real-valued map E on
a subset G of G(X). Then E is a coherent lower expectation if and only if the
corresponding setME of dominating coherent expectations is non-empty and

E(g ) = min
{
E(g ) : E ∈ME

}
for all g ∈G.

Properties of coherent lower expectations

Because coherent lower expectations are lower envelopes of coherent ex-
pectations, they have properties that mirror those of coherent expectations
listed in Proposition 2.1422. For a proof and a much more exhaustive list of
properties, we refer to (Troffaes et al., 2014, Theorem 4.13) or (Walley, 1991,
Section 2.6.1).

Proposition 2.29. Consider a possibility space X and a coherent lower expec-
tation E on a subset G of G(X). Then

LE1. E(g ) ≥ inf g for all g ∈G;

LE2. E(λg ) =λE(g ) for all λ ∈R≥0 and all g ∈G such that λg ∈G;

LE3. E(g +h) ≥ E(g )+E(h) for all g ,h ∈G such that g +h ∈G.

Furthermore, if we let g and h be gambles in G and µ a real number, then the
following properties hold whenever every term is well-defined:

LE4. inf g ≤ E(g ) ≤ E(g ) ≤ sup g ;

LE5. E(g +µ) = E(g )+µ;

LE6. E(g ) ≤ E(h) whenever g ≤ h;

LE7. |E(g )−E(h)| ≤ E(|g −h|).

The properties (LE1)–(LE3) are known as the coherence properties. The
reason for this is that like coherent expectations, coherent lower expectations
have an intuitive betting interpretation. We do not need this interpretation in
the remainder, so we will not go into the nitty gritty. It suffices to understand
that like the natural extension EE , a general coherent lower expectation E
can be interpreted as a subject’s supremum acceptable buying price. Under
this interpretation, the coherence properties (LE1)–(LE3) are more or less
immediate consequences of the rationality requirements (A3)17–(A4)17. The
interested reader can find the details regarding this betting interpretation in
(Walley, 1991, Chapter 2) or (Troffaes et al., 2014, Chapter 4).

Because the three coherence properties (LE1)–(LE3) can be more easily
checked than the condition in Definition 2.2528, one might wonder if they are
also sufficient for coherence. As was the case for coherent expectations, this
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2.3 Modelling uncertainty using a probability charge

is not the case in general. However, the following result establishes that the
coherence properties (LE1)↶–(LE3)↶ suffice in case the domain G is a linear
space. For a proof, we refer to (Walley, 1991, Theorems 2.5.5 and 3.3.3) or
(Troffaes et al., 2014, Theorem 4.15 and Propostion 4.20); note that it actually
suffices to impose (LE2)↶ for positive real numbers only.

Proposition 2.30. Consider a possibility space X and a linear subspace G
of G(X). A real-valued map E on G is a coherent lower expectation if and only
if it satisfies (LE1)↶–(LE3)↶.

2.3 Modelling uncertainty using a probability charge

Probability mass functions are not the only link between coherent expecta-
tions – and, through lower envelopes, coherent lower expectations – and the
classical approach towards modelling uncertainty. In this section, we will
discover a more general way in which this classical approach is intertwined
with the theory of coherence. We continue to use our running example to
illustrate the necessary concepts, but this time around we move from the
finite possibility space corresponding to n consecutive coin flips to a more
involved possibility space.

Bruno’s Example 2.31. Bruno is so obsessed with flipping his coin that he
hardly gets any work done. Some time after Bruno’s life-changing discovery,
Alicia decides that she cannot let Bruno wither away because of his strange
obsession. She realises that the only way to get Bruno back to his research,
is to get some kind of machine to do the coin flipping for him. Knowing
that Bruno is an avid tinkerer, she cunningly plants into his mind the idea
to build this magical coin flipping contraption. Many sleepless nights and
frustrating days later, Bruno finishes his most incredible invention to date.
He has realised a magnificent feat of engineering: a machine that can flip his
precious golden coin until eternity.

From here on, we take the experiment to be the following: Bruno switches
on his coin flipping machine, and this machine registers the results of the
consecutive coin flips. Because the incredible machine keeps flipping Bruno’s
coin until eternity, an (idealised) outcome of this experiment is an infinite
sequence of heads and tails. Therefore, the possibility spaceX is made up
of all infinite sequences x = (xn)n∈N in {H,T}, with xn the outcome of the
n-th coin toss. In line with this, we denote the uncertain outcome of our
experiment by X = (Xn)n∈N, where Xn is the uncertain outcome of the n-th
coin toss. í

2.3.1 Fields of events

Probability charges are the fundamental tool of the classical approach to-
wards probability theory. They essentially model uncertainty by assigning a
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probability, a real number between 0 and 1, to all events in some set of events.
Probability charges have to satisfy three essential properties – the laws of
probability – and we can only impose these properties if the set of events
has sufficient structure. The minimal structure for a set of events is that of a
field, which will return time and time again in this work. A field of events is a
Boolean algebra5 with conjunction ∩, disjunction ∪ and complementation
(or negation) •c.

Definition 2.32. Consider a possibility spaceX. A field of events F overX is
a set of events – that is, a subset of P(X) – such that

F1. X ∈F ;

F2. Ac ∈F for any event A ∈F ;

F3. A∪B ∈F for all events A,B ∈F .

Note that a field of events F is also closed under intersection. Indeed,
for any two events A and B in F , it follows from De Morgan’s laws that
A ∩B = (Ac ∪B c)c; now Ac and B c belong to F by (F2), therefore Ac ∪B c

belongs to F by (F3) and therefore (Ac ∪B c)c = A∩B belongs to F by (F2).
Additionally, it is easy to show using induction that a field of events F is also
closed under finite unions and intersections as well.

There are three straightforward examples of families of events that are
fields: (i) the smallest one {∅,X} that only consists of the impossible and the
sure event; (ii) a trivial one {∅, A, Ac,X} that consists of the impossible and
the sure event and an event A in P(X) and its complement Ac; and (iii) the
greatest one P(X) that consists of all events. For a more involved example,
we return to our running example.

Bruno’s Example 2.33. A non-trivial field of events over our possibility
spaceX is the set of those events that concern the result of a finite number of
coin flips. To formally construct this set, we need to introduce some notation.
For any natural number n and any n-tuple y1:n = (y1, . . . , yn) in {H,T}n , we
denote the event ‘the first n flips are y1, . . . , yn ’ as

{X1:n = y1:n} := {x ∈X : x1:n = y1:n},

where for any x = (xk )k∈N inX, we let x1:n denote (x1, . . . , xn) = (xn)n∈{1,...,n}.
Similarly, for any subset A of {H,T}n , we define the event

{X1:n ∈ A} := {x ∈X : x1:n ∈ A} = ⋃
y1:n∈A

{X1:n = y1:n},

where we follow the convention that an empty union is equal to the empty
set ∅.

5Despite its name, a field of events is actually not a field in the strict mathematical sense,
because it lacks additive and multiplicative inverses (see D. Williams, 1991, p. 16). Be that as it
may, we will frequently use ‘a field F ’ as a shorthand for ‘a field of events F ’.
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It is now relatively straightforward to verify – see for instance (Billingsley,
1995, pp. 27 and 28) or (Lopatatzidis, 2017, Lemma 6) – that the set

F := {
{X1:n ∈ A} : n ∈N, A ⊆ {H,T}n}

is a field of events.
To illustrate what kind of events belongs to F , we extend the events as

defined in Bruno’s Example 2.413 to our idealised setting. The event that the
n-th coin flip of the machine is heads is now

{Xn = H} := {x ∈X : xn = H}

and the event that the first n flips of the machine are all heads is

Hn := {
x ∈X :

(∀k ∈ {1, . . . ,n}
)

xk = H
}
.

These two events only depend on the result of a finite number of coin flips,
so they should belong to the field F . To see that this is the case, we observe
that {Xn = H} = {X1:n ∈ An

1:n}, with

An
1:n = {

y1:n ∈ {H,T}n : yn = H
}
.

To see that Hn belongs to the field F as well, we observe that

Hn =
n⋂

k=1
{Xk = H}.

Because the field F is closed under taking finite intersections, we infer from
this that Hn also belongs to F . í

It is not always desirable or feasible to immediately and explicitly specify
a field of events. Fortunately, this is not necessary, as any set of events F over
some possibility spaceX can be enlarged to a field, in the sense that there
are fields of events that include F . For example, the set of all events P(X) is a
field and trivially includes the set F . Even more, there always is a smallest
field of events that includes the set F ; the following constructive result can
be found in (Bhaskara Rao et al., 1983, Theorem 1.1.11).

Lemma 2.34. Consider any set of events F over some possibility space X. We
close the set under complements to yield

F1 := {∅,X}∪F ∪ {Ac : A ∈F },

subsequently close the set under finite intersections to yield

F2 :=
{

n⋂
k=1

Ak : n ∈N, Ak ∈F1

}
,
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and finally close the set under finite unions of disjoint events to yield

〈F 〉 :=
{

n⋃
k=1

Ak : n ∈N, Ak ∈F2,
(∀ℓ ∈ {1, . . . ,n},k ̸= ℓ) Ak ∩ Aℓ =∅

}
.

Then 〈F 〉 is the smallest field of events over X containing F , in the sense that
any other field F ′ that includes F also includes 〈F 〉.
Bruno’s Example 2.35. Recall from Bruno’s Example 2.3332 that for any natu-
ral number n and any y1:n = (y1, . . . , yn) in {H,T}n , we have defined the event

{X1:n = y1:n} = {x ∈X : x1:n = y1:n}.

The set of events

F ′ := {
{X1:n = y1:n} : n ∈N, y1:n ∈ {H,T}n}

is not a field. However, Lopatatzidis (2017, Lemma 6) shows that the smallest
field of events that includes it is F ; that is, 〈F ′〉 =F . í

2.3.2 Probability charges

A probability charge is a normalised, non-negative and finitely additive func-
tion on a field of events. Some authors choose to adopt the term finitely
additive probability measure; we prefer to reserve the term probability mea-
sure for countably additive probability charges on a σ-field of events – see
Appendix C461. Formally, we adhere to the following definition.

Definition 2.36. Consider a field of events F over some possibility spaceX.
A probability charge P (on F ) is a real-valued map on F that satisfies the
following three properties:

P1. P (X) = 1;

P2. P (A) ≥ 0 for all events A in F ;

P3. P (A∪B) = P (A)+P (B) for any two disjoint events A and B in F .

Note that conditions (F1) and (F3) of Definition 2.3232 ensure thatX and
A∪B belong to the domain of P .

In case the possibility space X is finite, there is a straightforward one-
to-one correspondence between probability mass functions and probability
charges. With any probability mass function p on X, we can associate the
map

Pp : P(X) →R : A 7→ Pp (A) := ∑
x∈A

p(x),

where we follow the convention that the empty sum is equal to zero. It then
follows almost immediately from Definitions 2.1623 and 2.36 that Pp is a
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probability charge. On the other hand, given a probability charge P on P(X),
the map

pP : X→R : x 7→ pP (x) := P ({x})

is a probability mass function such that P (A) = ∑
x∈A pP (x). For a more

involved example of a probability charge, we return to our running example.

Bruno’s Example 2.37. The uncertainty regarding a single coin toss is usually
modelled as ‘the probability of heads is q’, where q is equal to 1/2 for a fair
coin but can be any real number in the unit interval [0,1] in general. This
information is captured in the probability mass function

p : {H,T} → [0,1] : x 7→ p(x) :=
{

q if x = H,

1−q if x = T.

We can use this mass function p to define a probability charge P on the
field F of events that depend on the results of a finite number of coin flips by
the machine. First, we define the probability of the events in F of the form
{X1:n = y1:n} as

P (X1:n = y1:n) :=
n∏

k=1
p(yk ), (2.16)

where – in classical parlance – we have assumed that the consecutive coin
flips are independent and identically distributed. Note that we write P (X1:n =
y1:n) instead of P ({X1:n = y1:n}) in an effort not to unnecessarily complicate
our notation; we will implicitly carry through the same notational convention
in other cases as well. Subsequently, for any general event {X1:n ∈ A} in F ,
with A a subset of {H,T}n , we set

P (X1:n ∈ A) := ∑
y1:n∈A

P (X1:n = y1:n) = ∑
y1:n∈A

n∏
k=1

q(yk ), (2.17)

where we again follow the convention that an empty sum is equal to 0. At first
sight, this definition depends on the representation of the event {X1:n ∈ A},
but one can check that P (X1:m ∈ B) = P (X1:n ∈ A) for every other represen-
tation {X1:m ∈ B} – with B a subset of {H,T}m – of the event {X1:n ∈ A} (see
Billingsley, 1995, pp. 28 and 29). Now that we know that P is properly defined,
we should verify that the map P satisfies (P1)↶–(P3)↶; we will not explicitly
do this here, but refer to (Billingsley, 1995, pp. 28 and 29) for a proof. í

2.3.3 Expectations of simple variables

To see how classical probability charges fit into the coherence-centred ap-
proach, we need to establish how they naturally induce expectation operators.
For the time being, we restrict ourselves to the expectation of simple variables;
we will consider the expectation of more general variables in Section 5.1216

further on (see also Troffaes et al., 2014, Chapter 8).
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Simple variables

Basically, a simple variable is a linear combination of indicators; we ad-
here to the formal definition of Troffaes et al. (2014, Definition 1.16), similar
definitions are used by D. Williams (1991, Section 5.1) and Shiryaev (2016,
Chapter 2, Section 6.1).

Definition 2.38. Consider a field of events F over some possibility spaceX.
An F -simple variable f is a real variable that has a representation of the form

f =
n∑

k=1
ak IAk , (2.18)

where n is a natural number, a1, . . . , an are real numbers and A1, . . . , An are
events in F . We collect all F -simple real variables in S(F ).

It follows immediately from Definition 2.38 – more specifically, from
Eq. (2.18) – that an F -simple variable f has a finite range. Hence, an F -
simple variable f is bounded – and therefore a gamble – and it furthermore
holds that sup f = max f and inf f = min f . It is moreover easy to verify
that the F -simple real variables constitute a real vector space – they are
closed under scalar multiplication and point-wise addition – that includes
the constant gambles.

Lemma 2.39. Consider a field of events F on a possibility spaceX. ThenS(F )
is a real vector space that includes all constant gambles, because

(i) µ f ∈S(F ) for all µ ∈R and f ∈S(F );

(ii) f + g ∈S(F ) for all f , g ∈S(F ); and

(iii) µ ∈S(F ) for all µ ∈R.

Bruno’s Example 2.40. Like in Bruno’s Example 2.515, we consider the num-
ber of times Bruno’s machine will flip heads in its first n flips, with n a natural
number. In our formalism, this corresponds to the (bounded) real variable

hn :=
n∑

k=1
I{Xk=H}.

Recall from Bruno’s Example 2.3332 that all the events {Xk = H} belong to the
field F , so we conclude that hn is an F -simple variable. í

Dunford integration

Let P be a probability charge over a field F of events over some possibility
spaceX. Then for any F -simple variable f , we define its expectation with
respect to P as its Dunford integral

EP ( f ) :=
n∑

k=1
ak P (Ak ), (2.19)
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where
∑n

k=1 ak IAk is any representation of the F -simple variable f , as in
Eq. (2.18)↶. This is a proper definition because the value of EP ( f ) is inde-
pendent of the representation of f ; see (Troffaes et al., 2014, Definition 8.13)
for a proof.

Bruno’s Example 2.41. Recall that hn , the number of heads in the first n flips,
is an F -simple random variable with representation

hn =
n∑

k=1
I{Xk=H} =

n∑
k=1

I{X1:k∈Ak
1:k },

with Ak
1:k as defined in Bruno’s Example 2.3332. Consequently, the expected

number of heads in the first n flips is

EP (hn) =
n∑

k=1
P (Xk = H) =

n∑
k=1

P (X1:k ∈ Ak
1:k ) =

n∑
k=1

∑
y1:k∈Ak

1:k

k∏
ℓ=1

p(yℓ)

=
n∑

k=1
q = nq,

where for the third equality we have used Eq. (2.17)35 and the penultimate
equality follows from the definition of Ak

1:k and some straightforward calcula-
tions. í

The operator EP onS(F ) has some well-known properties. Because these
properties all follow more or less immediately from Eq. (2.19)↶, we have
chosen to omit a formal proof.

Proposition 2.42. Consider a probability charge P on a field of events F over
some possibility space X. For all F -simple variables f and g and any real
number µ,

ES1. min f ≤ EP ( f ) ≤ max f ;

ES2. EP (µ f ) =µEP ( f );

ES3. EP ( f + g ) = EP ( f )+EP (g ).

Furthermore,

ES4. EP ( f ) ≤ EP (g ) whenever f ≤ g .

Link with coherence

Recall that we have already encountered the three properties (ES1)–(ES3) of
Proposition 2.42 before, in Section 2.2.219 to be precise. Because S(F ) is a
real vector space by Lemma 2.39↶, it follows from Proposition 2.1522 that the
expectation EP with respect to the probability charge P is coherent. We have
thus established the following result, which also occurs in (Troffaes et al.,
2014, Lemma 8.14).
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Proposition 2.43. Consider a probability charge P on a field of events F over
some possibility space X. Then EP , the expectation with respect to the proba-
bility charge P as defined in Eq. (2.19)36, is a coherent expectation on S(F ).

Even stronger, Troffaes et al. (2014, Theorem 8.22) prove that given a
field F of events, there is a one-to-one correspondence between coherent
expectations on the set of all ‘F -measurable variables’ – which includes the
F -simple variables (see Troffaes et al., 2014, Definition 1.17 and Proposi-
tion 1.18) – and probability charges on F ; more precisely, they show that any
coherent expectation is essentially determined by the values it assumes on
the indicators. Here, we limit ourselves to the following weaker result, which
essentially generalises Proposition 2.1823.

Proposition 2.44. Consider a field of events F over some possibility space X,
and a coherent expectation E on S(F ). Then

PE : F → [0,1] : A 7→ PE (A) := E(IA)

is a probability charge on F . Moreover, E = EPE , where EPE is the Dunford
integral with respect to the probability charge PE on F .

Whereas coherent expectations are essentially determined by the values
that they assume on the indicators, this is not the case for coherent lower
expectations. This is an important and well-known difference between co-
herent expectations and coherent lower expectations, which is excellently
argued by Walley (1991, Section 2.7.3) and Troffaes et al. (2014, Section 5.2).
For the sake of completeness, we also give an example of two coherent lower
expectations that agree on all indicators, but that do not agree on all gambles.

Bruno’s Example 2.45. We briefly return to the setting of Bruno’s Exam-
ple 2.2628. Observe that for any event A in P(X), E(IA) = E ′(IA) and E(IA) =
E ′(IA). In other words, both E and E ′ yield the same lower and upper proba-
bilities. However, as we have already seen in Bruno’s Example 2.2628, E and
E ′ do not agree on the gamble g that represents the number of tails in the
two coin tosses. í

2.3.4 Conditioning

We end our introduction to probability charges with a brief look at how to
do conditioning with them. To this end, we fix a possibility spaceX, a field
of events F over X and a probability charge P on F . Furthermore, we fix
some conditioning event C in F , with P (C ) > 0. For any event A, we define
the conditional probability of A conditional on – or, alternatively, under the
condition – C as

P (A |C ) := P (A∩C )

P (C )
.
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2.3 Modelling uncertainty using a probability charge

The equality above is know as Bayes’s rule; the rationale behind this rule is
to only take into account those outcomes in the event A that agree with the
condition C , and then renormalise.

It is easy to see that the resulting real-valued map

P (•|C ) : F →R : A 7→ P (A |C ) (2.20)

is again a probability charge on F . For this reason, we call P (•|C ) a condi-
tional probability charge. Because P (•|C ) is a probability charge, it induces
the conditional expectation operator

EP (•|C ) : S(F ) →R : f 7→ EP ( f |C ) := EP (•|C )( f ), (2.21)

where EP (•|C ) is the expectation operator with respect to the probability
charge P (•|C ) according to Eq. (2.19)36. It is easy to verify that, for all F -
simple variables f ,

EP ( f |C ) = EP ( f IC )

P (C )
. (2.22)

Conditional expectations are especially convenient when we consider
conditioning events that form a partition of the state space. To see why, we
let C := {C1, . . . ,Cn} be a partition ofX in events in F with P (Ck ) > 0 for all k
in {1, . . . ,n}. Observe that

EP ( f |C) :=
n∑

k=1
EP ( f |Ck )ICk

is an F -simple variable. Consequently, it follows from Eqs. (2.19)36 and (2.22)
and (ES3)37 that

EP (EP ( f |C)) =
n∑

k=1
EP ( f |Ck )P (Ck ) =

n∑
k=1

EP ( f ICk ) = EP ( f ). (2.23)

This is a special case of an important law known as the law of iterated expec-
tations, sometimes also called the law of total expectation. For now, it suffices
to know that this law is a convenient tool when computing expectations; we
will discuss this law in more detail in Chapter 353 further on.

Bruno’s Example 2.46. Recall from Bruno’s Example 2.3735 that P (X1 = H) = q
and P (X1 = T) = 1−q . Hence, whenever 0 < q < 1, both the events {X1 = H}
and {X1 = T} have non-zero probability. We now assume that this is the case,
and therefore P (•|X1 = H) and P (•|X1 = T) are well-defined. After some easy
calculations, we see that

P (X1 = H |X1 = H) = 1, P (X2 = H |X1 = H) = q,

P (X1 = H |X1 = T) = 0, P (X2 = H |X1 = T) = q.
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It follows from this and Eq. (2.21)↶ that

EP (h2 |X1 = H) = EP (•|X1=H)(h2) = P (X1 = H |X1 = H)+P (X2 = H |X1 = H)

= 1+q,

where we have used that h2 = I{X1=H} + I{X2=H}. Similarly,

EP (h2 |X1 = T) = P (X1 = H |X1 = T)+P (X2 = H |X1 = T) = q.

Observe that {X1 = H} and {X1 = T} form a partition of the possibility
spaceX. Therefore, we may use the law of iterated expectations to find that

EP (h2) = EP (h2 |X1 = H)P (X1 = H)+EP (h2 |X1 = T)P (X1 = T) = 2q,

which agrees with what we previously obtained in Bruno’s Example 2.4137. í

One clear drawback of using a probability charge to model uncertainty is
that the conditional probability (or expectation) is undefined whenever the
condition C has probability zero. There is a way to mitigate this – through
the Radon-Nikodym theorem, see for example (Billingsley, 1995, Section 33),
(Fristedt et al., 1997, Chapter 21) or (Shiryaev, 2016, Section 7) – but this
alternative approach essentially suffers from the same downside, because
the resulting conditional probabilities (and expectations) are not uniquely
defined. Additionally, it sometimes makes more sense to construct a proba-
bility charge starting from uniquely specified conditional probabilities – even
for conditioning events that turn out to have probability zero – instead of the
other way around.

2.4 Coherence and conditioning

An elegant way to deal with conditioning on events that have probability
zero, is to use full conditional probabilities. It is for this reason that we in-
troduce them, and the related concept of coherent conditional probabilities,
in Section 2.4.1. We subsequently explain in Section 2.4.246 how coherent
conditional probabilities induce conditional expectations. Next, we rid our-
selves of the requirement of precision in Section 2.4.349, where we will allow
for imprecision by considering sets of coherent conditional probabilities and
taking lower envelopes of the associated conditional expectations, inspired
by Section 2.2.427. We end this chapter in Section 2.4.451, where we will see
how determinable gambles and simple variables are connected.

2.4.1 Coherent conditional probabilities

In the classical framework, conditional probabilities are only unequivocally
defined for conditioning events that do not have zero probability. Dubins
(1975), Regazzini (1985) and Berti et al. (2002) – and many others – get rid
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of this ambiguity by taking conditional probabilities as elementary instead
of as being derived through Bayes’s rule. More concretely, Dubins (1975,
Section 3) and (Regazzini, 1985, Definition 2) generalise (conditional) prob-
ability charges to conditional probabilities as follows; in this definition, we
use C⊃∅ := C \ {∅} to exclude the empty conditioning event from the field C
of conditioning events.6

Definition 2.47. Consider a possibility spaceX, and two fields of events F
and C overX such that F includes C. A full conditional probability P on F ×
C⊃∅ is a real-valued map on F ×C⊃∅ that satisfies the following four axioms.
For any A,B in F and C ,D in C⊃∅,

CP1. P (A |C ) = 1 whenever A includes C ;

CP2. P (A |C ) ≥ 0;

CP3. P (A∪B |C ) = P (A |C )+P (B |C ) whenever A and B are disjoint;

CP4. P (A∩D |C ) = P (A |D ∩C )P (D |C ).

If the field of events F and the field of conditioning events C are equal,
then we call P a full conditional probability on F following Dubins (1975,
Section 3). For any event A in F and any conditioning event C in C⊃∅, we
call P (A |C ) the probability of A conditional on C . The sole exception to this
occurs if the conditioning event C is the sure event X; then we call P (A |
X) the probability of A, and usually resort to the shorthand P (A) := P (A |X)
whenever there can be no confusion about its meaning.

Observe that (CP1)–(CP3) are simply the conditional versions of (P1)34–
(P3)34. For this reason, for any C in C⊃∅,

P (•|C ) : F →R : A 7→ P (A |C )

is a probability charge on F . To make sense of (CP4), we set C =X, to yield

P (A∩D) = P (A |D)P (D),

where we have used the notational convention P (•) = P (•|X). Clearly, this
is the multiplicative version of Eq. (2.20)39 – that is, Bayes’s rule. This be-
ing said, the crucial difference with (conditional) probability charges is that
the conditional probabilities are fundamental this time around; more pre-
cisely, we specify the conditional probability P (•|C ) for every conditioning
event C in C⊃∅, even if the conditioning event C has (unconditional) proba-
bility P (C ) = P (C |X) zero. That said, given a probability charge P on F and
a field C of conditioning events that is included in F , we can always derive a

6To see why we need to exclude the empty event ∅ as a conditioning event, we fix any
non-empty event A in F . Were we to allow ∅ as a conditioning event, then (CP1) would imply
that P (A |∅) = 1 and P (Ac |∅) = 1, but P (A |∅) = P (A |∅)+P (Ac |∅) due to (CP3), which is a
contradiction.
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full conditional probability through Bayes’s rule whenever every conditioning
event C in C⊃∅ has non-zero probability P (C ).

Bruno’s Example 2.48. In Bruno’s Example 2.3735, we defined a probability
charge P on the field F of events that only depend on a finite number of flips
of Bruno’s machine. We briefly repeat this here, with some changes in nota-
tion. For any probability q of heads in [0,1], we let pq be the probability mass
function on {H,T} defined by pq (H) = q and pq (T) = 1− q . This probability
mass function pq induces the corresponding probability charge Pq through
Eqs. (2.16)35 and (2.17)35:

Pq {X1:n ∈ A} := ∑
y1:n∈A

Pq {X1:n = y1:n} = ∑
y1:n∈A

n∏
k=1

pq (yk ),

where {X1:n ∈ A} is a generic event in the field F .
One can verify that Pq {X1:n ∈ A} > 0 for every non-empty event {X1:n ∈ A}

in F if and only if 0 < q < 1. In this case, we can use Eq. (2.20)39 to define a
conditional probability charge Pq (•|C ) on F for every non-empty event C
in F . That is, whenever 0 < q < 1, we can define the real-valued map Pq on
F ×F⊃∅ as

Pq (A |C ) := Pq (A∩C )

Pq (C )
for all (A,C ) ∈F ×F⊃∅.

Note that Pq (A |X) = Pq (A ∩X)/Pq (X) = Pq (A), so we can unambiguously
use the shorter notation Pq (•) for Pq (•|X).

By definition, Pq satisfies (CP4)↶. Additionally – and as previously men-
tioned right after Eq. (2.20)39 – Pq (•|C ) is a probability charge on F and
therefore satisfies (P1)34–(P3)34, so Pq satisfies (CP1)↶–(CP3)↶. In conclu-
sion, if 0 < q < 1, then Pq is a full conditional probability on F . í

The following result lists some well-known properties of full conditional
probabilities.

Proposition 2.49. Consider a full conditional probability P on F ×C⊃∅,
where F and C are two fields of events over some possibility space X such
that F includes C. Then for any A,B in F and C in C⊃∅,

CP5. P (∅ |C ) = 0;

CP6. P (A |C ) ≤ 1;

CP7. P (Ac |C ) = 1−P (A |C );

CP8. P (A |C ) ≤ P (B |C ) whenever A is included in B;

CP9. P (A |C ) = P (A∩B |C ) whenever P (B |C ) = 1.

Proof. CP5. Because ∅∩∅ =∅, it follows from (CP3)↶ that P (∅ |C ) = 2P (∅ |C ).
Because P (∅ |C ) is a real number, this can only be true if P (∅ | A) = 0.
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CP6. Observe that the events A and C \ A are disjoint, and their union A∪ (C \ A) =
A∪C includes C . The property now follows immediately from this and (CP3)41,
(CP2)41 and (CP1)41.

CP7. Observe that A and Ac are disjoint, and that their union A∪ Ac =X includes C .
The property now follows from (CP3)41 and (CP1)41.

CP8. Observe that A and B \ A are disjoint. The property now follows from this,
(CP3)41 and (CP2)41.

CP9. Observe that the events A∩B and A∩Bc are disjoint, and that their union is A.
Therefore, it follows from (CP3)41 that

P (A |C ) = P (A∩B |C )+P (A∩Bc |C ).

The property now follows if P (A ∩Bc |C ) = 0. To see that this is the case, we
observe that A∩Bc is included in Bc, and use (CP2)41, (CP8)↶ and (CP7)↶, to
yield

0 ≤ P (A∩Bc |C ) ≤ P (Bc |C ) = 1−P (B |C ) = 0.

The structure that is required of the domain F ×C⊃∅ of a full conditional
probability is rather strong. For example, due to the requirement that C
should be a field, it might be that we need to specify probabilities conditional
on events C that we are not actually interested in. For this reason, we would
like to define a ‘conditional probability’ on a subsetD of P(X)×P(X)⊃∅ that
is not a Cartesian product of two nested fields. One could again require that
this map P should satisfy the laws of conditional probability – that is, (CP1)41–
(CP4)41 – whenever all relevant terms are well-defined, but this would yield
some undesirable behaviour. The following example – essentially taken from
(Krak et al., 2017, Example 4.1) – illustrates that the laws of probability alone
do not guarantee that we can extend P to a full conditional probability P⋆ on
a domain F ×C⊃∅ that includes the domainD of P .

Bruno’s Example 2.50. Let

D′ := {
(H1,X), (H c

1 ,X)
}
,

where H1 = {X1 = H} and H c
1 = {X1 = T} are as defined in Bruno’s Exam-

ple 2.3332. Consider the real-valued map P ′ onD′ defined by P ′(H1 |X) := 1/3

and P ′(H c
1 |X) := 1/3. It is almost trivial to verify that P ′ satisfies (CP1)41–

(CP4)41 for those events A, B , C and D in its domainD′ for which all terms
in these properties are well-defined. Despite this, there is no full conditional
probability P⋆ on F ×F⊃∅ – or even on {∅, H1, H c

1 ,X}× {X} – that extends
P ′. To verify this, we assume ex-absurdo that there is one, and denote it by
P⋆. On the one hand,

P⋆(H1 |X)+P⋆(H c
1 |X) = P ′(H1 |X)+P ′(H c

1 |X) = 2

3

because P⋆ extends P ′. On the other hand, it also follows from (CP3)41 and
(CP1)41 that

P⋆(H1 |X)+P⋆(H c
1 |X) = P⋆(H1 ∪H c

1 |X) = P⋆(X |X) = 1.
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Clearly, these two equalities contradict each other. í

To ensure that a conditional probability P onD can always be extended
to a full conditional probability on a domain that includes D, we return
to the notion of coherence, this time for conditional probabilities. P. M.
Williams (1975, 2007, Definition 2) was the first to characterise this, although
he establishes coherence in the more general setting of conditional (lower)
expectations. Regazzini (1985, Definition 1) focuses more explicitly on co-
herent conditional probabilities, which is why we prefer to follow him here.
One exception is our definition, though, because we opt to repeat the sim-
plified formulation of Lopatatzidis (2017, Definition 5) and Krak et al. (2017,
Definition 4.2).

Definition 2.51. Consider a possibility space X and a subset D of P(X)×
P(X)⊃∅. A coherent conditional probability P onD is a real-valued map on
D such that for all natural numbers n, all real numbers µ1, . . . ,µn and all
(A1,C1), . . ., (An ,Cn) inD,

max

{
n∑

k=1
µk ICk (x)

(
IAk (x)−P (Ak |Ck )

)
: x ∈

n⋃
k=1

Ck

}
≥ 0. (2.24)

One motivation for Eq. (2.24) – the coherence condition – is through a
behavioural interpretation in terms of betting behaviour, as in Section 2.2.219.
More precisely, a justification that is reminiscent of the behavioural inter-
pretation of coherent expectations as fair prices. For this behavioural jus-
tification, we interpret the conditional probability P on some subsetD of
P(F )×P(F )⊃∅ as a partial acceptability assessment of the subject, just like
we did for expectations E in Section 2.2.219. More specifically, for any (A,C )
inD, we interpret P (A |C ) as the subject’s called-off fair price for the gam-
ble IA contingent on C ; that is, she is imposed to accept a transaction where
she buys the uncertain reward IA for any buying price α lower than P (A |C )
or sells IA for any selling price β greater than P (A |C ), under the condition
that the transaction is called off if C does not occur. Formally, she is imposed
to accept the gambles

IC (IA −α) and IC (β− IA)

for any buying price α< P (A |C ) and any selling price β> P (A |C ). This way,
the map P onD induces the set of acceptable gambles

AP := {
IC (IA −α) : (A,C ) ∈D,α ∈R,α< P (A |C )

}
∪{
IC (β− IA) : (A,C ) ∈D,β ∈R,β> P (A |C )

}
.

Under this betting interpretation, the condition of Definition 2.51 ensures
that the subject’s set of acceptable gamblesAP avoids partial loss, similarly
to what we saw in Theorem 2.1121 (see Troffaes et al., 2014, Definition 13.18).
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Theorem 2.52. Consider a possibility space X and a real-valued map P on
a subset D of P(X)×P(X)⊃∅. ThenAP avoids sure loss if and only if P is a
coherent conditional probability.

This betting interpretation also provides an intuitive reason for why in
Eq. (2.24)↶ we only take into account the outcomes x in

⋃n
k=1 Ck : with all

other outcomes, all transactions are called off so the subject gains neither
loses any utility. In other words, in case

⋃n
k=1 Ck ̸=X, the condition would

otherwise be trivially true.
A second, more pragmatic motivation for the condition of Defini-

tion 2.51↶ is that – as promised – it allows us to first specify a coherent
conditional probability on a domainD that need not be of the form F ×C⊃∅,
and subsequently extend this to a full conditional probability with do-
main F ×C⊃∅ that includesD. Before we get to this result, we first establish
that full conditional probabilities and coherent conditional probabilities are
essentially equivalent (see Regazzini, 1985, Theorem 3).

Theorem 2.53. Consider a possibility spaceX and a real-valued map P onF ×
C⊃∅, where F and C are fields of events over X and F includes C. Then P
is a full conditional probability if and only if it is a coherent conditional
probability.

Next, we establish what is probably the single most important result
regarding (coherent) conditional probabilities; we refer to (Regazzini, 1985,
Theorem 4) for a proof.

Theorem 2.54. Consider a possibility space X and a coherent conditional
probability P on a subset D of P(X)×P(X)⊃∅. Then for any superset D⋆

of D, there is a coherent conditional probability P⋆ on D⋆ that extends P
toD⋆, or equivalently, that coincides with P onD.

Theorem 2.54 is a highly useful tool in proofs, because it allows us to
extend a coherent conditional probability that is defined on some small
and manageable domainD to some larger domainD⋆ that we are actually
interested in. This is especially relevant because checking the coherence
condition of Definition 2.51↶ can simplify considerably – or, more precisely,
can become feasible – when the domainD is sufficiently small. That being
said, we should emphasise that this extension is not necessarily unique.
Fortunately, the laws of (conditional) probability usually impose convenient
restrictions on the probabilities in the extension, and they determine them
uniquely often enough. For a good example of this, we refer to Section 3.1.573

further on. That coherent conditional probabilities indeed satisfy the laws of
probability is established by the following result.

Corollary 2.55. Consider a possibility space X and a coherent conditional
probability P on a subset D of P(X)×P(X)⊃∅. Then P satisfies (CP1)41–
(CP9)42 on its domainD.

45



Modelling uncertainty

Proof. Follows immediately from Definition 2.4741, Proposition 2.4942 and Theo-
rems 2.53↶ and 2.54↶.

To end our introduction of (coherent) conditional probabilities, we re-
turn to one of our motivations for introducing them: we establish that a
coherent conditional probability can always be extended to a full conditional
probability.

Corollary 2.56. Consider a possibility space X and a subset D of P(X)×
P(X)⊃∅. Then a real-valued map P onD is a coherent conditional probability
if and only if it can be extended to a full conditional probability on F ×C⊃∅,
with F and C any two fields overX such that F includes C and F ×C⊃∅ ⊇D.

Proof. Follows immediately from Theorems 2.53↶ and 2.54↶.

2.4.2 From conditional probability to conditional expectation

The domainD of a coherent conditional probability P is not required to have
any structure whatsoever. Nonetheless, most of the coherent conditional
probabilities that we will encounter throughout this dissertation do have
a specifically structured domain, and it will be precisely this structure that
allows us to incorporate classical probability theory. More precisely, we will
often restrict ourselves to domainsD that have the following structure.

Definition 2.57. Consider a possibility spaceX. A subsetD ofP(X)×P(X)⊃∅
is a structure of fields if there is a non-empty set C of non-empty events
in P(X)⊃∅ and, for every conditioning event C in C, a field FC of events over
X such that

D = {
(A,C ) : C ∈ C, A ∈FC

}
. (2.25)

Observe that the domain F ×C⊃∅ of a full conditional probability is a
structure of fields, but not every structure of fields is of the form F ×C⊃∅,
withC andF two nested fields of events. This structure is interesting because
it allows us to relate coherent conditional probabilities to probability charges.

Corollary 2.58. Consider a possibility space X and a structure of fieldsD =
{(A,C ) : C ∈ C, A ∈FC }. If P is a coherent conditional probability onD, then
for every conditioning event C in C,

P (•|C ) : FC →R : A 7→ P (A |C )

is a probability charge on FC .

Proof. Recall from Corollary 2.55↶ that P satisfies (CP1)41–(CP9)42 on its domainD.
Consequently, P (•|C ) satisfies (P1)34–(P3)34.
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2.4 Coherence and conditioning

It is important to realise that the converse of Corollary 2.58↶ is not nec-
essarily true, that is, we cannot arbitrarily define a probability charge P (•|
C ) for every conditioning event C and expect to end up with a coherent con-
ditional probability. The reason for this is, essentially, that the conditional
probabilities should be linked through (CP4)41, the multiplicative version of
Bayes’s rule.

Expectation of simple variables

Let P be a coherent conditional probability on a structure of fields D =
{(A,C ) : C ∈ C, A ∈FC }. Due to Corollary 2.58↶, for any conditioning event C
in C, P (•|C ) is a probability charge on FC . As we have seen in Section 2.3.335,
this (conditional) probability charge P (•|C ) defines a (conditional) expecta-
tion operator EP (•|C ) on S(FC ) as

EP ( f |C ) := EP (•|C )( f ) for all f ∈S(FC ), (2.26)

where we use EP ( f |C ) to denote the conditional expectation to emphasize
that it is actually conditional, and where EP (•|C ) is the Dunford integral with
respect to the probability charge P (•|C ) as defined by Eq. (2.19)36. This way,
P induces the conditional expectation operator EP with domain

CS(D) := {
( f ,C ) : C ∈ C, f ∈S(FC )

}
. (2.27)

Whenever there can be no confusion, we will leave out the conditioning
event C if it is the sure eventX:

EP ( f ) := EP ( f |X) = EP (•|X)( f ) for all f ∈S(FX);

in short, we follow the same convention as with conditional probabilities.

Extension through coherence

An interesting side note is that we can also arrive at the conditional expecta-
tion EP through the notion of coherence for conditional (lower) expectations,
and the natural extension that goes along with it. We will not provide defini-
tions for these concepts here, but invite the interested reader to take a look
at (P. M. Williams, 1975, 2007), (Regazzini, 1985) and (Troffaes et al., 2014).
There, you will find out that P. M. Williams (1975) introduces the notion of
coherent conditional lower expectations on gambles, that Regazzini (1985)
more thoroughly studies the special cases of coherent conditional expecta-
tions – also on gambles – and probabilities, and that Troffaes et al. (2014,
Chapter 13) generalise Williams’ work from gambles to (unbounded) real
variables. As we are about to see, the concepts of coherence and natural
extension for conditional expectations are similar to their unconditional
counterparts of Section 2.216.
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Let P be a coherent conditional probability on some structure of
fields D = {(A,C ) : C ∈ C, A ∈ FC }. Clearly, this coherent conditional prob-
ability P contains the same information as the restriction of EP to GD :=
{(IA ,C ) : C ∈ C, A ∈ FC }, which is a coherent conditional expectation in the
sense of (Regazzini, 1985, Definition 2) and (Troffaes et al., 2014, Defini-
tion 13.28). Troffaes et al. (2014, Definition 13.23 and Theorem 13.47) explain
how the most conservative coherent conditional lower expectation that ex-
tends the coherent conditional expectation EP from GD to CS(D) is the
natural extension EP on CS(D), defined for any ( f ,C ) in CS(D) by

EP ( f |C ) := sup
{
α ∈R : IC ( f −α) ∈ E(AP )

}
.

Observe that this is a straightforward adaptation to the conditional case of
the unconditional natural extension as defined in Eq. (2.9)24. Because EP is
coherent, it coincides with its natural extension EP on its domain; formally,

EP (IA |C ) = EP (IA |C ) = P (A |C ) = EP (IA |C ) for all (A,C ) ∈D, (2.28)

where EP :=−EP (−• |•) is the conjugate coherent conditional upper expec-
tation of the natural extension EP .

To confirm that we could also have obtained EP through coherence, we
fix any conditioning event C in C and any FC -simple variable f with repre-
sentation f = ∑n

k=1 ak IAk . First, it follows from (Troffaes et al., 2014, Theo-
rem 3.31(i)), the conditional counterpart of (LE4)30, that

EP ( f |C ) ≤ EP ( f |C )

Next, it follows from the properties of coherent conditional lower expecta-
tions – more precisely from their super-additivity and non-negative homo-
geneity (see Troffaes et al., 2014, Theorem 13.31) – that

EP ( f |C ) ≥
n∑

k=1
EP (ak IAk |C ) =

n∑
k=1

akEP (IAk |C ) =
n∑

k=1
ak P (Ak |C ) = EP ( f |C ),

where for the last two equalities we have used Eq. (2.28) and Eq. (2.19)36.
Similarly, for the conjugate of the natural extension we obtain that

EP ( f |C ) ≤
n∑

k=1
EP (ak IAk |C ) =

n∑
k=1

ak P (Ak |C ) = EP ( f |C ).

We combine the preceding three inequalities, to yield

EP ( f |C ) = EP ( f |C ) = EP ( f |C ) for all ( f ,C ) ∈CS(D).

In other words, the natural extension EP is self-conjugate on CS(D).7 For
this reason, EP is a coherent conditional expectation in the sense of (Troffaes
et al., 2014, Definition 13.28).

7Troffaes et al. (2014, Proposition 8.17) make this point as well, but they only explicitly do so
for probability charges and coherent lower expectations.
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2.4 Coherence and conditioning

2.4.3 Sets of coherent conditional probabilities

By introducing coherent conditional probabilities, we have successfully miti-
gated what we perceive as one of the main drawbacks of classical probability
theory: the issues with conditioning on events that have probability zero.
That being said, coherent conditional probabilities still require us to specify
conditional probabilities precisely or exactly, and this is often infeasible if not
impossible. For this reason, we free ourselves of this requirement of precision
here, and instead consider sets of coherent conditional probabilities.

We fix some structure of fields D = {(A,C ) : C ∈ C, A ∈ FC }, and let P
be a non-empty set of coherent conditional probabilities on D. Formally,
there are no additional restrictions whatsoever on the coherent conditional
probabilities in the set P, but within the context of this dissertation, we will
typically interpret it from a sensitivity analysis point of view – which we have
previously mentioned in Section 2.2.427. We leave a more detailed discussion
for Chapter 353 though; for now, it can be helpful to think of the following
example.

Bruno’s Example 2.59. Alicia is convinced that the infinite sequence (Xn)n∈N
of coin flips of Bruno’s machine can be adequately modelled by what is
commonly known as a sequence of ‘independent and identically distributed
random variables’. In short, this means that she believes that the coherent
conditional probability Pq of Bruno’s Example 2.4842, with q in ]0,1[ the
probability of heads, is an adequate model. Alicia is a bit of a cautious woman
though, and this stops her from fixing a single value for the parameter q ; she
only feels comfortable to say that q can have any value in the interval [3/7, 4/7].
In short, her beliefs are captured by the set

P := {
Pq : q ∈ [3/7, 4/7]

}
. í

Lower and upper envelopes

As in Section 2.2.427, we look at lower and upper envelopes with respect to
the non-empty set P of coherent conditional probabilities. For starters, the
conditional lower and upper probabilities PP and PP are the real-valued
maps on the structure of fieldsD defined as

PP (A |C ) := inf
{
P (A |C ) : P ∈P}

for all (A,C ) ∈D
and

PP (A |C ) := sup
{
P (A |C ) : P ∈P}

for all (A,C ) ∈D.

Note that, as an immediate consequence of (CP7)42, these lower and upper
conditional probabilities are conjugate, in the sense that PP(A |C ) = 1−
PP (Ac |C ) for all (A,C ) inD. Thus, it suffices to study either the lower or the
upper conditional probability; in this dissertation, we choose the former.
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Recall from Section 2.4.246 that because every coherent conditional prob-
ability P inP has the structure of fieldsD as domain, it induces a conditional
expectation EP on CS(D). Thus, we can also take the lower and upper en-
velope of the set {EP : P ∈P} of induced conditional expectations. Formally,
these conditional lower and upper expectations EP and EP are the real-
valued maps on CS(D) defined by

EP ( f |C ) := inf
{
EP ( f |C ) : P ∈P}

for all ( f ,C ) ∈CS(D)

and

EP ( f |C ) := sup
{
EP ( f |C ) : P ∈P}

for all ( f ,C ) ∈CS(D).

Here too, it suffices to only study the lower envelope because lower and upper
envelopes are conjugate; more precisely, it follows from (ES2)37 that EP( f |
C ) =−EP (− f |C ) for all ( f ,C ) in CS(D). Furthermore, the lower conditional
expectation includes lower conditional probabilities – and thus by conjugacy
also upper conditional probabilities – as a special case, because

PP (A |C ) = EP (IA |C ) for all (A,C ) ∈D.

We again follow the convention that the conditioning event is left out of the
notation whenever it is the sure eventX, so EP (•) := EP (•|X), and similarly
for the conjugate upper conditional expectation and the conditional lower
and upper probabilities.

Bruno’s Example 2.60. In Bruno’s Example 2.4137, we defined the F -simple
variable hn as the number of heads in the first n flips. With the notation of
Bruno’s Example 2.4842, we now find that

EPq (hn |X) = EPq (hn) = nq,

where the final equality is established in Bruno’s Example 2.4137. With P as
defined in Bruno’s Example 2.59↶, we therefore find that

EP (hn) = EP (hn |X) = inf
{
EP (hn |X) : P ∈P}

= inf
{
EPq (hn |X) : q ∈ [3/7,4/7]

}= inf{nq : q ∈ [3/7, 4/7]} = n
3

7
.

Similarly, EP (hn) = n4/7. í

Coherent extension of the lower envelope

Recall that for any coherent conditional probability P in the set P, EP is a
coherent conditional expectation in the sense of (Troffaes et al., 2014, Defi-
nition 13.28). For this reason, it follows from (Troffaes et al., 2014, Proposi-
tion 13.42) – the conditional counterpart of Definition 2.2528 – that EP is a
coherent conditional lower expectation in the sense of (Troffaes et al., 2014,
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Definition 13.25). We could therefore use the ‘natural extension for condi-
tional lower expectations’ (see Troffaes et al., 2014, Section 13.7) to extend EP
to any subsetK of G(X)×P(X)⊃∅ – or, to be more precise, V(X)×P(X)⊃∅
– that includes CS(D). We will not detail how this works here, because this
extension is ill-suited for our purposes. We will return to this point in Chap-
ter 5215 further on; for now, it suffices to understand that this has to do with
whether or not we should use the natural extension for gambles (or variables)
that are not determinable.

2.4.4 Connecting determinable gambles and simple variables

Recall from Section 2.2.116 that if we want to adhere to a gambling interpreta-
tion, then we should only consider those gambles that are determinable. As
promised, we end this chapter with a closer look at what type of gambles are
determinable. Let us first use our running example to give an example of a
gamble that is not determinable.

Bruno’s Example 2.61. Consider the event that ‘all coin flips are heads’, which
in our notation, is defined as

Hlim := ⋂
n∈N

{Xn = H}.

The indicator IHlim of this event is a gamble, as this is the case for any indicator.
However, we can never decide without question whether the event Hlim

occurs or not, because even after a million consecutive coin flips that result
in heads, we can never be sure that the next coin flip will not turn out to be
tails. This means that any bet based upon this event, and therefore any bet
that involves the gamble IHlim , cannot be decided without question. For this
reason, the gamble IHlim is not determinable. í

Next, we try to determine the type of gambles that are determinable in
the setting of our running example.

Bruno’s Example 2.62. Recall that a gamble g onX is determinable whenever
its value can be decided without question. Clearly, we can only decide on
the value of those gambles that only require a finite number of consecutive
coin flips. In other words, for any determinable gamble g , there is a natural
number n such that g only depends on the first n coin tosses; that is, there is
some real-valued function h on {H,T}n such that

g (x) = h(x1:n) for all x = (xk )k∈N ∈X.

A gamble that satisfies this condition is called n-measurable by (Lopatatzidis,
2017, Section 3.5.1). Observe that any n-measurable gamble g is F -simple,
because

g = ∑
y1:n∈{H,T}n

h(y1:n)I{X1:n=y1:n }.
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Note that it need not be that every F -simple variable is determinable. For
example, one might argue that after some physical horizon we can no longer
observe the outcome of the coin flip; in that case, not everyF -simple variable
is determinable. The issue is then of course that we need to specify this
horizon. One convenient way to circumvent this arbitrary choice, is to make
the mathematical idealization that there is no such physical horizon. í

The crucial observation is that, in the setting of our running example,
every gamble that is determinable is a simple variable, and that it is conve-
nient to use the idealization that every simple variable is determinable as
well. This is by no means exclusive to the specific setting of our running ex-
ample; in fact, we will also encounter this when dealing with jump processes
in Chapter 3↷ further on. In any case, because coherence and the natural
extension are motivated through a betting interpretation, it is arguably not
sensible to use the (conditional version of) natural extension to extend the
domain of EP to gambles (or variables) that are not determinable – or, when
the equivalence holds, simple. That is as far as we will go with this for now,
but we will return to this in great length in Chapter 5215 further on.
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Modelling jump processes 3
In this chapter, we use the basic mathematical tools for modelling uncer-
tainty to introduce the main topic of this dissertation: jump processes. A
jump process is a mathematical model for a subject’s uncertainty regarding a
system she is interested in. More precisely, she is interested in the state of this
system, and how this state changes – or ‘jumps’ – over time, but she cannot
specify the initial state nor how the state evolves over time with certainty.

We speak in general terms to make our framework as widely applicable
as possible, but we will illustrate this wide applicability with some concrete
examples. For a first example, we return to Bruno’s Example 2.3131, where
we were interested in the outcomes of the consecutive coin flips of Bruno’s
machine. In the terminology of the previous paragraph, Bruno’s machine is
the system, and its state is either heads or tails. It is natural to think of ‘the
outcome of the n-th coin flip’ as ‘the state at time n’, so this is an example of
a system that evolves over discrete time.

In this dissertation, however, we will mainly be concerned with systems
that are more naturally studied in continuous time. Examples of such systems
are abundant. One example that everyone has to endure once in a while is
the queue at the checkout of a shop; in this case, the ‘state at time t ’ is
‘the number of customers in the queue at time t ’. More involved queueing
situations – with people but also with more general ‘customers’ – often also fit
in this abstract framework, as we will see in Queuing Network Example 7.3340

in Chapter 7337 and also in Chapter 8403 further on. For a different example
that is not related to queueing, we give our running example a little shake-up.

Joseph’s Example 3.1. Bruno is getting a lot of attention with his coin flipping
machine, to the envy of some of colleagues, including Joseph. In an attempt
to steal away some of Bruno’s limelight, Joseph comes up with a plan to build
his own flipping coin flipping machine in his spare time. After a couple of
design iterations, his contraption is ready to be revealed to his colleagues.

Joseph has no doubt that his machine will draw a crowd, because it works

53



Modelling jump processes

in a substantially different manner than Bruno’s. While Bruno’s machine
mechanically flips an actual coin, Joseph’s machine makes use of radioactive
decay. More precisely, Joseph’s machine contains some amount of radioactive
isotope and a detector; whenever the machine detects a decay, it changes its
display from heads to tails or vice versa. ¢

In the example above, the ‘system’ is Joseph’s machine, and ‘the state at
time t ’ is ‘the output of the display at time t ’. It is natural to use continuous
time in this example, because the machine can flip – that is, change state
– at any point in time. Throughout the remainder of this dissertation, we
will use the system of Joseph’s Example 3.1↶ as a running example. It will
help to keep in mind that the setting of Joseph’s Example 3.1↶ is simply the
continuous time version of that in Bruno’s Example 2.3131.

The rest of this chapter is structured as follows. In Section 3.1↷, we apply
the concepts of Chapter 211 to model the subject’s uncertainty regarding a
system that evolves over continuous time with a ‘jump process’, which is a
coherent conditional probability on a specific domain. Next, we study how
a jump process simplifies when it is Markovian and time-homogeneous in
Section 3.274. Crucially, we will establish how under these two properties, the
jump process is uniquely characterised by two parameters: the initial mass
function and the rate operator. Finally, we come to imprecise jump processes
in Section 3.388, which we simply define as sets of jump process from the
point of view of a sensitivity analysis. Concretely, instead of a single initial
mass function and rate operator, we assume we have a set of initial mass
functions and a set of rate operators, and then consider the set of all jump
processes that are ‘consistent’ with these sets. Remarkably, it turns out that
the lower envelope with respect to this set of consistent jump processes is also
Markovian and time-homogeneous, so we end up with a proper imprecise
version of (time-homogeneous) Markovian jump processes.

This chapter is largely based on (Krak et al., 2017) and – to a lesser ex-
tent – also on (De Bock, 2017b). There are a couple of differences between
our exposition and that of Krak et al. (2017), though. One key difference is
that we impose additional requirements on the outcomes in the possibility
space, which will prove indispensable in Chapter 5215 further on. Another
key difference is that we propose a novel definition of the notion of ‘consis-
tency with a set of rate operators’ – see Definitions 3.4697 and 3.5099 and
Proposition 3.57104 further on. Furthermore, we also present some novel
results, the most notable of these being Theorems 3.75114 and 3.89120. From
a historical perspective, it is important to note that Škulj (2015) was the first
to consider Markovian imprecise jump processes. Furthermore, Škulj (2015),
De Bock (2017b) and Krak et al. (2017) draw inspiration from earlier work on
imprecise Markov chains – including but not limited to (De Cooman et al.,
2008), (De Cooman et al., 2009), (Hermans et al., 2012) and (Škulj et al., 2013).
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3.1 Jump processes

We want to model the subject’s uncertainty regarding (the evolution of) the
state of some system over time. This kind of uncertainty model is gener-
ally called a stochastic process – sometimes also random process – and it is
common practice to call the set of all possible states of the system the state
space.

Traditionally, stochastic processes are further distinguished based on the
nature of time and the state space, both of which are either continuous or
discrete. Most authors, like Doob (1953), Chung (1960) Anderson (1991), Nor-
ris (1997), Tornambè (1995), Stewart (2009) or Krak et al. (2017), use the term
chain to refer to any stochastic process with a finite – or sometimes also count-
able – state space, adding the adjective ‘discrete-time’ or ‘continuous-time’ to
distinguish the nature of the time axis. A minority of authors, including Feller
(1968), Kendall et al. (1971), Iosifescu (1980), Billingsley (1995) or Borovkov
(2013), opt to reserve the term chain for a stochastic process with a finite
or countable state space that evolves in discrete time. Because we prefer
not to use the adjectives ‘continuous-time’ and ‘discrete-time’ all the time,
we follow the second group and exclusively associate the term chain with
discrete time.

In this dissertation, we consider a system with a finite state space that
evolves in continuous time. If such a system changes state we say that it
jumps from one state to another. Similarly, we refer to a stochastic process for
such a system as a jump process, following Gikhman et al. (1969) and Le Gall
(2016).

The aim of this section is to formally define a jump process as a coherent
conditional probability on a specific domain. To this end, we basically follow
the steps as laid out in Chapter 211. First, we fix the possibility space in
Section 3.1.1. In Section 3.1.258, we subsequently introduce some essential
events and variables on this possibility space. Finally, we give the formal
definition of a jump process in Section 3.1.365, and establish some useful
properties in Sections 3.1.469 and 3.1.573.

3.1.1 Càdlàg paths

We denote the state space of the system by X,1 and always assume that it is
non-empty and finite. This might seem like an overly restrictive assumption
from a mathematical point of view, but it makes sense from a practical point
of view. A plethora of applications – including those we will encounter in
Chapters 7337 and 8403 further on – can be analysed with a finite state space.

1Note that we denote both the generic state space X and the generic possibility spaceX
with a ‘calligraphic’ capital X, although they are from a different font. Here and in the remainder,
we consistently use the calligraphic font of the Times font family for ‘general’ uncertainty models
and the calligraphic font of the STIX font family for jump processes.
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This being said, all of the material in this section naturally generalises to
countable state spaces; this has already been done in (Erreygers & De Bock,
2019b) for the special case of counting processes.

Because the system evolves in continuous time, it makes sense to think of
‘the state of the system at every time point’ as an outcome. Thus, an outcome
is a function that maps every time point to the state of the system at this time
point. We take R≥0 as time axis, so an outcome is a function ω from R≥0 to X.
We will refer to such outcomes as paths; that is, we call any function from
R≥0 to the state space X a path. We collect all paths in the set of paths Ω̃X ,
which we denote by Ω̃ whenever there cannot be any confusion regarding
the state space.

Joseph’s Example 3.2. Clearly, the state of Joseph’s machine is either heads
or tails, so the state space X is equal to {H,T}. Joseph’s machine is the
continuous-time counterpart of Bruno’s machine, and this is reflected in
the outcomes that we use: a path ω : R≥0 → {H,T} is the natural continuous-
time counterpart of a sequence (xn)n∈N in {H,T}. ¢

In general, a path ω can have pretty erratic behaviour. Take, for exam-
ple, the path ω1 that assumes T whenever the time point t is natural and H
otherwise, as depicted in Fig. 3.1(a)↷; or even more extreme, the path that
assumes T whenever the time point t is rational and the state H whenever
the time point t is irrational. This is not the type of behaviour that we expect
from our system, so it makes sense to a priori exclude these erratic paths from
the possibility space. Instead of this erratic behaviour, we expect that after
the system changes states, it stays in the new state for some time. Mathemat-
ically, this translates to the requirement that a path ω : R≥0 →X should be
continuous from the right at all time points t in R≥0. Even with this condition,
a path can still display some volatile behaviour; we illustrate this with our
running example.

Joseph’s Example 3.3. An example of a path that is right-continuous but
nevertheless still behaves in a strange manner is the path ω2 defined by

ω2(t ) :=


H if t ∈ ⋃

n∈N

[
2−2−2n+3,2−2−2n+2[,

T if t ∈ ⋃
n∈N

[
2−2−2n+2,2−2−2n+1[,

H if t ≥ 2,

for all t ∈R≥0, .

In Fig. 3.1(b)↷, we see that the path ω2 is right-continuous everywhere by
construction. It starts off in the state H, and then alternates between T and
H, every time changing states after a shorter time interval. This continues
ad infinitum until the time point 2, after which the state is always H. In
other words, Joseph’s machine switches between heads and tails infinitely
often before the time point 2. Observe that the limit from the left exists for
every positive time point t , except for t = 2. In other words, we can say that
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(a) Graph of the pathω1 : R≥0 → {H,T} that assumes T whenever the time point t is natural
and H otherwise.

0 1 2 3

H

T

(b) Graph of the path ω2 : R≥0 → {H,T} as defined in Joseph’s Example 3.3↶. Note that the
graph is inaccurate to the left of t = 2 for obvious reasons.
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(c) Graph of a càdlàg path ω3 : R≥0 → {H,T}.

Figure 3.1 Examples of paths for the state space X = {H,T}.

the state changes from heads to tails at every time point in the sequence
(2−2−2n+2)n∈N and from tails to heads at every time point in the sequence
(2−2−2n+1)n∈N. Both of these sequences converge to 2, but it is impossible
to say whether the state right before the time point 2 is heads or tails. ¢

In order to get rid of this second type of strange behaviour, it suffices to
additionally require that for every pathω in the possibility space, the left limit
exists at all time points. The following standard definition – see, for example,
(Billingsley, 1999, Section 12) or (Le Gall, 2016, p. 54) – combines these two
requirements.

Definition 3.4. A path ω : R≥0 →X is càdlàg2 if it is continuous from the
right and has limits from the left with respect to the discrete topology on X.

2An acronym for the French phrase ‘[une fonction qui est] continue à droite [et admet une]
limite à gauche’.
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More formally, we require that(∀t ∈R≥0
)(∃δ ∈R>0

)(∀r ∈ ]t , t +δ[
)
ω(r ) =ω(t ), (3.1)

and (∀t ∈R>0
)(∃δ ∈ ]0, t ]

)(∀s, s′ ∈ ]t −δ, t [
)
ω(s) =ω(s′). (3.2)

We collect all càdlàg paths in the setΩX , which we will denote byΩwhenever
the state space X is clear from the context.

A typical example of a càdlàg path is depicted in Fig. 3.1(c)↶; note that
the limit from the left indeed prevents the second type of strange behaviour.
More precisely put, the càdlàg assumption ensures that any càdlàg path has
at most a finite number of state changes or ‘jumps’ over any finite period of
time – see Lemma 5.20232 further on for the precise statement.

We take the set Ω as possibility space because we want to exclude the
erratic behaviour of non-càdlàg paths a priori. Important to stress here is
that this restriction to càdlàg paths is not really necessary for the definitions
and results in this chapter; it will become vital in Chapter 5215 further on,
though. More precisely, as far as this and the next chapter are concerned, it
would suffice to take as possibility space instead of Ω any set of paths Ω̃′ that
satisfies the condition of the following result (see Krak et al., 2017, Eq. (12)).

Lemma 3.5. For every natural number n, any increasing sequence of time
points (t1, . . . , tn) in R≥0 and any states x1, . . . , xn in X, there is at least one
path ω in Ω such that ω(tk ) = xk for all k in {1, . . . ,n}.

Proof. By construction, the path

ω : R≥0 →X : t 7→ω(t ) :=


x1 if t ∈ [0, t1),

xk if (∃k ∈ {1, . . . ,n −1}) tk ≤ t < tk+1,

xn if t ≥ tn ,

satisfies the requirements of the statement: ω is càdlàg and for any k in {1, . . . ,n},
ω(tk ) = xk .

3.1.2 Finitary events

Because we intend to model the subject’s uncertainty regarding the state of
the system using a coherent conditional probability, we initially restrict our at-
tention to those events and gambles for which a betting interpretation makes
sense. In Section 2.2.116 we called such an event or gamble determinable, in
the sense that ‘a bet based upon it can be decided without question’. In the
present setting, it is clear that a gamble or event is definitely not determinable
if its value cannot be determined after any (finite) period of time. For an
example of such an event, we turn to our running example.
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3.1 Jump processes

Joseph’s Example 3.6. In our formalism, we idealise the event ‘Joseph’s ma-
chine displays heads all the time’ as{

ω ∈Ω : (∀t ∈R≥0) ω(t ) = H
}
.

Clearly, this event depends on the state of the system at all time points – that
is, on R≥0. Thus, there is no time point t in R≥0 such that we can determine if
the event occurs – or, in other words, decide a bet based upon it – in case we
know the state of the system at all times before t . Differently put, it can be
that we have to wait ‘infinitely long’ before we can determine whether the
event occurs or not. ¢

Generally speaking, it is (also) practically impossible to observe the state
of the system at infinitely many time points. For this reason, in the setting
of jump processes we take the position that an event or a gamble can only
be determinable if it depends on the state of the system at a finite number
of time points. In Chapter 5215 further on, we will deal with variables that
depend on the state of the system at more than a finite number of time points
by means of – arguably more natural – limit arguments instead of through
coherence and a direct betting interpretation. Similar to what we saw earlier
for the discrete-time case in Bruno’s Example 2.6251, it is not necessarily
the case that every event or gamble that depends on the state of the system
at a finite number of time points is determinable. For example, as in the
discrete-time case, there might be a physical horizon after which we cannot
realistically observe the system. Additionally, specific to the continuous-
time case is that we cannot measure time up to arbitrary precision. In order
not to get caught in these subtleties, we choose to adhere to an ‘idealised’
version of determinability: henceforth, we consider variables and gambles
determinable if and only if they determine on the state of the system at a
finite number of time points.

Joseph’s Example 3.7. Consider two time points s and r inR≥0 such that s < r .
In our formalism, the event ‘Joseph’s machine displays heads during the time
interval [s,r ]’ is

H[s,r ] := {
ω ∈Ω : (∀t ∈ [s,r ]) ω(t ) = H

}
.

Clearly, this event depends on the state of the system at all time points in
the interval [s,r ], which is not a finite number of time points. Thus, the
event H[s,r ] is not determinable. ¢

It is customary to let X t denote the state of the system at time t , and
we follow in this tradition here. For any time point t in R≥0, the projector
variable X t is the X-valued variable that projects the path ω on its state at
time t , defined by

X t (ω) :=ω(t ) for all ω ∈Ω. (3.3)
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Events that depend on a single time point

Let us start with the most basic case of events that only depend on the state
at a single time point. For any time point t in R≥0 and any state x in X, we
denote the event ‘the state at time t is x’ by

{X t = x} := {
ω ∈Ω : ω(t ) = x

}
. (3.4)

More generally, for any subset B of X, we define the event ‘the state at time t
belongs to B ’ as

{X t ∈ B} := {
ω ∈Ω : ω(t ) ∈ B

}
.

Note that in both cases, the projector variable X t allows us to easily denote
such events. Furthermore, it is easy to see that

{X t ∈ B} = ⋃
x∈B

(X t = x),

where by the definition of the union of a family of sets, the empty union is
equal to the empty set.

Joseph’s Example 3.8. In our formalism, the event ‘Joseph’s machine displays
heads at time t ’ is {X t = H}. Observe that this is similar to how we denoted
the event ‘the n-th toss of Bruno’s machine is heads’ by (Xn = H). For any two
time points s and r in R≥0 such that s < r , we also have that

H[s,r ] =
⋂

t∈[s,r ]
{X t = H}.

Again, this is similar to what we did in Bruno’s Example 2.3332, where we saw
that the event Hn , ‘the first n tosses of Bruno’s machine are heads’, is equal
to

⋂n
k=1{Xk = H}. ¢

Sequences of time points and corresponding states

To simplify the notation regarding events that depend on more than a single
time point, we will avail ourselves of the notational conventions used by
Krak et al. (2017). A sequence of time points is a finite sequence of increasing
non-negative real numbers, that is, a sequence (t1, . . . , tn) in R≥0 such that
t1 < ·· · < tn . We could denote a generic sequence of time points (t1, . . . , tn)
by t1:n , but we choose to denote a generic sequence by u. In order not to
deal with edge cases in the statements of definitions and results, we also
consider the empty sequence () as a sequence of time points and call all
other sequences of time points non-empty. Thus, the set of sequences of
time points is

U := {
(t1, . . . , tn) : n ∈Z≥0; t1, . . . , tn ∈R≥0; t1 < ·· · < tn

}
(3.5)

and the set of all non-empty sequences of time points is

U̸=( ) := {
(t1, . . . , tn) : n ∈N; t1, . . . , tn ∈R≥0; t1 < ·· · < tn

}
. (3.6)
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We denote the first and last time points of a non-empty sequence u =
(t1, . . . , tn) by minu := t1 and maxu := tn , respectively; in order to conve-
niently deal with the edge case that u is the empty sequence of time points (),
we let min() := 0 =: max(). For any two non-empty sequences of time points
u and v in U̸=( ), we write u ≼ v whenever v only contains time points that
either belong to u or that succeed the last time point of u; formally,

u ≼ v ⇔ (∀t ∈ v) t ∈ u or t ∈ [maxu,+∞[. (3.7)

Note that ≼ is a partial order (see Schechter, 1997, Section 3.8) over U̸=( ).
Additionally, for all u and v in U̸=( ), we write

u ≺ v ⇔ maxu < min v. (3.8)

Note that ≺ is a strict (or irreflexive) partial order over U̸=( ); in contrast to
what our notation suggests, ≺ is not the strict partial order corresponding
to ≼. Out of convenience, we also impose that () ≼ v and () ≺ v for all v
in U̸=( ). This way, for any – possibly empty – sequence of time points u in U,
we can define the sets U≽u := {v ∈U : v ≽ u} and U≻u := {v ∈ U̸=( ) : v ≻ u}.
Additionally, if t is a time point in R≥0 and u a sequence of time points, then
we write t ≻ u whenever (t ) ≻ u.

Because a sequence of time points is an ordered set, we may use set-
theoretic operations on sequences of time points, in the understanding that
the result of these operation are sequences of time points – that is, ordered
sets of real numbers – as well. For example, if u and v are sequences of time
points, then u ∪v denotes the sequence of time points that is made up of the
time points in u and v ; similarly, u \ v is the sequences that is made up of the
time points in u that do not belong to v .

Next, we consider tuples of states indexed by time sequences. For a
non-empty sequence of time points u = (t1, . . . , tn), we consider n-tuples
of states, that is, elements (xt1 , . . . , xtn ) of Xn . In order not to constantly
refer to the length |u| of a generic non-empty sequence of time points u,
we write Xu instead of X|u|. Similarly, we denote an element of Xu – that
is, a generic |u|-tuple of states – by xu instead of (xt1 , . . . , xtn ) or (xt )t∈u . For
any t in u = (t1, . . . , tn), we then let xt be the corresponding component of
xu = (xt1 , . . . , xtn ); similarly, for any subsequence v of u, we let xv := (xt )t∈v

be the corresponding subtuple of xu . For ease of notation, we extend these
conventions to the empty sequence of time points as well; if u is the empty
sequence of time points (), then xu = x( ) is the empty tuple, which we will
denote by ⋄, and Xu =X( ) is the singleton {⋄} containing this empty tuple.

Fix any sequence of time points u in U. For any path ω in Ω̃, we denote
the restriction of ω to u by

ω|u := (
ω(t )

)
t∈u = (

ω(t1), . . . ,ω(tn)
)
, (3.9)
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where we enumerate the time points in u as (t1, . . . , tn). Note that ω|u is the
empty tuple ⋄ whenever u is the empty time sequence (). Additionally, we let
Xu := (X t )t∈u = (X t1 , . . . , X tn ) be the Xu-valued variable defined by

Xu(ω) :=ω|u for all ω ∈Ω. (3.10)

Events that depend on a finite number of time points

With this notation, we can now formally define the event ‘the states at the
times in u are equal to xu ’ as

{Xu = xu} := {ω ∈Ω : ω|u = xu}. (3.11)

Similarly, for any subset B of Xu , we set

{Xu ∈ B} := {ω ∈Ω : ω|u ∈ B}. (3.12)

Note that
{Xu ∈ B} = ⋃

xu∈B
{Xu = xu} = ⋃

xu∈B

⋂
t∈u

{X t = xt }, (3.13)

where by the definition of the intersection of a family of sets, the empty
intersection is the entire set. Observe that in case u is the empty sequence of
time points (), {X( ) = x( )} =Ω= {X( ) ∈X( )}.

Most authors call an event of the form {Xu ∈ B} a cylinder event (see, for
example, Billingsley, 1995, Section 36), but we will often also refer to it as a
finitary event because it depends on the state of the system at a finite number
of time points. For the same reason, we conclude that an event {Xu = xu}
is determinable; conversely, it is easy to verify that any determinable event
must have a (non-unique) representation of the form {Xu ∈ B}. In other
words, every event in the set

F := {
{Xu ∈ B} : u ∈U,B ⊆Xu

}
3

of finitary events is determinable, and vice versa.

Conditioning events and the corresponding fields of events

Let us fix the conditioning events. One option would be to use all the events
of the form {Xu ∈ B}, but we follow (Krak et al., 2017) and only condition on
the simpler events of the form {Xu = xu}. Thus, we end up with the set

H := {
{Xu = xu} : u ∈U, xu ∈Xu

}
(3.14)

of conditioning events. We can only use the events in H as conditioning
events in case they are all non-empty, and the following result establishes
that this is not an issue.

3Note the subtle difference between F and F , the ‘calligraphic capital F’ of the Stix font
family and Times font families, respectively.
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3.1 Jump processes

Corollary 3.9. Every conditioning event {Xu = xu} in H is non-empty.

Proof. The statement is trivial in case u is the empty sequence of time points ().
When u is not the empty time sequence, the statement follows immediately from
Lemma 3.558.

Fix any event {Xu = xu} in H, any time point t in R≥0 such that t ≻ u and
any state x in X. Because

{Xu = xu}∩ {X t = x} = {Xv = xv },

with v := u ∪ (t ) and xt := x, the event

{Xu = xu , X t = x} := {Xu = xu}∩ {X t = x} (3.15)

again belongs to the set H. We will often encounter events of this form. In
these cases, it usually pays to think of t as the current time point and x as the
current state of the system, and {Xu = xu} as an incomplete specification of
the system’s history – that is, the values of ω(s) for all time points s < t .

Next, we decide on the events that we should consider given a state
history {Xu = xu} in H. In case {Xu = xu} = {X( ) = x( )} = Ω, we consider
the set F of all determinable (or finitary) events. In case {Xu = xu} ̸=Ω, or
equivalently, u ̸= ( ), things are a bit more involved. In this work, we choose to
interpret the conditioning event {Xu = xu} as ‘we have observed the state of
the system at the time points in u, and only at those time points’. Under this
interpretation, it is no longer possible to observe the state of the system at
previous time points – that is, the time points in [0,maxu]\u. This way, given
the state history {Xu = xu}, we can only decide upon bets that depend on the
state of the system at time points that either belong to u or that succeed the
time points in u. More concretely, we should only consider those events in F
that have a representation of the form {Xv ∈ B} with v ≽ u and B ⊆Xv . For
any sequence of time points u in U, we collect these events in

Fu := {
{Xv ∈ B} : v ∈U≽u ,B ⊆Xv

}
. (3.16)

Note that F( ) =F. Quite conveniently, the set Fu turns out to constitute a
field of events.

Lemma 3.10. For any sequence of time points u in U, the set Fu is a field of
events.

Proof. We need to verify that Fu satisfies (F1)32–(F3)32, the three requirements of
Definition 2.3232.

First, we observe that (F1)32 holds, as the sure event Ω belongs to Fu . We let
t = maxu, so t ≽ u by construction and

Fu ∋ {Xt ∈X} = {X( ) ∈X( )} =Ω.
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Similarly, ∅ belongs to Fu because {Xt ∈∅} = {X( ) ∈∅} =∅. Furthermore, we see
that (F2)32 is trivially satisfied for A =Ω and A =∅, and so is (F3)32 if one of the two
events is either the sure or the impossible event.

Next, we fix any A = {Xv1 ∈ B1} and B = {Xv2 ∈ B2} in Fu such that ∅ ̸= A ̸= Ω

and ∅ ̸= B ̸= Ω, and verify that (F2)32 and (F3)32 hold. To that end, we recall that
{X( ) ∈X( )} =Ω and {X( ) ∈∅} =∅, so the conditions on A and B imply that v1 ̸= ()
and v2 ̸= ( ).

In order to verify (F2)32, we observe that

Ac =Ω\ {ω ∈Ω : ω|v1 ∈ B1} = {ω ∈Ω : ω|v1 ∉ B1}

= {ω ∈Ω : ω|v1 ∈ Bc
1} = {Xv1 ∈ Bc

1},

with Bc
1 =Xv1 \ B1. As Bc

1 ⊆Xv1 , it follows from Equation (3.16) that Ac = {Xv1 ∈ Bc
1}

belongs to Fu , as required.
To verify (F3)32, we observe that

A∪B = {ω ∈Ω : ω|v1 ∈ B1}∪ {ω ∈Ω : ω|v2 ∈ B2}.

Let v3 be the ordered union of v1 and v2. Note that v1 ⊆ v3 and v2 ⊆ v3, and that
v3 ≽ u because both v1 ≽ u and v2 ≽ u. Now let

B3 := {xv3 ∈Xv3 : xv1 ∈ B1}∪ {xv3 ∈Xv3 : xv2 ∈ B2}.

It then follows that

A∪B = {ω ∈Ω : ω|v1 ∈ B1}∪ {ω ∈Ω : ω|v2 ∈ B2} = {ω ∈Ω : ω|v3 ∈ B3} = {Xv3 ∈ B3}.

Because v3 ≽ u and B3 ⊆Xv3 , we may conclude from this equality that A∪B belongs
to Fu , as required.

A convenient property of these finitary events is that if we have any num-
ber of them, they all have a representation using the same finite sequence of
time points.

Lemma 3.11. Consider a sequence of time points u in U. Then for all natural
numbers n and all finitary events A1, . . . , An in Fu , there are a sequence of
time points v in U≻u and subsets B1, . . . ,Bn of Xu∪v such that

Ak = {Xu∪v ∈ Bk } for all k ∈ {1, . . . ,n}.

Proof. By construction of Fu , for every k in {1, . . . ,n} there is a sequence of time
points vk in U such that vk ≽ u and a subset B ′

k of Xvk such that Ak = {Xvk ∈ B ′
k }.

Let v be the ordered sequence of time points that consists of those time points in v1,
. . . , vn that do not belong to u as well; if v turns out to be non-empty, then we choose
an arbitrary time point t in R≥0 such that t ≻ u and set v := (t ). Thus, by construction,
v is non-empty and v ≻ u. For any k in {1, . . . ,n}, we also let

Bk := {xu∪v ∈Xu∪v : xvk ∈ B ′
n }.

The statement now follows if we see that, for all k in {1, . . . ,n},

Ak = {Xvk ∈ B ′
k } = {

ω ∈Ω : ω|vk ∈ B ′
k

}= {
ω ∈Ω : ω|u∪v ∈ Bk

}= {Xu∪v ∈ Bk }.
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3.1.3 Jump processes as coherent conditional probabilities

Before we can finally state the formal definition of a jump process, we need to
introduce a last bit of notation. For any state space X, we define the domain

DX := {
(A |Xu = xu) : u ∈U, xu ∈Xu , A ∈Fu

}
. (3.17)

Again, whenever the state space X is clear from the context, we write D

instead of DX . In Eq. (3.17), we have chosen to write (A |Xu = xu) instead of
the more correct

(
A, {Xu = xu}

)
. We do this not only because this makes the

notation less obfuscated, but also because this allows us to unambiguously
use notation like (A |Xu = xu , X t = x), where we use the notational conven-
tion introduced in Eq. (3.15)63. In the remainder, we will silently extend this
convenient notation to general intersections of representations of finitary
events. For example, if u is a sequence of time points in U and {Xv1 ∈ B1}, . . . ,
{Xvn ∈ Bn} are events in Fu , then it will be convenient to write

{Xv1 ∈ B1, . . . , Xvn ∈ Bn} := {Xv1 ∈ B1}∩·· ·∩ {Xvn ∈ Bn}.

Because Fu is a field due to Lemma 3.1063, this event again belongs to Fu .
Recall from Corollary 3.963 that every state history {Xu = xu} in H is non-

empty. Therefore, DX is a subset of P(ΩX)×P(ΩX)⊃∅, so DX can be the
domain of a coherent conditional probability. This brings us to the following
definition, taken from (Krak et al., 2017, Definition 4.3).

Definition 3.12. A jump process P with state space X is a coherent condi-
tional probability on DX . We denote the collection of all jump processes
with state space X by PX , or simply Pwhenever the state space is clear from
the context.

Because a jump process is a coherent conditional probability, we can use
all the related machinery that we introduced in Section 2.4.140. Specifically
interesting is that we can define a coherent conditional probability on a
smaller domain D′, and then use Theorem 2.5445 to extend it to a coherent
conditional probability on D, that is, a jump process. Let us illustrate this
with our running example.

Joseph’s Example 3.13. Cecilia, a colleague of Bruno and Joseph’s, is breaking
Joseph’s heart. She has managed to shake his confidence by letting him
know that she is convinced that the machine will always display heads – or,
equivalently, she does not believe that the machine will ever display tails. We
now construct a coherent conditional probability that captures these beliefs
of hers.

Let ωH be the càdlàg path that is always H, so ωH(t) := H for all t in R≥0.
Consider the real-valued map P ′

H on

DH := {
(A |Xu = xu) ∈D : ωH ∈ {Xu = xu}

}
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that is defined for all (A |Xu = xu) in DH by

P ′
H(A |Xu = xu) :=

{
1 if ωH ∈ A,

0 otherwise.

To check that P ′
H is a coherent conditional probability on DH, we fix a natural

number n, some real numbers µ1, . . . ,µn and some (A1 |C1), . . . , (An |Cn)
in DH, and verify that

max

{
n∑

k=1
µk ICk (ω)

(
IAk (ω)−P ′

H(Ak |Ck )
)

: ω ∈
n⋃

k=1
Ck

}
≥ 0. (3.18)

To this end, we observe that, by construction of P ′
H, for any k in {1, . . . ,n},

µk ICk (ωH)
(
IAk (ωH)−P ′

H(Ak |Ck )
)=µk (IAk (ωH)−P ′

H(Ak |Ck )) = 0.

Because ωH is an element of Ck for all k in {1, . . . ,n}, this verifies Eq. (3.18).
Because P ′

H is a coherent conditional probability on DH, it follows from
Theorem 2.5445 that there is at least one coherent conditional probability PH
on D that extends P ′

H. By construction, any such extension PH is a jump
process with state space X = {H,T}. ¢

A similar constructive method also comes in handy in the following ex-
ample, which will be essential in Joseph’s Example 3.4392 further on.

Joseph’s Example 3.14. Drawing inspiration from Krak et al. (2017, Exam-
ple 4.3), we make the following claim: for any [0,1]-valued function φ on R>0,
there is a jump process Pφ such that

Pφ(X t = x |X0 = x) =φ(t ) for all x ∈X, t ∈R>0. (3.19)

To verify this claim, we consider the real-valued map P ′
φ on

Dφ := {
(X t = x |X0 = x) : x ∈X, t ∈R>0

}⊆D,

defined for all (X t = x |X0 = x) in Dφ by

P ′
φ(X t = x |X0 = x) :=φ(t ).

As in Joseph’s Example 3.13↶, we set out to check that P ′
φ is a coherent

conditional probability on Dφ. To verify that P ′
φ satisfies the condition in

Definition 2.5144, we fix a natural number n, real numbers µ1, . . . , µn and
some (X t1 = x1 |X0 = x1), . . . , (X tn = xn |X0 = xn) in Dφ. We have to show that

max

{
n∑

k=1
µk Ixk

(
ω(0)

)(
Ixk

(
ω(tk )

)−P ′
φ(X tk = xk |X0 = xk )

)
: ω ∈C

}
≥ 0,

(3.20)
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with C :=⋃n
k=1{X0 = xk }. Define the index sets

KH := {
k ∈ {1, . . . ,n} : xk = H

}
and KT := {

k ∈ {1, . . . ,n} : xk = T
}
,

and observe that, for all ω in C ,

n∑
k=1

µk Ixk

(
ω(0)

)(
Ixk

(
ω(tk )

)−P ′
φ(X tk = xk |X0 = xk )

)
=

n∑
k=1

µk Ixk

(
ω(0)

)(
Ixk

(
ω(tk )

)−φ(tk )
)

= ∑
x∈X

∑
k∈Kx

µk Ix
(
ω(0)

)(
Ix

(
ω(tk )

)−φ(tk )
)
. (3.21)

Clearly, we may assume without loss of generality that for x in X = {H,T} and
k, ℓ in Kx such that k ̸= ℓ, tk ̸= tℓ; otherwise, we simply add together the
corresponding terms in the second summation.

Fix any state x in X such that the corresponding index set Kx is non-
empty, and let y be the other state in the binary state space X. We let u :=
(0)∪ (tk )k∈Kx be the sequence of time points that starts with 0 and continues
with the time points in {tk : k ∈Kx }. Furthermore, we divideKx intoK ≥0

x :=
{k ∈ Kx : µk ≥ 0} and K <0

x := Kx \K ≥0
x , and let xu be the unique tuple of

states in Xu such that x0 := x, xtk
:= x for all k inK ≥0

x and xtk
:= y for all k

inK <0
x . By Lemma 3.558, there is a pathω⋆ inΩ such thatω⋆|u = xu . Because

x =ω⋆(0) ̸= y by construction, the path ω⋆ belongs to C , and it is clear that∑
k∈Ky

µk Iy
(
ω⋆(0)

)(
Iy

(
ω⋆(tk )

)−φ(tk )
)
= 0 (3.22)

and ∑
k∈Kx

µk Ix
(
ω⋆(0)

)(
Ix

(
ω⋆(tk )

)−φ(tk )
)

= ∑
k∈K ≥0

x

µk Ix
(
ω⋆(0)

)(
Ix

(
ω⋆(tk )

)−φ(tk )
)

+ ∑
k∈K <0

x

µk Ix
(
ω⋆(0)

)(
Ix

(
ω⋆(tk )

)−φ(tk )
)

= ∑
k∈K ≥0

x

µk
(
1−φ(tk )

)+ ∑
k∈K <0

x

µk
(−φ(tk )

)≥ 0, (3.23)

where for the inequality we used thatφ is [0,1]-valued. Finally, it follows from
Eqs. (3.21) to (3.23) that

max

{
n∑

k=1
µk Ixk

(
ω(0)

)(
Ixk

(
ω(tk )

)−P ′
φ(X tk = xk |X0 = xk )

)
: ω ∈C

}
≥ 0,
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as required.
Because P ′

φ is a coherent conditional probability on Dφ, it follows from
Theorem 2.5445 that there is at least one coherent conditional probability Pφ
on D that extends P ′

φ. By construction, any such extension Pφ is a jump
process with state space X = {H,T} that satisfies Eq. (3.19)66, which is what
we needed to verify. ¢

The conditional expectation of determinable variables

Note that the domain D of a jump process P is a structure of fields. As we
have seen in Section 2.4.246, this implies that the jump process P – that is, the
coherent conditional probability P on D – induces a conditional expectation
operator EP on

JS :=CS(D) = {
( f |Xu = xu) : u ∈U, xu ∈Xu , f ∈S(Fu)

}
, (3.24)

where we choose to write ( f |Xu = xu) instead of
(

f , {Xu = xu}
)
.

The domain JS contains precisely those combinations of (determinable)
gambles and conditioning events for which a betting interpretation makes
sense. To see why this is the case, we recall from Section 3.1.258 that we con-
sider a gamble to be determinable if and only if it depends on the state of the
system at a finite number of time points. For any sequence of time points v
in U and any gamble f on Xv , we write the functional composition f ◦Xv

4 as
f (Xv ); in other words, f (Xv ) is the gamble on Ω that maps any càdlàg path ω
in Ω to f (Xv (ω)) = f (ω|v ). Thus, a gamble g on Ω is determinable if and only
if there is a sequence of time points v in U and a gamble f on Xv such that
g = f (Xv ).

Fix some state history {Xu = xu} in H. Due to our betting interpretation
and our interpretation of {Xu = xu}, we should only consider a determinable
gamble g if it has a representation of the form f (Xv ) with v ≽ u. Observe that

f (Xv ) = ∑
yv∈Xv

f (yv )I{Xv=yv },

and that, for all yv in X, {Xv = yv } belongs to Fu because v ≽ u. Thus,
a determinable gamble g = f (Xv ) is clearly an Fu-simple variable. The
following result establishes the converse, in the sense that every Fu-simple
variable has a representation of the form f (Xu∪v ) with u ∪ v ≽ u, and hence
is determinable.

Lemma 3.15. Let u be a sequence of time points in U. For any Fu-simple
variable g in S(Fu), there is a sequence v in U≻u and a gamble f on Xu∪v

such that g = f (Xu∪v ) = f (Xu , Xv ).

4Throughout this dissertation, we use ◦ to denote functional composition: for any two
functions f : domain f → codomain f and g : domain g → codomain g such that codomain g ⊆
domain f , f ◦g := f

(
g (•)

)
is the map from domain g to codomain f that maps any x in domain g

to f
(
g (x)

)
.
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3.1 Jump processes

Proof. Because g is Fu -simple, it has a representation of the form

g =
n∑

k=1
ak IAk

,

where Ak is an event in Fu for all k in {1, . . . ,n}. Recall from Lemma 3.1164 that there
is a sequence of time points v that succeeds u and subsets B1, . . . ,Bn of Xu∪v such
that Ak = {Xu∪v ∈ Bk } for all k in {1, . . . ,n}. Consequently,

g =
n∑

k=1
ak I{Xu∪v∈Bk } =

n∑
k=1

ak
∑

yu∪v∈Bk

I{Xu∪v=yu∪v }.

From this, we infer that the statement holds for the gamble f on Xu∪v defined by

f (yu∪v ) := ∑
k∈{1,...,n}
yu∪v∈Bk

ak for all yu∪v ∈Xu∪v .

Due to the preceding, we can focus on conditional expectations of the
form EP ( f (Xu , Xv ) |Xu = xu) with v ≻ u or EP ( f (Xv ) |Xu = xu) with v ≽ u.
Because, by definition,

EP ( f (Xv ) |Xu = xu) = ∑
yv∈Xv

f (yv )P (Xv = yv |Xu = xu),

we take a closer look at probabilities of the form P (Xv = yv |Xu = xu).

3.1.4 Properties of jump processes

Seeing that jump processes are coherent conditional probabilities, it follows
from Corollary 2.5545 that they satisfy (CP1)41–(CP9)42, the standard laws and
properties of (conditional) probability. Some special cases of these properties
will be of use to us later on, which is why we list them in the following result.

Proposition 3.16. Consider a jump process P and a state history {Xu = xu}
in H.5 Then

JP1. for any v in U≽u and any subset B of Xv ,

P (Xv ∈ B |Xu = xu) = P (Xw ∈C |Xu = xu),

with w := v \ u and C := {
zw ∈Xw : (∃yv ∈ B) yu∩v = xu∩v , yw = zw

}
;

JP2. for any v in U≽u and any subset B of Xv ,

P (Xv ∈ B |Xu = xu) = ∑
yv∈B

P (Xv = yv |Xu = xu);

5Here and in the remainder, we use ‘state history {Xu = xu } in H’ as a shorthand for ‘u in U

and xu in Xu ’.
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Modelling jump processes

JP3. for any v = (t1, . . . , tn) in U≻u and any yv in Xv ,

P (Xv = yv |Xu = xu) =
n∏

k=1
P (X tk = ytk |Xu = xu , X t1:k−1 = yt1:k−1 ),

where we let t1:k−1 := (t1, . . . , tk−1) for all k in {1, . . . ,n};

JP4. for any time points s, t in R≥0 such that u ≺ s < t and any state x in X,

P (X t = x |Xu = xu)

= ∑
y∈X

P (X t = x |Xu = xu , Xs = y)P (Xs = y |Xu = xu).

Proof. We prove the four listed properties one by one.

JP1. Observe that {Xu = xu } ⊆ (Xu∩v = xu∩v ). Consequently, it follows from
(CP1)41 that P (Xu∩v = xu∩v |Xu = xu ) = 1. Due to (CP9)42, this implies that

P (Xv ∈ B |Xu = xu ) = P ({Xv ∈ B}∩ {Xu∩v = xu∩v } |Xu = xu ).

The statement now follows because

{Xv ∈ B}∩ {Xu∩v = xu∩v } = {Xw ∈C },

with w and C as defined in the statement.

JP2. Note that for any yv and zv in B such that yv ̸= zv , {Xv = yv }∩ {Xv = zv } =∅.
The statement follows from this and repeated application of (CP3)41.

JP3. Observe that {Xv = yv } = {Xt1:n−1 = yt1:n−1 , Xtn = ytn }, and that

{Xu = xu , Xt1:n−1 = xt1:n−1 } = {Xu = xu }∩ {Xt1:n−1 = xt1:n−1 }

is a conditioning event in H. Consequently, it follows from (CP4)41 that

P (Xv = yv |Xu = xu )

= P (Xtn = ytn |Xu = xu , Xt1:n−1 = xt1:n−1 )P (Xt1:n−1 = xt1:n−1 |Xu = xu ).

If we execute the same trick n−1 times, it is clear that we eventually obtain the
statement.

JP4. Observe that {Xt = x} = ⋃
y∈X{Xs = y}∩ {Xt = x}, so repeated application of

(CP3)41 yields

P (Xt = x |Xu = xu ) = ∑
y∈X

P ({Xs = y}∩ {Xt = x} |Xu = xu ).

The property follows immediately from this and (CP4)41.

An immediate consequence of the properties (JP1)↶–(JP3) is that the
conditional probability of any finitary event can be written in terms of a
specific type of conditional probabilities.
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3.1 Jump processes

Lemma 3.17. Consider a conditioning event {Xu = xu} in H and an event A
in Fu . Then there is a non-empty sequence v = (t1, . . . , tn) that succeeds u and
a subset B of Xv such that for any jump process P,

P (A |Xu = xu) = ∑
yv∈B

n∏
k=1

P (X tk = ytk |Xu = xu , X t1:k−1 = yt1:k−1 ),

where for any k in {1, . . . ,n}, we let t1:k−1 := (t1 . . . , tk−1).

Proof. Recall from Lemma 3.1164 that there is a non-empty sequence of time points v
with v ≻ u and a subset B ′ of Xu∪v such that A = {Xu∪v ∈ B ′}. Observe now that, due
to (JP1)69,

P (A |Xu = xu ) = P (Xu∪v ∈ B ′ |Xu = xu ) = P (Xv ∈ B |Xu = xu ),

with B := {yv : yu∪v ∈ B ′, yu = xu } ⊆Xv . To obtain the expression of the statement,
we simply apply (JP2)69 and (JP3)↶.

The properties (JP1)69–(JP4)↶ listed in Proposition 3.1669 also have con-
sequences for conditional expectations. Let us start with a more or less
immediate consequence of (JP1)69.

Corollary 3.18. Let P be a jump process. For any {Xu = xu} in H, any v
in U≽u and any gamble f on Xv ,

EP ( f (Xv ) |Xu = xu) = EP ( f (xu∩v , Xv\u) |Xu = xu).

Proof. Let u′ := u ∩ v and w := v \ u. It follows from (JP1)69 that, for any yv in Xv ,

P (Xv = yv |Xu = xu ) =
{

P (Xw = yw |Xu = xu ) if yu′ = xu′ ,

P (∅ |Xu = xu ) otherwise.

Recall from (CP5)42 that P (∅ |Xu = xu ) = 0. Using this, we see that

EP ( f (Xv ) |Xu = xu ) = ∑
yv∈Xv

f (yv )P (Xv = yv |Xu = xu )

= ∑
yw∈Xw

f (xu′ , yw )P (Xw = yw |Xu = xu )

= EP ( f (xu′ , Xw ) |Xu = xu ),

as stated.

The law of iterated expectations

A more important consequence of Proposition 3.1669 is that we can establish
a law of iterated expectations similar to that of Eq. (2.23)39. In order to
facilitate an elegant statement of this law, we define the gamble

EP ( f (Xv ) |Xu) := ∑
xu∈Xu

EP ( f (Xv ) |Xu = xu)I(Xu=xu )
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Modelling jump processes

for all u in U, all v in U̸=( ) such that v ≽ u and all f in G(Xv ). Observe that
EP ( f (Xv ) |Xu) only depends on the state of the system at the time points in u,
so it is an Fu-simple variable.

Theorem 3.19. Let P be a jump process, and fix some u in U. Then for all v
and w in U̸=( ) such that u ≺ v and u ∪ v ≼ w, f in G(Xw ) and xu in Xu ,

EP ( f (Xw ) |Xu = xu) = EP
(
EP ( f (Xw ) |Xu∪v )

∣∣ Xu = xu
)
.

Proof. First, we use (JP1)69 and (CP5)42, to yield

EP
(
EP ( f (Xw ) |Xu∪v )

∣∣ Xu = xu
)

= ∑
yu∪v∈Xu∪v

P (Xu∪v = yu∪v |Xu = xu )EP ( f (Xw ) |Xu∪v = yu∪v )

= ∑
yv∈Xv

P (Xv = yv |Xu = xu )EP ( f (Xw ) |Xu = xu , Xv = yv ).

From this and Corollary 3.18↶, we infer that

EP
(
EP ( f (Xw ) |Xu∪v )

∣∣ Xu = xu
)

= ∑
yv∈Xv

P (Xv = yv |Xu = xu )EP ( f (xu′ , yv ′ , Xw ′ ) |Xu = xu , Xv = yv ),

where we let u′ := u ∩w , v ′ := v ∩w and w ′ := w \ (u ∪ v). Next, we use (CP4)41, to
yield

EP
(
EP ( f (Xw ) |Xu∪v )

∣∣ Xu = xu
)

= ∑
yv∈Xv

P (Xv = yv |Xu = xu )

∑
zw ′∈Xw ′

f (xu′ , yv ′ , zw ′ )P (Xw ′ = zw ′ |Xu = xu , Xv = yv )

= ∑
yv∈Xv

∑
zw ′∈Xw ′

f (xu′ , yv ′ , zw ′ )P (Xv = yv , Xw ′ = zw ′ |Xu = xu ).

Because v can be split into v ′ and (v \ v ′), it follows from this that

EP
(
EP ( f (Xw ) |Xu∪v )

∣∣ Xu = xu
)

= ∑
zw ′∈Xw ′

∑
yv ′∈Xv ′

f (xu′ , yv ′ , zw ′ )

∑
yv\v ′∈Xv\v ′

P (Xv ′ = yv ′ , Xv\v ′ = yv\v ′ , Xw ′ = zw ′ |Xu = xu )

= ∑
zw ′∈Xw ′

∑
yv ′∈Xv ′

f (xu′ , yv ′ , zw ′ )P (Xv ′ = yv ′ , Xv\v ′ ∈Xv\v ′ , Xw ′ = zw ′ |Xu = xu )

= ∑
zw ′∈Xw ′

∑
yv ′∈Xv ′

f (xu′ , yv ′ , zw ′ )P (Xv ′ = yv ′ , Xw ′ = zw ′ |Xu = xu ),
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3.1 Jump processes

where the second equality holds due to (JP2)69. Because v ′∪w ′ = w \ u, it follows
immediately that

EP
(
EP ( f (Xw ) |Xu∪v )

∣∣ Xu = xu
)= ∑

yw\u∈Xw\u

f (xu′ , yw\u )P (Xw\u = yw\u |Xu = xu )

= EP ( f (xu′ , Xw\u ) |Xu = xu ) = EP ( f (Xw ) |Xu = xu ),

where the final equality holds due to Corollary 3.1871.

3.1.5 The initial and transition probabilities

From Lemma 3.1771, we learn that the conditional probabilities of some
specific events seem to play an important role. This includes probabilities of
the form

P (Xr = y |Xu = xu , X t = x),

with u ≺ t < r . These probabilities are customarily called the transition
probabilities. Additionally, the initial probabilities of the form

P (X0 = x) = P (X0 = x |Ω)

also play an essential role. The following result establishes that a jump
process is uniquely determined by its initial and transition probabilities.

Proposition 3.20. Two jump processes P1 and P2 with the same state space X
are equal if and only if

P1(X0 = x) = P2(X0 = x) for all x ∈X
and, for all u in U, t and r in R≥0 such that u ≺ t < r and xu in Xu ,

P1(Xr = y |Xu = xu , X t = x) = P2(Xr = y |Xu = xu , X t = x) for all x, y ∈X.

Proof. That the two conditions of the statement are necessary is obvious. To verify
that these conditions are also sufficient, we observe that the two jump processes P1
and P2 are equal if and only if

P1(A |Xu = xu ) = P2(A |Xu = xu ) for all (A |Xu = xu ) ∈D.

Hence, we fix any {Xu = xu } in H and A in Fu , and show that the equality above
holds. By Lemma 3.1771, there is a non-empty sequence v = (t1, . . . , tn ) of time points
that succeeds u and a subset B of Xv such that, with ℓ in {1,2},

Pℓ(A |Xu = xu ) = ∑
yv∈B

n∏
k=1

Pℓ(Xtk = ytk |Xu = xu , Xt1:k−1 = yt1:k−1 )

where, for any k in {1, . . . ,n}, we let t1:k−1 := (t1, . . . , tk−1). Consequently, it suffices to
show that, for any yv in B and k in {1, . . . ,n},

P1(Xtk = ytk |Xu = xu , Xt1:k−1 = yt1:k−1 )

= P2(Xtk = ytk |Xu = xu , Xt1:k−1 = yt1:k−1 ). (3.25)
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This equality follows immediately from the conditions of the statement, except for
the edge case that k = 1, u is the empty time sequence and t1 > 0. Note that in this
edge case, (Xu = xu , Xv1 = yv1 ) =Ω. Therefore, it then follows from (JP4)70 that, with
ℓ in {1,2},

Pℓ(Xt1 = yt1 |Xu = xu , Xv1 = yv1 ) = Pℓ(Xt1 = yt1 )

= ∑
y∈X

Pℓ(Xt1 = yt1 |X0 = y)Pℓ(X0 = y).

Since all these terms are equal for P1 and P2 due to the conditions of the statement,
this verifies the equality in Eq. (3.25)↶ for the edge case as well.

While the initial and transition probabilities uniquely determine a jump
process, it is important to stress that we cannot choose them arbitrarily.
More precisely, it follows from Definition 2.5144, Theorem 2.5445 and Propo-
sition 3.20↶ that it is necessary and sufficient for the initial and transition
probabilities to form a coherent conditional probability on (a subset of){

(X0 = x |Ω) : x ∈X}∪{
(Xr = y |Xu = xu , X t = x) :

u ∈U; xu ∈Xu ; t ,r ∈R≥0,u ≺ t < r ; x, y ∈X}
.

3.2 Markovian jump processes

Specifying all of the initial and transition probabilities in such a way that they
form a coherent conditional probability is certainly non-trivial. One option
to deal with this is to first only specify the probabilities of events in some
subset D′ of D for which checking coherence becomes easy, and then use
Theorem 2.5445 to extend this coherent conditional probability on D′ to a –
not necessarily unique – jump process. A second, more conventional option
is to impose the following two simplifying assumptions on the transition
probabilities.

First and foremost is the Markov property, which holds if the probability
of being in a future state only depends on the current state, and not on the
state history. For the formal classical formulation, we refer to (Chung, 1960,
Section II.4) or (Doob, 1953, Section I.6); here we adhere to the formulation
of Krak et al. (2017, Definition 5.1), which is tailored to our use of coherent
conditional probabilities.

Definition 3.21. A jump process P is Markovian – or, alternatively, has the
Markov property – if for all time points t and r in R≥0 and all state histo-
ries {Xu = xu} in H such that u ≺ t < r ,

P (Xr = y |Xu = xu , X t = x) = P (Xr = y |X t = x) for all x, y ∈X.

We collect all Markovian jump processes with state space X in PM
X

, and write
PM whenever the state space is clear from the context.
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The second simplifying assumption is that the transition probabilities
are (time-)homogeneous, which is sometimes also referred to as stationary.
Under this assumption, the transition probabilities only depend on the length
of the time period between the current and the future time point, and not on
the current and future time points themselves. Our formal definition is taken
from (Krak et al., 2017, Definition 5.2).

Definition 3.22. A Markovian jump process P is homogeneous if for all time
points t and r in R≥0 such that t < r ,

P (Xr = y |X t = x) = P (Xr−t = y |X0 = x) for all x, y ∈X.

We denote the set of all homogeneous Markovian jump processes with state
space X by PHM

X
, or simply PHM in case the state space is clear from the

context.

3.2.1 Operators and semi-groups

To appreciate just how much these two properties simplify the transition
probabilities, we need to introduce some additional mathematical machin-
ery: operators.

The real vector space of gambles on X

Recall from Section 2.1.313 that the set G(X) of all gambles on the state
space X is a real vector space. Furthermore, we also recall that, for any
subset A of X, its indicator IA : X→ {0,1} assumes 1 on A and 0 elsewhere.
In order to unburden our notation, we write Ix instead of I{x}, where x is a
state in the state space X.

We equip the real vector space G(X) with the inner product 〈·, ·〉 on G(X),
given by 〈 f , g 〉 := ∑

x∈X f (x)g (x) for all f and g in G(X). The inner prod-
uct 〈·, ·〉 induces the Euclidean norm ∥•∥2, given by

∥ f ∥2 := 〈 f , f 〉1/2 =
( ∑

x∈X
f (x)2

)1/2

for all f ∈G(X),

but – as we will see later on – it is usually more fitting and convenient to use
the supremum norm ∥•∥∞ (see Schechter, 1997, Section 23.3), defined as

∥ f ∥∞ := max
{| f (x)| : x ∈X}= max| f | for all f ∈G(X). (3.26)

Note that
∥ f ∥∞ ≤ ∥ f ∥2 ≤

√
|X|∥ f ∥∞ for all f ∈G(X),

so these two norms induce the same topology: convergence with respect
to the supremum norm implies convergence with respect to the Euclidian
norm, and vice versa.
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It is well-known that G(X) is complete with respect to ∥•∥∞ – and also
with respect to ∥•∥2, for that matter – thus G(X) is a Banach space (see
Schechter, 1997, Sections 22.8 and 22.11). Because we will always use the
supremum norm ∥•∥∞ on G(X), we will henceforth simply write ∥•∥. We
bestow the real vector space G(X) of gambles on X with the topology that is
induced by (the metric induced by) the supremum norm ∥•∥, and every limit
statement we make regarding gambles on X is with respect to the supremum
norm.

Recall (see Schechter, 1997, Section 22.2) that a norm ∥•∥V : V → R≥0

on a real vector spaceV is a non-negative real-valued function that has the
following three properties:

N1. ∥µ f ∥V = |µ|∥ f ∥V for all µ in R and f inV ,

N2. ∥ f + g∥V ≤ ∥ f ∥V +∥g∥V for all f and g inV ,

N3. ∥ f ∥V = 0 if and only if f = 0.

Operators on G(X)

We will repeatedly use maps from G(X) to G(X), which we will call operators
(on G(X)). One example of an operator is the identity operator I , defined by
I f := f for all f in G(X). An operator M is non-negatively homogeneous if
M(λ f ) =λM f for all f in G(X) and λ in R≥0. It is easy to see that for any real
number µ and any two non-negatively homogeneous operators M and N on
G(X), µM , M +N and M N – which is to be interpreted as applying M after N
– are non-negatively homogeneous operators as well. Consequently, the non-
negatively homogeneous operators on G(X) constitute a linear subspace of
the set of operators on G(X).

An operator M is super-additive if M( f + g ) ≥ M f +M g for all f and g
in G(X), and additive if this relation holds with equality instead of inequality.
A linear operator M is an operator that is non-negatively homogeneous and
additive; clearly, the identity operator I is linear. Note that if M is linear, then
M(λ f ) =λM f for negative real numbers λ as well.

Let n be the cardinality of X. Given some basis (g1, . . . , gn) for the n-
dimensional real vector space G(X), any linear operator M is represented
by a unique square matrix (and vice versa). If we fix an ordering x1, . . . , xn

on the state space X, an obvious basis for G(X) is (Ix1 , . . . , Ixn ), and the (k,ℓ)-
component of the square matrix that represents M is [M Ixℓ ](xk ). We do not
frequently need this matrix representation, but we do take inspiration from it
and define the ‘component’ M(x, y) := [M Iy ](x) for all x an y in X. Note that
a linear operator M is completely defined by its ‘components’, because for all
f in G(X) and x in X,

[M f ](x) =
[

M

( ∑
y∈X

f (y)Iy

)]
(x) = ∑

y∈X
f (y)[M Iy ](x) = ∑

y∈X
f (y)M(x, y),
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where the second equality follows from the linearity of M .
The supremum norm ∥•∥ on G(X) induces an operator norm ∥•∥op on

the real vector space of non-negatively homogeneous operators,6 defined for
any non-negatively homogeneous operator M on G(X) by

∥M∥op := sup
{∥M f ∥ : f ∈G(X),∥ f ∥ = 1

}
. (3.27)

Note that this definition is a straightforward generalisation of the definition
of the operator norm for linear operators (see Schechter, 1997, Section 23.1)
to general operators. It is well-known (see Schechter, 1997, Section 23.3) that
for any linear operator M on G(X),

∥M∥op = max

{ ∑
y∈X

∣∣M(x, y)
∣∣ : x ∈X

}
. (3.28)

It follows almost immediately from Eq. (3.27) (see De Bock, 2017b, Appendix)
that for all non-negatively homogeneous operators M and N on G(X),

N4. ∥M f ∥ ≤ ∥M∥op∥ f ∥ for all f in G(X), and

N5. ∥M N∥op ≤ ∥M∥op∥N∥op.

We bestow the real vector space of non-negatively homogeneous opera-
tors with the topology that is induced by (the metric induced by) the operator
norm ∥•∥op, and every limit statement we make regarding non-negatively
homogeneous operators is with respect to the operator norm. For instance,
we write limn→+∞ Mn = M if and only if limn→+∞∥Mn −M∥op = 0. Note that
in this case, due to (N4), limn→+∞ Mn f = M f for any gamble f on X, in the
sense that limn→+∞∥Mn f −M f ∥ = 0.

Semi-groups of operators

From its very beginning – see, for example, (Kolmogorov, 1931; Elfving,
1937; Doeblin, 1938; Fréchet, 1938) – the study of jump processes has been
entwined with what we now call semi-groups. A (one-parameter) semi-
group (Mt )t∈R≥0 is a family of operators indexed by R≥0 such that

SG1. M0 = I ;

6We can extend this to the real vector space of all operators on G(X). In this more general
case, for any operator M on G(X) we define

∥M∥op := sup

{ ∥M f ∥
∥ f ∥ : f ∈G(X), f ̸= 0

}
,

which is equal to Eq. (3.27) whenever M is non-negatively homogeneous. If we restrict ourselves
to (the real vector space of) bounded operators – that is, those operators M with ∥M∥op <+∞ –
then ∥•∥op is a semi-norm (see Schechter, 1997, Section 22.2) because it satisfies (N1)↶ and
(N2)↶ but not necessarily (N3)↶. If we furthermore restrict ourselves to (the real vector space
of) bounded operators with M0 = 0, then ∥•∥op also satisfies (N3)↶, and thus is a norm.
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Modelling jump processes

SG2. Mt+r = Mt Mr for all t and r in R≥0.

Property (SG2) is the crucial semi-group property. A semi-group (Mt )t∈R≥0 is
called point-wise continuous – sometimes also called strongly continuous, see
(Dunford et al., 1958, Chapter VIII, Section 1) or (Engel et al., 2000, Chapter 1,
Section 5) – if for all t in R≥0 and f in G(X),

SG3. limr↘t Mr f = Mt f and, if t > 0, lims↗t Ms f = Mt f .

A semi-group (Mt )t∈R≥0 of non-negatively homogeneous operators is called
continuous if for all t in R≥0,

SG4. limr↘t Mr = Mt and, if t > 0, lims↗t Ms = Mt .

In this definition, we restrict us to semi-groups of non-negatively homo-
geneous operators because this ensures that the limit statement – which
implicitly uses the operator norm – is well-defined. Note that continuity
clearly implies point-wise continuity, due to (N4)↶. Even more, one can
show that for a semi-group of linear operators on G(X), point-wise conti-
nuity is not only necessary but also sufficient for continuity because X is
finite.

There is a vast body of literature that deals with semi-groups of operators
on a general Banach (or Hilbert) space. Following Pazy (1983), we divide this
work into two main topics: linear semi-groups and contraction semi-groups.

Linear semi-groups and the operator exponential The basic case of a
semi-group (Mt )t∈R≥0 of linear operators has been studied extensively. Most
of the important results are collected in the seminal work of Hille et al. (1957);
a more recent reference is the work of Engel et al. (2000), who not only give
a clear overview but also provide interesting historical background. In the
interest of conciseness, however, we limit ourselves to what we will need in
the remainder. The linearity assumption is key to the following essential and
well-known result; it was first established by Nathan (1935), Nagumo (1936),
and Yosida (1936), but can also be found in (Hille et al., 1957, Theorem 9.6.1)
or (Engel et al., 2000, Theorem 3.7).

Proposition 3.23. Let (Mt )t∈R≥0 be a continuous semi-group of linear opera-
tors on G(X). Then the generator

G := lim
t↘0

Mt − I

t

is a linear operator on G(X), and it is the unique linear operator such that

Mt = e tG = lim
n→+∞

(
I + t

n
G

)n

for all t ∈R≥0.

Conversely, if G is a linear operator on G(X), then for all t in R≥0,

e tG = lim
n→+∞

(
I + t

n
G

)n
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3.2 Markovian jump processes

is a linear operator on G(X), and (e tG )t∈R≥0 is a continuous semi-group.

Crucial to Proposition 3.23↶ is the (linear) operator exponential, which
has some additional interesting properties. For a detailed discussion of these
properties, we refer to (Van Loan, 1975) or (Norris, 1997, Sections 2.1 and
2.10). Here, we only repeat that for any linear operator G on G(X) and any
non-negative real number t ,

e tG := lim
n→+∞

(
I + t

n
G

)n

=
+∞∑
n=0

t nGn

n!
(3.29)

is a well-defined linear operator. Furthermore, the linear operator exponen-
tial is the unique solution to the following initial value problem (see Van Loan,
1975, Section 4).

Proposition 3.24. Consider a linear operator G. Then (Mt )t∈R≥0 = (e tG )t∈R≥0

is the unique solution to the (linear operator) initial value problem

lim
r→t

Mr −Mt

r − t
=GMt with M0 = I , (3.30)

where, of course, we only take the limit from the right for t = 0.

Contraction semi-groups If we relax the linearity condition, things become
much more difficult. Almost all of the available literature studies semi-groups
of general – not necessarily non-negatively homogeneous – operators that
are contractive. An operator M : B→B on a Banach spaceB with norm ∥•∥B
is a contraction – sometimes also called a non-expansive operator – if

∥M f −M g∥B ≤ ∥ f − g∥B for all f , g ∈B.

Because the operators in the semi-group need not be non-negatively ho-
mogeneous, we cannot use the operator norm ∥•∥op and therefore cannot
impose continuity as in (SG4)↶.7 For this reason, one usually resorts to
point-wise continuity in the sense of (SG3)↶. To the best of our knowledge,
Proposition 3.23↶ does not generalise from continuous semi-groups of linear
operators to point-wise continuous semi-groups of contractions on a general
(finite-dimensional) Banach space. Due to the weaker notion of continu-
ity, the limit in the definition of the ‘generator’ need not exist on the entire
Banach space B. Furthermore, it is customary to construct a semi-group
from a ‘generator’ through its ‘resolvent’ instead of through an exponential-
like expression. We refer to (Crandall et al., 1969; Miyadera, 1992) for more
details. In Section 3.3.3107 further on, we will encounter some contraction

7As we have previously noted near Eq. (3.27)77, instead of the set of non-negatively homo-
geneous operators we could consider the set of all bounded operators that map 0 to 0. To the
best of our knowledge, this is not done in the literature.
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semi-groups of non-linear operators on G(X) with some powerful additional
properties. It is due to these properties that we nevertheless can generalise
Proposition 3.2378 for this specific type of contraction semi-groups in Propo-
sition 3.74114 and Theorem 3.75114 further on.

3.2.2 Transition and rate operators

When studying the transition probabilities of a single jump process, we al-
ways encounter two specific types of linear operators: transition operators
and rate operators. For the reader who is already familiar with stochastic
processes, we should remark that – given a suitable basis – transition and
rate operators are represented by what is known as transition (or stochastic)
matrices and rate (or intensity) matrices, respectively. In this dissertation, we
prefer to use linear operators, which essentially goes back to (Whittle, 2000,
Chapter 9, Section 2).

Transition operators

A transition operator is a linear operator on G(X) that is bounded below by
the minimum.

Definition 3.25. A transition operator T is an operator T : G(X) →G(X) such
that

T1. T f ≥ min f for all f in G(X);

T2. T (µ f ) =µT f for all µ in R and f in G(X);

T3. T ( f + g ) = T f +T g for all f and g in G(X).

We denote the set of all transition operators by TX , or simply by T whenever
the state space X is clear from the context.

Let T be a transition operator. Note that (T1)–(T3) are ‘gamble-valued
versions’ of (E1)22–(E3)22. For this reason, it follows from Proposition 2.1522

that for any x in X,

[T •](x) : G(X) →R : f 7→ [T f ](x)

is a coherent expectation on G(X). Consequently, it follows from Proposi-
tion 2.1823 that there is a (unique) probability mass function px on X such
that [T •](x) = Epx . With this in mind, we observe that

T (x, y) = [T Iy ](x) = Epx (Iy ) = px (y) for all x, y ∈X. (3.31)

From these equalities, we can conclude that the matrix representation of a
transition operator with respect to the natural basis {Ix : x ∈X} is a transition
(or stochastic) matrix, that is, a matrix with non-negative components and
rows that sum to 1. From this, Eq. (3.28)77 and the properties of probability
mass functions, we conclude that for any transition operator T ,
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3.2 Markovian jump processes

T4. ∥T ∥op = 1.

Joseph’s Example 3.26. A straightforward example of a transition operator is
the identity operator I . With respect to the basis (IH, IT), any linear operator M
on G({H,T}) is represented by the matrix(

M(H,H) M(H,T)
M(T,H) M(T,T)

)
.

It is clear that for a transition operator T , this matrix is of the form(
pH(H) pH(T)
pT(H) pT(T)

)
,

where pH and pT are probability mass functions on {H,T}. Conversely, any
matrix of this form defines a transition operator. ¢

Rate operators

We want to take a closer look at semi-groups of transition operators, and rate
operators are indispensable for this.

Definition 3.27. A rate operator Q is an operator Q : G(X) →G(X) such that

R1. QIX = 0;

R2. [QIy ](x) ≥ 0 for all x and y in X such that x ̸= y ;

R3. Q(µ f ) =µQ f for all µ in R and f in G(X);

R4. Q( f + g ) =Q f +Qg for all f and g in G(X).

We letQX denote the set of all rate operators, and writeQ whenever the state
space X is clear from the context.

Let Q be a rate operator. It follows immediately from (R1) that, for any x
in X,

0 = [QIX](x) = ∑
y∈X

Q(x, y)IX(y) = ∑
y∈X

Q(x, y).

From these equalities, it follows that – with respect to the natural basis (Ix )x∈X
– a rate operator is represented by a rate (or intensity) matrix, that is, a ma-
trix with non-negative off-diagonal components and rows that sum to 0.
Furthermore, we infer from these equalities and (R2) that, for any x in X,

0 ≤ ∑
y∈X\{x}

Q(x, y) =−Q(x, x).

Due to Eq. (3.28)77, we conclude from the preceding equality that

R5. ∥Q∥op = 2max
{−[QIx ](x) : x ∈X}= 2max

{−Q(x, x) : x ∈X}
.
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Joseph’s Example 3.28. It is easy to verify that with respect to the basis (IH, IT),
a rate operator Q on G({H,T}) is represented by a matrix of the form(

Q(H,H) Q(H,T)
Q(T,H) Q(T,T)

)
=

(−λH λH
λT −λT

)
,

with λH and λT two (arbitrary) non-negative real numbers. By (R5)↶,

∥Q∥op = 2max{λH,λT}. ¢

Semi-groups of transition operators

Rate operators and transition operators are tightly linked. For starters, a rate
operator can be used to construct a transition operator and vice versa.

Lemma 3.29. Let Q be a rate operator. For all ∆ in R≥0 such that ∆∥Q∥op ≤
2, (I +∆Q) is a transition operator.

Proof. This is essentially well-known, but also a special case of Lemma 3.72112
further on.

Lemma 3.30. Let T be a transition operator. For all ∆ in R>0, (T−I )/∆ is a rate
operator.

Proof. This is essentially well-known, but also a special case of Lemma 3.73113
further on.

More importantly, it essentially follows from Proposition 3.2378 and Lem-
mas 3.29 and 3.30 that semi-groups of transition operators are generated by
rate operators through the operator exponential.

Corollary 3.31. If (Tt )t∈R≥0 is a continuous semi-group of transition operators,
then its generator

Q := lim
t↘0

Tt − I

t

is a rate operator, and it is the unique linear operator such that Tt = e tQ for
all t in R≥0. Conversely, for any rate operator Q, (e tQ )t∈R≥0 is a continuous
semi-group of transition operators.

Proof. To verify the first part of the statement, we recall from Proposition 3.2378 that
Q is the unique linear operator such that Tt = e tQ for all t in R≥0. That Q is a rate
operator follows from its definition because by Lemma 3.30, (Tt−I )/t is a rate operator
for all t in R>0 and the properties (R1)↶–(R4)↶ of rate operators are preserved when
taking limits.

To verify the second part of the statement, we recall from Proposition 3.2378 that
(e tQ )t∈R≥0 is a continuous semi-group, and that for all t in R≥0,

e tQ = lim
n→+∞

(
I + t

n
Q

)n
.
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Recall from Lemma 3.29↶ that whenever t∥Q∥op ≤ 2n, (I + t
n Q) is a transition op-

erator. Furthermore, it is easy to see that the composition of two or more transition
operators is again a transition operator. Therefore, (I + t

n Q)n is a transition operator
whenever t∥Q∥op ≤ 2n. Because the properties (T1)80–(T3)80 of transition operators

are preserved when taking limits, this proves that e tQ is a transition operator.

Joseph’s Example 3.32. Recall from Joseph’s Example 3.28↶ that, for X =
{H,T}, any rate operator Q is uniquely characterised by the two parameters λH
and λT. Using Eq. (3.29)79 and after a bit of work,8 one can obtain the follow-
ing analytical expression for the operator exponential of Q:

e tQ = I + 1−e−t (λH+λT)

λH+λT
Q for all t ∈R≥0, (3.32)

where the second term is only added in case λH+λT > 0. Alternatively, we can
check if this expression solves the initial value problem of Proposition 3.2479.
This is trivial in case λH+λT = 0, so from here on we assume that λH+λT > 0.
Fix some t in R≥0. On the one hand,

d

dt
e tQ = e−t (λH+λT)Q.

On the other hand,

Qe tQ =Q + 1−e−t (λH+λT)

λH+λT
Q2 =Q −

(
1−e−t (λH+λT)

)
Q

= e−t (λH+λT)Q,

where for the second equality we used that Q2 =−(λH+λT)Q. In conclusion,
e tQ satisfies the initial value problem of Proposition 3.2479.

To verify that e tQ is a transition operator, we observe that

[
e tQ]

(H,H) = 1− λH

λH+λT
(
1−e−t (λH+λT)

)
,

[
e tQ]

(H,T) = λH

λH+λT
(
1−e−t (λH+λT)

)
,

and similarly for the other two components. Clearly, the components
[e tQ ](H,H) and [e tQ ](H,T) are non-negative and sum to 1. In other words, they
correspond to a probability mass function, as required by Eq. (3.31)80. ¢

8This expression is well-known; to the best of our knowledge, Fréchet (1938, Chapter II,
Section II) was (one of) the first to derive it.
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3.2.3 From transition probabilities to the transition operator

Finally, it is time to return to the main subject of this chapter: jump processes.
Let us find out how transition operators help when studying (the transition
probabilities of) jump processes.

To that end, we let P be a jump process. First, we observe that it follows
immediately from (CP1)41–(CP3)41 that

P (X0 = •) : X→ [0,1] : x 7→ P (X0 = x)

is a probability mass function. For this reason, we call P (X0 = •) the initial
mass function9 of P .

Next, for any two time points t and r in R≥0 such that t ≤ r , we define the
operator Tt ,r : G(X) →G(X) by[

Tt ,r f
]
(x) := EP ( f (Xr ) |X t = x) for all f ∈G(X) and x ∈X. (3.33)

It follows immediately from (ES1)37–(ES3)37 that Tt ,r is a transition operator.
Note that, for any x and y in X,

Tt ,r (x, y) = [
Tt ,r Iy

]
(x) = EP (Iy (Xr ) |X t = x) = P (Xr = y |X t = x). (3.34)

Because the components of Tt ,r are the transition probabilities, Krak et al.
(2017, Definition 4.5) call Tt ,r the transition operator from t to r .

The transition operator Tt ,r thus essentially provides us with a concise
way to denote the transition probabilities of the form P (Xr = y |X t = x). How-
ever, more intricate transition probabilities are of importance as well, which
is why Krak et al. (2017, Definition 4.6) define history-dependent transition op-
erators. For any two time points t and r inR≥0 and any state history {Xu = xu}
in H such that u ≺ t ≤ r , we define the operator T {Xu=xu }

t ,r : G(X) →G(X) by

[
T {Xu=xu }

t ,r f
]
(x) := EP ( f (Xr ) |Xu = xu , X t = x) for all f ∈G(X), x ∈X. (3.35)

Again, T {Xu=xu }
t ,r is a transition operator, and

T {Xu=xu }
t ,r (x, y) = P (Xr = y |Xu = xu , X t = x) for all x, y ∈X. (3.36)

As a special case, we observe that TΩ
t ,r = T

(X( )=x( ))
t ,r = Tt ,r . Furthermore, we

note that it follows almost immediately from Eq. (3.36), (CP1)41, (CP9)42 and
(CP5)42 that

T {Xu=xu }
t ,t = I for all t ∈R≥0 and {Xu = xu} ∈H such that u ≺ t . (3.37)

9The initial mass function is colloquially referred to as the ‘initial distribution’.
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3.2 Markovian jump processes

The transition operators of homogeneous Markovian jump processes

Due to Eq. (3.36)↶, a jump process P is Markovian if and only if for all time
points t and r in R≥0 and any conditioning event {Xu = xu} in H such that
u ≺ t < r ,

T {Xu=xu }
t ,r = Tt ,r . (3.38)

Similarly, it follows from Eq. (3.34)↶ that a Markovian jump process P is
homogeneous if and only if for all time points t and r in R≥0 such that t < r ,

Tt ,r = T0,(r−t ). (3.39)

For this reason, for a homogeneous Markovian jump processes P , it suffices
to consider the sequence (Tt )t∈R≥0 of transition operators defined by

Tt := T0,t for all t ∈R≥0.

It is relatively easy to establish that the transition operators of a homoge-
neous Markovian jump process form a semi-group; for a proof, see the first
part of the proof of (Krak et al., 2017, Proposition 5.1).

Lemma 3.33. For any homogeneous Markovian jump process P, the corre-
sponding sequence (Tt )t∈R≥0 of transition operators is a semi-group.

With Corollary 3.3182 in mind, it is clearly useful to establish a necessary
and sufficient condition for this semi-group (Tt )t∈R≥0 to be continuous.

Lemma 3.34. Let P be a homogeneous Markovian jump process. The corre-
sponding semi-group (Tt )t∈R≥0 is continuous if and only if

lim
t↘0

P (X t = x |X0 = x) = 1 for all x ∈X.

Proof. We do not prove this result directly, seeing that it is a special case of more
general results that we prove further on. We may use these results because every
transition operator is a lower transition operator – see Definition 3.60107. Recall from
Lemma 3.33 that (Tt )t∈R≥0 is a semi-group of transition operators. For this reason,
it follows from Lemma 3.76114 further on that (Tt )t∈R≥0 is continuous if and only
if limt↘0[Tt Ix ](x) = 1 for all x in X. With the help of Eq. (3.34)↶, we immediately
obtain the condition of the statement.

We can use Corollary 3.3182 and Lemmas 3.33 and 3.34 to establish that
the transition probabilities of a homogeneous Markovian jump process are
generated by a unique rate operator. This result is essentially well-known; in
this form, it is similar to (Krak et al., 2017, Theorem 5.4).10

10The difference between Theorem 3.35↷ and (Krak et al., 2017, Theorem 5.4) is that we do
not limit ourselves to ‘well-behaved’ processes a priori, but only require a (weaker) continuity
condition.
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Theorem 3.35. Let P be a homogeneous Markovian jump process. If

lim
t↘0

P (X t = x |X0 = x) = 1 for all x ∈X, (3.40)

then there is a unique probability mass function p0 on X such that

P (X0 = x) = p0(x) for all x ∈X
and a unique rate operator Q such that for all time points t and r in R≥0 and
all {Xu = xu} in H with u ≺ t ≤ r ,

T {Xu=xu }
t ,r = e(r−t )Q . (3.41)

Proof. For the first part of the statement, we let p0 be the real-valued function on X

defined by P (X0 = x) for all x in X. It follows from (CP2)41 that p0 is non-negative,
and – because the events ({X0 = x})x∈X form a (disjoint) partition ofΩ – from (CP1)41
and (CP3)41 that p0 is normed; thus, p0 is a probability mass function. That p0 is
unique is obvious.

For the second part of the statement, we observe that due to Corollary 3.3182,
Lemmas 3.33↶ and 3.34↶ and Eqs. (3.38)↶ and (3.39)↶,

Q := lim
t↘0

Tt − I

t

is the unique linear operator that satisfies Eq. (3.41).

The continuity condition of Eq. (3.40) in Theorem 3.35 is a rather natural
one, but it is not trivially satisfied. Let us investigate an example of a jump
process that does not satisfy this continuity condition.

Example 3.36. Consider a state space X with at least 2 states. Let T0 := I and,
for all t in R>0, let Tt be the transition operator defined by

[Tt f ](x) := 1

|X|
∑

y∈X
f (y) for all f ∈G(X), x ∈X.

By Theorem 5.2 in (Krak et al., 2017), there is a homogeneous Markovian
jump process P such that for all x, y in X and t ,∆ in R≥0,

P (X t = y |X0 = x) = [Tt Iy ](x) =


1 if t = 0 and x = y,

0 if t = 0 and x ̸= y,
1

|X| if t > 0.

Then because |X| ≥ 2, it is obvious that

lim
t↘0

P (X t = x |X0 = x) = 1

|X| ̸= 1 for all x ∈X,

so the continuity condition of Eq. (3.40) is not satisfied. Furthermore, it is
clear that for all x, y in X, the ‘transition rate from x to y ’ is unbounded:

lim
t↘0

[
T0,t − I

t

]
(x, y) =

{
−∞ if x = y,

+∞ if x ̸= y.
⋄
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3.2.4 Constructing Markovian jump processes

Theorem 3.35↶ establishes that under a very mild continuity assumption,
the transition probabilities of a homogeneous Markovian jump process are
uniquely characterised by a single parameter: the rate operator Q. Based on
Corollary 3.3182, it seems only natural to expect the converse to hold as well,
in the sense that every rate operator characterises a (unique) Markov chain.
Krak et al. (2017, Corollary 5.3) prove that this is the case, and we repeat their
result here.

Theorem 3.37. Fix a probability mass function p0 on X and a rate operator Q.
Then there is a unique jump process P such that

P (X0 = x) = p0(x) for all x ∈X

and, for all time points t and r in R≥0 and any conditioning event {Xu = xu}
in H such that u ≺ t ≤ r ,

T {Xu=xu }
t ,r = e(r−t )Q .

Clearly, this jump process P is Markovian and homogeneneous and satisfies
the continuity condition from Eq. (3.40)↶ in Theorem 3.35↶.

The importance of Theorem 3.37 can hardly be overstated. Most impor-
tantly, together with Proposition 3.2073 and Theorem 3.35↶, it establishes
thatany homogeneous Markovian jump process that satisfies the continuity
condition from Eq. (3.40)↶ in Theorem 3.35↶ is uniquely characterised by
two parameters: its initial mass function p0 and its rate operator Q. For this
reason, for all initial mass functions p0 and rate operators Q, we let Pp0,Q

denote the unique jump process that is characterised by p0 and Q in the
sense of Theorem 3.37. In order not to clutter our notation, we will denote
the conditional expectation operator EPp0,Q corresponding to Pp0,Q by Ep0,Q .

Joseph’s Example 3.38. Bruno and Joseph have several other colleagues be-
sides Alice and Cecilia, and one of these is Deborah. Deborah looks a bit like
a zebra and has a knack for conjuring tricks, but also knows a thing or two
about nuclear decay. More precisely, she knows that if the mass in Joseph’s
machine only contains a single radioactive isotope, then the decay events can
be described by a so-called Poisson process (see, for example, Norris, 1997,
Section 2.4). Note that X t differs from Xr if and only if there have been an odd
number of decays – that is, Poisson events – in the interval ]t ,r ]. Hence, Deb-
orah knows that the jump process P that models (her beliefs about) Joseph’s
machine should satisfy

P (Xr = T |Xu = xu , X t = H) = P (Xr = H |Xu = xu , X t = T) = 1

2

(
1−e−2(r−t )λ

)
,
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where the positive real number λ is related to the half-life of the radioac-
tive isotope. Comparing this to the expression for e(r−t )Q in Joseph’s Exam-
ple 3.3283 and using the laws of probability, she comes to the conclusion
that

T {Xu=xu }
t ,r = e(t−r )Qλ with Qλ :=

(−λ λ

λ −λ
)

.

Theorem 3.37↶ now guarantees that there is such a jump process. ¢

Up until now, we have focussed exclusively on homogeneous Markovian
jump processes. If we drop the homogeneity assumption, then the transition
probabilities of the form P (Xr = y |X t = x) do depend on the current time
point t , and we need to consider a ‘two-parameter semi-group’

Tt ,r with t ,r ∈R≥0 such that t ≤ r.

It is common practice to look at the (left and right) derivative of Tt ,r for both
t and r for a given Markovian jump process, or to construct such a two-
parameter semi-group – and the corresponding Markovian jump process –
using a time-dependent rate operator Qt . We will not pursue this any further
here, but refer the interested reader to (Krak et al., 2017, Section 5.2) and
references therein.

3.3 Imprecise jump processes

Now that we have (precise) jump processes covered, it is finally time to
move on to imprecise jump processes. As we have previously mentioned
in Section 2.4.349, we will do so from a sensitivity analysis point of view.
More specifically, we take the position that there is a ‘true’ jump process
that accurately models the system, but that the subject’s beliefs only allow a
partial specification in the form of a set of jump processes.

Definition 3.39. An imprecise jump process P with state space X is a non-
empty subset of PX .

Because every jump process P in an imprecise jump process P has the
same domain D that is a structure of fields, imprecise jump processes fall
squarely in the scope of Section 2.4.349. Recall that there, we defined the
conditional lower and upper probabilities PP and PP on D as the lower and
upper envelope of P given by

PP(A |C ) := inf
{
P (A |C ) : P ∈P}

for all (A |C ) ∈D (3.42)

and

PP(A |C ) := sup
{
P (A |C ) : P ∈P}

for all (A |C ) ∈D. (3.43)

Furthermore, we also defined there the conditional lower and upper ex-
pectation EP and EP on JS as the lower and upper envelopes of the
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set {EP : P ∈P} of conditional expectations corresponding to the coherent
conditional probabilities in P; in short, EP and EP are defined by

EP( f |C ) := inf
{
EP ( f |C ) : P ∈P}

for all ( f |C ) ∈ JS (3.44)

and

EP( f |C ) := sup
{
EP ( f |C ) : P ∈P}

for all ( f |C ) ∈ JS. (3.45)

Finally, we recall from Section 2.4.349 that it suffices to study conditional
lower expectations, on account of the fact that conditional lower probabilities
are a special case and that upper envelopes – of expectations as well as
probabilities – can be obtained through conjugacy.

3.3.1 Consistent jump processes

Imprecise jump processes appear naturally in situations where we are unable
to precisely specify the defining parameters – that is, the initial mass function
and the rate operator – of a homogeneous Markovian jump process. Let us
illustrate this with our running example.

Joseph’s Example 3.40. Recall from Joseph’s Example 3.3887 that Deborah
knows that when Joseph’s machine contains a single isotope, the machine can
be modelled by a homogeneous Markovian jump process with rate operator

Qλ =
(−λ λ

λ −λ
)

,

where the parameter λ is related to the half-life of the radioactive isotope.
Deborah is in charge of the stock of radioactive isotopes in her workplace,

and in this capacity she has noticed that recently, the stock of n specific
isotopes has lowered without anyone actually using it for their research. For
this reason, she is absolutely certain that Joseph has used at least one of
these n isotopes. Let us denote the corresponding parameters by λ1, . . . , λn .
If Deborah were to believe that Joseph has put a single radioactive isotope
in his machine, then her beliefs would be modelled by the imprecise jump
process P that consists of all homogeneous Markovian jump process (with
state space {H,T}) whose rate operator Q belongs to {Qλ1 , . . . ,Qλn }. However,
Deborah does not want to exclude the possibility that Joseph uses two ra-
dioactive isotopes: one when his machine displays heads, and the other
when his machine displays tails. In this case, her beliefs are modelled by the
imprecise jump process P that consist of all homogeneous Markovian jump
process (with state space {H,T}) whose rate operator Q belongs to

Q :=
{(−λH λH

λT −λT
)

: λH,λT ∈ {λ1, . . . ,λn}

}
. ¢
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Imprecise jump processes also arise naturally in less artificial situations.
For example, in Queuing Network Example 7.36368 in Chapter 7337 further
on, we will use them to model a closed queueing network where the defining
parameters – that is, the mean service times of the servers – are only known
to belong to intervals; more specifically, we resort there to imprecise jump
process to obtain guaranteed lower and upper bounds on some performance
measures. Similarly, in Chapter 8403 further on, we will investigate spectrum
allocation policies for optical links, and there we will use an imprecise jump
process to obtain policy-independent bounds on the key performance in-
dicators. Joseph’s Example 3.40↶ and the two preceding examples all have
something in common: the imprecise jump processes are naturally char-
acterised by sets of initial mass functions and sets of rate operators. Sets
of rate operators also arise naturally when learning the rate operator of a
homogeneous Markovian jump process in an imprecise framework. In that
case, the estimator for the rate operator is a set of rate operators, and this set
of rate operators characterises a set of (homogeneous and Markovian) jump
processes (Krak et al., 2018).

Consistent homogeneous Markovian jump processes

The most basic way to construct an imprecise jump process is using the pro-
cedure of Joseph’s Example 3.40↶. Let us generalise this procedure for any
non-empty set M11 of probability mass functions on X and any non-empty
set Q of rate operators. As in Joseph’s Example 3.40↶, we construct an impre-
cise jump process usingM andQ by considering all homogeneous Markovian
jump processes that are characterised by an initial mass function p0 in M

and a rate operator Q in Q:

PHM
M,Q = {

Pp0,Q : p0 ∈M,Q ∈Q}
. (3.46)

By definition, PHM
M,Q is fully characterised by the two parameters M and

Q, and PHM
M,Q = {Pp0,Q } whenever M = {p0} and Q= {Q}. Thus, the imprecise

jump processPHM
M,Q is a proper generalisation of the homogeneous Markovian

jump process Pp0,Q to imprecise jump processes However, PHM
M,Q is not the

only imprecise jump process that generalises Pp0,Q in this way. In fact, Krak
et al. (2017) propose two additional such generalisations: the first is the set
of all – not necessarily homogeneous – Markovian jump processes that are
characterised by M andQ, and the second is the set of all – not necessarily

11 In Section 2.2.427, we have usedM to denote a set of coherent expectations on G(X),
which motivates our use of M to denote a set of probability mass functions. Recall from
Proposition 2.1823 that because X is finite, every coherent expectation E on G(X) is in one-to-
one correspondence with a probability mass function p through the relation p(x) = E(Ix ) for all
x in X. Thus, because X is finite, sets of coherent expectations on G(X) and sets of probability
mass functions on X are essentially equivalent.
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3.3 Imprecise jump processes

Markovian – jump process that are characterised by M andQ. To formalise
these two definitions, we need to introduce the notion of consistency.

Consistency with a set of initial mass functions

First, we consider the notion of consistency with a set M of initial mass
functions (see Krak et al., 2017, Definition 6.2).

Definition 3.41. Consider a set M of probability mass functions on X. A
jump process P is consistent with the set M of initial mass functions if P (X0 =
•), the initial mass function of P , belongs to M. We letPM denote the set of all
jump processes that are consistent with the set M of initial mass functions.

Consider a non-empty set M of initial mass functions and a non-empty
setQ of rate operators. By Eq. (3.46)↶ and Theorem 3.3787, every P in PHM

M,Q
is a homogeneous Markovian jump process that is consistent with the set M
of initial mass functions. Consequently,

PHM
M,Q ⊆PHM ∩PM . (3.47)

Dynamics of the history-dependent transition operators

Consistency with a set Q of rate operators is a bit more involved. Our defi-
nition is inspired by the following important result regarding homogeneous
Markovian jump processes.

Proposition 3.42. Consider a rate operator Q and a jump process P. Then P
is a homogeneous Markovian jump process with rate operator Q – in the
sense that P = Pp0,Q with p0 := P (X0 = •) – if and only if for all t in R≥0

and {Xu = xu} in H such that u ≺ t ,

lim
r↘t

T {Xu=xu }
t ,r − I

r − t
=Q and, if t > 0, lim

s↗t

T {Xu=xu }
s,t − I

t − s
=Q. (3.48)

Proof. The direct implication follows immediately from Theorem 3.3787, Proposi-
tion 3.2479 and Eq. (3.37)84.

To prove the converse implication, we assume that P is a jump process that satis-
fies Eq. (3.48). It then follows from (Krak et al., 2017, Definition 6.1) that P is consistent
with {Q} in the sense of Krak et al. (2017, Definition 6.1) – or, by Proposition 3.57104
further on, in the sense of Definition 3.5099. Hence, it follows from (Krak et al., 2017,
Proposition 8.1) – essentially Proposition 3.80117 further on – that for all t and r inR≥0
and {Xu = xu } in H with u ≺ t ≤ r(∀ f ∈G(X)

)
T {Xu=xu }

t ,r f ≥ e(r−t )Q f .

Recall that T {Xu=xu }
t ,r and e(r−t )Q are transition operators, so T {Xu=xu }

t ,r (− f ) =
−T {Xu=xu }

t ,r f and e(r−t )Q (− f ) =−e(r−t )Q f due to (T2)80. Hence,(∀ f ∈G(X)
)

T {Xu=xu }
t ,r f = e(r−t )Q f .
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From this and Theorem 3.3787, we conclude that P = Pp0,Q , as required.

Crucially, we learn from Proposition 3.42↶ that for a homogeneous
Markovian jump process, the rate operator fully characterizes the ‘dynamics’
of its (history-dependent) transition operators. That is, the rate operator Q
determines the (history-dependent) transition operators – or equivalently,
the transition probabilities – for the time points s and r with s < t < r that are
sufficiently close to the current time point t , in the sense that

T {Xu=xu }
t ,r ≈ I + (r − t )Q and T {Xu=xu }

s,t ≈ I + (t − s)Q. (3.49)

It is this characterisation of the dynamics that we want to extend to sets
of rate operators through consistency. Thus, we say that a jump process P
is ‘consistent with the set Q of rate operators’ if this set Q characterizes its
dynamics – or, more precisely, the dynamics of its history-dependent transi-
tion operators. There are a couple of ways to formalise this statement. One
of the more obvious ones is to relax Eq. (3.48)↶, in the sense that these limits
should belong to the setQ. However, this way we implicitly assume that these
limits exist, and this need not be the case. Krak et al. (2017, Example 4.5)
give one example of a – not all too crazy – Markovian jump process for which
these limits do not always exist, but let us look at an example in the setting of
our running example.

Joseph’s Example 3.43. Recall from Joseph’s Example 3.1466 that for any [0,1]-
valued function φ on R>0, there is a jump process Pφ such that

Pφ(X t = x |X0 = x) =φ(t ) for all x ∈X, t ∈R>0.

In this example, we consider a jump process Pφ corresponding to the function

φ : R>0 → [0,1] : t 7→φ(t ) :=


1− t if 1

2n ≤ t < 1
2n−1 for some n ∈N,

1− 1
2 t if 1

2n+1 ≤ t < 1
2n for some n ∈N,

0 if t ≥ 1.

Then for any t in R>0, the matrix representation of the corresponding transi-
tion operator T0,t is (

φ(t ) 1−φ(t )
1−φ(t ) φ(t )

)
. (3.50)

Let Q be any linear operator with matrix representation(
a b
c d

)
.
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3.3 Imprecise jump processes

Fix any t in R>0. Then by Eqs. (3.28)77 and (3.50)↶,∥∥∥∥Q − T0,t − I

t

∥∥∥∥
op

= max

{∣∣∣∣a − φ(t )−1

t

∣∣∣∣+ ∣∣∣∣b − 1−φ(t )

t

∣∣∣∣,∣∣∣∣c − 1−φ(t )

t

∣∣∣∣+ ∣∣∣∣d − φ(t )−1

t

∣∣∣∣}. (3.51)

Let us assume that t < 1, so we can more easily substitute the definition of φ
in this expression. If there is some n inN such that 1

2n ≤ t < 1
2n−1 , then∥∥∥∥Q − T0,t − I

t

∥∥∥∥
op

= max{|a +1|+ |b −1|, |c −1|+ |d +1|}.

On the other hand, if there is some n inN such that 1
2n+1 ≤ t < 1

2n , then∥∥∥∥Q − T0,t − I

t

∥∥∥∥
op

= max

{∣∣∣∣a + 1

2

∣∣∣∣+ ∣∣∣∣b − 1

2

∣∣∣∣, ∣∣∣∣c − 1

2

∣∣∣∣+ ∣∣∣∣d + 1

2

∣∣∣∣}.

Clearly, there is no choice of the parameters a, b, c, d such that

lim
t↘0

∥∥∥∥Q − T0,t − I

t

∥∥∥∥
op

= 0,

so this is an example where the limit in Eq. (3.48)91 does not exist. ¢

Alternatively, we could relax Eq. (3.49)↶ by requiring that the approxima-
tions hold for some rate operators Qr and Qs inQ. However, this approach
would only ensure that the limits in Eq. (3.48)91 are in the (topological) clo-
sure ofQ,12 so it would then be a bit of a stretch to say thatQ characterizes
the dynamics of T {Xu=xu }

t ,t . To mitigate these issues, we will use a combination
of both approaches, essentially following the alternative path proposed by
Krak et al. (2017).

Our approach differs from that of Krak et al. (2017) on two fronts. First
and foremost, we define our set-valued derivative using – a notion of – the dis-
tance between a rate operator and a set of rate operators instead of through
the limit points of convergent sequences of rate operators corresponding
to sequences of time points. Second, we use a notion of (set-valued) differ-
entiability to ensure that the set-valued derivative exists, instead of a priori
restricting us to the ‘well-behaved’ jump processes that Krak et al. (2017)
consider. This being said, we will establish in Proposition 3.57104 further
on that our notion of the set-valued derivative coincides with that of Krak
et al. (2017) whenever we deal with jump processes that have bounded rate;
consequently, the same holds for consistency with a bounded set of rate
operators.

12More precisely, this condition only ensures that for every non-increasing se-
quence (rn )n∈N in ]t ,+∞[ with limn→+∞ rn = t , the limit (or accumulation) points of the

sequence ((T {Xu=xu }
t ,rn

−I )/(rn−t ))n∈N belong to the closure of Q, and similarly for the limit from
the left.
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Set-valued directional derivatives

First, let us introduce some additional notation. For any jump process P , any
time points t and r in R≥0 and any state history {Xu = xu} in H such that
u ≺ t < r , we let

Q{Xu=xu }
t ,r :=

T {Xu=xu }
t ,r − I

r − t
. (3.52)

Because T {Xu=xu }
t ,r is a transition operator, it follows from Lemma 3.3082 that

Q{Xu=xu }
t ,r is a rate operator. In order to study the dynamics of a jump pro-

cess P , we look at the ‘limit’ of Q{Xu=xu }
t ,r as r decreases to t and the ‘limit’ of

Q{Xu=xu }
s,t as s increases to t . As we have mentioned before, these limits do not

necessarily exist; more precisely, Q{Xu=xu }
t ,r can have multiple accumulation

points as r decreases to t , and similarly for Q{Xu=xu }
s,t as s increases to t .

The intuitive idea behind our set-valued directional derivatives is the
following. We generalise Eq. (3.48)91 in the sense that we consider the ac-
cumulation points of Q{Xu=xu }

t ,r as r decreases to t and those of Q{Xu=xu }
s,t as s

increases to r . However, in the spirit of Eq. (3.49)92, we only call these sets
of accumulation points ‘set-valued directional derivatives’ whenever they
allow us to approximate the history dependent transition operators they were
derived from, in the sense that for time points r and s sufficiently close to t ,
there are accumulation points Qr and Qs such that

T {Xu=xu }
t ,r ≈ I + (r − t )Qr and T {Xu=xu }

s,t ≈ I + (t − s)Qs . (3.53)

To formalise this intuitive idea, we will use a notion of the ‘distance’
between a single rate operator and a set of rate operators.13 For any rate
operator Q inQ and any subsetQ ofQ, we define the distance from Q toQ as

dQ(Q,Q) := inf
{∥Q −Q ′∥op : Q ′ ∈Q}

; (3.54)

note that this distance is a real number whenever Q is non-empty and equal
to +∞ whenever Q is empty.

There is more than one way to explain how the distance function dQ
leads to a notion of set-valued directional derivatives. Here, we will give a
definition that is inspired by the notion of Painlevé-Kuratowski convergence
for sequences of sets (see Rockafellar et al., 1998, Chapter 4). An alternative
and perhaps more direct way to arrive at the same notion of set-valued
directional derivatives is to use the Hausdorff semi-metric that corresponds
to the distance function dQ . The link between the latter definition of set-
valued directional derivatives and that of – standard – directional derivatives
is arguably more immediate but also more technical; for this reason, we have
relegated it to Appendix 3.A.2128.

13This is a special case of the general notion of the distance between an element of a metric
space and a subset of the same metric space, see (Schechter, 1997, Section 4.40), (Burago et al.,
2011, Exercise 1.4.2) or (Conci et al., 2017, Section 2).
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Consider a jump process P , and fix a current time point t in R≥0 and
state history {Xu = xu} in H such that u ≺ t . The set of accumulation points
of Q{Xu=xu }

t ,r as r decreases to t consists of those rate operators Q inQ that
come arbitrarily close to Q{Xu=xu }

t ,r time and time again as r approaches t .
More formally, we draw inspiration from the notion of Painlevé-Kuratowski
convergence for sequences of sets,14 and collect the right-sided accumulation
points of Q{Xu=xu }

t ,• in

∂+T {Xu=xu }
t ,t :=

{
Q ∈Q : lim

r↘t
dQ

(
Q,

{
Q{Xu=xu }

t ,r ′
}

r ′∈]t ,r [

)= 0
}

. (3.55)

Similarly, if t > 0, we collect the left-sided accumulation points of Q{Xu=xu }
•,t in

∂−T {Xu=xu }
t ,t :=

{
Q ∈Q : lim

s↗t
dQ

(
Q,

{
Q{Xu=xu }

s′,t
}

s′∈]s,t [

)= 0
}

. (3.56)

Joseph’s Example 3.44. We consider again the jump process Pφ as defined in
Joseph’s Example 3.4392. Let Q be any rate operator with matrix representa-
tion (−λH λH

λT −λT
)

.

Fix any t in ]0,1[. Then by Eq. (3.51)93,∥∥Q −Q0,t
∥∥

op = max

{
2

∣∣∣∣λH+ φ(t )−1

t

∣∣∣∣,2

∣∣∣∣λT+ φ(t )−1

t

∣∣∣∣}.

As in Joseph’s Example 3.4392, we substitute the definition of φ in this expres-
sion. If there is some n inN such that 1

2n ≤ t < 1
2n−1 , then∥∥Q −Q0,t

∥∥
op = max{2|λH−1|,2|λT−1|}. (3.57)

On the other hand, if there is some n inN such that 1
2n+1 ≤ t < 1

2n , then∥∥Q −Q0,t
∥∥

op = max

{
2

∣∣∣∣λH− 1

2

∣∣∣∣,2

∣∣∣∣λT− 1

2

∣∣∣∣}. (3.58)

From this and Eq. (3.54)↶, it follows that

dQ
(
Q,

{
Q0,s

}
s∈]0,t [

)
= min

{
max{2|λH−1|,2|λT−1|},max

{
2

∣∣∣∣λH− 1

2

∣∣∣∣,2

∣∣∣∣λT− 1

2

∣∣∣∣}}
.

14The notion of Painlevé-Kuratowski convergence is as follows (see Rockafellar et al., 1998,
Definition 4.1 and Exercise 4.2): the limit of a sequence (Qn )n∈N of subsets ofQ exists (in the
Painlevé-Kuratowski sense) if the sets{

Q ∈Q : liminf
n→+∞dQ (Q,Qn ) = 0

}
and

{
Q ∈Q : limsup

n→+∞
dQ (Q,Qn ) = 0

}
,

coincide, where the first set is the ‘limit superior’ and the second set the ‘limit inferior’.
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Because this expression holds for any t in ]0,1[, it follows from Eq. (3.55)↶
that ∂+T0,0 contains precisely two rate operators: one with λH = 1 =λT and
one with λH = 1

2 =λT. ¢

As explained right before Eq. (3.53)94, we should only call the
set ∂+T {Xu=xu }

t ,t of accumulation points the ‘set-valued right-sided derivative’
if these accumulation points approximate the history dependent transition
operators for sufficiently close (future) time points. Formally, we should
require that(∀ϵ ∈R>0

)(∃δ ∈R>0
)(∀r ∈ ]t , t +δ[

)(∃Q ∈ ∂+T {Xu=xu }
t ,t

) ∥∥Q{Xu=xu }
t ,r −Q

∥∥
op < ϵ.

It is not difficult to see that this condition is equivalent to(∀ϵ ∈R>0
)(∃δ ∈R>0

)(∀r ∈ ]t , t +δ[
)

dQ
(
Q{Xu=xu }

t ,r ,∂+T {Xu=xu }
t ,t

)< ϵ;

that is, we should require that

lim
r↘t

dQ
(
Q{Xu=xu }

t ,r ,∂+T {Xu=xu }
t ,t

)= 0. (3.59)

Important to realise is that this condition is not necessarily satisfied.

Joseph’s Example 3.45. For this example, we consider the function

φ : R>0 → [0,1] : t 7→φ(t ) :=
{

0 if 1
t ∈N,

1 otherwise.

As we have shown in Joseph’s Example 3.1466, there is a jump process Pφ such
that

Pφ(X t = x |X0 = x) =φ(t ) for all x ∈X, t ∈R>0.

Let Q be any rate operator characterised by λH and λT. Then following a
similar argument as in Joseph’s Example 3.44↶, we find that, for all t in R>0,

∥Q −Q0,t∥op =
{

max
{
2
∣∣λH− 1

t

∣∣,2
∣∣λT− 1

t

∣∣} if 1
t ∈N,

max{2λH,2λT} otherwise.
(3.60)

From this and Eq. (3.54)94, it follows – after some easy manipulations – that

dQ
(
Q,

{
Q0,s

}
s∈]0,t [

)= inf

({
max

{
2λH,2λT

}}
∪

{
max

{
2|λH−n|,2|λT−n|} : n ∈N,

1

n
< t

})
.

From this, we infer that

lim
t↘0

dQ
(
Q,

{
Q0,s

}
s∈]0,t [

)= 0 ⇔λH = 0 =λT.
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Therefore, it follows from Eq. (3.55)95 that ∂+T0,0 is the singleton containing
the rate operator Q⋆ with λH = 0 =λT.

Because ∂+T0,0 = {Q⋆}, it follows from Eqs. (3.54)94 and (3.60)↶ that, for
all t in R>0,

dQ
(
Q0,t ,∂+T0,0

)= ∥Q⋆−Q0,t∥op =
{

2
t if 1

t ∈N,

0 otherwise.

Clearly, this implies that

liminf
t↘0

dQ
(
Q0,t ,∂+T0,0

)= 0 and limsup
t↘0

dQ
(
Q0,t ,∂+T0,0

)=+∞,

so this is an example where Eq. (3.59)↶ does not hold. ¢

Our intuitive definition of the set-valued directional derivatives leads to
the following formal one.15

Definition 3.46. Consider a jump process P , a time point t in R≥0 and a
state history {Xu = xu} in H such that u ≺ t . We say that T {Xu=xu }

t ,t is dQ-
differentiable from the right if

∂+T {Xu=xu }
t ,t ̸=∅ and lim

r↘t
dQ

(
Q{Xu=xu }

t ,r ,∂+T {Xu=xu }
t ,t

)
= 0,

and we then call ∂+T {Xu=xu }
t ,t the right-sided dQ-derivative of T {Xu=xu }

t ,t . Simi-
larly, if t > 0, we say that T {Xu=xu }

t ,t is dQ-differentiable from the left if

∂−T {Xu=xu }
t ,t ̸=∅ and lim

s↗t
dQ

(
Q{Xu=xu }

s,t ,∂−T {Xu=xu }
t ,t

)
= 0,

and we then call ∂−T {Xu=xu }
t ,t the left-sided dQ-derivative of T {Xu=xu }

t ,t . Finally,
T {Xu=xu }

t ,t is dQ-differentiable if it is dQ-differentiable from the right and, if
applicable, also from the left.

Joseph’s Example 3.47. Let us return to the jump process Pφ as defined in
Joseph’s Example 3.4392. Recall from Joseph’s Example 3.4495 that ∂+T0,0

contains precisely two rate operators: Q1 with λH = 1 = λT and Q1/2 with
λH = 1/2 =λT. Consequently, it follows from Eq. (3.54)94 that, for all t in ]0,1[,

dQ
(
Q0,t ,∂+T0,0

)= min
{∥∥Q1 −Q0,t

∥∥
op,

∥∥Q1/2 −Q0,t
∥∥

op

}
.

From this and Eqs. (3.57)95 and (3.58)95, it follows immediately that
dQ(Q0,t ,∂+T0,0) = 0 for all t in ]0,1[, and therefore

lim
t↘0

dQ
(
Q0,t ,∂+T0,0

)= 0.

15In the interest of clarity and conciseness, we have deliberatly chosen to cut some – formal
– corners with this notation and terminology. Norte that we explicitly demand that the sets of
accumulation points are non-empty, but we could also leave this implicit because dQ (Q,∅) =
+∞ for all Q inQ.
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Hence, T0,0 is dQ-differentiable from the right, with right-sided dQ-derivative
∂+T0,0 = {Q1,Q1/2}. ¢

Of course, this definition of the directional dQ-derivatives is only sensi-
ble if they coincide with the ‘normal’ directional derivatives whenever the
latter exist. The following result establishes that this is indeed the case; it
is similar to a result of Krak et al. (2017, Corollary 4.8) for their ‘outer direc-
tional derivatives’. For the sake of conciseness, we have relegated the proof
to Appendix 3.A.1125.

Lemma 3.48. Consider a jump process P, a current time point t in R≥0, a
state history {Xu = xu} in H such that u ≺ t and a rate operator Q inQ. Then

lim
r↘t

T {Xu=xu }
t ,r − I

r − t
=Q

if and only if ∂+T {Xu=xu }
t ,t = {Q} and T {Xu=xu }

t ,t is dQ-differentiable from the
right. The same holds for the left-sided (dQ-)derivative whenever t > 0.

Consistency with a set of rate operators

Before we formally establish the notion of consistency with a set of rate
operators, it will be instructive to put the newly-introduced directional dQ-
derivatives to work in the setting of homogeneous Markov chains (see also
Krak et al., 2017, Proposition 5.5).

Corollary 3.49. Consider a probability mass function p0 on X and a rate
operator Q. Then Pp0,Q is the unique jump process P such that (i) the initial
mass function P (X0 = •) is p0; and (ii) for all t in R≥0 and {Xu = xu} in H

such that u ≺ t , T {Xu=xu }
t ,t is dQ-differentiable with

∂+T {Xu=xu }
t ,t = {Q} and, if t > 0, ∂−T {Xu=xu }

t ,t = {Q}.

Proof. Follows from Theorem 3.3787, Proposition 3.4291 and Lemma 3.48.

Due to the foregoing result, it is arguably sensible to say that a jump
process is consistent with the setQ of rate operators – or, alternatively, that the
dynamics of P are characterized byQ – if the set-valued directional derivatives
of its history-dependent transition operators are contained in Q. Thus, we
obtain the following definition, essentially taken from (Krak et al., 2017,
Definition 6.1).16

16The difference between our definition and that of Krak et al. (2017, Definition 6.1) is that
due to our more general definition of the ‘set-valued directional derivative’, we do not have to a
priori limit ourselves to jump processes that have bounded rate, in the sense of Definition 3.53101
further on.
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3.3 Imprecise jump processes

Definition 3.50. Consider a non-empty set Q of rate operators. The jump
process P is consistent with the set Q if for all t in R≥0 and {Xu = xu} in H

such that u ≺ t , T {Xu=xu }
t ,t is dQ-differentiable with

∂+T {Xu=xu }
t ,t ⊆Q and, if t > 0, ∂−T {Xu=xu }

t ,t ⊆Q.

We let PQ denote the set of all jump processes that are consistent with the
setQ of rate operators.

Consider a non-empty set M of initial mass functions and a non-empty
set Q of rate operators. Due to Theorem 3.3787 and Corollary 3.49↶, every
jump process P in PHM

M,Q is a homogeneous and Markovian jump process that
is consistent with Q. Consequently,

PHM
M,Q ⊆PHM ∩PQ. (3.61)

Taking into account Eq. (3.47)91, it follows that

PHM
M,Q ⊆PHM ∩PM ∩PQ. (3.62)

To turn this inclusion into an equality, we need an additional assumption.
One possible such assumption is to restrict the jump processes on the

right-hand side of Eq. (3.62) to those that satisfy the continuity condition
of Theorem 3.3586. It is not all too difficult to verify that this continuity
condition is equivalent to requiring that the history-dependent transition
operators are ‘continuous’; that is, the jump processes on the right-hand side
of Eq. (3.62) should additionally belong to

PC :=
{

P ∈P : (∀t ∈R≥0)(∀{Xu = xu} ∈H,u ≺ t ) lim
r↘t

T {Xu=xu }
t ,r = I ,

(∀t ∈R>0)(∀{Xu = xu} ∈H,u ≺ t ) lim
s↗t

T {Xu=xu }
s,t = I

}
.

The following result establishes this formally.

Lemma 3.51. Consider a non-empty set M of initial mass functions and a
non-empty set Q of rate operators. Then

PHM
M,Q =PHM ∩PM ∩PQ∩PC.

Proof. Observe that for all P in PC, x in X and r in R>0,

|P (Xr = x |X0 = x)−1| = |T0,r (x, x)− I (x, x)| ≤ ∥T0,r − I∥op,

where the first equality follows from Eq. (3.34)84. From this and the definition of PC,
it follows that (∀P ∈PC)(∀x ∈X)

lim
r↘0

P (Xr = x |X0 = x) = 1.
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Modelling jump processes

Fix any jump process P in PHM ∩PC. Due to the preceding, it follows from Theo-
rem 3.3586 and Theorem 3.3787 that there is a unique probability mass function p0
on X and a unique rate operator Q such that P = Pp0,Q . It follows from this and
Corollary 3.4998 that

PHM
M,Q ⊇PHM ∩PM ∩PQ∩PC.

Next, we fix any P in PHM
M,Q . Then by construction, P = Pp0,Q for some p0 in M

and Q inQ. Consequently, it follows from Theorem 3.3787 and Proposition 3.2479 that
for all t in R≥0 and {Xu = xu } in H such that u ≺ t ,

lim
r↘t

T {Xu=xu }
t ,r − I

r − t
=Q and, if t > 0, lim

s↗t

T {Xu=xu }
s,t − I

t − s
=Q;

due to a standard argument from analysis, this implies that

lim
r↘t

T {Xu=xu }
t ,r = I and, if t > 0, lim

s↗t
T {Xu=xu }

s,t = I .

Hence, P belongs to PC. In other words, PHM
M,Q ⊆PC. From this and Eq. (3.62)↶, we

infer that
PHM
M,Q ⊆PHM ∩PM ∩PQ∩PC.

We have shown that PHM
M,Q is included in and includes PHM∩PM∩PQ∩PC, which

implies the equality of the statement.

Alternatively, and arguably more sensibly, we can require that Q is
bounded, in the sense that

∥Q∥op := sup
{∥Q∥op : Q ∈Q}<+∞, (3.63)

with some slight abuse of notation. Whenever Q is bounded, it turns out that

PHM
M,Q =PHM ∩PM ∩PQ; (3.64)

for a proof, see Proposition 3.56103 further on.

Bounded sets of rate operators

So why is it sensible to assume that Q is bounded? Intuitively, this ‘bounds’
the dynamics of the history-dependent transition operators of every jump
process P that is consistent withQ. If we do not assume thatQ is bounded,
then the transition probabilities can change ‘arbitrarily fast’. We can use our
running example to illustrate this.

Joseph’s Example 3.52. Fix an arbitrary initial mass function p0 on X =
{H,T}. For any non-negative real number λ, we let Pλ be the homogeneous
Markovian jump process with initial mass function p0 and rate operator Qλ,
with Qλ as defined in Joseph’s Example 3.3887:

Qλ :=
(−λ λ

λ −λ
)

.
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3.3 Imprecise jump processes

Consider the set

Q := {
Qλ : λ ∈ [1,+∞[

}
of rate operators Qλ with parameter λ greater than or equal to 1. Observe
that

∥Q∥op = sup
{∥Qλ∥op : λ ∈ [1,+∞[

}= sup
{
2λ : λ ∈ [1,+∞[

}=+∞

due to (R5)81, so Q is unbounded.
Observe that by Eq. (3.46)90 and the definition of Q,

PHM
{p0},Q = {

Pp0,Q : Q ∈Q}= {
Pp0,Qλ

: λ ∈ [1,+∞[
}= {

Pλ : λ ∈ [1,+∞[
}
.

Thus, for every λ in [1,+∞[, there is a jump process Pλ in PHM
{p0},Q.

Fix some λ in [1,+∞[. For all t in R≥0, we let T0,t denote the transition
operator from 0 to t corresponding to Pλ as defined by Eq. (3.33)84. Then
T0,t = e tQλ for all t in R≥0 by definition of Pλ – see also Theorem 3.3787 – and
it therefore follows from Corollary 3.3182 that

lim
t↘0

T0,t − I

t
=Qλ.

Because I = T0,0 due to Eq. (3.37)84, it follows that for all x and y in X = {H,T},

lim
t↘0

Pλ(X t = y |X0 = x)−P (X0 = y |X0 = x)

t
=

{
λ if x ̸= y

−λ if x = y.

Because there is such a jump process Pλ in PHM
{p0},Q for every λ in [1,+∞[, we

infer from this equality that the rate of change of every transition probability
can be made arbitrarily large (in absolute value). ¢

The following notion, taken from (Krak et al., 2017, Definition 4.4 and
Proposition 4.5), is tightly related to consistency with a bounded set of rate op-
erators; we state our definition using the ‘history-dependent’ rate operators,
so in the spirit of (Krak et al., 2017, Proposition 4.5), but also provide a charac-
terisation in terms of probabilities similar to (Krak et al., 2017, Definition 4.4).

Definition 3.53. A jump process P has bounded rate17 if for all t in R≥0 and
{Xu = xu} in H such that u ≺ t ,

limsup
r↘t

∥∥Q{Xu=xu }
t ,r

∥∥
op <+∞ and, if t > 0, limsup

s↗t

∥∥Q{Xu=xu }
s,t

∥∥
op <+∞.

17As mentioned previously, Krak et al. (2017, Definition 4.4) use the term ‘well-behaved’
instead of the term bounded rate.
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Lemma 3.54. Consider a jump process P. Then P has bounded rate if and
only if for all t in R≥0, {Xu = xu} in H such that u ≺ t and x in X,

limsup
r↘t

1

r − t

(
1−P (Xr = x |Xu = xu , X t = x)

)<+∞

and, if t > 0,

limsup
s↗t

1

t − s

(
1−P (X t = x |Xu = xu , Xs = x)

)<+∞.

Proof. Fix any s,r in R≥0 and {Xu = xu } in H such that u ≺ s < r . Recall from our
discussion right after Eq. (3.52)94 that Q{Xu=xu }

s,r is a rate operator. Hence, it follows
from (R5)81 and Eqs. (3.52)94 and (3.36)84 that∥∥Q{Xu=xu }

s,r
∥∥

op = 2max
{−[Q{Xu=xu }

s,r Ix ](x) : x ∈X}
= 2max

{
−

[
T {Xu=xu }

s,r Ix
]
(x)− Ix (x)

r − s
: x ∈X

}

= 2max

{
1

r − s

(
1−P (Xr = x |Xu = xu , Xs = x)

)
: x ∈X

}
.

Because the state space X is finite, the statement follows almost immediately from
this equality.

Crucially, any jump process that is consistent with a bounded set of rate
operators turns out to have bounded rate.

Lemma 3.55. Consider a non-empty and bounded set Q of rate operators
and a jump process P that is consistent with Q. Then for all t in R≥0 and
all {Xu = xu} in H such that u ≺ t ,

limsup
r↘t

∥∥Q{Xu=xu }
t ,r

∥∥
op ≤ ∥Q∥op and, if t > 0, limsup

s↗t

∥∥Q{Xu=xu }
t ,r

∥∥
op ≤ ∥Q∥op.

Consequently, P has bounded rate.

Proof. That P has bounded rate follows immediately from the two inequalities of the
statement. Here we will only prove the first inequality of the statement, the proof for
the second one is entirely analoguous.

First, we recall from the definition of consistency that T {Xu=xu }
t ,t is dQ differen-

tiable from the right, and that ∂+T {Xu=xu }
t ,t ⊆Q. Furthermore, we observe that for any

r in R≥0 with r > t and any Q in ∂+T {Xu=xu }
t ,t ,

∥∥Q{Xu=xu }
t ,r

∥∥
op ≤ ∥∥Q{Xu=xu }

t ,r −Q
∥∥

op +∥Q∥op ≤ ∥∥Q{Xu=xu }
t ,r −Q

∥∥
op +∥Q∥op, (3.65)

where the final inequality holds because Q ∈ ∂+T {Xu=xu }
t ,t ⊆Q.
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3.3 Imprecise jump processes

Next, we fix any positive real number ϵ. Because T {Xu=xu }
t ,t is dQ-differentiable

from the right, there is a positive real number δ such that(∀r ∈ ]t , t +δ[
)

dQ
(
Q{Xu=xu }

t ,r ,∂+T {Xu=xu }
t ,t

)< ϵ

2
.

Furthermore, it follows from this and the definition of dQ that for any r in ]t , t +δ[,

there is a Qr in ∂+T {Xu=xu }
t ,t such that

dQ
(
Q{Xu=xu }

t ,r ,∂+T {Xu=xu }
t ,t

)≤ ∥∥Q{Xu=xu }
t ,r −Qr

∥∥
op < dQ

(
Q{Xu=xu }

t ,r ,∂+T {Xu=xu }
t ,t

)+ ϵ

2
.

Combining these two inequalities, we see that(∀r ∈ ]t , t +δ[
) ∥∥Q{Xu=xu }

t ,r −Qr
∥∥

op < ϵ

2
+ ϵ

2
= ϵ.

It follows immediately from the preceding inequality and Eq. (3.65)↶ that(∀r ∈ ]t , t +δ[
) ∥∥Q{Xu=xu }

t ,r

∥∥
op < ϵ+∥Q∥op.

Because ϵ was an arbitrary positive real number, we infer from this inequality that

limsup
r↘t

∥∥Q{Xu=xu }
t ,r

∥∥
op ≤ ∥Q∥op <+∞,

which verifies the first inequality of the statement.

With the help of the preceding result and Lemma 3.5199, we can easily
establish that Eq. (3.62)99 holds with equality whenever Q is bounded.

Proposition 3.56. Consider a non-empty set M of initial mass functions and
a non-empty and bounded set Q or rate operators. Then

PHM
M,Q =PHM ∩PM ∩PQ.

Proof. Essential to this result is that any P in PQ also belongs to PC. To verify this, we
fix any P in PQ , t in R≥0 and {Xu = xu } in H such that u ≺ t . Then by Lemma 3.55↶,(∀ϵ ∈R>0

)(∃δ ∈R>0
)(∀r ∈ ]t , t +δ[

) ∥∥Q{Xu=xu }
t ,r

∥∥
op < ∥Q∥op +ϵ.

Observe that due to (N1)76 and the definition of Q{Xu=xu }
t ,r ,∥∥T {Xu=xu }

t ,r − I
∥∥

op = (r − t )∥Q{Xu=xu }
t ,r ∥op.

From the preceding two observations, it follows almost immediately that(∀ϵ ∈R>0
)(∃δ ∈R>0

)(∀r ∈ ]t , t +δ[
) ∥∥T {Xu=xu }

t ,r − I
∥∥

op < ϵ,

so limr↘t T {Xu=xu }
t ,r = I . If applicable, a similar argument shows the same for the limit

from the left. Because this holds any P in PQ , t in R≥0 and {Xu = xu } in H such that
u ≺ t , it follows immediately that PQ ⊆PC. Therefore,

PHM ∩PM ∩PQ =PHM ∩PM ∩PQ∩PC.

The equality of the statement follows immediately from this and Lemma 3.5199.
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Modelling jump processes

As we have mentioned before, the notion of consistency with a set of rate
operators favoured by Krak et al. (2017, Definition 6.1) is slightly different
from ours. More precisely, they only define their ‘outer directional derivatives’
for jump processes that have bounded rate and only define consistency for
jump process that have bounded rate, whereas we rely on the notion of dQ-
differentiability to ensure that the directional dQ-derivatives exist. This being
said, it follows from Lemma 3.55102 and the next result that for bounded
sets of rate operators, our notion of consistency coincides with theirs. The
following result is based on (Krak et al., 2017, Propositions 4.6 and 4.7); its
proof is rather lengthy, which is why we have relegated it to Appendix 3.A.3131.

Proposition 3.57. Consider a jump process P that has bounded rate. Fix
a time point t in R≥0 and state history {Xu = xu} in H such that u ≺ t .
Then T {Xu=xu }

t ,t is dQ-differentiable, ∂+T {Xu=xu }
t ,t is bounded and

∂+T {Xu=xu }
t ,t =

{
Q ∈Q :

(∃(rn)n∈N↘ t
)

lim
n→+∞Q{Xu=xu }

t ,rn
=Q

}
; 18

whenever t > 0, ∂−T {Xu=xu }
t ,t is bounded, and

∂−T {Xu=xu }
t ,t =

{
Q ∈Q :

(∃(sn)n∈N↗ t
)

lim
n→+∞Q{Xu=xu }

sn ,t =Q
}

.19

Imprecise jump processes through consistency

Proposition 3.56↶ suggests two additional imprecise jump processes that
are characterised by M and Q: we can simply replace the set PHM of ho-
mogeneous Markovian jump process with the set PM of all (not necessarily
homogeneous) Markovian jump processes or with the set P of all (not neces-
sarily Markovian) jump processes. Thus, for any non-empty set M of initial
distributions and any non-empty and bounded set Q of rate operators, we
follow Krak et al. (2017, Definition 6.4) in defining three imprecise jump
processes through consistency with M and Q:

(i) PHM
M,Q = PHM ∩PM ∩PQ consists of all consistent jump processes that

are Markovian and homogeneous;

(ii) PM
M,Q :=PM ∩PM∩PQ consists of all consistent jump processes that are

Markovian; and

(iii) PM,Q :=PM ∩PQ consists of all consistent jump processes.

Whenever M = {p0} and Q= {Q}, it follows from Corollary 3.4998 that

PM,Q =PM
M,Q =PHM

M,Q = {
Pp0,Q

}
. (3.66)

18In this expression, we let (rn )n∈N↘ t denote a sequence in R≥0 such that t < rn+1 < rn for
all n inN and limn→+∞ rn = t .

19In this expression, we let (sn )n∈N↗ t denote a sequence inR≥0 such that u ≺ sn < sn+1 < t
for all n inN and limn→+∞ sn = t
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3.3 Imprecise jump processes

Thus, each of the three imprecise jump processes PHM
M,Q, PM

M,Q and PM,Q is a
proper generalisation of the homogeneous Markovian jump process Pp0,Q .
In fact, we will see in Section 3.3.5118 further on that these three imprecise
jump processes are all Markovian and homogeneous, so we can rightfully
call each of them a homogeneous Markovian imprecise jump processes. This
being said, it is easy to see that in general,

PM,Q ⊇PM
M,Q ⊇PHM

M,Q. (3.67)

In order not to clutter our notation unnecessarily, we denote the condi-
tional lower expectations corresponding to PM,Q, PM

M,Q and PHM
M,Q by EM,Q,

E M
M,Q and E HM

M,Q, respectively; we also use similar notation for the conju-
gate conditional upper expectation and the corresponding conditional lower
and upper probabilities. It follows immediately from Eq. (3.67) that, for all
{Xu = xu} in H and f in S(Fu),

EM,Q( f |Xu = xu) ≤ E M
M,Q( f |Xu = xu) ≤ E HM

M,Q( f |Xu = xu). (3.68)

These inequalities can be strict, and they often turn out to be so. We refer to
Joseph’s Example 4.13171 further on or (Krak et al., 2017, Examples 6.2, 9.1
and 9.2) for examples where this is indeed the case. Whenever this is the case,
the inclusions in Eq. (3.67) are also strict, meaning that the imprecise jump
processes PM,Q, PM

M,Q and PHM
M,Q are distinct!

3.3.2 The law of iterated lower expectations

Recall from Theorem 3.1972 that a jump processes satisfies a law of iterated
expectations. For imprecise jump processes, a similar concept exists, but it is
a bit more involved.

To see why, we let P be any imprecise jump process. For all u in U, v
in U̸=( ) such that v ≽ u and f in Xv , we define the gamble

EP( f (Xv ) |Xu) := ∑
xu∈Xu

EP( f (Xv ) |Xu = xu)I{Xu=xu }.

Note that this gamble is similar to the gamble EP ( f (Xv ) |Xu), and that, for all
P in P and xu in Xu ,

EP( f (Xv ) |Xu = xu) ≤ EP ( f (Xv ) |Xu = xu).

Fix some u in U, some v and w in U̸=( ) such that u ≺ v and u ∪ v ≼ w and
a gamble f in G(Xw ). From the preceding inequality, Theorem 3.1972 and
(ES4)37, we infer that for any jump process P in the imprecise jump processP
and any xu in Xu ,

EP ( f (Xw ) |Xu = xu) = EP (EP ( f (Xw ) |Xu∪v ) |Xu = xu)

≥ EP (EP( f (Xw ) |Xu∪v ) |Xu = xu).
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Because inequalities are preserved under taking the infimum, we conclude
that in general,

EP( f (Xw ) |Xu = xu) ≥ EP

(
EP( f (Xw ) |Xu∪v )

∣∣ Xu = xu
)
.

In the special case that this inequality always holds with equality, we say that
P satisfies the law of iterated lower expectations.

Definition 3.58. An imprecise jump process P satisfies the law of iterated
lower expectations if for all u in U, all v and w in U̸=( ) such that u ≺ v and
u ∪ v ≼ w , all f in G(Xw ) and all xu in Xu ,

EP( f (Xw ) |Xu = xu) = EP

(
EP( f (Xw ) |Xu∪v )

∣∣ Xu = xu
)
. (3.69)

The law of iterated lower expectations is rather strong, in the sense that
many imprecise jump processes do not satisfy it. Fortunately, the following
weaker form of this law already goes a long way.

Definition 3.59. An imprecise jump process P satisfies the sum-product law
of iterated lower expectations if for all u in U, v in U̸=( ) and t in R≥0 such that
u ≺ v ≺ t , all f in G(X), all g ,h in G(Xv ) such that h ≥ 0 and and all xu in Xu ,

EP( f (X t )h(Xv )+ g (Xv ) |Xu = xu)

= EP

(
EP( f (X t ) |Xu∪v )h(Xv )+ g (Xv )

∣∣ Xu = xu
)
. (3.70)

In Theorem 3.88120 further on, we show that PM,Q satisfies the law of
iterated lower expectations wheneverQ is convex and has separately specified
rows – in the sense of Definition 3.67110 further on. Similarly, Theorem 3.89120

further on establishes that both PM
M,Q and PM,Q satisfy the sum-product law

of iterated lower expectations whenever Q has separately specified rows – so
it need not be convex.

Krak et al. (2017, Section 9) essentially argue that whenever P satisfies
the law of iterated lower expectations, we can compute conditional lower
expectations of the general form EP( f (Xu , Xv ) |Xu = xu) through backwards
recursion. This recursive method goes back to imprecise Markov chains – see
(De Cooman et al., 2008, Section 4.5) and (De Cooman et al., 2009, Section 3) –
and we will discuss it in depth in Section 4.1.4170 further on – and in particular
in Proposition 4.11170. The gist of this method is that we can compute a lower
expectation of the form EP( f (Xu , Xv ) |Xu = xu) by repeatedly computing
(conditional) lower expectations of the following two basic types: ‘transition
lower expectations’ of the form

EP(g (Xr ) |Xu = xu , X t = x) with u ≺ t < r,

and, if applicable, one ‘initial lower expectation’ of the form EP(g (X0)).
Furthermore, for many variables, as we will see in Section 4.1.3162 further
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3.3 Imprecise jump processes

on – and in particular in Proposition 4.8166 – we can use a similar method
for Markovian imprecise jump processes that only satisfy the weaker sum-
product law of iterated lower expectations. For this reason, these basic types
of (conditional) lower expectations are of paramount importance. In the
remainder of this section, we will take a closer look at the conditional ones.

3.3.3 Lower transition operators and lower rate operators

Whereas we used linear operators to study the conditional expectation –
or, alternatively, the transition probabilities – for a single jump process, we
need more general operators to study the conditional lower expectation
for imprecise jump processes. More precisely, we need lower transition
operators and lower rate operators, the non-negatively homogeneous and
super-additive generalisations of transition operators and rate operators,
respectively.

Lower transition operators

A lower transition operator is a generalisation of a transition operator that is
only required to be non-negatively homogeneous and super-additive, instead
of homogeneous and additive – see (De Cooman et al., 2008, Section 8) or
(De Cooman et al., 2009, Section 3).

Definition 3.60. A lower transition operator T is an operator T : G(X) →G(X)
such that

LT1. T f ≥ min f for all f in G(X);

LT2. T (µ f ) =µT f for all µ in R≥0 and f in G(X);

LT3. T ( f + g ) ≥ T f +T g for all f and g in G(X).

The operator T defined by T f :=−T (− f ) for all f in G(X) is called the (con-
jugate) upper transition operator. We collect all lower transition operators on
X in T(X), and shorten this to T whenever the state space is clear from the
context.

To see why this is a useful generalisation, we recall that for any transition
operator T , [T •](x) is a coherent expectation due to the similarity of (T1)80–
(T3)80 to (E1)22–(E3)22. This time around, (LT1)–(LT3) are similar to (LE1)30–
(LE3)30. For this reason, and because G(X) is a linear space, we obtain the
following corollary of Proposition 2.3031.

Corollary 3.61. For any lower transition operator T and state x in X,

[T •](x) : G(X) →R : f 7→ [T f ](x)

is a coherent lower expectation on G(X).
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Due to this corollary, it follows immediately from Proposition 2.2930 that,
for any lower transition operator T ,

LT4. min f ≤ T f ≤ T f ≤ max f for all f in G(X);

LT5. T ( f +µ) = T f +µ for all f in G(X) and µ in R;

LT6. T f ≤ T g for all f , g in G(X) with f ≤ g ;

LT7. |T f −T g | ≤ T (| f − g |) for all f , g in G(X).

Furthermore, it is well-known – see for example (Hermans et al., 2012, T8) or
De Bock (2017b, L10 and L11) – that (LT7) and (LT4) more or less immediately
imply that

LT8. ∥T f −T g∥ ≤ ∥ f − g∥ for all f , g in G(X);

LT9. ∥T M −T N∥op ≤ ∥M −N∥op for any two non-negatively homogeneous
operators M and N on G(X).

Because −∥ f ∥ ≤ min f ≤ max f ≤ ∥ f ∥, it follows from (LT4) and Eq. (3.27)77

that ∥T ∥op ≤ 1. On the other hand, another immediate consequence of (LT4)
is that T IX = IX . Because ∥IX∥ = 1, we conclude that

LT10. ∥T ∥op = 1,

which generalises (T4)81. Finally, it is well-known – see, for example, (De
Cooman et al., 2009, Appendix) or (Krak et al., 2017, Proposition 7.1) – that

LT11. for any two lower transition operators T and S, their composition T S
is a lower transition operator as well.

Throughout this dissertation, we will often use this last property without
explicitly mentioning it.

Vacuous Example 3.62. Let X be any non-empty and finite set. It is easy to
verify that the operator T on G(X) defined by

T f := min f for all f ∈G(X)

is a lower transition operator. ¤

With Section 2.2.427 in mind, we see that lower transition operators are
not only non-linear generalisations of transition operators, but can also be
interpreted as lower envelopes of sets of transition operators. More pre-
cisely, for any non-empty subset T of T, the corresponding lower enve-
lope TT : G(X) →G(X) defined for all f in G(X) and x in X by[

TT f
]
(x) := inf

{
[T f ](x) : T ∈T}

is a lower transition operator by Definition 2.2528. Conversely, for any lower
transition operator T , Theorem 2.2830 implies that the set

TT := {
T ∈T :

(∀ f ∈G(X)
)

T f ≤ T f
}

of dominating transition operators is non-empty, and that T is the lower
envelope of TT .
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Lower rate operators

Since we take lower envelopes of transition operators, it makes sense to
also take lower envelopes of rate operators. Concretely, a non-empty and
bounded20 setQ of rate operators induces the lower envelope QQ : G(X) →
G(X), defined for all f in G(X) and x in X by[

QQ f
]
(x) := inf

{
[Q f ](x) : Q ∈Q}

. (3.71)

It is easy to see – but will be formally established in Proposition 3.65↷ – that
this lower envelope is what is known as a lower rate operator, see (Škulj, 2015,
Section 2.5) or (De Bock, 2017b, Definition 5).

Definition 3.63. A lower rate operator Q is an operator Q : G(X) → G(X)
such that

LR1. QIX = 0;

LR2. [QIy ](x) ≥ 0 for all x and y in X such that x ̸= y ;

LR3. Q(µ f ) =µQ f for all µ in R≥0 and f in G(X);

LR4. Q( f + g ) ≥Q f +Qg for all f and g in G(X).

The corresponding (conjugate) upper rate operator Q is defined by Q f :=
−Q(− f ) for all f in G(X). We collect all lower rate operators inQ(X), and
shorten this toQ whenever the state space is clear from the context.

In other words, a lower rate operator is the non-linear – that is, non-
negatively homogeneous and super-additive – generalisation of a rate op-
erator, in the same way that a lower transition operator is the non-linear
generalisation of a transition operator.

Joseph’s Example 3.64. Taking into account Joseph’s Example 3.2882, it is not
difficult to see that for X = {H,T}, any lower rate operator Q is of the form

(
f (H)
f (T)

)
7→Q f =

(
min

{
λH( f (T)− f (H)) : λH ∈ {λH,λH}

}
min

{
λT( f (H)− f (T)) : λT ∈ {λT,λT}

}) ,

where λH, λH ,λT and λT are non-negative real numbers such that λH ≤ λH

and λT ≤λT. ¢

20This requirement ensures that QQ is an operator – that is, that QQ f takes values in G(X) –
because

∥QQ f ∥ = max
{|[QQ f ](x)| : x ∈X}≤ max

{
sup

{|[Q f ](x)| : Q ∈Q}
: x ∈X

}
≤ sup

{
max

{|[Q f ](x)| : x ∈X}
: Q ∈Q}= sup

{∥Q f ∥ : Q ∈Q}
≤ sup

{∥Q∥op : Q ∈Q}∥ f ∥ <+∞,

where the penultimate inequality follows from (N4)77.
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Krak et al. (2017, Proposition 7.5) formally establish that the lower enve-
lope QQ of a setQ of rate operators is a lower rate operator.

Proposition 3.65. For any non-empty bounded set Q of rate operators, the
corresponding lower envelope QQ is a lower rate operator.

Just like for lower transition operators, we are also interested in the set

QQ := {
Q ∈Q : (∀ f ∈G(X)) Q f ≤Q f

}
. (3.72)

of rate operators that dominate a lower rate operator Q. Krak et al. (2017,
Proposition 7.6) establish that this setQQ of dominating rate operators has
the following interesting properties.

Lemma 3.66. Let Q be a lower rate operator. Then the induced set QQ of dom-
inating rate operators is non-empty and bounded. Furthermore, for every f
in G(X), there is a rate operator Q in QQ such that Q f =Q f . Consequently, Q
is the lower envelope of QQ .

The preceding result establishes that the set QQ of dominating rate op-
erators is the largest set of rate operators that has Q as a lower envelope.
This set has a number of other interesting properties. Before we state these,
we need to introduce the concept of separately specified rows (Krak et al.,
2017, Definition 7.3), which goes back to (Hartfiel, 1998), see also (Škulj, 2009,
Section 2) and Hermans et al., 2014, Definition 11.6.

Definition 3.67. A non-empty set of rate operators Q ⊆Q has separately
specified rows if for every selection (Qx )x∈X in Q, there is a rate operator Q
in Q such that

Q(x, y) =Qx (x, y) for all x, y ∈X.

Joseph’s Example 3.68. Let us use the matrix representation of rate operators
to clarify what it means for a set of rate operators to have separately specified
rows. Fix non-negative real numbers λ1 and λ2 such that λ1 ̸=λ2. Then{(−λ1 λ1

λ2 −λ2

)
,

(−λ2 λ2

λ1 −λ1

)}
does not have separately specified rows, whereas{(−λ1 λ1

λ2 −λ2

)
,

(−λ2 λ2

λ1 −λ1

)
,

(−λ1 λ1

λ1 −λ1

)
,

(−λ2 λ2

λ2 −λ2

)
,

}
does. ¢

It is not all too difficult to prove that the set of dominating rate operators
is closed and convex and has separately specified rows (see Krak et al., 2017,
Proposition 7.7); the same essentially holds for the set TT of dominating
transition operators, see (Hermans et al., 2014, Proposition 11.4)
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Lemma 3.69. For any lower rate operator Q, the corresponding set QQ of
dominating rate operators is closed and convex and has separately specified
rows.

Finally, Krak et al. (2017, Proposition 7.8) prove that QQ is the only
bounded, closed and convex set of rate operators with separately specified
rows that has Q as lower envelope.

Lemma 3.70. Consider a non-empty, bounded, closed and convex set Q of
rate operators with separately specified rows. Then Q is equal to the set QQ of
rate operators that dominate the lower envelope Q :=QQ.

Joseph’s Example 3.71. Let Q be a lower rate operator that is characterised by

the parameters λH, λH ,λT and λT, as in Joseph’s Example 3.64109. Note that

QQ =
{(−λH λH

λT −λT
)

: λH ∈ [λH,λH],λT ∈ [λT,λT]

}
.

It is easy to see that the set QQ of dominating rate operators has most of
the established properties: it is non-empty, bounded and convex, and it has
separately specified rows. To verify that QQ is furthermore closed, one could
use that a sequence of linear operators (Qn)n∈N converges if and only each of
the component sequences (Qn(x, y))n∈N converges as well.

Alternatively, we can consider the set of rate operators

Q :=
{(−λH λH

λT −λT
)

: λH ∈ {λH,λH},λT ∈ {λT,λT}

}
,

which is non-empty, bounded, (trivially) closed and has separately specified
rows, but is not convex. Nonetheless, its lower envelope QQ is also equal
to Q. ¢

De Bock (2017b, (R5)–(R12)) lists a lot of interesting properties of lower
rate operators. For now, we only repeat the following two properties:

LR5. Q f ≤Q f for all f in G(X);

LR6. Q( f +µ) =Q f for all f in G(X) and µ in R.

Lemmas 3.66↶ and 3.69 allow us to furthermore establish that for any lower
rate operator Q,

LR7. ∥Q∥op = 2max
{−[QIx ](x) : x ∈X}= max

{∥Q∥op : Q ∈QQ
}= ∥QQ∥op.

Proof of (LR7). First and foremost, we will need that

∥Q∥op ≤ ∥Q∥op for all Q ∈QQ , (3.73)

as is established by Krak et al. (2017, Lemma F.3).
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Next, we fix any arbitrary positive real number ϵ. By definition of the operator
norm, there is a gamble f on X with ∥ f ∥ = 1 such that

∥Q∥op < ∥Q f ∥+ϵ.

By Lemma 3.66110, there is a rate operator Q in QQ such that Q f =Q f . Therefore,

∥Q∥op < ∥Q f ∥+ϵ= ∥Q f ∥+ϵ≤ ∥Q∥op∥ f ∥+ϵ= ∥Q∥op +ϵ,

where for the second inequality we have used (N4)77. Because Q is a rate opera-
tor in QQ and ϵ an arbitrary positive real number, we infer from this that ∥Q∥op ≤
sup

{∥Q∥op : Q ∈QQ
}
. We combine this with Eq. (3.73)↶, to conclude that

∥Q∥op = sup
{∥Q∥op : Q ∈QQ

}= ∥QQ∥op. (3.74)

The first equality of the statement now follows after some straightforward manipula-
tions:

∥Q∥op = sup
{∥Q∥op : Q ∈QQ

}= sup
{
2max{−[QIx ](x) : x ∈X} : Q ∈QQ

}
= 2max

{
sup

{−[QIx ](x) : Q ∈QQ
}

: x ∈X}= 2max
{−[QIx ](x) : x ∈X}

,

where we have used (R5)81 for the second equality and Lemma 3.69↶ for the final
equality.

Finally, we prove the second equality of the statement, that is, that the supremum
is a maximum. To this end, we recall from Lemma 3.66110 that for any x in X, there is
a rate operator Qx in QQ such that Qx Ix =QIx . Observe now that

∥Q∥op = 2max
{−[QIx ](x) : x ∈X}= 2max

{−[Qx Ix ](x) : x ∈X}
≤ max

{∥Qx∥op : x ∈X}
,

where for the inequality we have used (R5)81. On the other hand, we observe that due
to Eq. (3.74),

∥Q∥op = sup
{∥Q∥op : Q ∈QQ

}≥ max
{∥Qx∥op : x ∈X}

,

where the inequality holds because {Qx : x ∈X} ⊆QQ . From the two preceding in-

equalities, we can conclude that the supremum in Eq. (3.74) is reached, and therefore
is a maximum. This proves the second equality of the statement.

Note that (LR7)↶ generalises (R5)81. Furthermore, it improves on a result by
De Bock (2017b, R9), and this allows us to strengthen some of his results. For
example, we can fully generalise Lemma 3.2982.

Lemma 3.72. Let Q be a lower rate operator. For all ∆ in R≥0 such
that ∆∥Q∥op ≤ 2, (I +∆Q) is a lower transition operator.
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Proof. That T := (I +∆Q) satisfies (LT2)107 and (LT3)107 follows immediately from
(LR3)109 and (LR4)109, so we only need to check if T satisfies (LT1)107. To that end,
we fix an arbitrary f in G(X). Observe that, for any x in X,

[T f ](x) = f (x)+∆[Q f ](x) = f (x)+∆[
Q( f −min f )

]
(x)

= f (x)+∆
[

Q

( ∑
y∈X

( f (y)−min f )Iy

)]
(x)

≥ f (x)+∆ ∑
y∈X

( f (y)−min f )
[
QIy

]
(x) ≥ f (x)+∆( f (x)−min f )

[
QIx

]
(x)

≥ f (x)−∆
∥Q∥op

2
( f (x)−min f ),

where we have used (LR6)111 for the second equality, (LR3)109 and (LR4)109 for the
first inequality, (LR2)109 for the second inequality and (LR7)111 for the final inequal-
ity. Seeing that ∆∥Q∥op ≤ 2 by the assumption of the statement, we infer from the
preceding inequality that for all x in X,

[T f ](x) ≥ f (x)−∆
∥Q∥op

2
( f (x)−min f ) ≥ f (x)− ( f (x)−min f ) = min f ;

hence, T f ≥ min f . Because f was an arbitrary element of G(X), we have shown that
T satisfies (LT1)107.

The preceding result allows us to establish the following two convenient
properties, which strengthen (De Bock, 2017b, R11 and R12). For any lower
rate operator Q,

LR8. ∥Q f −Qg∥ ≤ ∥Q∥op∥ f − g∥ for all f and g in G(X);

LR9. ∥QM −QN∥op ≤ ∥Q∥op∥M −N∥op for any two non-negatively homo-
geneous operators M and N .

Proof. Our proof is entirely the same as that of (De Bock, 2017b, R11 and R12). The
two properties clearly hold in case ∥Q∥op = 0, so we may assume ∥Q∥op > 0 without
loss of generality. If we let ∆ := 2/∥Q∥op and T := (I +∆Q), then T is a lower transition
operator by Lemma 3.72↶. The two properties now follow almost immediately from
(LT8)108 and (LT9)108, if we observe that Q = (T−I )/∆= ∥Q∥op(T−I )/2.

Finally, and quite expectedly, Lemma 3.3082 also generalises to the non-linear
setting (see De Bock, 2017b, Proposition 6).

Lemma 3.73. Let T be a lower transition operator. For all ∆ in R>0, (T−I )/∆ is
a lower rate operator.

Generated semi-groups of lower transition operators

Lemmas 3.72↶ and 3.73 are not the only two connections between lower
transition operators and lower rate operators. De Bock (2017b, Propositions 8
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to 10) proves that, analogously to the linear case, lower rate operators gen-
erate a continuous semi-group of lower transition operators through the
(non-linear) operator exponential.

Proposition 3.74. Let Q be a lower rate operator. For any non-negative real
number t in R≥0,

e tQ := lim
n→+∞

(
I + t

n
Q

)n

is a lower transition operator. Furthermore, (e tQ )t∈R≥0 is a continuous semi-
group.

Note that the preceding result generalises the second part of Corol-
lary 3.3182 from rate operators and transition operators to lower rate op-
erators and lower transition operators. This leads one to believe – or at least
hope – that the first part generalises as well, and we establish that this is in-
deed the case. Because the proof of this result is rather long, we have chosen
to relegate it to Appendix 3.B133.

Theorem 3.75. Let (T t )t∈R≥0 be a continuous semi-group of lower transition
operators. Then

Q := lim
t↘0

T t − I

t

is a lower rate operator, and Q is the unique lower rate operator such that

T t = e tQ for all t in R≥0.

The condition that the semi-group is continuous might seem rather
strong. The following result establishes that for a semi-group of lower transi-
tion operators, continuity is equivalent to continuity from the right at t = 0,
and actually even to the continuity from the right at t = 0 of [T t Ix ](x) for all x
in X.

Lemma 3.76. Consider a semi-group (T t )t∈R≥0 of lower transition operators.
Then the following three statements are equivalent.

(i) The semi-group (T t )t∈R≥0 is continuous.

(ii) The semi-group (T t )t∈R≥0 is continuous from the right at t = 0, in the
sense that limt↘0 T t = I .

(iii) For every state x in X, limt↘0[T t Ix ](x) = 1.

Proof. Clearly, (i) implies (ii). Thus, to prove that (i) is equivalent to (ii), it suffices to
prove that the latter implies the former. To see that this is indeed the case, we observe
that for all t and r in R≥0 such that t < r ,

∥T r −T t ∥op = ∥T t T r−t −T t I∥op ≤ ∥T r−t − I∥op,
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where the inequality holds due to (LT9)108. From this inequality and (ii)↶, we infer
that, for all t in R≥0,

lim
r↘t

∥T r −T t ∥op = 0 and, if t > 0, lim
s↗t

∥T t −T s∥op = 0.

Therefore, (i)↶ implies (ii)↶, as required.
Next, we prove that (ii)↶ and (iii)↶ are equivalent. Recall from Lemma 3.73113

with ∆= 1 that for any t in R>0, (T t − I ) is a lower rate operator. Thus, it follows from
(LR7)111 that for all t in R>0,

∥T t − I∥op = 2max
{
−[

(T t − I )Ix
]
(x) : x ∈X

}
= 2max

{−[T t Ix ](x)+1: x ∈X}
.

Because the state space X is finite, and because [T t Ix ](x) ≤ 1 due to (LT4)108, we infer
from this equality that (ii)↶ and (iii)↶ are equivalent.

Finally, De Bock (2017b, Proposition 9) proves that (e tQ )t∈R≥0 is the
unique solution to a version of the operator initial value problem of Proposi-
tion 3.2479 for lower rate operators.

Proposition 3.77. Let Q be a lower rate operator. Then (Mt )t∈R≥0 = (e tQ )t∈R≥0

is the unique solution to the (non-negatively homogeneous operator) initial
value problem

lim
r→t

Mr −Mt

r − t
=QMt with M0 = I ,

where we only take the limit from the right for t = 0.

To be more precise, De Bock (2017b, Proposition 9) only states that
(e tQ )t∈R≥0 is a feasible solution for this initial value problem; that (e tQ )t∈R≥0

is the unique solution then follows from the following result by Škulj (2015,
Corollary 2) (see also De Bock, 2017b, Section 6).

Proposition 3.78. Let Q be a lower rate operator and f a gamble on X. Then
the initial value problem

d

dt
ft =Q ft with f0 = f

has a unique solution that is given by ft = e tQ f for all t in R≥0.

Joseph’s Example 3.79. Recall that in Joseph’s Example 3.64109, we defined
the lower rate operator Q as(

f (H)
f (T)

)
7→Q f =

(
min

{
λH( f (T)− f (H)) : λH ∈ {λH,λH}

}
min

{
λT( f (H)− f (T)) : λT ∈ {λT,λT}

}) .

One can use Proposition 3.74↶ (see Erreygers et al., 2017b, Example 2) to
obtain that, for any f in G(X),

e tQ f = f + 1−e−tλ f

λ f
Q f for all t ∈R≥0, (3.75)

115



Modelling jump processes

where λ f := λH+λT if f (H) ≥ f (T) and λ f := λH+λT if f (H) < f (T), and the
second term is only added if λ f > 0. Note the striking similarity between this
expression – for which we are indebted to Troffaes et al. (2019, Eq. (16)) – and
that of the operator exponential e tQ of the rate operator Q as seen in Joseph’s
Example 3.3283.

Similar to what we did there, we will verify that the expression for e tQ f
satisfies the initial value problem of Proposition 3.78↶. To that end, we fix
some f in G(X). Setting t = 0 in Eq. (3.75)↶, we obtain that e0Q f = f , as
required. To verify that the differential equation holds, we fix some t in R≥0.
From here on, we assume that λ f > 0; the alternate and straightforward case
that λ f = 0 is left as an exercise to the reader.

On the one hand, straightforward derivation of Eq. (3.75)↶ yields

d

dt
e tQ f = e−tλ f Q f .

We now set out to verify if this is equal to Qe tQ f . In case f (H) ≥ f (T), we see
that

[
e tQ f

]
(H)− [

e tQ f
]
(T) = f (H)+ (

1−e tλ f
) λH

λH+λT
(

f (T)− f (H)
)

− f (T)− (
1−e tλ f

) λT

λH+λT
(

f (H)− f (T)
)

= (
f (H)− f (T)

)
e−tλ f ,

and similar equalities hold in case f (H) < f (T). Therefore, we infer that
e tQ (H) ≥ e tQ (T) if f (H) ≥ f (T) and e tQ (H) < e tQ (T) otherwise. In case f (H) ≥
f (T), this implies that[

Qe tQ f
]
(H) =λH

([
e tQ f

]
(T)− [

e tQ f
]
(H)

)
= e−tλ f λH

(
f (T)− f (H)

)
= e−tλ f [Q f ](H)

and analoguously,[
Qe tQ f

]
(T) = e−tλ f [Q f ](T).

Similar expressions hold in case f (H) < f (T), and we may therefore conclude
that

Qe tQ f = e−tλ f Q f = d

dt
e tQ f ,

as it should be because of Proposition 3.78↶. ¢

3.3.4 Back to imprecise jump processes

Interestingly, and quite crucially, the semi-group (e tQ )t∈R≥0 generated by the
lower envelope Q :=QQ of a non-empty set of rate operatorsQ is related to
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the conditional lower expectation with respect to (subsets of) PQ. For starters,
Krak et al. (2017, Proposition 8.1) establish that it gives a lower bound – and,
through conjugacy, also an upper bound – for the ‘transition expectations’ of
a single consistent jump process.

Proposition 3.80. Let Q be a non-empty bounded set of rate operators with
lower envelope Q :=QQ, and P a jump process that is consistent withQ. Then
for all t and r in R≥0 and {Xu = xu} in H such that u ≺ t ≤ r , all f in G(X)
and all x in X,

EP ( f (Xr ) |Xu = xu , X t = x) ≥ [
e(r−t )Q f

]
(x).

Recall that in Section 3.3.189, we defined the three imprecise jump pro-
cesses PHM

M,Q, PM
M,Q and PM,Q through consistency withQ. Due to the preced-

ing result, the semi-group generated by the lower envelope Q therefore also
gives a lower bound for the ‘transition lower expectations’ with respect to
PHM
M,Q, PM

M,Q and PM,Q. Crucially, Krak et al. (2017, Corollary 8.3) establish
that for the last two of these imprecise jump processes, this lower bound is
reached whenever Q has separately specified rows.

Proposition 3.81. Consider a non-empty set M of initial mass functions and
a non-empty and bounded set Q of rate operators that has separately specified
rows, with lower envelope Q :=QQ. Then for all t and r in R≥0 and {Xu = xu}
in H such that u ≺ t ≤ r , all f in G(X) and all x in X,

E M
M,Q( f (Xr ) |Xu = xu , X t = x) = [

e(r−t )Q f
]
(x)

and

EM,Q( f (Xr ) |Xu = xu , X t = x) = [
e(r−t )Q f

]
(x),

and, more generally, for any imprecise jump process P with PM
M,Q ⊆P ⊆PQ,

EP( f (Xr ) |Xu = xu , X t = x) = [
e(r−t )Q f

]
(x).

Recall from Section 3.3.2105 that we are also interested in the ‘initial lower
expectations’ of the form EP( f (X0)). Here, we are especially interested in
these lower expectations for imprecise jump processes that are consistent
with a non-empty set M of probability mass functions on X. Crucial is the
lower expectation EM

21 on G(X), defined by

EM( f ) := inf
{
Ep ( f ) : p ∈M}

for all f ∈G(X). (3.76)

21Recall that in Section 2.2.427, we used EM to denote the lower envelope of a setM of
coherent expectations. However, as we have mentioned before in Footnote 1190, due to Propo-
sition 2.1823, every coherent expectation on G(X) is in one-to-one correspondence with a
probability mass function because X is finite.
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For every probability mass function p on X, Ep is a coherent expectation
on G(X) due to Corollary 2.1723. Hence, EM is a coherent lower expecta-
tion by Definition 2.2528. Krak et al. (2017, Proposition 9.3) establish that
EM( f ) is equal to the lower expectation of f (X0) for the three imprecise jump
processes PM,Q, PM

M,Q and PHM
M,Q.

Proposition 3.82. Consider a non-empty set M of initial mass functions and
a non-empty and bounded set Q of rate operators. Then for all f in G(X),

E HM
M,Q( f (X0)) = E M

M,Q( f (X0)) = EM,Q( f (X0)) = EM( f ),

and, more generally, for any imprecise jump process P with PHM
M,Q ⊆P ⊆PM ,

EP( f (X0)) = EM( f ).

Furthermore, (Krak et al., 2017, Proposition 9.4) also establish that for any
future time point t , the (unconditional) lower expectation of f (X t ) for the
two imprecise jump process PM,Q and PM

M,Q is equal to EM(e tQ f ) whenever
Q has separately specified rows and lower envelope Q :=QQ.

Proposition 3.83. Consider a non-empty set M of initial mass functions and
a non-empty and bounded set Q of rate operators that has separately specified
rows, with lower envelope Q :=QQ. Then for any t in R≥0 and f in G(X),

E M
M,Q( f (X t )) = EM,Q( f (X t )) = EM(e tQ f ),

and, more generally, for any imprecise jump process P with PM
M,Q ⊆P ⊆PM,Q,

EP( f (X t )) = EM(e tQ f ).

3.3.5 Homogeneous Markovian imprecise jump processes

The equality in Proposition 3.81↶ is reminiscent of the (precise) Markov and
homogeneity properties. That is to say, an imprecise jump process P that sat-
isfies the conditions of Proposition 3.81↶ satisfies imprecise versions of the
Markov and homogeneity properties. In order to formalise this statement, we
need to properly establish imprecise generalisations of these two properties.

Definition 3.84. An imprecise jump process P is Markovian – or, alterna-
tively, has the (imprecise) Markov property – if for all time points t and r
in R≥0 and state histories {Xu = xu} in H such that u ≺ t < r , all f in G(X)
and all x in X,

EP( f (Xr ) |Xu = xu , X t = x) = EP( f (Xr ) |X t = x).

118



3.3 Imprecise jump processes

Recall from Definition 3.2174 that in the precise case, we impose the
Markov property on the transition probabilities. However, because the Marko-
vian character of the transition probabilities carries over to the conditional
expectations through linearity, we might as well have imposed it on the
conditional expectations. Thus, the preceding definition is a proper gen-
eralisation of the (precise) Markov property, in the sense that it reduces to
Definition 3.2174 in case P = {P }. For a similar reason, the following properly
generalises Definition 3.2275.

Definition 3.85. A Markovian imprecise jump process P is homogeneous if
for all time points t and r in R≥0 such that t < r , all f in G(X) and all x in X,

EP( f (Xr ) |X t = x) = EP( f (Xr−t ) |X0 = x).

Whereas in the precise case every – sufficiently continuous – homoge-
neous Markovian jump process is of the same ‘type’, in the sense that they
are characterised by a single initial mass function and a single rate operator,
this is not the case for homogeneous Markovian imprecise jump processes.
Let us start with what is arguably the most straightforward example of a
homogeneous Markovian imprecise jump process.

Proposition 3.86. Consider a non-empty set M of initial probability mass
functions and a non-empty set Q of rate operators. Then PHM

M,Q is Markovian
and homogeneous. More generally, any imprecise jump process P that is a
subset of PHM is Markovian and homogeneous.

Proof. Recall from Eq. (3.47)91 that PHM
M,Q is a subset of PHM. For this reason, it

suffices to prove that any subset P of PHM is Markovian and homogeneous. Because
the corresponding lower envelope EP is taken over processes that are all Markovian
and homogeneous, it is clear that the imprecise jump process P is Markovian and
homogeneous as well.

However, due to Proposition 3.81117, we know that whenever Q is
bounded and has separately specified rows, we do not need to impose homo-
geneity nor Markovianity on the processes in an imprecise jump process in
order for the latter to be Markovian and homogeneous itself.

Corollary 3.87. Consider a non-empty set M of initial mass functions and a
non-empty and bounded set Q of rate operators that has separately specified
rows. Then PM

M,Q and PM,Q are Markovian and homogeneous. More gener-
ally, any imprecise jump process P with PM

M,Q ⊆P ⊆PQ is Markovian and
homogeneous.

Proof. Follows immediately from Proposition 3.81117.
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The preceding two results demonstrate that homogeneous Markovian
imprecise jump process come in all shapes and sizes. For example, for any
combination of a non-empty setM of initial mass functions and a non-empty
and bounded set Q of rate operators that has separately specified rows, it
follows from Proposition 3.86↶ and Corollary 3.87↶ that PHM

M,Q, PM
M,Q and

PM,Q are all Markovian and homogeneous. This clearly illustrates that M and
Q do not characterise a unique homogeneous Markovian imprecise jump
process.

This being said, we can discriminate between various (homogeneous
Markovian) imprecise jump processes based on whether or not they satisfy
the law of iterated lower expectations or the sum-product law of iterated
lower expectations. Let us start with the former. Krak et al. (2017, The-
orem 6.5) show that PM,Q satisfies the law of iterated lower expectations
wheneverQ is bounded and convex, but their proof for this result contains
an error. As we explain in Appendix 3.C138, one way to fix their proof is to
additionally require thatQ has separately specified rows.

Theorem 3.88. Let M be an arbitrary non-empty set of initial mass func-
tions, and Q a non-empty, bounded and convex set of rate operators that
has separately specified rows. Then PM,Q satisfies the law of iterated lower
expectations.

Unfortunately, the imprecise jump process PM
M,Q does not satisfy the law

of iterated lower expectations, at least not in general; for a counterexam-
ple, see (Krak et al., 2017, Example 9.2).22 Be that as it may, whenever Q is
bounded and has separately specified rows, both PM

M,Q and PM,Q satisfy the
weaker sum-product law of iterated lower expectations; because our proof is
rather lengthy, we have relegated it to Appendix 3.D151.

Theorem 3.89. Consider a non-empty set M of initial mass functions and a
non-empty and bounded set Q of rate operators that has separately specified
rows. Then PM

M,Q and PM,Q satisfy the sum-product law of iterated lower
expectations.

Back to lower transition operators

Because transition operators were convenient tools when studying homoge-
neous Markovian jump processes, we now turn to lower transition operators
to study homogeneous Markovian imprecise jump processes. To that end, we
let P be a homogeneous Markovian imprecise jump process. For any time

22Krak et al. (2017) only make explicit that this example ‘illustrates – by means of a coun-
terexample – that (Krak et al., 2017, Algorithm 3) is not in general applicable’ to PM

M,Q . However,
due to (Krak et al., 2017, Corollary 8.3), it also illustrates that PM

M,Q does not satisfy the law of

iterated lower expectations.
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point t in R≥0, we define the corresponding operator T t : G(X) →G(X) by

[T t f ](x) := EP( f (X t ) |X0 = x) for all f ∈G(X), x ∈X. (3.77)

Observe that, by construction, T t is a lower transition operator.
Recall from Lemma 3.3385 that for a homogeneous Markovian jump pro-

cess, (Tt )t∈R≥0 is a semi-group of transition operators. This generalises to
the family (T t )t∈R≥0 corresponding to a homogeneous Markovian imprecise
jump process P whenever the latter satisfies the sum-product law of iterated
lower expectations.

Lemma 3.90. Let P be a homogeneous Markovian imprecise jump process.
If P satisfies the sum-product law of iterated lower expectations, then the
corresponding sequence (T t )t∈R≥0 of lower transition operators is a semi-group.

Proof. That T t is a lower transition operator follows immediately from its definition
and that of EP as a lower envelope. It remains for us to show that (T t )t∈R≥0 is a
semi-group. Let us start with verifying (SG1)77. To that end, we fix any f in G(X) and
x in X. Observe that, for any P in P,

EP ( f (X0) |X0 = x) = ∑
y∈X

f (y)P (X0 = y |X0 = x) = f (x),

where we have used (CP1)41 and (CP5)42 for the second equality. Clearly, this implies
that [

T 0 f
]
(x) = EP( f (X0) |X0 = x) = inf

{
EP ( f (X0) |X0 = x) : P ∈P}= f (x).

Because this equality holds for every gamble f onX and any state x, we may conclude
that T 0 = I , which verifies (SG1)77.

Next, we verify (SG2)78. To that end, we fix any time points s and t in R≥0. It s = 0
or t = 0, it follows immediately from the previous that T s+t = T s T t . Hence, from now
on we assume that s > 0 and t > 0. Fix any f in G(X) and x in X. Because P satisfies
the sum-product law of iterated lower expectations, it follows from Eq. (3.70)106 in
Definition 3.59106 with v = (s), g = 0 and h = 1 that[

T s+t f
]
(x) = EP( f (Xs+t ) |X0 = x) = EP(EP( f (Xs+t ) |X0, Xs ) |X0 = x).

Note that because P is Markovian and homogeneous,

EP( f (Xs+t ) |X0, Xs ) = ∑
y∈X

∑
z∈X

EP( f (Xs+t ) |X0 = y, Xs = z)I(X0=y,Xs=z)

= ∑
y∈X

∑
z∈X

EP( f (Xs+t ) |Xs = z)I(X0=y,Xs=z)

= ∑
y∈X

∑
z∈X

EP( f (Xt ) |X0 = z)I(X0=y,Xs=z)

= ∑
y∈X

∑
z∈X

[T t f ](z)I(X0=y,Xs=z)

= ∑
z∈X

[T t f ](z)I(Xs=z) =
[
T t f

]
(Xs ).
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We combine the two preceding equalities, to yield[
T s+t f

]
(x) = EP

([
T t f

]
(Xr )

∣∣ X0 = x
)= [

T s T t f
]
(x).

Seeing that this equality holds for every gamble f on X and every state x in X, we
conclude that T s+t = T s T t , which verifies (SG2)78.

Unique characterisation

We end this chapter with some observations regarding the characterisation
of homogeneous Markovian jump processes that satisfy the (sum-product)
law of iterated lower expectations. We start with a generalisation of Theo-
rem 3.3586.

Corollary 3.91. Let P be a homogeneous Markovian imprecise jump process
that satisfies the sum-product law of iterated lower expectations. If

lim
t↘0

PP(X t = x |X0 = x) = 1 for all x ∈X,

then there is a unique coherent lower expectation E 0 on G(X) such that for
all f in G(X),

EP( f (X0)) = E 0( f ) (3.78)

and there is a unique lower rate operator Q such that for all t and r in R≥0

and all {Xu = xu} in H with u ≺ t ≤ r , all f in G(X) and all x in X,

EP( f (Xr ) |Xu = xu , X t = x) = [
e(r−t )Q f

]
(x). (3.79)

Proof. It follows almost immediately from Proposition 2.4237 and Definition 2.2528
that the real-valued map E 0 on G(X) defined by

E 0( f ) := EP( f (X0)) for all f ∈G(X)

is a coherent lower expectation, and it is easy to see that it is the unique coherent
lower expectation that satisfies the condition of the statement.

To verify the second part of the statement, we recall from Lemma 3.90↶ that
the family (T τ)τ∈R≥0 of lower transition operators as defined in Eq. (3.77)↶ is a
semi-group of lower transition operators. This semi-group is continuous due to
Lemma 3.76114; thus, it follows immediately from Theorem 3.75114 that there is a
unique lower rate operator Q such that (T t )t∈R≥0 = (e tQ )t∈R≥0 . Consequently, for any
t ,r in R≥0 and {Xu = xu } in H with u ≺ t ≤ r , f in G(X) and x in X,

EP( f (Xr ) |Xu = xu , Xt = x) = EP( f (Xr−t ) |X0 = x) = [
T t−r f

]
(x),= [

e(t−t )Q f
]
(x),

where the first equality holds becauseP is homogeneous and Markovian. This verifies
the second part of the statement, and finalises our proof.
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3.3 Imprecise jump processes

Not only do we require a weak form of continuity, but also that the im-
precise jump process P should satisfy the sum-product law of iterated lower
expectations. IfP furthermore satisfies the law of iterated lower expectations,
the corresponding conditional lower expectation EP is actually completely
determined by the unique coherent lower expectation E 0 and the lower rate
operator Q; indeed, this follows from Corollary 3.91↶ and the following
result.

Corollary 3.92. Consider two imprecise jump processes P1 and P2 with cor-
responding conditional lower expectations E 1 := EP1

and E 2 := EP2
. If P1

and P2 both satisfy the law of iterated lower expectations, then their corre-
sponding conditional lower expectations E 1 and E 2 are equal if and only if for
all f in G(X),

E 1( f (X0)) = E 2( f (X0))

and, for all t and r in R≥0 and {Xu = xu} in H such that u ≺ t < r , all f
in G(X) and all x in X,

E 1( f (Xr ) |Xu = xu , X t = x) = E 2( f (Xr ) |Xu = xu , X t = x).

Proof. The direct implication is trivial, and the converse implication follows imme-
diately from Proposition 4.11170 further on, which we may use without any issues
because it only needs the law of iterated lower expectations.

Corollary 3.92 is similar to Proposition 3.2073. The difference is that in
the imprecise case, it is not necessarily the two imprecise jump processes
that are equal but only their corresponding conditional lower expectations.
That this is possible should not come as a surprise, because we have already
seen in Bruno’s Example 2.2729 that different sets of expectations can have
the same lower envelope.

Next, because Corollary 3.91↶ can be seen as a generalisation of The-
orem 3.3586, we wonder whether Theorem 3.3787 also generalises. To that
end, we consider any non-empty set M of distributions and any non-empty
and bounded setQ of rate operators that has separately specified rows. We
already know that M and Q do not characterise a unique homogeneous and
Markovian imprecise jump processes whenever Q is not a singleton. More
precisely, in Corollaries 3.86119 and 3.87119 we have established that the im-
precise jump processes PHM

M,Q, PM
M,Q and PM,Q – which are distinct in general,

as we have argued right after Eq. (3.68)105 – are all Markovian and homoge-
neous. Even more, it follows from Theorem 3.88120, Propositions 3.81117 and
3.82118 and Corollary 3.92 that EM,Q = EM′,Q′ for any non-empty set M′ of
initial mass functions such that EM = EM′ and any non-empty and bounded
set Q′ of rate operators that has separately specified rows such that QQ =QQ′ .
However, the following result establishes that for a given initial coherent
lower expectation E 0 and a given lower rate operator Q, there always is a
largest imprecise jump process that satisfies Eqs. (3.78)↶ and (3.79)↶; in
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Modelling jump processes

this sense, it is the ‘converse’ of Corollary 3.91122 in a similar manner as
Theorem 3.3787 is the converse of Theorem 3.3586.

Proposition 3.93. Consider an initial coherent lower expectation E 0 on G(X)
and a lower rate operator Q. Then there is at least one imprecise jump pro-
cess P such that (∀ f ∈G(X)

)
EP( f (X0)) = E 0( f )

and(∀t ,r ∈R≥0, t ≤ r
)(∀u ∈U,u ≺ t

)(∀xu ∈Xu
)(∀ f ∈G(X)

)(∀x ∈X)
EP( f (Xr ) |Xu = xu , X t = x) = [

e(r−t )Q f
]
(x),

and the largest such P is PM,Q with Q :=QQ and

M :=
{

p ∈ΣX :
(∀ f ∈G(X)

)
Ep ( f ) ≥ E 0( f )

}
.

Clearly, any such imprecise jump process is Markovian and homogeneous.

Proof. Recall from Theorem 2.2830 that because E 0 is a coherent lower expectation
on G(X), the setME 0

of coherent expectations on G(X) that dominate E 0 is non-
empty and that (∀ f ∈G(X)

)
E 0( f ) = min

{
E( f ) : E ∈ME 0

}
.

By Proposition 2.1823, every coherent expectation E on G(X) corresponds to a unique
probability mass function p on X – in the sense that E = Ep . Because furthermore Ep
is a coherent expectation on G(X) for all p in ΣX due to Corollary 2.1723, it is clear
that M is non-empty and that(∀ f ∈G(X)

)
E 0( f ) = min

{
Ep ( f ) : p ∈M}

. (3.80)

Furthermore, we recall from Lemma 3.66110 thatQ is non-empty and bounded and
that its lower envelope is QQ = Q, and from Lemma 3.69111 that Q has separately
specified rows. Therefore, it follows immediately from Propositions 3.81117 and
3.82118 that PM,Q satisfies the two conditions of the statement. Thus, it remains for
us to prove that PM,Q is the largest imprecise jump process that satisfies the two
conditions of the statement. To this end, we let P be any imprecise jump process that
satisfies the two conditions, and prove that P is contained in PM,Q .

First, observe that for all P in P,(∀ f ∈G(X)
)

EP (X0=•)( f ) = EP ( f (X0)) ≥ EP( f (X0)) = E 0( f ).

Due to Eq. (3.80), this implies that P (X0 = •) belongs to M for all P in P. In other
words, P ⊆PM .

Next, we recall that Krak et al. (2017, Theorem 8.4) have proven that PQ is the
largest imprecise jump process that satisfies the second condition of the statement.
Thus, P ⊆ PQ . Because we have previously shown that P ⊆ PM , we may conclude
that P ⊆PM ∩PQ =PM,Q , which is what we needed to prove.
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3.A Set-valued directional derivatives and the Hausdorff function

3.A Set-valued directional derivatives and the Hausdorff
function

The first part of the appendix for this chapter consists of three parts. In Ap-
pendix 3.A.1, we establish some properties of the directional dQ-derivatives.
Next, we provide an alternative definition of dQ-differentiability from the
point of view of the Hausdorff function in Appendix 3.A.2128. We subse-
quently use this alternative definition to prove Proposition 3.57104 in Ap-
pendix 3.A.3131.

3.A.1 Properties of the set-valued directional derivatives

We establish two properties of the sets ∂+T {Xu=xu }
t ,r and ∂−T {Xu=xu }

t ,r of ac-
cumulation points in general; in particular, these hold for the directional
dQ-derivatives. First, we establish an alternative expression for the sets of
accumulation points.

Lemma 3.94. Consider a jump process P, a current time point t in R≥0 and
a state history {Xu = xu} in H such that u ≺ t . Then for any rate operator Q
inQ, the following three statements are equivalent.

(i) Q belongs to ∂+T {Xu=xu }
t ,t ;

(ii)
(∀r ∈ ]t ,+∞[

)
dQ

(
Q,

{
Q{Xu=xu }

t ,r ′
}

r ′∈]t ,r [

)= 0;

(iii)
(∀r ∈ ]t ,+∞[

)(∀ϵ ∈R>0
)(∃r ′ ∈ ]t ,r [

) ∥∥Q −Q{Xu=xu }
t ,r ′

∥∥
op < ϵ.

A similar statement holds for ∂−T {Xu=xu }
t ,t whenever t > 0.

Proof. Note that for any rate operator Q inQ and any time point r in ]t ,+∞[,

dQ
(
Q,

{
Q{Xu=xu }

t ,r ′
}

r ′∈]t ,r [

)
is non-decreasing as r decreases to t . From this and Eq. (3.55)95, it follows immedi-
ately that (i) is equivalent to (ii). That (ii) is equivalent to (iii) follows immediately
from Eq. (3.54)94.

Second, we establish that the sets ∂+T {Xu=xu }
t ,r and ∂−T {Xu=xu }

t ,r are (topo-
logically) closed; the following result is similar to (Krak et al., 2017, Proposi-
tion 4.6), and our proof follows theirs quite closely.

Lemma 3.95. Consider a jump process P, a current time point t in R≥0 and a
state history {Xu = xu} in H such that u ≺ t . Then ∂+T {Xu=xu }

t ,t is closed, and
the same holds for ∂−T {Xu=xu }

t ,t whenever t > 0.

Proof. We only prove the statement for the set of accumulation points from the right;
the proof for the set of accumulation points from the left is analoguous. Because

(Q,∥•∥op) is a normed space, the subset ∂+T {Xu=xu }
t ,t of Q is closed if and only if
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for any sequence (Qn )n∈N in ∂+T {Xu=xu }
t ,t that converges with respect to ∥•∥op, the

limit limn→+∞Qn belongs to ∂+T {Xu=xu }
t ,t (see Schechter, 1997, Section 15.34).

Thus, we fix any such convergent sequence (Qn )n∈N in ∂+T {Xu=xu }
t ,t . To prove

that the limit Q := limn→+∞Qn belongs to ∂+T {Xu=xu }
t ,t , we fix some time point r

in ]t ,+∞[ and some positive real number ϵ in R>0. Because (Qn )n∈N converges to Q,
there is a natural number n such that

∥Qn −Q∥op < ϵ

2
. (3.81)

Furthermore, because Qn belongs to ∂+T {Xu=xu }
t ,t , it follows from Lemma 3.94↶ that

(∃r ′ ∈ ]t ,r [
) ∥∥Qn −Q{Xu=xu }

t ,r ′
∥∥

op < ϵ

2
. (3.82)

It now follows from Eqs. (3.81) and (3.82) that there is some r ′ in ]t ,r [ such that∥∥∥Q −Q{Xu=xu }
t ,r ′

∥∥∥
op

≤ ∥Qn −Q∥op +
∥∥∥Qn −Q{Xu=xu }

t ,r ′
∥∥∥

op
< ϵ

2
+ ϵ

2
= ϵ.

Since r in ]t ,+∞[ and ϵ in R>0 were arbitrary, it follows from Lemma 3.94↶ that
Q = limn→+∞Qn belongs to ∂+T {Xu=xu }

t ,t , as required.

With these two properties of the sets of accumulation points, we can
start investigating the properties of the directional dQ-derivatives. First, we
establish that these are non-empty and closed.

Corollary 3.96. Consider a jump process P, a current time point t in R≥0 and
a state history {Xu = xu} in H such that u ≺ t . If T {Xu=xu }

t ,t is dQ-differentiable
from the right, then ∂+T {Xu=xu }

t ,t is non-empty and closed. Similarly, if t > 0
and T {Xu=xu }

t ,t is dQ-differentiable from the left, then ∂−T {Xu=xu }
t ,t is non-empty

and closed.

Proof. That ∂+T {Xu=xu }
t ,t is non-empty follows immediately from Definition 3.4697.

That ∂+T {Xu=xu }
t ,t is closed follows immediately from Lemma 3.95↶. As before, the

proof for the left-sided dQ-derivative is entirely analoguous.

Next, we establish that the directional dQ-derivatives of T {Xu=xu }
t ,r coincide

with the ‘standard’ directional derivatives whenever the latter exist.

Lemma 3.48. Consider a jump process P, a current time point t in R≥0, a
state history {Xu = xu} in H such that u ≺ t and a rate operator Q inQ. Then

lim
r↘t

T {Xu=xu }
t ,r − I

r − t
=Q

if and only if ∂+T {Xu=xu }
t ,t = {Q} and T {Xu=xu }

t ,t is dQ-differentiable from the
right. The same holds for the left-sided (dQ-)derivative whenever t > 0.
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Proof. We only prove the statement for the right-sided derivative, the proof for the
left-sided derivative is analogous. Crucial to our proof will be the observation that for
any r in ]t ,+∞[, ∥∥Q{Xu=xu }

t ,r −Q
∥∥

op = dQ
(
Q{Xu=xu }

t ,r , {Q}
)
. (3.83)

First, we prove the converse implication. To this end, we assume that

∂+T {Xu=xu }
t ,t = {Q} and that T {Xu=xu }

t ,t is dQ-differentiable from the right. Then

lim
r↘t

dQ
(
Q{Xu=xu }

t ,r , {Q}
)= 0.

It follows immediately from this and Eq. (3.83) that limr↘t Q{Xu=xu }
t ,r = Q, which is

what we needed to prove.

The proof of the direct implication is a bit more involved. Assume that the limit

limr↘t Q{Xu=xu }
t ,r exists and is equal to Q. Due to Eq. (3.83), this implies that

lim
r↘t

dQ
(
Q{Xu=xu }

t ,r , {Q}
)= 0. (3.84)

Thus, it remains for us to show that ∂+T {Xu=xu }
t ,t = {Q}. To this end, we observe that

Eq. (3.84) implies that

(∀ϵ ∈R>0
)(∃δ ∈R>0

)(∀r ∈ ]t , t +δ[
) ∥∥Q{Xu=xu }

t ,r −Q
∥∥

op < ϵ

2
. (3.85)

Due to Lemma 3.94125 (iii), we infer from this that Q belongs to ∂+T {Xu=xu }
t ,t .

To prove that ∂+T {Xu=xu }
t ,t = {Q}, we assume ex absurdo that there is a Q ′ in

∂+T {Xu=xu }
t ,t such that Q ′ ̸=Q. Then by Lemma 3.94125 (iii),

(∀r ∈ ]t ,+∞[
)(∀ϵ ∈R>0

)(∃r ′ ∈ ]t ,r [
) ∥∥Q ′−Q{Xu=xu }

t ,r ′
∥∥

op < ϵ

2
. (3.86)

Observe that for any r in ]t ,+∞[,

∥Q ′−Q∥op = ∥∥Q ′−Q{Xu=xu }
t ,r +Q{Xu=xu }

t ,r −Q
∥∥

op

≤ ∥∥Q ′−Q{Xu=xu }
t ,r

∥∥
op +∥∥Q −Q{Xu=xu }

t ,r

∥∥
op.

Fix any ϵ in R>0. From the previous inequality and Eqs. (3.85) and (3.86), it follows
that there are δ in R>0 and r ′ in ]t , t +δ[ such that

∥Q ′−Q∥op ≤ ∥∥Q ′−Q{Xu=xu }
t ,r ′

∥∥
op +∥∥Q −Q{Xu=xu }

t ,r ′
∥∥

op < ϵ

2
+ ϵ

2
= ϵ.

Because this inequality holds for any positive real number ϵ, we infer that ∥Q ′−Q∥op =
0, but this is a contradiction because Q ′ ̸= Q and therefore ∥Q ′ −Q∥op > 0 due to

(N3)76. For this reason, ∂+T {Xu=xu }
t ,t = {Q}, as required.
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3.A.2 An alternative motivation for dQ-differentiability

When is it justified to call the non-empty set Q of rate operators the (or a)
set-valued directional derivative of T {Xu=xu }

t ,t , ? Let us focus on the right-sided
derivative. Intuitively, we want that the distance between Q{Xu=xu }

t ,r and Q

vanishes as r approaches t :

lim
r↘t

dQ
(
Q{Xu=xu }

t ,r ,Q
)= 0. (3.87)

However, this requirement does not characterise the set-valued deriva-
tive uniquely. For example, Q always satisfies this requirement because
dQ(Q{Xu=xu }

t ,r ,Q) = 0 for all r in ]t ,+∞[.
To solve this problem, it makes sense to require that Q should contain

no ‘unnecessary information’; that is, as r approaches t , Q{Xu=xu }
t ,r should

come arbitrarily close to every Q in Q over and over again. More precisely
put, the set Q contains no unnecessary information if for any Q in Q, the
distance between Q and {Q{Xu=xu }

t ,r ′ }r ′∈]t ,r [ vanishes as r approaches t ; that is,
we require that

(∀Q ∈Q) lim
r↘t

dQ
(
Q,

{
Q{Xu=xu }

t ,r ′
}

r ′∈]t ,r [

)= 0. (3.88)

The Hausdorff function

To formalise this intuitive definition, we use the Hausdorff function, some-
times also called the Pompeiu-Hausdorff function, a well-known semi-metric
on the powerset of any metric space – see (Burago et al., 2011, Definition 1.1.4
and Section 7.3.1), (Conci et al., 2017, Section 3) or Proposition 3.97 fur-
ther on. More precisely, we need the Hausdorff function on the normed
space (Q,∥•∥op), and this is the non-negative extended real-valued func-
tion hQ on P(Q)⊃∅×P(Q)⊃∅ that is defined for any couple (Q1,Q2) of non-
empty subsets ofQ by

hQ(Q1,Q2) := max

{
sup

Q1∈Q1

dQ(Q1,Q2), sup
Q2∈Q2

dQ(Q2,Q1)

}
.

Burago et al. (2011, Proposition 7.3.3) establish some important properties
for the generic Hausdorff function, which we repeat only for hQ here.

Proposition 3.97. The extended real valued function hQ is a semi-metric
on P(Q)⊃∅, in the sense that

HF1. hQ(Q1,Q2) = hQ(Q2,Q1) for all Q1,Q2 ∈P(Q)⊃∅;

HF2. hQ(Q1,Q2) ≤ hQ(Q1,Q3)+hQ(Q3,Q2) for all Q1,Q2,Q3 ∈P(Q)⊃∅.

Furthermore, for all Q1 and Q2 in P(Q)⊃∅,

HF3. hQ(Q1,cl(Q1)) = 0, where cl(Q1) denotes the topological closure of Q1;

HF4. Q1 =Q2 whenever Q1 and Q2 are closed and hQ(Q1,Q2) = 0.
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Formalising our intuitive definition

Let us return to our intuitive definition of the set-valued right-sided derivative.
It is relatively straightforward to verify that Eq. (3.87)↶ holds if and only if

lim
r↘t

sup
{

dQ(Q,Q) : Q ∈ {
Q{Xu=xu }

t ,r ′
}

r ′∈]t ,r [

}
= 0.

We now recognize this supremum as one of the two suprema in the definition
of hQ

(
Q,

{
Q{Xu=xu }

t ,r ′
}

r ′∈]t ,r [

)
. Furthermore, after some tedious but straightfor-

ward manipulations, we see that Eq. (3.88)↶ holds if and only if

lim
r↘t

sup
{

dQ
(
Q,

{
Q{Xu=xu }

t ,r ′
}

r ′∈]t ,r [

)
: Q ∈Q

}
= 0.

Here, we recognize the other of the two suprema in the definition of
hQ

(
Q,

{
Q{Xu=xu }

t ,r ′
}

r ′∈]t ,r [

)
. In conclusion, our intuitive definition comes down

to requiring that Q should satisfy

lim
r↘t

hQ
(
Q,

{
Q{Xu=xu }

t ,r ′
}

r ′∈]t ,r [

)= 0. (3.89)

It follows immediately from (HF1)↶–(HF3)↶ that if a non-empty subsetQ
of Q satisfies the preceding limit statement, then so does its topological
closure cl(Q). Thus, it makes sense to only consider closed subsets Q ofQ
as candidates for the set-valued directional derivatives. The following result
establishes that in doing so, we actually get uniqueness.

Lemma 3.98. Consider a jump process P, a time point t in R≥0 and a state
history {Xu = xu} in H such that u ≺ t . If there is a non-empty and closed
subset Q+ of Q such that

lim
r↘t

hQ
(
Q+,

{
Q{Xu=xu }

t ,r ′
}

r ′∈]t ,r [

)
= 0,

then this set is unique. A similar statement holds for the limit from the left
whenever t > 0.

Proof. We only prove the statement for the limit from the right; the proof of the
statement for the limit from the left is entirely analoguous. Assume ex absurdo that
there are two non-empty and closed subsets Q1 and Q2 ofQ with Q1 ̸=Q2 such that

lim
r↘t

hQ
(
Q2,

{
Q{Xu=xu }

t ,r ′
}

r ′∈]t ,r [

)
= 0.

Note that for any r in ]t ,+∞[,

hQ (Q1,Q2) ≤ hQ
(
Q1,

{
Q{Xu=xu }

t ,r ′
}

r ′∈]t ,r [

)
+hQ

(
Q2,

{
Q{Xu=xu }

t ,r ′
}

r ′∈]t ,r [

)
due to (HF1)↶ and (HF2)↶. Taking the limit for r going to t on both sides of this
inequality, we find that hQ (Q1,Q2) = 0. Because Q1 and Q2 are both closed, it follows
from this and (HF4)↶ that Q1 =Q2. This clearly contradicts our assumption that
Q1 ̸=Q2, so the set Q+, if it exists, is unique.
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Back to dQ-differentiability

The intuitive argument that motivates Eq. (3.89)↶ is very similar to our
intuitive motivation for the notion of dQ-differentiability. We have already
mentioned in Section 3.3.189 that these two formalisations are equivalent,
and this statement is justified by the following result.

Proposition 3.99. Consider a jump process P, a time point t inR≥0 and a state
history {Xu = xu} in H such that u ≺ t . Then T {Xu=xu }

t ,t is dQ-differentiable
from the right if and only if there is a non-empty and closed subset Q+ of Q
such that

lim
r↘t

hQ
(
Q+,

{
Q{Xu=xu }

t ,r ′
}

r ′∈]t ,r [

)= 0; (3.90)

whenever this is the case,Q+ = ∂+T {Xu=xu }
t ,t . Furthermore, if t > 0 then T {Xu=xu }

t ,t
is dQ-differentiable from the left if and only if there is a non-empty and closed
subset Q− of Q such that

lim
s↗t

hQ
(
Q−,

{
Q{Xu=xu }

s′,t
}

s′∈]s,t [

)= 0;

whenever this is the case,Q− = ∂−T {Xu=xu }
t ,t .

Proof. We only prove the statement for the limit from the right; the proof for the limit
from the left is analoguous.

First, we prove the direct implication; that is, we assume that T {Xu=xu }
t ,t is dQ-

differentiable, and prove that ∂+T {Xu=xu }
t ,t is the unique non-empty and closed subset

ofQ such that
lim
r↘t

hQ
(
∂+T {Xu=xu }

t ,t ,
{
Q{Xu=xu }

t ,r ′
}

r ′∈]t ,r [

)= 0. (3.91)

Recall from Corollary 3.96126 that ∂+T {Xu=xu }
t ,t is a non-empty and closed subset ofQ.

Thus, it remains for us to verify Eq. (3.91) and establish uniqueness. To this end, we
observe that by definition of the Hausdorff function hQ , Eq. (3.91) holds if and only if

lim
r↘t

sup
{

dQ
(
Q,

{
Q{Xu=xu }

t ,r ′
}

r ′∈]t ,r [

)
: Q ∈ ∂+T {Xu=xu }

t ,t

}
= 0 (3.92)

and

lim
r↘t

sup
{

dQ
(
Q{Xu=xu }

t ,r ′ ,∂+T {Xu=xu }
t ,t

)
: r ′ ∈ ]t ,r [

}
= 0. (3.93)

Observe that Eq. (3.92) follows almost immediately from Lemma 3.94125 (ii). To verify

Eq. (3.93), we recall from Definition 3.4697 that because T {Xu=xu }
t ,t is dQ-differentiable

from the right,

lim
r↘t

dQ
(
Q

{Xu=xy }
t ,r ,∂+T {Xu=xu }

t ,t

)= 0.

By definition, this means that

(∀ϵ ∈R>0
)(∃δ ∈R>0

)(∀r ∈ ]t , t +δ[
)

dQ
(
Q

{Xu=xy }
t ,r ,∂+T {Xu=xu }

t ,t

)< ϵ.
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Clearly, this implies that

(∀ϵ ∈R>0
)(∃δ ∈R>0

)(∀r ∈ ]t , t +δ[
)

sup
{
dQ

(
Q

{Xu=xy }
t ,r ′ ,∂+T {Xu=xu }

t ,t

)
: r ′ ∈ ]t ,r [

}< ϵ,

which in turn implies Eq. (3.93)↶, as required.

To summarise, we have shown that ∂+T {Xu=xu }
t ,t is a non-empty and closed subset

ofQ that satisfies Eq. (3.91)↶, or equivalently, that Q+ = ∂+T {Xu=xu }
t ,t is a non-empty

and closed subset ofQ that satisfies Eq. (3.90)↶. Lemma 3.98129 furthermore tells us
that this set is unique, which finalises our proof of the direct implication.

Second, we prove the converse implication; that is, we assume that there is a
non-empty and closed subset Q+ ofQ that satisfies Eq. (3.90)↶, and set out to prove

that T {Xu=xu }
t ,t is dQ-differentiable from the right. To this end, we observe that due to

Eq. (3.90)↶ and the definition of hQ ,

lim
r↘t

sup
{

dQ
(
Q,

{
Q{Xu=xu }

t ,r ′
}

r ′∈]t ,r [

)
: Q ∈Q+

}
= 0.

From this, it follows immediately that

(∀Q ∈Q+) lim
r↘t

dQ
(
Q,

{
Q{Xu=xu }

t ,r ′
}

r ′∈]t ,r [

)= 0,

and therefore Q+ ⊆ ∂+T {Xu=xu }
t ,t . Hence, for all r in ]t ,+∞[,

dQ
(
Q{Xu=xu }

t ,r ,∂+T {Xu=xu }
t ,t

)= inf
{∥∥Q{Xu=xu }

t ,r −Q
∥∥

op : Q ∈ ∂+T {Xu=xu }
t ,t

}
≤ inf

{∥∥Q{Xu=xu }
t ,r −Q

∥∥
op : Q ∈Q+

}
= dQ

(
Q{Xu=xu }

t ,r ,Q+
)
. (3.94)

Observe now that due to Eq. (3.90)↶ and the definition of hQ ,

lim
r↘t

sup
{

dQ
(
Q{Xu=xu }

t ,r ′ ,Q+
)

: r ′ ∈ ]t ,r [
}
= 0

and therefore
lim
r↘t

dQ
(
Q{Xu=xu }

t ,r ,Q+
)= 0.

Because dQ is non-negative, we infer from this and Eq. (3.94) that

lim
r↘t

dQ
(
Q{Xu=xu }

t ,r ,∂+T {Xu=xu }
t ,t

)= 0.

Thus, T {Xu=xu }
t ,r is dQ-differentiable.

3.A.3 Proof of Proposition 3.57

One reason why we have gone through the trouble of establishing Propo-
sition 3.99↶, is that it comes in handy in the proof of Proposition 3.57104.
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Proposition 3.57. Consider a jump process P that has bounded rate. Fix
a time point t in R≥0 and state history {Xu = xu} in H such that u ≺ t .
Then T {Xu=xu }

t ,t is dQ-differentiable, ∂+T {Xu=xu }
t ,t is bounded and

∂+T {Xu=xu }
t ,t =

{
Q ∈Q :

(∃(rn)n∈N↘ t
)

lim
n→+∞Q{Xu=xu }

t ,rn
=Q

}
; 23

whenever t > 0, ∂−T {Xu=xu }
t ,t is bounded, and

∂−T {Xu=xu }
t ,t =

{
Q ∈Q :

(∃(sn)n∈N↗ t
)

lim
n→+∞Q{Xu=xu }

sn ,t =Q
}

.24

Proof. We will only prove the statement regarding the right-sided dQ-derivative, the
proof for the statement pertaining to the left-sided dQ-derivative is analoguous. To
this end, we let

Q :=
{

Q ∈Q :
(∃(rn )n∈N↘ t

)
lim

n→+∞Q{Xu=xu }
t ,rn

=Q
}

.

Krak et al. (2017, Proposition 4.6) prove that because P has bounded rate,Q is non-
empty, bounded and closed. From this and Proposition 3.99130, it follows that to
prove the statement, it suffices to verify that

lim
r↘t

hQ
(
Q, {Q{Xu=xu }

t ,r ′ }r ′∈]t ,r [
)= 0,

which holds if and only if

lim
r↘t

sup
{

dQ
(
Q{Xu=xu }

t ,r ′ ,Q
)

: r ′ ∈ ]t ,r [
}
= 0 (3.95)

and

lim
r↘t

sup
{

dQ
(
Q,

{
Q{Xu=xu }

t ,r ′
}

r ′∈]t ,r [

)
: Q ∈Q

}
= 0. (3.96)

First, we verify that Eq. (3.95) holds. To this end, we fix any positive real number ϵ.
Krak et al. (2017, Proposition 4.7) prove that there is a real number δ in R>0 such that(∀r ′ ∈ ]t , t +δ[

)(∃Q ∈Q) ∥∥Q{Xu=xu }
t ,r ′ −Q

∥∥
op < ϵ.

It follows from this and the definition of dQ that(∀r ′ ∈ ]t , t +δ[
)

dQ
(
Q{Xu=xu }

t ,r ′ ,Q
)< ϵ,

and therefore (∀r ∈ ]t , t +δ[
)

sup
{

dQ
(
Q{Xu=xu }

t ,r ′ ,Q
)

: r ′ ∈ ]t ,r [
}
< ϵ.

Because ϵ in R>0 was arbitrary, we infer from this that Eq. (3.95) holds.

23In this expression, we let (rn )n∈N↘ t denote a sequence in R≥0 such that t < rn+1 < rn for
all n inN and limn→+∞ rn = t .

24In this expression, we let (sn )n∈N↗ t denote a sequence inR≥0 such that u ≺ sn < sn+1 < t
for all n inN and limn→+∞ sn = t
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Next, we verify that Eq. (3.96)↶ holds. Observe that the supremum in this
limit statement is non-decreasing as r approaches t , or equivalently, that it is non-
increasing for increasing r ; thus,

lim
r↘t

sup
{

dQ
(
Q,

{
Q{Xu=xu }

t ,r ′
}

r ′∈]t ,r [

)
: Q ∈Q

}
= sup

{
sup

{
dQ

(
Q,

{
Q{Xu=xu }

t ,r ′
}

r ′∈]t ,r [

)
: Q ∈Q

}
: r ∈ ]t ,+∞[

}
.

We may always change the order of suprema, so

lim
r↘t

sup
{

dQ
(
Q,

{
Q{Xu=xu }

t ,r ′
}

r ′∈]t ,r [

)
: Q ∈Q

}
= sup

{
sup

{
dQ

(
Q,

{
Q{Xu=xu }

t ,r ′
}

r ′∈]t ,r [

)
: r ∈ ]t ,+∞[

}
: Q ∈Q

}
. (3.97)

Fix any positive real number ϵ in R>0 and any Q in Q. Note that, by construction of
Q, there is a decreasing sequence (rn )n∈N in ]t ,+∞[ that converges to t such that

limn→+∞Q{Xu=xu }
t ,rn

=Q. Thus,

(∃N ∈N)(∀n ∈N,n ≥ N )
∥∥Q{Xu=xu }

t ,rn
−Q

∥∥
op < ϵ.

Because (rn )n∈N is decreasing and converges to t , we infer from this that(∀r ∈ ]t ,+∞[
)

dQ
(
Q,

{
Q{Xu=xu }

t ,r ′
}

r ′∈]t ,r [

)< ϵ,

and therefore
sup

{
dQ

(
Q,

{
Q{Xu=xu }

t ,r ′
}

r ′∈]t ,r [

)
: r ∈ ]t ,+∞[

}
< ϵ.

Note that this holds for all Q in Q, so

sup
{

sup
{

dQ
(
Q,

{
Q{Xu=xu }

t ,r ′
}

r ′∈]t ,r [

)
: r ∈ ]t ,+∞[

}
: Q ∈Q

}
< ϵ.

It follows immediately from this and Eq. (3.97) that

lim
r↘t

sup
{

dQ
(
Q,

{
Q{Xu=xu }

t ,r ′
}

r ′∈]t ,r [

)
: Q ∈Q

}
< ϵ.

Because this inequality holds for any positive real number ϵ, we can conclude that
Eq. (3.96)↶ holds.

3.B Proof of Theorem 3.75

This appendix is devoted to the proof of Theorem 3.75114, which we repeat
for convenience.

Theorem 3.75. Let (T t )t∈R≥0 be a continuous semi-group of lower transition
operators. Then

Q := lim
t↘0

T t − I

t

is a lower rate operator, and Q is the unique lower rate operator such that

T t = e tQ for all t in R≥0.
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Our proof is inspired by that of (Krak et al., 2017, Theorem 5.4), which
establishes a similar result for semi-groups of transition operators. In our
proof, we will need that the ‘derivative’ of a continuous semi-group of trans-
formations is always bounded, as is established by the following intermediary
result.

Lemma 3.100. If (T t )t∈R≥0 is a continuous semi-group of lower transition
operators, then

limsup
t↘0

∥∥∥∥T t − I

t

∥∥∥∥
op

<+∞.

In our proof of this lemma, we will need the following observation.

Lemma 3.101. For any real number a,

ea = lim
n→+∞

(
1+ a

n +1

)n
.

Proof. Recall that, by definition of the exponential function,

ea = lim
n→+∞

(
1+ a

n

)n
.

To prove the equality in the statement, we observe that for any natural number n such
that n +1 ̸= −a, (

1+ a

n +1

)n =
(
1+ a

n+1

)n+1(
1+ a

n+1

) .

Note that in the right-hand side, the numerator converges to ea in the limit for n
going to +∞ and the denominator converges to 1. Therefore, taking the limit for n
going to +∞ on both sides of the equality proves the statement.

Proof of Lemma 3.100. Our proof is one by contradiction, so we assume ex absurdo
that

limsup
t↘0

∥∥∥∥ T t − I

t

∥∥∥∥
op

=+∞. (3.98)

Because (T t )t∈R≥0 is a continuous semi-group,(∀ϵ ∈R>0
)(∃δ ∈R>0

)(∀∆ ∈ ]0,δ[
) ∥T∆− I∥op < ϵ. (3.99)

Observe that for all ∆ in R>0 and x in X,∣∣[T∆Ix ](x)−1
∣∣≤ ∥T∆Ix − I Ix∥ ≤ ∥T∆− I∥op,

where for the second equality we have used that ∥Ix∥ = 1. From the preceding inequal-
ities and Eq. (3.99), we infer that(∀ϵ ∈R>0

)(∃δ ∈R>0
)(∀∆ ∈ ]0,δ[

)(∀x ∈X) ∣∣[T∆Ix ](x)−1
∣∣< ϵ. (3.100)

In particular, if we fix an arbitrary positive real number ϵ such that ϵ< 1/2, then due to
Eq. (3.100), there is some ∆ in R>0 such that∣∣[T∆Ix ](x)−1

∣∣< ϵ for all x ∈X,
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and therefore
1−ϵ< [T∆Ix ](x) for all x ∈X. (3.101)

In the remainder of this proof, we use the assumption in Eq. (3.98)↶ to contradict
this inequality.

To that end, we fix two positive real numbers ϵ1 and ϵ2 such that ϵ1 +2ϵ2 < 1−2ϵ
(this is always possible because we have required that ϵ< 1/2). Additionally, we also
fix a positive real number λ such that e−∆λ < 1−2ϵ−ϵ1 −2ϵ2 (this is possible because
we have chosen ϵ1 and ϵ1 such that ϵ1 +2ϵ2 < 1−2ϵ).

By Lemma 3.101↶, there is a natural number Nϵ1 such that(
1− ∆λ

n +1

)n
< e−∆λ+ϵ1 for all n ≥ Nϵ1 . (3.102)

Additionally, by Eq. (3.99)↶, there is a positive real number δϵ2 such that

∥T δ− I∥op < ϵ2 for all δ ∈ ]0,δϵ2 [. (3.103)

Similarly, due to Eq. (3.100)↶ there is a positive real number δ – where, without loss
of generality, we assume that δ≤∆ – such that∣∣[T δIx ](x)−1

∣∣< 1

2
for all δ ∈ ]0,δ[. (3.104)

The time has come to use our ex-absurdo assumption; it follows from Eq. (3.98)↶
that there is a decreasing sequence (δk )k∈N in ]0,δ[ that converges to 0 such that

λ≤
∥∥∥∥∥ T δk

− I

δk

∥∥∥∥∥= 2max

{
1− [T δk

Ix ](x)

δk
: x ∈X

}
for all k ∈N, (3.105)

where the equality follows from Lemma 3.73113 and (LR7)111. For any k in N, we
let nk := ⌊∆/δk ⌋. Because (δk )k∈N is sequence of positive real numbers that is lower
than ∆ (since δ ≤ ∆) and converges to 0, (nk )k∈N is a non-decreasing sequence
of natural numbers that diverges to +∞. Furthermore, nkδk ≤ ∆ < (nk + 1)δk by
construction, whence

0 ≤∆−nkδk < δk for all k ∈N.

Because (δk )k∈N converges to 0, we infer from the preceding inequalities that (∆−
nkδk )k∈N is a sequence of non-negative real numbers that converges to 0 as well. Due
to the aforementioned properties of (nk )k∈N and (∆−nkδk )k∈N, we can pick some
natural number k⋆ such that nk⋆ ≥ Nϵ1 and ∆−nk⋆δk⋆ < δϵ2 ; to ease our notation,
we set δ⋆ := δk⋆ and n⋆ := nk⋆ . Thus, we have ensured that

(
1−δ⋆λ)n⋆ <

(
1− ∆λ

n⋆+1

)n⋆

< e−∆λ+ϵ1, (3.106)

where the first inequality holds because δ⋆λ< 1 (which follows from Eqs. (3.104) and
(3.105)) and ∆< (n⋆+1)δ⋆, and the second inequality follows from Eq. (3.102). We
have also chosen n⋆ and δ⋆ such that

∥T∆−T n⋆δ⋆∥op = ∥T n⋆δ⋆T∆−n⋆δ⋆ −T n⋆δ⋆ I∥op ≤ ∥T∆−n⋆δ⋆ − I∥op < ϵ2, (3.107)
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where we have used (LT9)108 for the first inequality and the second inequality follows
from (SG1)77 if ∆−n⋆δ⋆ = 0 and from Eq. (3.103)↶ otherwise.

We are finally ready to put together all the pieces of the puzzle. Let x⋆ be one of
the states in X that reaches the maximum in Eq. (3.105)↶ for k = k⋆. Because δ⋆ < δ
by construction, it follows from Eqs. (3.104)↶ and (3.105)↶ that

0 ≤ 1

2
λδ⋆ ≤ M := 1− [T δ⋆ Ix⋆ ](x⋆) < 1

2
. (3.108)

Observe that for every other state y in X \ {x⋆},

[T δ⋆ Ix⋆ ](y) ≤ [T δ⋆ Ix⋆ ](y) ≤ [T δ⋆ (1− Iy )](y) = 1− [T δ⋆ Iy ](y) ≤ M ,

where the inequalities follow from (LT4)108 and (LT6)108, and the equality follows
from (LT5)108. From the two preceding inequalities, we infer that

T δ⋆ Ix⋆ ≤ M + (1−2M)Ix⋆ .

It follows from this, (LT6)108, (LT5)108 and (LT2)107 – which we may use because
M < 1/2 by construction – that

T 2δ⋆ Ix⋆ = T δ⋆ (T δ⋆ Ix⋆ ) ≤ T δ⋆
(
M + (1−2M)Ix⋆

)= M + (1−2M)T δ⋆ Ix⋆

≤ M(1+ (1−2M))+ (1−2M)2Ix⋆ .

We apply this same trick n⋆−1 times more, to yield

T n⋆δ⋆ Ix⋆ ≤ M

(
n⋆−1∑
ℓ=0

(1−2M)ℓ
)
+ (1−2M)n⋆ Ix⋆

= M
1− (1−2M)n⋆

1− (1−2M)
+ (1−2M)n⋆ Ix⋆

= 1

2

(
1− (1−2M)n⋆

)
+ (1−2M)n⋆ Ix⋆ .

More specifically, we see that

[T n⋆δ⋆ Ix⋆ ](x⋆) ≤ 1

2

(
1+ (1−2M)n⋆

)
≤ 1

2

(
1+ (

1−δ⋆λ)n⋆
)
< 1

2

(
1+e−∆λ+ϵ1

)
,

where the second inequality holds because 0 ≤ δ⋆λ≤ 2M < 1 due to Eq. (3.108) and
the final inequality follows from Eq. (3.106)↶. Next, we observe that∣∣[T∆Ix⋆ ](x⋆)− [T n⋆δ⋆ Ix⋆ ](x⋆)

∣∣≤ ∥T∆Ix⋆ −T n⋆δ⋆ Ix⋆∥ ≤ ∥T∆−T n⋆δ⋆∥ < ϵ2,

where the penultimate inequality holds because ∥Ix∥ = 1 and the final inequality
holds due to Eq. (3.107)↶. From the previous two inequalities, we now infer that

[T∆Ix⋆ ](x⋆) < [T n⋆δ⋆ Ix⋆ ](x⋆)+ϵ2 < 1

2

(
1+e−∆λ+ϵ1

)
+ϵ2 < 1−ϵ,

where the final inequality holds because we have chosen λ such that e−∆λ < 1−2ϵ−
ϵ1 −2ϵ2. This clearly contradicts Eq. (3.101)↶, which proves the statement.
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3.B Proof of Theorem 3.75

To prove Theorem 3.75114, we now combine the preceding result with
Proposition A.6448 in Appendix A.3448.

Proof of Theorem 3.75114. Fix any decreasing sequence (∆n )n∈N of positive real
numbers that converges to 0. For any natural number n, we set Qn := (T∆n

− I )/∆n .
Recall from Lemma 3.73113 that for any natural number n, Qn is a lower rate operator.
Additionally, because (∆n )n∈N decreases to 0, it follows from Lemma 3.100134 that

B := sup{∥Qn∥op : n ∈N} = sup

{∥∥∥∥ 1

∆n

(
T∆n−I

)∥∥∥∥
op

: n ∈N
}
<+∞.

In other words, (Qn )n∈N is a sequence inQB := {
Q ∈Q : ∥Q∥op ≤ B

}
.

In Proposition A.6448, we establish thatQB is sequentially compact. Therefore,
there is an increasing sequence (nk )k∈N of natural numbers and a lower rate op-
erator Q in QB such that the subsequence (Qnk )k∈N converges to Q, in the sense
that

lim
k→+∞

∥∥∥∥ 1

∆nk

(
T∆nk

− I
)−Q

∥∥∥∥
op

= lim
k→+∞

∥Qnk −Q∥op = 0. (3.109)

We now show that, for any t in R≥0, T t = e tQ . To that end, we fix a time point t
in R≥0 and any positive real number ϵ, and any four positive real numbers ϵ1, . . . , ϵ4
such that t (ϵ1 +ϵ2)+ϵ3 +ϵ4 ≤ ϵ. By Eq. (3.109), there is a natural number K such that
for any natural number k ≥ K ,

∥T∆nk
− (I +∆nk Q)∥op =∆nk

∥∥∥∥ 1

∆nk

(
T∆nk

− I
)−Q

∥∥∥∥
op

<∆nk ϵ1. (3.110)

Additionally, it follows from the operator differential equation in Proposition 3.77115
25

with t = 0 that there is a positive real number δ2 such that

(∀∆ ∈ ]0,δ2[
) ∥e∆Q − (I +∆Q)∥op =∆

∥∥∥∥ 1

∆

(
e∆Q − I

)−Q

∥∥∥∥
op

<∆ϵ2. (3.111)

Because (T t )t∈R≥0 is a continuous semi-group by the condition of the statement,
from (SG4)78 with t = 0 it follows that there is a positive real number δ3 such that(∀∆ ∈ ]0,δ3[

) ∥T∆− I∥op < ϵ3. (3.112)

Similarly, because (e tQ )t∈R≥0 is a continuous semi-group due to Proposition 3.74114,
there is a positive real number δ4 such that(∀∆ ∈ ]0,δ4[

) ∥e∆Q − I∥op < ϵ4. (3.113)

For any natural number k, we let ℓk := ⌊t/∆nk ⌋. Observe that because (∆nk )k∈N
is a decreasing sequence of positive real numbers that converges to 0, (ℓk )k∈N is a
non-decreasing sequence of non-negative integers that diverges to +∞. Even more,
because ℓk∆nk ≤ t < (ℓk +1)∆nk by construction, 0 ≤ t −ℓk∆nk <∆nk and therefore

25Note that the result that we are currently proving actually precedes Proposition 3.77115
in the main text, but this is not an issue because Proposition 3.74114 simply restates (De Bock,
2017b, Proposition 9).
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limk→+∞(t −ℓk∆nk ) = 0 because (∆nk )k∈N converges to 0. Thus, there is a smallest
natural number k⋆ such that

k⋆ ≥ K , ∆nk⋆
< δ2 and (t −ℓk⋆∆nk⋆

) < min{δ3,δ4}.

To ease our notation, we set ∆ := ∆nk⋆
, ℓ := ℓk⋆ and δ := t −ℓk⋆∆nk⋆

. Note that

t = ℓ∆+δ, so T t = (
T∆

)ℓT δ and e tQ = (
e∆Q )ℓeδQ by repeated application of the

semi-group property. Consequently,

∥T t −e tQ∥op = ∥(T∆

)ℓT δ−
(
e∆Q )ℓeδQ∥op ≤ ℓ∥T∆−e∆Q∥op +∥T δ−eδQ∥op,

where we have used Proposition 3.74114 and Lemma E.4 in (Krak et al., 2017) – see
also Lemma 4.14176 further on – for the inequality. We execute some straightforward
manipulations, to yield

∥T t −e tQ∥op ≤ ℓ∥T∆−(I +∆Q)∥op+ℓ∥e∆Q −(I +∆Q)∥op+∥T δ− I∥op+∥eδQ − I∥op.

Because, by construction, ∆ = ∆nk⋆
, k⋆ ≥ K , ∆ < δ2 and δ < min{δ3,δ4}, it fol-

lows from Eqs. (3.110)↶ to (3.113)↶ (or from Eqs. (3.110)↶ and (3.111)↶, Proposi-
tion 3.74114 and (SG1)77 if δ= 0) that

∥T t −e tQ∥op < ℓ∆ϵ1 +ℓ∆ϵ2 +ϵ3 +ϵ4 ≤ t (ϵ1 +ϵ2)+ϵ3 +ϵ4 ≤ ϵ,

where the second inequality holds because ℓ∆ ≤ t by construction and the final
inequality is precisely our condition on ϵ1, . . . , ϵ4. Because ϵ was an arbitrary positive

real number, we conclude that T t = e tQ for all t in R≥0.

The first part now follows from the previous. More precisely, because T t = e tQ for
all t in R≥0, it follows from the operator differential equation in Proposition 3.77115

26

with t = 0 that

lim
t↘0

T t − I

∆
= lim

t↘0

e tQ − I

∆
=Q.

Finally, the preceding equality also shows that the lower rate operator Q is unique.

More precisely, if R is another lower rate operator such that T t = e tR for all t in R≥0,
then it follows from the previous equality that Q = R.

3.C Theorems 6.3 and 6.5 in (Krak et al., 2017)

The proof that Krak et al. (2017) give for their Theorem 6.5 relies on their
Theorem 6.3, and it is the latter result that is incorrect. The reason why
Theorem 6.3 in (Krak et al., 2017) is wrong is a bit subtle, but it essentially
comes down to a missing condition in the (original) statement; as we will now
see, this error can be solved by additionally assuming thatQ has separately
specified rows.

26Again, it is not a problem that in the main text, Proposition 3.77115 is established after the
result that we are proving.
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Theorem 3.102. Consider a non-empty subset M of ΣX and a non-empty,
bounded and convex subset Q of QX that has separately specified rows. Fix
a jump process P0 in PM,Q, a sequence of time points u in U, and, for all xu

inXu , a jump process Pxu inPM,Q. Then there is a jump process P inPM,Q such
that for all xu in Xu and u1,u2 in U with u2 ̸= ( ), u1 ∪u2 ⊆ u and u1 ≺ u2,

P (Xu2 = xu2 |Xu1 = xu1 ) = P0(Xu2 = xu2 |Xu1 = xu1 )

and for all A in Fu ,

P (A |Xu = xu) = Pxu (A |Xu = xu).

Besides invoking Theorem 3.102 instead of Theorem 6.3 in (Krak et al.,
2017), our proof for Theorem 3.88120 is exactly the same as the one that Krak
et al. (2017) give for their Theorem 6.5; because this is a trivial change, we will
not repeat this argument here. We will, however, prove Theorem 3.102. In
fact, we actually prove an even more general result first – we need this result
in our proof for Proposition 7.69395 further on – and then use this result to
prove Theorem 3.102. Needless to say, this more general result is inspired by
Theorem 6.3 in (Krak et al., 2017), and our proof follows theirs quite closely.

Theorem 3.103. Consider a non-empty set M of initial probability mass
functions on X and a non-empty, bounded, convex subset Q of rate operators
that has separately specified rows. Fix a jump process P0 in PM,Q, a sequence
of time points u in U, and, for all xu in Xu , a jump process Pxu in PM,Q and
some y xu

u in Xu with y xu
maxu = xmaxu . Then there is a jump process P in PM,Q

such that for all xu inXu and u1,u2 inU with u2 ̸= ( ), u1∪u2 ⊆ u and u1 ≺ u2,

P (Xu2 = xu2 |Xu1 = xu1 ) = P0(Xu2 = xu2 |Xu1 = xu1 )

and for all v in U≻u and B ⊆Xv ,

P (Xv ∈ B |Xu = xu) = Pxu (Xv ∈ B |Xu = y xu
u ).

Proof. The statement is trivial whenever u = (): the first part of the statement does
not come into play because there are no u1,u2 in U that satisfy the conditions, and
the second part holds trivially because Xu =X( ) = {x( )} – let P := Px( ) . Henceforth,
we assume without loss of generality that u ̸= (). Our proof consists of the following
three parts: (i) we construct a coherent conditional probability P on D that satisfies
the equalities in the statement; (ii) we show that P is consistent with M; and (iii) we
show that P is consistent with Q.

To construct the coherent conditional probability P on D, we will construct a
coherent conditional probability on a subset of D and then extend it to D by virtue of
Theorem 2.5445. To this end, we let

D0 := {
(Xw ∈ B |Xv = zv ) ∈D : v ≺ maxu,max w ≤ maxu

}
(3.114)

and
D1 := {

(Xw ∈ B |Xv = zv ) ∈D : u ⊆ v ≺ w
}
. (3.115)
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Furthermore, for any sequence of time points v = (t1, . . . , tn ) in U with u ⊆ v , we
let v ⊖u denote the sequence of time points that consists of those time points t
in v such that t > maxu – that is, v ⊖u := () if max v = maxu, and v ⊖u := (tk , . . . , tn )
otherwise, with k the smallest index in {1, . . . ,n} such that tk > maxu. With this
notation, we let P̌ be the real-valued function on Ď :=D0 ∪D1 that is defined for all
(A |Xv = zv ) in Ď by

P̌ (A |Xv = zv ) :=
{

P0(A |Xv = zv ) if v ≺ maxu,

Pzu (A |Xu = y zu
u , Xv⊖u = zv⊖u ) otherwise.

(3.116)

Next, we show that P̌ is a coherent conditional probability. By Definition 2.5144,
we need to show that for all n inN, µ1, . . . , µn in R and (A1 |C1), . . . , (An |Cn ) in Ď,

max

{
n∑

k=1
µk ICk

(ω)
(
IAk

(ω)− P̌ (Ak |Ck )
)

: ω ∈
n⋃

k=1
Ck

}
≥ 0. (3.117)

Thus, we fix arbitrary n in N, µ1, . . . , µn in R and (A1 |C1), . . . , (An |Cn ) in Ď. By
definition of Ď, for all k in {1, . . . ,n}, there are vk , wk in U, zk

vk
in Xvk and Bk ⊆Xwk

such that
Ak = {

Xwk ∈ Bk
}

and Ck = {
Xvk = zk

vk

}
.

We collect those indices k for which (Ak |Ck ) belongs to D0 in the index set

K0 := {
k ∈ {1, . . . ,n} : (Ak |Ck ) ∈D0

}
.

First, we consider the case that K0 is non-empty. Then because P0 is a stochastic
process by assumption, it is a coherent conditional probability on D⊇D0. Hence, by
Definition 2.5144,

max

{ ∑
k∈K0

µk ICk
(ω)

(
IAk

(ω)−P0(Ak |Ck )
)

: ω ∈ ⋃
k∈K0

Ck

}
≥ 0.

Because P̌ is equal to P0 on D0 by Eq. (3.116), it follows from the preceding inequality
that there is a path ω0 in

⋃
k∈K0

Ck ⊆⋃n
k=1 Ck such that∑

k∈K0

µk ICk
(ω0)

(
IAk

(ω0)− P̌ (Ak |Ck )
)≥ 0. (3.118)

If K0 is empty, then we let ω0 be an arbitrary path in
⋃n

k=1 Ck ; obviously, this path ω0
satisfies Eq. (3.118) because the sum over an empty index set is equal to zero by
convention.

Next, we let z0
u :=ω0|u . Note that for all k in {1, . . . ,n}\K0, (Ak |Ck ) belongs to D1,

and therefore u ⊆ vk . Hence, for all k in {1, . . . ,n} \K0, vk ⊘u := vk \ (vk ⊖u) contains
those time points t in vk such that t ≤ maxu, and this includes all the time points
in u. Consider the index set

K1 := {
k ∈ {1, . . . ,n} \K0 : zk

vk⊘u =ω0|vk⊘u
}
.

Note that, by construction, zk
u = z0

u for all k in K1. Again, we start with the case that
this index set K1 is non-empty. Then we let

y0
u := y

z0
u

u and C 1
k := {

Xu = y0
u , Xvk⊖u = zk

vk⊖u
}

for all k ∈K1.
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3.C Theorems 6.3 and 6.5 in (Krak et al., 2017)

The jump process Pz0
u

is a coherent conditional probability on D by Definition 3.1265,

so it follows from Definition 2.5144 that

max

{ ∑
k∈K1

µk IC 1
k

(ω)
(
IAk

(ω)−Pz0
u

(
Ak

∣∣C 1
k

))
: ω ∈ ⋃

k∈K1

C 1
k

}
≥ 0.

Take any path ω⋆1 in
⋃

k∈K1
C 1

k for which the sum in the preceding expression is

non-negative, and observe that ω⋆1 |u = y0
u . We replace ω⋆1 on [0,maxu] by ω0:

ω1 : R≥0 →X : t 7→ω1(t ) :=
{
ω0(t ) if t ≤ maxu,

ω⋆1 (t ) otherwise.

Recall that z0
maxu = y0

maxu by the assumptions of the statement, and that, by con-
struction, ω⋆1 (maxu) = y0

maxu and ω0(maxu) = z0
maxu ; because furthermore ω0 and

ω⋆1 are càdlàg, it is clear that the path ω1 is càdlàg too. Furthermore, for all k in K1,

ω⋆1 ∈C 1
k = {

Xu = y0
u , Xvk⊖u = zk

vk⊖u
}⇔ω1 ∈Ck = {

Xvk = zk
vk

}
,

and, because u ⊆ vk ≺ wk and hence u ≺ wk ,

ω⋆1 ∈ {
Xwk ∈ Bk

}= Ak ⇔ω1 ∈ {
Xwk ∈ Bk

}= Ak .

Thus, we have constructed a path ω1 in
⋃

k∈K1
Ck ⊆⋃n

k=1 Ck such that∑
k∈K1

µk ICk
(ω1)

(
IAk

(ω1)− P̌ (Ak |Ck )
)= ∑

k∈K1

µk ICk
(ω1)

(
IAk

(ω1)−Pzk
u

(
Ak

∣∣C 1
k

))
= ∑

k∈K1

µk IC 1
k

(ω⋆1 )
(
IAk

(ω⋆1 )−Pz0
u

(
Ak

∣∣C 1
k

))
≥ 0, (3.119)

where, for all k in K1, for the first equality we used that P̌ (Ak |Ck ) = Pzk
u

(Ak |C 1
k )

by Eq. (3.116)↶ and for the second equality we used that zk
u = z0

u . If K1 is empty,
then we simply let ω1 :=ω0; here too, ω1 trivially satisfies Eq. (3.119) and belongs to⋃n

k=1 Ck because ω0 does so by assumption.
Observe that, for all k in K0, vk ≺ maxu and max wk ≤ maxu by definition of D0,

and therefore

ω0 ∈ {
Xvk = zk

vk

}=Ck ⇔ω1 ∈Ck and ω0 ∈ {Xwk ∈ Bk } = Ak ⇔ω1 ∈ Ak ;

hence, it follows from Eq. (3.118)↶ that∑
k∈K0

µk ICk
(ω1)

(
IAk

(ω1)− P̌ (Ak |Ck )
)≥ 0. (3.120)

Furthermore, for all k in {1, . . . ,n}\(K0∪K1), zk
vk⊘u ̸=ω0|vk⊘u =ω1|vk⊘u , soω1 does

not belong to Ck = {Xvk = zk
vk

}, or equivalently,

ICk
(ω1) = 0. (3.121)
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Recall from before that the pathω1 belongs to
⋃n

k=1 Ck . Therefore, it follows from
Eqs. (3.119)↶ to (3.121)↶ that

n∑
k=1

µk ICk
(ω1)

(
IAk

(ω1)− P̌ (Ak |Ck )
)≥ 0;

this inequality implies Eq. (3.117)140, as required.
Because P̌ is a coherent conditional probability on Ď ⊆D, there is a coherent

conditional probability P on D that extends P̌ by Theorem 2.5445. Then P coincides
with P̌ on Ď, so it follows immediately from Eq. (3.116)140 that P satisfies the two
equalities in the statement. This settles the first part of the proof.

In the second part of this proof, we need to show that P is consistent with M. To
this end, we observe that, because u ̸= ( ) by assumption, (X0 = x |Ω) belongs to D0 for
all x in X. Because P coincides with P̌ on Ď⊇D0 by construction and P̌ coincides
with P0 on D0 by Eq. (3.116)140, we find that

P (X0 = x) = P̌ (X0 = x) = P0(X0 = x) for all x ∈X,

so the initial probability mass function P (X0 = •) of P is equal to that of P0. The jump
process P0 is consistent with M by assumption, so this implies that P is consistent
with M, as required.

In the third and last part of this proof, we show that P is consistent with Q –
be warned, this will take a lot more work than proving consistency with M. For all
{Xv = zv } in H and t ,r in R≥0 such that u ≺ t ≤ r , we denote the history-dependent

transition operator corresponding to P by T {Xv=zv }
t ,r , the one corresponding to P0 by

T {Xv=zv }
0,t ,r and, for all yu in Xu , the one corresponding to Pyu by T {Xv=zv }

yu ,t ,r . As we will
see, these history-dependent transition operators are interconnected.

Fix some {Xv = zv } in H and t ,r in R≥0 such that v ≺ t < r . First, we assume that
t < maxu and r ≤ maxu. Then for all zt , yr in X, (Xr = yr |Xv = zv , Xt = zt ) belongs
to D0, so by Eq. (3.116)140,

P (Xr = yr |Xv = zv , Xt = zt ) = P0(Xr = yr |Xv = zv , Xt = zt ). (3.122)

By Eq. (3.36)84, this implies that

T {Xv=zv }
t ,r = T {Xv=zv }

0,t ,r . (3.123)

Next, we assume that t ≥ maxu; in this case, things are a bit more involved. Let
w := u \ (v ∪ (t )), and let P⋆ be any coherent extension of P to P(Ω)×P(Ω)⊃∅. Then
for all zt , yr in X,

P (Xr = yr |Xv = zv , Xt = zt ) = P⋆(Xr = yr |Xv = zv , Xt = zt )

= P⋆
(
{Xr = yr }∩ {Xw ∈Xw }

∣∣ Xv = zv , Xt = zt
)

= ∑
zw∈Xw

P⋆(Xr = yr , Xw = zw |Xv = zv , Xt = zt ),

(3.124)

where we used (CP3)41 for the last equality. Let us investigate the terms in this sum
separately. By definition, w only contains those time points in u that do not belong
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to v and that precede t . Because furthermore u ⊆ w ∪ v ∪ (t ), this implies that for all
zw in Xw ,

(Xr = yr |Xw = zw , Xv = zv , Xt = zt ) ∈D1 ⊆D,

and therefore

P⋆(Xr = yr , Xw = zw |Xv = zv , Xt = zt )

= P⋆(Xr = yr |Xw = zw , Xv = zv , Xt = zt )P⋆(Xw = zw |Xv = zv , Xt = zt ),

= P (Xr = yr |Xw = zw , Xv = zv , Xt = zt )P⋆(Xw = zw |Xv = zv , Xt = zt )

= P̌ (Xr = yr |Xw = zw , Xv = zv , Xt = zt )P⋆(Xw = zw |Xv = zv , Xt = zt ),
(3.125)

where for the first equality we used (CP4)41, for the second equality we used that P⋆

extends P and for the third equality we used that P extends P̌ . Because u ⊆ w ∪v ∪(t ),
we can rewrite Eq. (3.125) even more by substituting Eq. (3.116)140, but this step
warrants some extra care; we distinguish two subcases: t > maxu and t = maxu. In
any case, we let u′ := u \ (t). First, we consider the case that t > maxu. Then u = u′
and (w ∪ v ∪ (t ))⊖u = (v ⊖u)∪ (t ), so it follows from Eq. (3.125) that

P̌ (Xr = yr |Xw = zw , Xv = zv , Xt = zt )

= Pzu (Xr = yr |Xu = y zu
u , Xv⊖u = zv⊖u , Xt = zt )

= Pzu

(
Xr = yr

∣∣ Xu′ = y zu
u′ , Xv⊖u = zv⊖u , Xt = zt

)
, (3.126)

where for the second equality we used that u = u′. Second, we consider the case that
t = maxu. Then (w ∪ v ∪ (t ))⊖u = ( ), so it follows from Eq. (3.125) that

P̌ (Xr = yr |Xw = zw , Xv = zv , Xt = zt ) = Pzu (Xr = yr |Xu = y zu
u );

the subscript t for zt is essential here, because otherwise zu is not properly defined.
Note that u = u′∪ (t) and that y zu

t = y zu
maxu = zmaxu = zt by the assumptions in the

statement, so

P̌ (Xr = yr |Xw = zw , Xv = zv , Xt = zt )

= Pzu (Xr = yr |Xu = y zu
u′ , Xt = zt )

= Pzu

(
Xr = yr

∣∣ Xu′ = y zu
u′ , Xv⊖u = zv⊖u , Xt = zt

)
, (3.127)

where for the last equality we also used that v ⊖u = ( ). We substitute Eqs. (3.126) and
(3.127) in Eq. (3.125), to yield

P⋆(Xr = yr , Xw = zw |Xv = zv , Xt = zt )

= Pzu (Xr = yr |Xu′ = y zu
u′ , Xv⊖u = zv⊖u , Xt = zt )P⋆(Xw = zw |Xv = zv , Xt = zt ).

Finally, we substitute the preceding equality into Eq. (3.124)↶, to yield

P (Xr = yr |Xv = zv , Xt = zt ) = ∑
zw∈Xw

Pzu (Xr = yr |C (zw ), Xt = zt )pzt
t (zw ), (3.128)

where we let

pzt
t : Xw →R : zw 7→ pzt

t (zw ) := P⋆(Xw = zw |Xv = zv , Xt = zt )
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and, for all zw in Xw , we let

C (zw ) :=
{

Xu′ = y zu
u′ , Xv⊖u = zv⊖u

}
Note that, by the laws of (conditional) probability,

∑
zw∈Xw

pzt
t (zw ) = 1 and pzt

t (zw ) ≥
0 for all zw in Xw , so the sum on the right-hand side is a convex combination. Due to
Eq. (3.36)84, it follows immediately from Eq. (3.128)↶ that for all f in G(X) and zt
in X, [

T {Xv=zv }
t ,r f

]
(zt ) = ∑

zw∈Xw

pzt
t (zw )

[
T C (zw )

zu ,t ,r f
]
(zt ); (3.129)

as mentioned before, the subscript t for zt is essential in case t = maxu, because
otherwise zu is not well-defined.27

A convenient intermediary result is to use Eqs. (3.122)142 and (3.128)↶ to prove
that P has bounded rate. By Lemma 3.54102, we need to show that for all t in R≥0,
{Xv = zv } in H such that u ≺ t and x in X,

limsup
r↘t

1

r − t

(
1−P (Xr = x |Xv = zv , Xt = x)

)<+∞, (3.130)

and, if t > 0,

limsup
s↗t

1

t − s

(
1−P (Xt = x |Xv = zv , Xs = x)

)<+∞. (3.131)

Thus, we fix any such t , {Xv = zv } and x. We start by proving Eq. (3.130). First, we
assume that t < maxu; then it follows immediately from Eq. (3.122)142 with zt = x =
yr that

limsup
r↘t

1

r − t

(
1−P (Xr = x |Xv = zv , Xt = x)

)
= limsup

r↘t

1

r − t

(
1−P0(Xr = x |Xv = zv , Xt = x)

)
,

Since P0 is consistent with the bounded set Q of rate operators by assumption, P0
has bounded rate by Lemma 3.55102. Thus, it follows from Lemma 3.54102 and the
preceding equality that Eq. (3.130) holds in this case. Next, we consider the case that
t ≥ maxu. Fix some r in R≥0 such that r > t , and let zt := x. Then by Eq. (3.128)↶
with yr = x,

limsup
r↘t

1

r − t

(
1−P (Xr = x |Xv = zv , Xt = x)

)
= limsup

r↘t

1

r − t

(
1− ∑

zw∈Xw

px
t (zw )Pzu (Xr = x |C (zw ), Xt = x)

)

≤ ∑
zw∈Xw

px
t (zw ) limsup

r↘t

1

r − t

(
1−Pzu (Xr = x |C (zw ), Xt = x)

)
.

27It is at this point that we start to deviate from the proof of Krak et al. (2017): compare
Eq. (3.129) to their Eqs. (D.18) and (D.19).

144



3.C Theorems 6.3 and 6.5 in (Krak et al., 2017)

Recall that every jump process Pzu on the right-hand side of this inequality is consis-
tent with the bounded set Q of rate operators by assumption, so this jump process
has bounded rate by Lemma 3.55102. Thus, it follows from Lemma 3.54102 and the
preceding inequality that Eq. (3.130)↶ holds in this case. The proof for Eq. (3.131)↶
is analoguous to the proof for Eq. (3.130)↶, the only difference being that we need to
distinguish the cases t ≤ maxu and t > maxu.

Because the jump process P has bounded rate, we know from Proposition 3.57104

that, for all t in R≥0 and {Xv = zv } in H such that v ≺ t , T {Xv=zv }
t ,t is dQ-differentiable.

To prove that P is consistent with Q, we still need to show that ∂T {Xv=zv }
t ,t belongs

to Q. To do so, we fix an arbitrary rate operator Q in ∂T {Xv=zv }
t ,t , and we set out to

show that Q belongs to Q. First, we assume that Q belongs to ∂−T {Xv=zv }
t ,t . Then by

Proposition 3.57104, there is a sequence (sn )n∈N in R≥0 such that max v < sn < sn+1 <
t for all n inN, limn→+∞ sn = t and

lim
n→+∞

T {Xv=zv }
sn ,t − I

t − sn
=Q. (3.132)

Let us start with the case that t ≤ maxu. Then for all n in N, it follows from
Eq. (3.123)142 that

T {Xv=zv }
sn ,t − I

t − sn
=

T {Xv=zv }
0,sn ,t − I

t − sn
,

and therefore

lim
n→+∞

T {Xv=zv }
0,sn ,t − I

t − sn
=Q.

Because P0 is consistent with the bounded set Q by assumption, it follows from

Propositions 3.55102 and 3.57104 that Q belongs to ∂−T {Xv=zv }
0,t ,t ⊆Q, as required.

Next, we deal with the case that t > maxu; without loss of generality, we may
assume that s1 > maxu. Let w := u \ v , and observe that for all zw in Xw , zu is well-
defined because u ⊆ w ∪v . Thus, it follows from Eq. (3.129)↶ that, for all z in X, f
in G(X) and n inN,[

T {Xv=zv }
sn ,t f

]
(z)− f (z)

t − sn
= ∑

zw∈Xw

pz
sn

(zw )

[
T C (zw )

zu ,sn ,t f
]
(z)− f (z)

t − sn
; (3.133)

note that we actually invoke Eq. (3.129)↶ with zsn = z, but we may drop the ‘index’ sn
of zsn because zu is always well-defined as the time point sn does not occur in u. Fix
some z in X. Then the corresponding sequence (pz

sn
)n∈N is a sequence of probability

mass functions on Xw . The set Xw of probability mass functions on Xw is well-
known to be sequentially compact – it is in essence a bounded subset of R|Xw | –
so there is a probability mass function pz

⋆ on Xw and a subsequence (s1,n )n∈N of
(sn )n∈N such that limn→+∞ pz

s1,n
= pz

⋆ (where the convergence is with respect to the
supremum norm on Xw ). Next, we fix some zw in Xw . Because Pzu has bounded
rate due to Lemma 3.55102, the corresponding sequence T C (zw )

zu ,s1,n ,t − I

t − s1,n


n∈N
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is bounded, so it has a convergent subsequence due to Corollary A.7449. Thus, there
is a rate operator Q⋆

z,zw
and a subsequence (s2,n )n∈N of (s1,n )n∈N such that

lim
n→+∞

T C (zw )
zu ,s2,n ,t − I

t − s2,n
=Q⋆

z,zw
;

because (s2,n )n∈N ↗ t , it follows from Proposition 3.57104 that this limit Q⋆
z,zw

be-

longs to ∂−T C (zw )
zw ,t ,t ⊆Q. We repeat essentially the same procedure for all other zw

in Xw , albeit that first we construct a subsequence (s3,n )n∈N of (s2,n )n∈N, then a
subsequence (s4,n )n∈N of (s3,n )n∈N, and so on. This way, we end up with a subse-
quence (sK ,n )n∈N of (sn )n∈N, with K := |Xw |+1, such that limn→+∞ pz

sK ,n
= pz

⋆ and,

for all zw in Xw , with a rate operator Q⋆
z,zw

in Q such that

lim
n→+∞

T C (zw )
zu ,sK ,n ,t − I

t − sK ,n
=Q⋆

z,zw
.

Let Q⋆
z := ∑

zw∈Xw
pz
⋆(zw )Q⋆

z,zw
. Clearly, Q⋆

z is a rate operator in Q because it is
defined as a convex combination of rate operators inQ and Q is convex; furthermore,
it is not difficult to verify that

lim
n→+∞

∑
zw∈Xw

pz
sK ,n

(zw )
T C (zw )

zu ,sK ,n ,t − I

t − sK ,n
=Q⋆

z .

Because (sK ,n )n∈N is a subsequence of (sn )n∈N, it follows from the preceding equality
and Eqs. (3.132)↶ and (3.133)↶ that, for all f in G(X),

[Q f ](z) = lim
n→+∞

∑
zw∈Xw

pz
sK ,n

(zw )

[
T C (zw )

zu ,sK ,n ,t f
]
(z)− f (z)

t − sK ,n
= [

Q⋆
z f

]
(z).

We repeat this procedure for all other z in X; thus, for all z in X, we find some Q⋆
z

in Q such that (∀ f ∈G(X)
)

[Q f ](z) = [
Q⋆

z f
]
(z). (3.134)

Let Q⋆ : G(X) → G(X) be the operator defined for all f in G(X) and z in X by
[Q⋆ f ](z) := [Q⋆

z f ](z). Because (Q⋆
z )z∈X is a selection in Q and Q has separately

specified rows, Q⋆ belongs to Q. Observe that, by definition of Q⋆ and Eq. (3.134),∥∥Q −Q⋆
∥∥

op = sup
{∥∥Q f −Q⋆ f

∥∥ : f ∈G(X),∥ f ∥ = 1
}

= sup
{

max
{∣∣[Q f

]
(z)− [

Q⋆ f
]
(z)

∣∣ : z ∈X}
: f ∈G(X),∥ f ∥ = 1

}
= sup

{
max

{∣∣[Q f
]
(z)− [

Q⋆
z f

]
(z)

∣∣ : z ∈X}
: f ∈G(X),∥ f ∥ = 1

}
= 0.

Thus, we have shown that Q = Q⋆; because Q⋆ belongs to Q by construction, this

proves that Q belongs to Q whenever Q belongs to ∂−T {Xv=zv }
t ,t .

Finally, we deal with the case that Q belongs to ∂+T {Xv=zv }
t ,t ; the argument is

similar to the one as before, but arguably not quite similar enough to justify omission.
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By Proposition 3.57104, there is a sequence (rn )n∈N in R≥0 such that t < rn+1 < rn for
all n inN, limn→+∞ rn = t and

lim
n→+∞

T {Xv=zv }
t ,rn

− I

rn − t
=Q. (3.135)

Let us start with the case that t < maxu; without loss of generality, we may assume
that r1 < maxu. Then for all n inN, it follows from Eq. (3.123)142 that

T {Xv=zv }
t ,rn

− I

rn − t
=

T {Xv=zv }
0,t ,rn

− I

rn − t
,

and therefore

lim
n→+∞

T {Xv=zv }
0,t ,rn

− I

rn − t
=Q.

Because P0 is consistent with the bounded set Q by assumption, it follows from

Propositions 3.55102 and 3.57104 that Q belongs to ∂+T {Xv=zv }
0,t ,t ⊆Q, as required.

Next, we deal with the case that t ≥ maxu. Let w := u \ (v ∪ t) and u′ := u \ (t).
Then it follows from Eq. (3.129)144 that, for all zt in X, f in G(X) and n inN,[

T {Xv=zv }
t ,rn

f
]
(zt )− f (zt )

rn − t
= ∑

zw∈Xw

pzt
t (zw )

[
T C (zw )

zu ,t ,rn
f
]
(zt )− f (zt )

rn − t
. (3.136)

Fix some zt in X, and then some zw in Xw . Because Pzu has bounded rate due to
Lemma 3.55102, the corresponding sequence T C (zw )

zu ,t ,rn
− I

rn − t


n∈N

is bounded, so it has a convergent subsequence due to Corollary A.7449. Thus, there
is a rate operator Q⋆

zt ,zw
and a subsequence (r1,n )n∈N of (rn )n∈N such that

lim
n→+∞

T C (zw )
zu ,t ,r1,n

− I

r1,n − t
=Q⋆

zt ,zw
;

because (r2,n )n∈N ↘ t , it follows from Proposition 3.57104 that this limit Q⋆
zt ,zw

belongs to ∂+T C (zw )
zw ,t ,t ⊆ Q. We repeat the same procedure for all other zw in Xw ,

albeit that first we construct a subsequence (r2,n )n∈N of (r1,n )n∈N, then a sub-
sequence (r3,n )n∈N of (r2,n )n∈N, and so on. This way, we end up with a subse-
quence (rK ,n )n∈N of (rn )n∈N, with K := |Xw |, and, for all zw in Xw , with a rate
operator Q⋆

zt ,zw
in Q such that

lim
n→+∞

T C (zw )
zu ,rK ,n ,t − I

t − rK ,n
=Q⋆

zt ,zw
.

Let Q⋆
zt

:=∑
zw∈Xw

pzt
t (zw )Q⋆

zw
. Observe that Q⋆

zt
is a rate operator in Q because it is

defined as a convex combination of rate operators inQ and Q is convex, and that

lim
n→+∞

∑
zw∈Xw

pzt
t (zw )

T C (zw )
zu ,t ,rK ,n

− I

rK ,n − t
=Q⋆

zt
.
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Because (rK ,n )n∈N is a subsequence of (rn )n∈N, it follows from the preceding equality
and Eqs. (3.135)↶ and (3.136)↶ that, for all f in G(X),

[Q f ](zt ) = lim
n→+∞

∑
zw∈Xw

pzt
t (zw )

[
T C (zw )

zu ,t ,rK ,n
f
]
(zt )− f (zt )

rK ,n − t
= [

Q⋆
zt

f
]
(zt ).

We repeat this procedure for all other zt in X; thus, for all zt in X, we find some Q⋆
zt

in Q such that (∀ f ∈G(X)
)

[Q f ](zt ) = [
Q⋆

zt
f
]
(zt ). (3.137)

Let Q⋆ : G(X) → G(X) be the operator defined for all f in G(X) and zt in X by
[Q⋆ f ](zt ) := [Q⋆

zt
f ](zt ). Because (Q⋆

zt
)zt∈X is a selection in Q and Q has separately

specified rows, Q⋆ belongs to Q. As before, it follows from the definition of Q⋆ and
Eq. (3.137) that ∥Q −Q⋆∥op = 0, so Q =Q⋆. Because Q⋆ belongs toQ by construction,
this proves that Q belongs to Q whenever Q belongs to ∂+T {Xv=zv }

t ,t , as required.

Proof of Theorem 3.102139. Let P be the process as given by Theorem 3.103139,
with y xu

u := xu . The first equality in the statement follows immediately from the first
equality in Theorem 3.103139. To verify the second equality in the statement, we fix
some xu in X and A in Fu . Then by Lemma 3.1164, there is a sequence v in U≻u and
a subset B ′ of Xu∪v such that A = (Xu∪v ∈ B ′). Let

B := {
zv ∈Xv : (∃yu∪v ∈ B ′) yu = xu , yv = zv

}
.

Then by (JP1)69,

P (A |Xu = xu ) = P (Xu∪v ∈ B ′ |Xu = xu ) = P (Xv ∈ B |Xu = xu ),

and similarly

Pxu (A |Xu = xu ) = Pxu (Xu∪v ∈ B ′ |Xu = xu ) = Pxu (Xv ∈ B |Xu = xu ).

Because u ≺ v , these equalities and the second equality in Theorem 3.103139 imply
the second equality in the statement, as required.

In our proof for Theorem 3.89120 in Appendix 3.D151 further on, we need
the following result that is similar to – yet not quite a special case of – Theo-
rem 3.103139.

Lemma 3.104. Consider a non-empty set M of initial probability mass func-
tions on X and a non-empty and bounded subset Q of rate operators. Fix a
jump process P1 in PM

M,Q and a sequence of time points u in U. Then for all P0

in PM,Q, there is a jump process P in PM,Q such that for all xu in Xu and u1,u2

in U with u2 ̸= ( ), u1 ∪u2 ⊆ u and u1 ≺ u2,

P (Xu2 = xu2 |Xu1 = xu1 ) = P0(Xu2 = xu2 |Xu1 = xu1 )

and for all v in U≻u and B ⊆Xv ,

P (Xv ∈ B |Xu = xu) = P1(Xv ∈ B |Xu = xu).

If additionally P0 belongs to PM
M,Q, then so does P.
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Proof. Our proof is similar to that of Theorem 3.103139, so it consists of the following
three parts: (i) we construct a coherent conditional probability P on D that satisfies
the equalities in the statement; (ii) we show that P is consistent with M; (iii) we show
that P is consistent withQ; and (iv) we show that P is Markovian if P0 is Markovian.
Here too, the statemant is trivial whenever u = ( ), so we may assume without loss of
generality that u ̸= ( ).

For all xu in Xu , we let y xu
u := xu and Pxu := P1. The first part of this proof is then

entirely similar to the first part of our proof for Theorem 3.103139.
In the second part of this proof, we need to show that P is consistent with M.

Here too, the argument is exactly the same as our argument in our proof for Theo-
rem 3.103139, so we will not repeat this argument here.

In the third part of this proof, we show that P is consistent with Q. This part of
the proof is not the same as the third part of our proof for Theorem 3.103139, but
it will be a lot easier. For all {Xv = zv } in H and t ,r in R≥0 such that u ≺ t < r , we
denote the history-dependent transition operator corresponding to P by T {Xv=zv }

t ,r , the

one corresponding to P0 by T {Xv=zv }
0,t ,r and the one corresponding to P1 by T {Xv=zv }

1,t ,r .
Furthermore, we let

Q{Xv=zv }
t ,r :=

T {Xv=zv }
t ,r − I

r − t
, Q{Xv=zv }

0,t ,r :=
T {Xv=zv }

0,t ,r − I

r − t
and Q{Xv=zv }

1,t ,r :=
T {Xv=zv }

1,t ,r − I

r − t
.

If t < maxu and r ≤ maxu, then it follows from Eq. (3.123)142 that

T {Xv=zv }
t ,r = T {Xv=zv }

0,t ,r . (3.138)

If on the other hand t ≥ maxu, then it follows from Eq. (3.129)144 that for all zt in X

and f in G(X),[
T {Xv=zv }

t ,r f
]
(zt ) = ∑

zw∈Xw

pzt
t (zw )

[
T C (zw )

zu ,t ,r f
]
(zt ) = ∑

zw∈Xw

pzt
t (zw )

[
T C (zw )

1,t ,r f
]
(zt ),

where we let w := u \ (v ∪ (t)) and where pzt
t is a probability mass function on Xw .

Note that P1 is Markovian by assumption, so it follows from the preceding equality
and Eq. (3.38)85 that for all zt in X and f in G(X)[

T {Xv=zv }
t ,r f

]
(zt ) = ∑

zw∈Xw

pzt
t (zw )

[
T1,t ,r f

]
(zt ) = [

T1,t ,r f
]
(zt )

∑
zw∈Xw

pzt
t (zw )

= [
T1,t ,r f

]
(zt ),

where for the third equality we used (MF2)23. Because this equality holds for all zt
in X and f in G(X), we conclude that

T {Xv=zv }
t ,r = T1,t ,r . (3.139)

Because P0 and P1 are consistent with Q by assumption, it follows almost im-
mediately from Eqs. (3.138) and (3.139) that P is consistent with Q. Recall from
Definition 3.5099 that we need to establish that for all {Xv = zv } in H and t in R≥0
such that v ≺ t , T {Xv=zv }

t ,t is dQ-differentiable with

∂+T {Xv=zv }
t ,t ⊆Q and, if t > 0, ∂−T {Xv=zv }

t ,t ⊆Q.
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Thus, we fix any {Xv = zv } in H and t in R≥0 such that v ≺ t . If t < maxu, then it
follows immediately from Eq. (3.138)↶ that(∀r ∈ ]t ,maxu]

)
Q{Xv=zv }

t ,r =Q{Xv=zv }
0,t ,r .

Hence, if t < maxu, then

∅ ̸= ∂+T {Xv=zv }
t ,t = ∂+T {Xv=zv }

0,t ,t ⊆Q

and
lim
r↘t

dQ
(
Q{Xv=zv }

t ,r ,∂+T {Xv=zv }
t ,t

)= lim
r↘t

dQ
(
Q{Xv=zv }

0,t ,r ,∂+T {Xv=zv }
0,t ,t

)= 0,

where we used that P0 is consistent withQ by assumption – see Definitions 3.5099 and
3.4697. If on the other hand t ≥ maxu, then it follows immediately from Eq. (3.139)↶
that (∀r ∈ ]t ,+∞[

)
Q{Xv=zv }

t ,r =Q1,t ,r .

Hence, if t ≥ maxu, then

∅ ̸= ∂+T {Xv=zv }
t ,t = ∂+T1,t ,t ⊆Q

and
lim
r↘t

dQ
(
Q{Xv=zv }

t ,r ,∂+T {Xv=zv }
t ,t

)= lim
r↘t

dQ
(
Q1,t ,r ,∂+T1,t ,t

)= 0,

where this time we used that P1 is consistent withQ by assumption. This shows that

T {Xv=zv }
t ,t is dQ-differentiable from the right with ∂+T {Xv=zv }

t ,t ⊆ Q. If t > 0, then a
similar argument – but distinguishing the cases t ≤ maxu and t > maxu – shows that

T {Xv=zv }
t ,t is dQ-differentiable from the left with ∂−T {Xv=zv }

t ,t ⊆Q.
In the fourth and final part of this proof, we establish that if P0 is Markovian, then

so is P . By Definition 3.2174, we need to show that for all {Xv = zv } in H, t ,r in R≥0
such that v ≺ t < r and x, y in X

P (Xr = y |Xv = zv , Xt = x) = P (Xr = y |Xt = x).

Hence, we fix any {Xv = zv } in H, t ,r in R≥0 such that v ≺ t < r and x, y in X. If
r ≤ maxu, then it follows immediately from Eqs. (3.36)84 and (3.138)↶ (the former
twice) that

P (Xr = y |Xv = zv , Xt = x) = T {Xv=zv }
t ,r (x, y) = T {Xv=zv }

0,t ,r (x, y)

= P0(Xr = y |Xv = zv , Xt = x)

= P0(Xr = y |Xt = x)

= P (Xr = y |Xt = x),

where for the fourth equality we used that P0 is Markovian. Similarly, if t ≥ maxu,
then it follows from Eqs. (3.36)84 and (3.139)↶ (the former twice) that,

P (Xr = y |Xv = zv , Xt = x) = T {Xv=zv }
t ,r (x, y) = T1,t ,r (x, y) = P1(Xr = y |Xt = x)

= P (Xr = y |Xt = x).
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Finally, we deal with the remaining case that t < maxu < r . Let s := maxu. Then by
(JP4)70,

P (Xr = y |Xv = zv , Xt = x)

= ∑
z∈X

P (Xr = y |Xv = zv , Xt = x, Xs = z)P (Xs = z |Xv = zv , Xt = x).

Because t < s ≤ maxu and maxu ≤ s < r , it follows from this and Eqs. (3.36)84,
(3.138)149 and (3.139)149 that

P (Xr = y |Xv = zv , Xt = x)

= ∑
z∈X

T {Xv=zv ,X t=x}
s,r (z, y)T {Xv=zv }

t ,s (x, z)

= ∑
z∈X

T1,s,r (z, y)T {Xv=zv }
0,t ,s (x, z)

= ∑
z∈X

P1(Xr = y |Xs = z)P0(Xs = z |Xv = zv , Xt = x)

= ∑
z∈X

P1(Xr = y |Xs = z)P0(Xs = z |Xt = x),

wher for the final equality we used that P0 is Markovian. Essentially the same argu-
ment shows that

P (Xr = y |Xt = x) = ∑
z∈X

P1(Xr = y |Xs = z)P0(Xs = z |Xt = x),

and therefore
P (Xr = y |Xv = zv , Xt = x) = P (Xr = y |Xt = x),

as required.

3.D Proof of Proposition 3.89

In the fourth and final part of this appendix, we prove Theorem 3.89120, which
we repeat for convenience.

Theorem 3.89. Consider a non-empty set M of initial mass functions and a
non-empty and bounded set Q of rate operators that has separately specified
rows. Then PM

M,Q and PM,Q satisfy the sum-product law of iterated lower
expectations.

In our proof for Theorem 3.89120, we rely on the following intermediary
results. The first intermediary result that we need is that any imprecise jump
process P satisfies Eq. (3.70)106 in Definition 3.59106 but with inequality
instead of equality.

Lemma 3.105. Consider an imprecise jump process P. Then for all {Xu = xu}
in H, all v in U̸=( ) and t in R≥0 such that u ≺ v ≺ t , all f in G(X) and all g ,h
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in G(Xv ) such that h ≥ 0,

EP( f (X t )h(Xv )+ g (Xv ) |Xu = xu)

≥ EP

(
EP( f (X t ) |Xu∪v )h(Xv )+ g (Xv )

∣∣ Xu = xu
)
.

In our proof for Lemma 3.105↶, and also in our proof for Theorem 3.89120

further on, we need the following intermediary result.

Lemma 3.106. Consider a jump process P. Then for all {Xu = xu} in H, all v
in U̸=( ) and t in R≥0 such that u ≺ v ≺ t , all f in G(X) and all g ,h in G(Xv )
such that h ≥ 0,

EP ( f (X t )h(Xv )+ g (Xv ) |Xu = xu)

= EP
(
EP ( f (X t ) |Xu∪v )h(Xv )+ g (Xv )

∣∣ Xu = xu
)
.

Proof. It follows immediately from Theorem 3.1972 with w = v ∪ (t ) that

EP ( f (Xt )h(Xv )+ g (Xv ) |Xu = xu )

= EP
(
EP ( f (Xt )h(Xv )+ g (Xv ) |Xu∪v )

∣∣ Xu = xu
)
. (3.140)

Observe that for any yu∪v in Xu∪v ,

EP ( f (Xt )h(Xv )+ g (Xv ) |Xu∪v = yu∪v ) = EP ( f (Xt )h(yv )+ g (yv ) |Xu∪v = yu∪v )

= EP ( f (Xt ) |Xu∪v = yu∪v )h(yv )+ g (yv ),

where for the first equality we used Corollary 3.1871 and for the second equality we
used (ES1)37–(ES3)37. Consequently,

EP ( f (Xt )h(Xv )+ g (Xv ) |Xu∪v ) = EP ( f (Xt ) |Xu∪v )h(Xv )+ g (Xv ).

We substitute this equality into Eq. (3.140), to yield

EP ( f (Xt )h(Xv )+ g (Xv ) |Xu = xu ) = EP
(
EP ( f (Xt ) |Xu∪v )h(Xv )+ g (Xv )

∣∣ Xu = xu
)
,

as required.

Proof. Fix any P in P. Then by Lemma 3.106,

EP ( f (Xt )h(Xv )+ g (Xv ) |Xu = xu ) = EP
(
EP ( f (Xt ) |Xu∪v )h(Xv )+ g (Xv )

∣∣ Xu = xu
)
.

Note that EP ( f (Xt ) |Xu∪v ) ≥ EP( f (Xt ) |Xu∪v ); because furthermore h ≥ 0 by as-
sumption, this implies that

EP ( f (Xt ) |Xu∪v )h(Xv )+ g (Xv ) ≥ EP( f (Xt ) |Xu∪v )h(Xv )+ g (Xv ).

It follows from the previous equality and (ES4)37 that

EP ( f (Xt )h(Xv )+ g (Xv ) |Xu = xu ) ≥ EP
(
EP( f (Xt ) |Xu∪v )h(Xv )+ g (Xv )

∣∣ Xu = xu
)
.

Because this inequality holds for all P inP and inequalities are preserved when taking
the infimum, this proves the inequality of the statement.
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3.D Proof of Proposition 3.89

The second intermediary result that we need is taken from (Krak et al.,
2017, Proposition 8.2).

Lemma 3.107. Consider a non-empty set M of initial probability mass func-
tions and a bounded set Q of rate operators that has separately specified rows,
with corresponding lower rate operator Q :=QQ. Fix some time points s and t
in R≥0 such that s < t and some f in G(X). Then for all ϵ in R>0, there is a
Markovian jump process P in PM

M,Q such that∣∣EP ( f (X t ) |Xs = x)− [
e(t−s)Q f

]
(x)

∣∣< ϵ for all x ∈X.

Finally, we combine the preceding intermediary results to cook up our
proof of Theorem 3.89120.

Proof of Theorem 3.89120. In order not to needlessly repeat ourselves, we let P be
equal to PM,Q or PM

M,Q . By Definition 3.59106, we need to show that for all u in U,
v in U̸=( ) and t in R≥0 such that u ≺ v ≺ t , all f in G(X), all g ,h in G(Xv ) such that
h ≥ 0 and and all xu in Xu ,

EP( f (Xt )h(Xv )+ g (Xv ) |Xu = xu )

= EP

(
EP( f (Xt ) |Xu∪v )h(Xv )+ g (Xv )

∣∣ Xu = xu
)
. (3.141)

Hence, we fix any such u, v , t , f , g , h and xu .
Recall from Lemma 3.105151 that

EP( f (Xt )h(Xv )+ g (Xv ) |Xu = xu )

≥ EP

(
EP( f (Xt ) |Xu∪v )h(Xv )+ g (Xv )

∣∣ Xu = xu
)
. (3.142)

To prove Eq. (3.141), we need to prove that the converse inequality holds as well.
To this end, we fix any positive real number ϵ. Furthermore, we let

B := max{|h(yv )| : yv ∈Xv },

and we fix arbitrary positive real numbers ϵ0 and ϵ1 such that ϵ0 +Bϵ1 ≤ ϵ.
Let s := max v , and recall from Proposition 3.81117 that

EP( f (Xt ) |Xu∪v ) = [
e(t−s)Q f

]
(Xs ). (3.143)

To simplify our notation, we let

f ′ : Xu∪v →R : yu∪v 7→ [
e(t−s)Q f

]
(ys )h(yv )+ g (yv ).

By definition of EP , there is a jump process P0 in P such that∣∣EP( f ′(Xu∪v ) |Xu = xu )−EP0 ( f ′(Xu∪v ) |Xu = xu )
∣∣< ϵ0, (3.144)

where we have used that EP( f ′(Xu∪v ) |Xu = xu ) is real because, by (ES1)37, it is
bounded below by min f ′ and bounded above by max f ′.
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Next, we recall from Lemma 3.107↶ that there is a Markovian jump process P1
in PM

M,Q ⊆P such that ∣∣EP1 ( f (Xt ) |Xs )− [
e(t−s)Q f

]
(Xs )

∣∣< ϵ1. (3.145)

We now let

f ′′ : Xu∪v →R : yu∪v 7→ EP1 ( f (Xt ) |Xu∪v = yu∪v )h(yv )+ g (yv ).

Then clearly∣∣ f ′(Xu∪v )− f ′′(Xu∪v )
∣∣= ∣∣[e(t−s)Q f

]
(Xs )h(Xv )−EP1 ( f (Xt ) |Xu∪v )h(Xv )

∣∣
= ∣∣h(Xv )

([
e(t−s)Q f

]
(Xs )−EP1 ( f (Xt ) |Xu∪v )

)∣∣
= |h(Xv )|∣∣[e(t−s)Q f

]
(Xs )−EP1 ( f (Xt ) |Xu∪v )

∣∣
≤ B

∣∣[e(t−s)Q f
]
(Xs )−EP1 ( f (Xt ) |Xu∪v )

∣∣,
where the inequality holds due to the definition of B . Note that, because P1 is Marko-
vian, for all yu∪v in Xv ,

EP1 ( f (Xt ) |Xu∪v = yu∪v ) = ∑
z∈X

f (z)P1(Xt = z |Xu∪v = yu∪v )

= ∑
z∈X

f (z)P1(Xt = z |Xs = ys )

= EP1 ( f (Xt ) |Xs = ys ).

This implies that
EP1 ( f (Xt ) |Xu∪v ) = EP1 ( f (Xt ) |Xs ),

so it follows from the preceding inequality and Eq. (3.145) that∣∣ f ′(Xu∪v )− f ′′(Xu∪v )
∣∣≤ Bϵ1. (3.146)

From Eqs. (3.144)↶ and (3.146), we infer that

EP( f ′(Xu∪v ) |Xu = xu ) > EP0 ( f ′(Xu∪v ) |Xu = xu )−ϵ0

≥ EP0 ( f ′′(Xu∪v )−Bϵ1 |Xu = xu )−ϵ0

= EP0 ( f ′′(Xu∪v ) |Xu = xu )−ϵ0 −Bϵ1,

where we have also used (ES4)37 for the second inequality and (ES3)37 and (ES1)37
for the equality. Because ϵ0 +Bϵ1 ≤ ϵ by assumption, we conclude that

EP( f ′(Xu∪v ) |Xu = xu ) > EP0 ( f ′′(Xu∪v ) |Xu = xu )−ϵ. (3.147)

By Lemma 3.104148 (with u ∪ v here in the role of u there, u here in the role of u1
there and v here in the role of u2 there), there is a jump process P in P such that

(∀yv ∈Xv ) P (Xv = yv |Xu = xu ) = P0(Xv = yv |Xu = xu ), (3.148)

and for all yu∪v in Xu∪v ,

(∀z ∈X) P (Xt = z |Xu∪v = yu∪v ) = P1(Xt = z |Xu∪v = yu∪v ). (3.149)
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3.D Proof of Proposition 3.89

Clearly, Eq. (3.149)↶ implies that for all yu∪v ∈Xu∪v ,

EP ( f (Xt ) |Xu∪v = yu∪v ) = ∑
z∈X

f (z)P (Xt = z |Xu∪v = yu∪v )

= ∑
z∈X

f (z)P1(Xt = z |Xu∪v = yu∪v )

= EP1 ( f (Xt ) |Xu∪v = yu∪v ).

Consequently,
EP ( f (Xt ) |Xu∪v ) = EP1 ( f (Xt ) |Xu∪v ).

Similarly, it follows from Corollary 3.1871 and Eq. (3.148)↶ that

EP ( f ′′(Xu∪v ) |Xu = xu ) = EP ( f ′′(xu , Xv ) |Xu = xu ) = EP0 ( f ′′(xu , Xv ) |Xu = xu )

= EP0 ( f ′′(Xu∪v ) |Xu = xu ).

Thus, we find that

EP0 ( f ′′(Xu∪v ) |Xu = xu ) = EP ( f ′′(Xu∪v ) |Xu = xu )

= EP (EP1 ( f (Xt ) |Xu∪v )h(Xv )+ g (Xv ) |Xu = xu )

= EP (EP ( f (Xt ) |Xu∪v )h(Xv )+ g (Xv ) |Xu = xu )

= EP ( f (Xt )h(Xv )+ g (Xv ) |Xu = xu ), (3.150)

where for the final equality we used Lemma 3.106152.
At last, we are ready to combine our intermediary findings. It follows from

Eq. (3.147)↶ and Eq. (3.150) that

EP( f ′(Xu∪v ) |Xu = xu ) > EP0 ( f ′′(Xu∪v ) |Xu = xu )−ϵ
= EP ( f (Xt )h(Xv )+ g (Xv ) |Xu = xu )−ϵ
≥ EP( f (Xt )h(Xv )+ g (Xv ) |Xu = xu )−ϵ,

where the last inequality holds because P belongs to P. We rewrite the left-hand side
of this inequality with the help of Eq. (3.143)153, to yield

EP

(
EP( f (Xt ) |Xu∪v )h(Xv )+ g (Xv )

∣∣ Xu = xu
)

> EP( f (Xt )h(Xv )+ g (Xv ) |Xu = xu )−ϵ.

Because ϵ is an arbitrary positive real number, we infer from this inequality that

EP

(
EP( f (Xt ) |Xu∪v )h(Xv )+ g (Xv )

∣∣ Xu = xu
)

≥ EP( f (Xt )h(Xv )+ g (Xv ) |Xu = xu ).

Finally, Eq. (3.141)153 follows immediately from this inequality and Eq. (3.142)153.
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Computing lower expectations
of simple variables 4

In the previous chapter, we introduced three homogeneous and imprecise
Markovian jump processes through consistency with a non-empty set M of
initial mass functions and a non-empty and bounded set Q of rate operators:
PM,Q,PM

M,Q andPHM
M,Q. In this chapter, we examine if and how we can calculate

the corresponding conditional lower expectations E HM
M,Q, E M

M,Q and EM,Q.
More precisely, in Section 4.1 we will discover that the various laws of iterated
(lower) expectations play a crucial role, as well as the semi-group (e tQ )t∈R≥0 of
lower transition operators generated by the lower envelope Q :=QQ of Q. For
this reason, in Section 4.2173 we turn our attention to numerical methods that
approximate e tQ f – or, to be more exact, solve the initial value problem of
Proposition 3.78115. In particular, we propose two methods to choose the step
size for the well-known Euler method in such a way that the approximation
error is guaranteed to be lower than some desired maximal error. These
two methods are related to the notion of ergodicity, and we will dig into this
relation in Section 4.3188.

Section 4.1 is loosely based on (Krak et al., 2017, Section 9), for the most
part. One important exception is Section 4.1.3162, which contains novel
results that sprout from the sum-product law of iterated lower expectations.
In Sections 4.2173 and 4.3188, we more or less follow (Erreygers et al., 2017a,b).

4.1 Why we need a law of iterated (lower) expectations

Consider a non-empty set M of initial mass functions and a non-empty and
bounded set Q of rate operators. For a given state history {Xu = xu} in H

and an Fu-simple variable g , we want to determine the (conditional) lower
expectations

E HM
M,Q(g |Xu = xu), E M

M,Q(g |Xu = xu) and EM,Q(g |Xu = xu).

Recall from Lemma 3.1568 that the Fu-simple variable g has a representation
of the form f (Xu , Xv ), with v a sequence of time points inU≻u and f a gamble
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on Xu∪v . We can consider an even less general case due to the following
immediate consequence of Corollary 3.1871.

Corollary 4.1. Consider an imprecise jump process P. For any {Xu = xu}
in H, any v in U≽u and any gamble f on Xv ,

EP( f (Xv ) |Xu = xu) = EP( f (xu∩v , Xv\u) |Xu = xu).

It therefore follows immediately that

EP(g |Xu = xu) = EP( f (Xu , Xv ) |Xu = xu) = EP( f (xu , Xv ) |Xu = xu),

where P is equal to PHM
M,Q, PM

M,Q or PM,Q. For this reason, we can henceforth
focus on determining

E HM
M,Q( f (Xv ) |Xu = xu),E M

M,Q( f (Xv ) |Xu = xu) and EM,Q( f (Xv ) |Xu = xu)

for all v in U̸=( ) such that v ≻ u and all f in G(Xv ). Note that in case v = (),
determining the lower expectations of f (Xv ) is trivial because then f (Xv ) is a
constant.

4.1.1 A single initial mass function and rate operator

In order not to dive into the deep end of the pool immediately, we start
off gently with the simple case of a single initial mass function p0 and rate
operator Q. Recall from Eq. (3.66)104 that in this case, we might as well
study the unique (homogeneous and Markovian) jump process Pp0,Q that is
characterised by p0 and Q in the sense of Theorem 3.3787; as explained in
Section 3.2.487, we let Ep0,Q = EPp0,Q denote the corresponding conditional
expectation.

One of the reasons that homogeneous and Markovian jump processes are
so popular, is that we can compute Ep0,Q ( f (Xv ) |Xu = xu) through backwards
recursion due to Theorem 3.1972, the law of iterated expectations. More pre-
cisely, one can use Theorems 3.1972 and 3.3787 to obtain the recursive method
of Algorithm 4.1↷; alternatively, Algorithm 4.1↷ is an obvious specialisa-
tion of Algorithm 4.3171 further on. Crucially, in this recursive method we
only need the operator exponential (e tQ )t∈R≥0 of Q and the coherent expec-
tation Ep0 that corresponds to the initial mass function p0. Let us illustrate
this with our running example, drawing inspiration from (Krak et al., 2017,
Example 9.1).

Joseph’s Example 4.2. Recall from Joseph’s Example 3.2882 that for the binary
state space X = {H,T}, any rate operator Q has a matrix representation of the
form (

Q(H,H) Q(H,T)
Q(T,H) Q(T,T)

)
=

(−λH λH
λT −λT

)
,
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4.1 Why we need a law of iterated (lower) expectations

Algorithm 4.1: Iteratively computing Ep0,Q ( f (Xv ) |Xu = xu)

Input: An initial mass function p0, a rate operator Q, a state
history {Xu = xu} in H, a sequence of time
points v = (t1, . . . , tn) in U≻u and a gamble f on Xv .

Output: Ep0,Q ( f (Xv ) |Xu = xu)
1 fn := f
2 for k ∈ {n −1, . . . ,1} do
3 t1:k := (t1, . . . , tk )
4 ∆ := tk+1 − tk

5 fk : Xt1:k →R

6 for yt1:k ∈Xt1:k do
7 f ′

k+1
:= fk+1(yt1:k ,•) : X→R : z 7→ fk+1(yt1:k , z)

8 fk (yt1:k ) := [
e∆Q f ′

k+1

]
(ytk )

9 if u ̸= ( ) then ▷ The n-th step requires some special care

10 ∆ := t1 −maxu

11 return
[
e∆Q f1

]
(xmaxu)

12 else if t1 = 0 then
13 return Ep0 ( f1)
14 else
15 f0 : X→R

16 for x ∈X do
17 f0(x) := [

e t1Q f1
]
(x)

18 return Ep0 ( f0)

where λH and λT are two non-negative real numbers. In Joseph’s Exam-
ple 3.3283, we furthermore obtained an analytical expression for the operator
exponential (e tQ )t∈R≥0 generated by such a rate operator Q.

Consider any initial mass function p0, and a rate operator Q with λH and
λT both positive. We want to determine the probability that the state at time
t1 is equal to the state at time t2, with t1 and t2 in R≥0 such that 0 < t1 < t2.
More formally, we want to determine

Pp0,Q (X t1 = X t2 ) = Ep0,Q ( f (X t1 , X t2 )) = Ep0,Q ( f (X t1 , X t2 ) |X( ) = x( )),

with f the function on X2 =X(t1,t2) such that, for any two states x and y in X,
f (x, y) = 1 if x = y and 0 otherwise.

Let us determine this probability with Algorithm 4.1; note that u = ( ) and
v = (t1, t2). First, we need to determine the components of the gamble g1;
that is, for any x in X, we need to determine

f1(x) = [
e∆1Q f (x,•)

]
(x),
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with ∆1 := (t2 − t1). By Eq. (3.32)83,

f1(H) = f (H,H)+ 1−e−∆1(λH+λT)

λH+λT
λH

(
f (H,T)− f (H,H)

)
= 1− (

1−e−∆1(λH+λT)) λH

λH+λT
,

and by symmetry,

f1(T) = 1− (
1−e−∆1(λH+λT)) λT

λH+λT
.

Because {Xu = xu} = Ω and hence u = (), we also need to determine the
components of the gamble f0 on X, given for all x in X by

f0(x) = [
e t1Q f1

]
(x).

Again, it follows from Eq. (3.32)83 and some algebra that

f0(H) = 1− (
1−e−∆1(λH+λT)) λH

λH+λT

(
1+ (

1−e−t1(λH+λT))λT−λH
λH+λT

)
and

f0(T) = 1− (
1−e−∆1(λH+λT)) λT

λH+λT

(
1+ (

1−e−t1(λH+λT))λH−λT
λH+λT

)
.

Finally, we can determine the desired probability, because

Pp0,Q (X t1 = X t2 ) = Ep0 ( f0) = p0(H) f0(H)+p0(T) f0(T). ¢

For state spaces that consist of three or more states, it is usually infeasible
if not impossible to obtain an analytical expression for the operator exponen-
tial e tQ of the rate operator. Fortunately, one can resort to one of the many
numerical methods that numerically approximate the operator exponential;
for a broad overview of such numerical methods, we refer to (Moler et al.,
2003). Alternatively, we can also use the numerical methods that we will
discuss in Section 4.2173 further on.

4.1.2 Finite sets of initial mass functions and rate operators

Instead of a single initial mass function p0 and rate operator Q, we now
consider a non-empty set M of initial mass functions and a non-empty and
bounded set Q of rate operators. To wet our feet, we will initially assume
that Q is a finite set; in order not to deal with an obvious degenerate case,
we assume that Q is not a singleton. Out of convenience, we furthermore
assume that M is a finite set as well; this is not essential, but it lets us focus
on what really matters.
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4.1 Why we need a law of iterated (lower) expectations

Computing lower expectations with respect to PHM
M,Q is not all too difficult.

To unearth why, we recall from Eq. (3.46)90 that

PHM
M,Q = {

Pp0,Q : p0 ∈M,Q ∈Q}
.

Consequently, for all state histories {Xu = xu} in H, all sequences of time
points v in U≻u and all gambles f on Xv ,

E HM
M,Q( f (Xv ) |Xu = xu) = inf

{
Ep0,Q ( f (Xv ) |Xu = xu) : p0 ∈M,Q ∈Q}

.

Because we have assumed that M and Q are both finite, we can com-
pute E HM

M,Q( f (Xv ) |Xu = xu) by exhaustive search. That is, we compute
Ep0,Q ( f (Xv ) |Xu = xu) for every (p0,Q) in M×Q, and subsequently pick the
smallest of these precise expectations. Obviously, this method is only compu-
tationally tractable for small enough sets M and Q.

Joseph’s Example 4.3. Recall from Joseph’s Example 3.4089 that Deborah’s
beliefs are modelled by the imprecise jump process PM,Q1 , with

Q1 :=
{(−λH λH

λT −λT
)

: λH,λT ∈ {λ1, . . . ,λn}

}

and M the set of all initial mass functions. Here, we will assume that M :=
{p0} with p0 := IH for the sake of simplicity.

It will be instructive to look at a numerical example, so we should fix
some parameter values. Say there are n := 4 radioactive isotopes, with pa-
rameters λ1 := 1, λ2 := 3/2, λ3 = 4/3 and λ4 = 5/4. The parameter λk of the k-th
radioactive isotope can be interpreted in two ways: (i) on average, there are
λk decays per time unit; and (ii) the average time between two radioactive
decays is 1/λk time units.

Deborah is interested in a lower bound on the probability that Joseph’s
machine displays the same outcome after one time unit and after two time
units. In our formal framework, she is interested in

P HM
M,Q1

(X1 = X2) = inf
{
Pp0,Q (X1 = X2) : Q ∈Q1

}
= inf

{
Ep0,Q ( f (X1, X2)) : Q ∈Q1

}= E HM
M,Q1

( f (X1, X2)),

with f the gamble on X(t1,t2) =X2 as defined in Joseph’s Example 4.2158. To
compute this lower probability by means of exhaustive search, we need to
compute the probability Pp0,Q (X1 = X2) for every rate operator Q inQ1 that
is defined by a couple of parameters (λH,λT) in {λ1, . . . ,λ4}2. Using the proce-
dure of Joseph’s Example 4.2158, we obtain the values – up to four significant
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digits – listed below.

λT =λ1 λT =λ2 λT =λ3 λT =λ4

λH =λ1 0.5677 0.5654 0.5631 0.5629
λH =λ2 0.5504 0.5249 0.5293 0.5329
λH =λ3 0.5506 0.5326 0.5347 0.5371
λH =λ4 0.5524 0.5383 0.5393 0.5410

Thus, by taking the minimum of these values, we see that

P HM
M,Q1

(X1 = X2) ≈ 0.5249. ¢

Can we also compute the (conditional) lower expectations with respect
to PM

M,Q and PM,Q by means of the same procedure? In general, the answer
to this question seems to be negative, as there is no straightforward way to
construct all consistent Markovian jump processes, let alone all consistent
non-Markovian jump processes. This is not as big as a problem as one might
think though, because in many – practically relevant – cases, the set Q of rate
operators has separately specified rows. Whenever this is the case, as we are
about to explain, we can invoke the results in Chapter 353 to compute the
lower expectation of many – and in some cases even all – variables in the do-
main of E M

M,Q and EM,Q. In Section 4.1.3, we will investigate how separately
specified rows allow us to compute the (conditional) lower expectation of
variables that have a ‘sum-product representation’. In Section 4.1.4170, we
will furthermore assume that Q is convex, which allows us to compute all
(conditional) lower expectations corresponding to PM,Q.

4.1.3 A setQ of rate operators that has separately specified rows

Consider a set Q of rate operators that has separately specified rows. Note
that this set can be finite, but it does not have to be. Furthermore, we also
let go of the requirement that M is a finite set. Our intention is to identify
variables for which we can determine the lower expectation.

First, we recall from Proposition 3.82118 that, for any f in G(X),

E HM
M,Q( f (X0)) = E M

M,Q( f (X0)) = EM,Q( f (X0)) = EM( f )

Of course, this equation is only useful in case we can actually compute this
infimum. Fortunately, this typically is not an issue, because more often than
not, M is specified by means of linear inequality constraints; whenever this is
the case, we can use any linear programming method to (numerically) solve
the optimisation problem above.

With regards to conditional lower expectations, we recall from Proposi-
tion 3.81117 that because the set Q has separately specified rows and lower
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4.1 Why we need a law of iterated (lower) expectations

envelope Q :=QQ,

E M
M,Q( f (Xr ) |Xu = xu , X t = x) = EM,Q( f (Xr ) |Xu = xu , X t = x)

= [
e(r−t )Q f

]
(x)

for any current time point t and state x, any future time point r and gamble f
on X and any state history {Xu = xu}. Furthermore, we can also determine
the (marginal) lower expectation of any variable that depends on the state of
the system at a single time point: by Proposition 3.83118,

E M
M,Q( f (X t )) = EM,Q( f (X t )) = EM(e tQ f )

for any time point t in R≥0 and any gamble f on X. For now, let us assume
that we can actually compute

[
e(r−t )Q f

]
(x); this is certainly so in the case of

a binary state space, as we have seen in Joseph’s Example 3.79115. We will
return to this assumption in Section 4.2173 further on.

But what about the lower expectation corresponding to PHM
M,Q? Well, even

in the case of basic (non-trivial) conditional lower expectations, computing
this lower expectation becomes intractable wheneverQ is not finite. This is
because by Eq. (3.46)90 and Theorem 3.3787,

E HM
M,Q( f (Xr ) |Xu = xu , X t = x)

= inf
{
Ep0,Q ( f (Xr ) |Xu = xu , X t = x) : p0 ∈M,Q ∈Q}

= inf
{[

e(r−t )Q f
]
(x) : Q ∈Q

}
.

Thus, to compute even the simplest conditional lower expectation, one needs
to solve a constrained non-linear optimisation problem,1 and more general
conditional lower expectations are even worse. Krak et al. (2017, Section 6.3)
argue that one way to solve this problem, is to discretise the sets M and Q

and then carry out an exhaustive search over the discretised parameter space.
However, this approach is only feasible for small state spaces because its
computational complexity explodes as the size of the state space X increases.

Joseph’s Example 4.4. In Joseph’s Example 4.3161, we considered the setQ1

as defined in Joseph’s Example 3.4089. An obvious more general set of rate
operators is

Q2 :=
{(−λH λH

λT −λT
)

: λH,λT ∈ [λ,λ]

}
,

with λ := min{λ1, . . . ,λn} and λ := max{λ1, . . . ,λn}. Note thatQ2 is the convex
hull ofQ1, and thatQ2 has separately specified rows.

1In case the setQ is convex, the minimum need not be reached by one of the extreme points
ofQ (Krak et al., 2017, Example 6.2).
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To illustrate the ‘discretise and search’ approach, we determine
P HM
M,Q2

(X1 = X2) for the same numerical values as in Joseph’s Example 4.3161.
We discretise the parameter space with a ‘rectangular grid’, that is, we let
λH and λT assume one of the 1000 equidistant points in the interval [λ,λ] =
[1, 3/2], including the start and endpoint. Next, we compute Pp0,Q (X1 = X2)
for every rate operator Q corresponding to the values for λH and λT; this way,
we obtain a table with 1000 rows and 1000 columns. The minimum of these
values is

P HM
M,Q2

(X1 = X2) ≈ 0.5249.

Note that, up to four significant digits, P HM
M,Q2

(X1 = X2) and P HM
M,Q1

(X1 = X2)
are equal. In our discretisation, the minimal value is the one for the homoge-
neous and Markovian jump process Pp0,Q with rate operator Q characterised
by λH =λ=λ2 and λT =λ=λ2, as in Joseph’s Example 4.3161. At first sight,
one might think that this is to be expected. In particular, for any 0 ≤ t1 < t2,
one might think that to minimise the probability of {X t1 = X t2 }, one should
choose the largest rates, as this increases the probability of having a jump
after t1 but before t2. However, this large rate also increases the probability of
jumping back to X t1 before t2, so this argument works both ways. In general,
the lower probability of the event {X t1 = X t2 } is not the same for PHM

M,Q1
and

PHM
M,Q2

; for example, for t1 = 1 and t2 = 4, we find that, up to four significant
digits,

P HM
M,Q1

(X1 = X4) ≈ 0.4995 and P HM
M,Q2

(X1 = X4) ≈ 0.4989. ¢

Because the ‘discretise and exhaustive search’ method to compute E HM
M,Q

is infeasible for large state spaces, we henceforth focus on computing (condi-
tional) lower expectations with respect to PM

M,Q and PM,Q. For these models,
we have only given expressions for the (conditional) lower expectation of
variables that depend on the state of the system at a single point in time.
Fortunately, we can also compute the (conditional) lower expectation for
more general variables. An important class of such variables are those that
have a sum-product representation over a finite number of time points.

Definition 4.5. Consider a sequence v = (t1, . . . , tn) in U̸=( ). A real variable f
in V(Ω) has a sum-product representation over v if there are gambles g1, . . . ,
gn in G(X) and non-negative gambles h1, . . . , hn−1 in G(X) such that

f =
n∑

k=1
gk

(
X tk

)k−1∏
ℓ=1

hℓ
(
X tℓ

)
= g1

(
X t1

)+h1
(
X t1

)
g2

(
X t2

)+·· ·+h1
(
X t1

) · · ·hn−1
(
X tn−1

)
gn

(
X tn

)
.

Lemma 4.6. Consider a sequence v = (t1, . . . , tn) in U̸=( ) and a real variable f
in V(Ω) with a sum-product representation over v. Then for any sequence u
in U such that u ≼ v, f is Fu-simple.
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Proof. Because f has a sum-product representation over v , there are gambles g1, . . . ,
gn in G(X) and non-negative gambles h1, . . . , hn−1 in G(X) such that

f =
n∑

k=1
gk

(
Xtk

)k−1∏
ℓ=1

hℓ
(
Xtℓ

)
.

For any k in {1, . . . ,n}, we let t1:k := (t1, . . . , tk ). Then clearly

f =
n∑

k=1

∑
xt1:k

∈Xt1:k

(
gk (xtk )

k−1∏
ℓ=1

hℓ(xtℓ )

)
I{

X t1:k
=xt1:k

}.

Because v ≽ u by assumption, t1:k ≽ u for all k in {1, . . . ,n}; hence, by definition
of Fu , every event of the form {Xt1:k = xt1:k } in the right-hand side of the equality
above belongs to Fu . Consequently, f is Fu -simple due to the equality above.

Lemma 4.7. Consider a sequence v = (t1, . . . , tn) in U̸=( ) and a real variable f
in V(Ω) with a sum-product representation

f =
n∑

k=1
gk

(
X tk

)k−1∏
ℓ=1

hℓ
(
X tℓ

)
over v. Then

− f =
n∑

k=1

[−gk
](

X tk

)k−1∏
ℓ=1

hℓ
(
X tℓ

)
,

so − f has a sum-product representation over v too.

Proof. It is obvious that

− f =−
n∑

k=1
gk

(
Xtk

)k−1∏
ℓ=1

hℓ
(
Xtℓ

)= n∑
k=1

[−gk
](

Xtk

)k−1∏
ℓ=1

hℓ
(
Xtℓ

)
.

For all k in {1, . . . ,n}, gk belongs to G(X) by assumption, so −gk belongs to G(X)
because G(X) is a real vector space. This proves that − f has a sum-product represen-
tation over v , as required.

This last result is relevant because, due to conjugacy, it allows us to fo-
cus exclusively on determining lower expectations of variables with a sum
product representation. Indeed, to determine the upper expectation

EP( f |Xu = xu) =−EP(− f |Xu = xu)

of a variable f with sum-product representation over v , it suffices to deter-
mine the lower expectation EP(− f |Xu = xu) of − f , which, conveniently,
also has a sum-product representation over v .

As suggested by our terminology, there is a link between variables with
a sum-product representation and the sum-product law of iterated lower
expectations – see Definition 3.59106. The following result establishes this
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link: given a Markovian imprecise jump process P that satisfies the sum-
product law of iterated lower expectations, we can use a backward recursive
scheme to compute EP( f (Xv ) |Xu = xu) for any variable f (Xv ) with sum-
product representation over v ≻ u. T’Joens et al. (2019, Theorem 2) prove
a related result in the setting of imprecise Markov chains (see also De Bock
et al., 2021, Theorem 1), and their recursive algorithm is inspired by earlier
work by De Cooman et al. (2010) and De Bock (2015, Chapter 7) on inference
in credal networks under epistemic irrelevance (De Bock, 2017a). In order
not to burden the main text, we have relegated our proof for this result to
Appendix 4.A198.

Proposition 4.8. Consider a Markovian imprecise jump process P that sat-
isfies the sum-product law of iterated lower expectations. Fix a state his-
tory {Xu = xu} in H, a sequence of time-points v = (t1, . . . , tn) in U≻u , and
an Fu-simple variable f with sum-product representation

f =
n∑

k=1
gk

(
X tk

)k−1∏
ℓ=1

hℓ
(
X tℓ

)
over v. Then

EP( f |Xu = xu) = EP( f1(X t1 ) |Xu = xu),

where f1 : X→ R is recursively defined by the initial condition fn := gn and,
for all k in {1, . . . ,n −1}, by the recursive relation

fk : X→R : x 7→ EP( fk+1(X tk+1 ) |X tk = x)hk (x)+ gk (x).

It might not be immediately obvious, but Proposition 4.8 is extremely
relevant from a practical point of view whenever Q has separately specified
rows. In this case, both PM

M,Q and PM,Q are Markovian by Corollary 3.87119,
and they satisfy the sum-product law of iterated lower expectations by The-
orem 3.89120, so we may use Proposition 4.8. In combination with Proposi-
tions 3.81117 to 3.83118, we find a backwards recursive method to compute
the (conditional) lower expectation with respect to PM

M,Q and PM,Q of any real
variable f with sum-product representation. Quite remarkably, we can use
the same method to compute the lower expectation of f with respect to any
imprecise jump process P such that PM

M,Q ⊆P ⊆PM,Q; the following result
validates this claim, and also slightly relaxes the requirement that v ≻ u. Our
proof is rather long, so we have relegated it to Appendix 4.A198,

Theorem 4.9. Consider a non-empty set M of initial mass functions, and a
non-empty and bounded set Q of rate operators that has separately specified
rows. Fix an imprecise jump processP such that PM

M,Q ⊆P ⊆PM,Q, a sequence
of time-points v = (t1, . . . , tn) in U̸=( ) and a real variable f in V(Ω) that has a
sum-product representation

f (Xv ) =
n∑

k=1
gk (X tk )

k−1∏
ℓ=1

hℓ(X tℓ )
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over v. Let f1 : X→R be recursively defined by the initial condition fn := gn

and, for all k in {1, . . . ,n −1}, by the recursive relation

fk : X→R : x 7→ [
e(tk+1−tk )QQ fk+1

]
(x)hk (x)+ gk (x).

Then for all x in X,

EP( f |X t1 = x) = f1(x),

and for all {Xu = xu} in H such that s := maxu ≤ t1,

EP( f |Xu = xu) = EP

(
EP( f |X t1 )

∣∣ Xu = xu
)

=


f1(xs ) if u ̸= ( ) and s = t1[
e(t1−s)QQ f1

]
(xs ) if u ̸= ( ) and s < t1,

EM( f1) if u = ( ) and t1 = 0,

EM

(
e t1QQ f1

)
if u = ( ) and t1 > 0,

and therefore

E M
M,Q( f |Xu = xu) = EM,Q( f |Xu = xu) = EP( f |Xu = xu).

Theorem 4.9↶ translates to the backwards recursive method in Algo-
rithm 4.2↷. Let us use our running example to illustrate this method.

Joseph’s Example 4.10. Let us revisit the situation in Joseph’s Example 4.3161.
Because Q1 clearly has separately specified rows, we can use Algorithm 4.2↷
to compute the lower expectation with respect to PM

M,Q1
and PM,Q1 of vari-

ables that have a sum-product representation. Unfortunately, we cannot
use Algorithm 4.2↷ to compute the lower probabilities P M

M,Q1
(X1 = X2) and

PM,Q1
(X1 = X2), because the F-simple variable I{X1=X2} does not have a sum-

product representation (over v = (1,2)). A related F-simple variable that
does have a sum-product representation (over v = (1,2)) is

f (X1, X2) := IH(X1)IH(X2) = g1(X1)+h1(X1)g2(X2),

with g1 := 0, g2 := IH and h1 := IH. Thus, we can use Algorithm 4.2↷ to com-
pute the lower probability

P M
M,Q1

(X1 = H, X2 = H) = PM,Q1
(X1 = H, X2 = H) = EM,Q1

( f (X1, X2)).

Here, we will do so for the numerical values in Joseph’s Example 4.3161.
First, we need to determine the components of the gamble f1; that is, for

any x in X, we need to determine

f1(x) = [
eQ g2(x)

]
(x)h1(x)+ g1(x).
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Algorithm 4.2: Iteratively computing EP( f |Xu = xu)

Input: A non-empty set M of initial mass functions, a non-empty
and bounded setQ of rate operators that has separately
specified rows, an imprecise jump process P such that
PM
M,Q ⊆P ⊆PM,Q, a state history {Xu = xu} in H, a sequence

of time points v = (t1, . . . , tn) in U̸=( ) such that maxu ≤ t1 and a
variable

f =
n∑

k=1
gk (X tk )

k−1∏
ℓ=1

hℓ(X tℓ )

that has a sum-product representation over v .
Output: EP( f |Xu = xu)

1 fn := gn

2 for k ∈ {n −1, . . . ,1} do ▷ Determine f1 as defined in Theorem 4.9166

3 ∆ := tk+1 − tk

4 fk : X→R

5 for x ∈X do
6 fk (x) := [

e∆QQ fk+1
]
(x)hk (x)+ gk (x)

7 if u ̸= ( ) and maxu = t1 then
8 return f1(xmaxu)
9 else if u ̸= ( ) and maxu < t1 then

10 ∆ := t1 −maxu

11 return
[
e∆QQ f1

]
(xmaxu)

12 else if t1 = 0 then
13 return EM( f1)
14 else
15 f0 : X→R

16 for x ∈X do
17 f0(x) := [

e t1QQ f1
]
(x)

18 return EM( f0)

Observe that g2(H)− g2(T) = 1, so by Eq. (3.75)115,

f1(H) =
(
g2(H)+ 1−e−(λ+λ)

λ+λ
λ
(
g2(T)− g2(H)

))
h1(H)+ g1(H)

= 1− (
1−e−(λ+λ)) λ

λ+λ
,
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and

f1(T) =
(
g2(T)+ 1−e−(λ+λ)

λ+λ
λ
(
g2(H)− g2(T)

))
h1(T)+ g1(T)

= 0.

Because {Xu = xu} = Ω and hence u = (), we also need to determine the
components of the gamble f0 on X, given for all x in X by

f0(x) = [
eQ f1

]
(x).

Because f1(H)− f1(T) ≥ 0, it follows from Eq. (3.75)115 that

f0(H) =
(
1− (

1−e−(λ+λ)) λ

λ+λ

)2

and

f0(T) = (
1−e−(λ+λ)) λ

λ+λ

(
1− (

1−e−(λ+λ)) λ

λ+λ

)
.

Therefore,

P M
M,Q1

(X1 = H, X2 = H) = PM,Q1
(X1 = H, X2 = H)

= Ep0 ( f0) = f0(H) =
(
1− (

1−e−(λ+λ)) λ

λ+λ

)2

≈ 0.2018.

Let Q be the rate operator in Q1 with Q(H,T) = λ and Q(T,H) = λ. Then
using the procedure in Joseph’s Example 4.2158, we find that

Pp0,Q (X1 = H, X2 = H) = P M
M,Q1

(X1 = H, X2 = H) = PM,Q1
(X1 = H, X2 = H).

Therefore, P HM
M,Q1

(X1 = H, X2 = H) ≤ PM,Q1
(X1 = H, X2 = H). From this and

Eq. (3.68)105, we infer that

EM,Q1
( f (X1, X2)) = E M

M,Q1
( f (X1, X2)) = E HM

M,Q1
( f (X1, X2)).

Quite remarkably, this is a non-trivial case in which the inequalities in
Eq. (3.68)105 are actually equalities!

In Joseph’s Example 4.4163, we defined a set Q2 of rate operators that
includes Q1. Note that this setQ2 has separately specified rows and thatQ1

and Q2 have the same lower envelope Q. Thus, it follows immediately from
Algorithm 4.2↶ that the lower probability of {X1 = H, X2 = H} for PM

M,Q2
and

PM,Q2 is equal to that for PM
M,Q1

and PM,Q1 ! ¢
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4.1.4 A set Q of rate operators that is convex and has separately
specified rows

If the simple variable f (Xv ) does not have a sum-product representation,
then determining the lower expectation EP( f (Xv ) |Xu = xu) by means of
backwards recursion is possible whenever P satisfies the law of iterated
lower expectations. Krak et al. (2017, Section 9) essentially already make
this point, and their argument goes back to similar results for imprecise
Markov chains (De Cooman et al., 2008, 2009); the proof of this result has
been relegated to Appendix 4.B204.

Proposition 4.11. Consider an imprecise jump process P that satisfies the law
of iterated lower expectations. Fix a state history {Xu = xu} in H, a sequence
of time points v = (t1, . . . , tn) in U≻u and a gamble f on Xv . Then

EP( f (Xv ) |Xu = xu) = EP( f1(X t1 ) |Xu = xu),

where f1 : X→R is defined recursively: the initial condition is fn := f , and for
all k in {1, . . . ,n −1}, we let t1:k := (t1, . . . , tk ) and let fk be the gamble on Xt1:k

defined by

fk (yt1:k ) := EP( fk+1(yt1:k , X tk+1 ) |Xu = xu , X t1:k = yt1:k ) for all yt1:k ∈Xt1:k .

Recall from Theorem 3.88120 that PM,Q satisfies the law of iterated lower
expectations wheneverQ is bounded and convex and has separately specified
rows – but PM

M,Q or PHM
M,Q may not. Thus, under these conditions, we may use

Proposition 4.11 to iteratively determine EM,Q( f (Xv ) |Xu = xu). Under the
same conditions, we can also rely on Propositions 3.81117 to 3.83118 to reduce
every step in the backward recursion to determining e∆QQ g or EM(g ), and
we then obtain the following backwards iterative method. For the proof of
this result, see Appendix 4.B204.

Theorem 4.12. Consider a non-empty set M of initial probability mass func-
tions, and a non-empty, bounded and convex set Q of rate operators that has
separately specified rows. Fix a state history {Xu = xu} in H, a sequence of
time points v = (t1, . . . , tn) in U≻u and a gamble f on Xv . Then

EM,Q( f (Xv ) |Xu = xu) =


[
e(t1−maxu)QQ f1

]
(xmaxu) if u ̸= ( ),

EM( f1) if u = ( ) and t1 = 0,

EM

(
e(t1−maxu)QQ f1

)
if u = ( ) and t1 > 0,

where f1 : X→R is defined recursively: the initial condition is fn := f , and for
all k in {1, . . . ,n −1}, we let t1:k := (t1, . . . , tk ) and let fk be the gamble on Xt1:k

defined by

fk (yt1:k ) := [
e(tk+1−tk )QQ fk+1(yt1:k ,•)

]
(ytk ) for all yt1:k ∈Xt1:k .
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Thus, wheneverQ is bounded and convex and has separately specified
rows, we can determine EM,Q( f (Xv ) |Xu = xu) by means of the backwards
recursive procedure of Algorithm 4.3. Note that Algorithm 4.1159 is the pre-

Algorithm 4.3: Iteratively computing EM,Q( f (Xv ) |Xu = xu)

Input: A non-empty set M of initial mass functions, a non-empty,
bounded and convex setQ of rate operators that has separately
specified rows, a state history {Xu = xu} in H, a sequence of
time points v = (t1, . . . , tn) in U≻u and a gamble f on Xv .

Output: EM,Q( f (Xv ) |Xu = xu)

1 fn := f
2 for k ∈ {n −1, . . . ,1} do ▷ Determine f1 as defined in Theorem 4.12↶
3 t1:k := (t1, . . . , tk )
4 ∆ := tk+1 − tk

5 fk : Xt1:k →R

6 for yt1:k ∈Xt1:k do
7 f ′

k+1
:= fk+1(yt1:k ,•) : X→R : z 7→ fk+1(yt1:k , z)

8 fk (yt1:k ) := [
e∆QQ f ′

k+1

]
(ytk )

9 if u ̸= ( ) then
10 ∆ := t1 −maxu

11 return
[
e∆QQ f1

]
(xmaxu)

12 else if t1 = 0 then
13 return EM( f1)
14 else
15 f0 : X→R

16 for x ∈X do
17 f0(x) := [

e t1QQ f1
]
(x)

18 return EM( f0)

cise specialisation of Algorithm 4.3, and that the similarities between Algo-
rithm 4.2168 and Algorithm 4.3 follow from the similarities between Theo-
rem 4.9166 and Theorem 4.12↶. As before, we will use our running example
to make clear how Algorithm 4.3 works in practice.

Joseph’s Example 4.13. Alice, Bruno, Cecilia, Deborah and Joseph are part of
the in-crowd at their workplace. They form a tight-knit group, and frequently
organise end-of-the-week celebrations on Friday afternoon. Amongst them-
selves, they refer to the co-workers that do not participate in these cele-
brations as ‘the lonely people’. One of these lonely people is Eleanor, who
stopped attending following one particularly joyful edition where, after telling
him that she had once picked up the rice in a church where a wedding had
been, she was picked on by Bruno. Despite not attending these Friday get-
togethers any more, Eleanor still gets on quite well with Deborah. Seeing
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that Eleanor’s contact with most other co-workers is essentially restricted to
awkward conversations in the vicinity of the coffee machine, Deborah sees
it as her duty to enlighten Eleanor with all the latest tittle-tattle. On one of
these gossip-sharing occasions, Deborah tells Eleanor that Joseph has used
one or more of the n radioactive isotopes for his machine.

Eleanor believes that Joseph might have done something more intricate
than using a single radioactive isotope, possibly using a mixture of isotopes
or switching between isotopes. Thus, we take it that her beliefs are accu-
rately modelled by EM,Q2

, with M = {IH} as in Joseph’s Example 4.3161 and
Q2 as defined in Joseph’s Example 4.4163. Note that by construction, Q2 is
convex and has separately specified rows. Like Deborah, Eleanor is interested
in a (tight) lower bound on the probability that Josephs machine displays
the same outcome one minute and two minutes after he switches it on. To
illustrate the workings of Algorithm 4.3↶, we compute this lower probabil-
ity PM,Q2

(X1 = X2) for the numerical values of Joseph’s Example 4.3161.
Basically, we repeat the steps of Joseph’s Example 4.2158 but now using

the lower rate operator Q :=QQ2 instead of a rate operator Q. First, we need
to determine the components of the gamble g1; that is, for any x in X, we
need to determine

f1(x) = [
eQ f (x,•)

]
(x).

Observe that f (H,T)− f (H,H) =−1 and f (H,T)− f (T,T) =−1, so by Eq. (3.75)115,

f1(H) = f (H,H)+ 1−e−(λ+λ)

λ+λ
λ
(

f (H,T)− f (H,H)
)

= 1− (
1−e−(λ+λ)) λ

λ+λ
,

and similarly,

f1(T) = 1− (
1−e−(λ+λ)) λ

λ+λ
.

Because {Xu = xu} =Ω and hence u = (), we also need to determine the
components of the gamble f0 on X, given for all x in X by

f0(x) = [
eQ f1

]
(x).

Because f1(H) = f1(T), it follows from Eq. (3.75)115 that

f0(H) = f0(T) = f1(H) = 1− (
1−e−(λ+λ)) λ

λ+λ
.

Therefore,

PM,Q2
(X1 = X2) = Ep0 ( f0) = f0(H) = 1− (

1−e−(λ+λ)) λ

λ+λ
≈ 0.4493.
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4.2 Computing the exponential of a lower rate operator

Recall from Joseph’s Example 4.4163 that P HM
M,Q2

(X1 = X2) ≈ 0.5249, so

PM,Q2
(X1 = X2) = EM,Q2

( f (X1, X2))

< E HM
M,Q2

( f (X1, X2)) = P HM
M,Q2

(X1 = X2).

Thus, in this case one of the inequalities in Eq. (3.68)105 is strict. ¢

4.1.5 A setQ of rate operators that does not have separately speci-
fied rows or is not convex

In practice, it may happen thatQ is not convex or does not have separately
specified rows, or we might want to determine E HM

M,Q instead of E M
M,Q or EM,Q.

This is not a problem though, because even if Q does not have separately
specified rows (or is not convex), we can always compute a conservative
bound on the (conditional) lower expectation with respect to PHM

M,Q, PM
M,Q and

PM,Q. IfQ is bounded, then it follows from Proposition 3.65110 that Q :=QQ

is a lower rate operator; consequently, it follows from Lemma 3.69111 that
the set Q′ :=QQ of rate operators that dominate Q has separately specified
rows and is convex. Hence, we can use Algorithms 4.2168 and 4.3171 to com-
pute the lower expectation with respect to PM

M,Q′ and/or PM,Q′ . Because Q′
contains Q, the corresponding lower expectation E M

M,Q′ is more conservative
than – or alternatively, provides a lower bound for – the lower expectations
E HM
M,Q and E M

M,Q; similarly, EM,Q′ is more conservative than E HM
M,Q, E M

M,Q and
EM,Q. The setsQ and Q′ furthermore have the same lower envelope due to
Lemma 3.66110, so it is as if you simply apply the algorithms for Q :=QQ, even
if Q does not satisfy the required properties.

What is essential though, is whether we can compute
[
e∆Q f

]
(x). The

reader will probably agree that it is extremely difficult – if not impossible –
to obtain an analytical expression for

[
e∆Q f

]
(x) in case the state space X

consists of more than two states. Hence, it is vital that we have efficient
numerical methods for accurately computing

[
e∆Q f

]
(x).

4.2 Computing the exponential of a lower rate operator

Consider a lower rate operator Q, and let f be a gamble on X. Recall from
Proposition 3.78115 that

R≥0 →G(X) : t 7→ e tQ f

is the unique solution of the initial value problem

d

dt
ft =Q ft with f0 = f , (4.1)
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Computing lower expectations of simple variables

where for t = 0 we only impose the derivative from the right. Thus, one way
to compute

[
e tQ f

]
(x) is to numerically integrate this non-linear ordinary

differential equation.

Numerical methods to approximate the solution of ordinary differen-
tial equations are available in abundance. It is certainly outside the scope
of this dissertation to give an overview of all methods; for a thorough yet
introductory-level overview, we refer to (Hairer et al., 2008; Iserles, 2009). To
understand the remainder, it suffices to understand that every numerical
integration method boils down to the iterative procedure of Algorithm 4.4.

Algorithm 4.4: Iteratively approximate e tQ f

Input: A lower rate operator Q, a time point t in R≥0 and a gamble f
on X.

Output: An approximation f̃n of e tQ f
1 f̃0 := f ; t0 := 0; k := 0
2 while tk < t do
3 Pick a time step ∆k in ]0, t − tk ].

4 Compute f̃k+1 using Q, f̃k and ∆k .

5 tk+1 := tk +∆k ; k := k +1
6 n := k

7 return f̃n

A numerical integration method consists of two parts: a mechanism to
choose the next time step ∆k , and a mechanism to compute the approxima-
tion f̃k+1 of e tk+1Q f using the previous approximation f̃k , the time step ∆k

and the lower rate operator Q. For most methods, there is a conservative
(theoretical) upper bound on the error ∥e tQ f − f̃n∥ that is made by the approx-
imation. However, in the words of Iserles (2009, p. 7), ‘in an overwhelming
majority of practical cases [this upper bound] is too large by many orders of
magnitude’, meaning that it is usually much too conservative; for this reason,
he says that such an upper bound ‘must not be used in practical estimations
of numerical error!’ In fact, most numerical integration methods include a
mechanism to numerically estimate the error. Even more, this estimate of
the error is used to determine the step size in such a way that in the end, the
(estimated) error is lower than some desired maximal error ϵ – see (Hairer
et al., 2008, Section II.3) or (Iserles, 2009, Chapter 6) for the general principle.

Going against this tradition, both Škulj (2015, Section 4) and Krak et al.
(2017, Algorithm 1) propose approximation methods that use a (theoretical)
upper bound on the error ∥e tQ f − f̃n∥ to determine the step size. Škulj (2015,
Section 4) proposes three methods: one with a fixed step size, a second with
an adaptive step size and a third that is a combination of the previous two.
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4.2 Computing the exponential of a lower rate operator

He proposes to compute the approximation f̃k+1 as

f̃k+1 = e∆kQk f̃k ≈ e∆kQ e tkQ f = e(tk+∆k )Q f = e tk+1Q f ,

where Qk is a transition rate operator in QQ such that Q f̃k = Qk f̃k . One

drawback of this method is that it needs the operator exponential e∆kQ ,
which – in general – has to be numerically approximated as well. Škulj (2015)
mentions that his methods turn out to be quite computationally heavy, even
if the uniform and adaptive methods are combined.

Krak et al. (2017, Algorithm 1) propose an alternative method that uses n
steps with a fixed step size ∆ := t/n. They put forward a method to choose the
number of steps n such that the error ∥e tQ f − f̃n∥ is guaranteed to be lower
than the desired maximal error ϵ, and they compute the approximation as

f̃k+1 = (I +∆Q) f̃k = f̃k +∆Q f̃k . (4.2)

This, of course, is Euler’s method, which is perhaps the most basic and well-
known numerical integration method there is – see (Hairer et al., 2008, Sec-
tion I.7) or (Iserles, 2009, Section 1.2). Crucially, Krak et al. (2017) guarantee
that the approximation error ∥e tQ f − f̃n∥ is lower than or equal to ϵ, and argue
that their method is computationally more efficient than Škulj’s (2015) for two
reasons. The first one is that when comparing both methods with a fixed step
size, theirs requires fewer iterations – or, equivalently, can take larger steps.
Second, in every step of the iteration, they only need to compute (I +∆kQ) f̃k ,

whereas Škulj’s (2015) method requires one to first determine Qk and subse-
quently compute e∆kQk f̃k , which has a much larger computational footprint.

Most numerical integration methods require repeated evaluation of Q f ,
so it is absolutely critical that we can actually do this. As we have seen
in Section 3.3.3109, a lower rate operator is typically defined as the lower
envelope of a non-empty and bounded set Q of rate operators, preferably
one that is convex and has separately specified rows. Usually, such a set Q is
defined through linear inequalities; examples can be found in Power Network
Example 6.45313 in Chapter 6273 or in Section 8.3.3428 in Chapter 8403 further
on. Evaluating its lower envelope QQ is then not an issue, because this
amounts to solving a simple constrained linear optimisation problem, for
example with the help of linear programming methods. From here on, we will
therefore assume that evaluating the lower rate operator QQ is tractable – that
is, that the optimisation problem in Eq. (3.71)109 can be solved efficiently.

In the remainder of this section, we improve on the approximation
method suggested by Krak et al. (2017, Algorithm 1) in two ways. First, we
obtain tighter bounds for the approximation error in Section 4.2.1↷. Second,
we use these tighter bounds to choose a fixed step size for Euler’s method in
Section 4.2.2181, and propose a mechanism to increase the step size on the
fly in Section 4.2.3184.
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4.2.1 Bounding the approximation error

Consider a lower rate operator Q, a time point t in R≥0 and a gamble f on
X. Suppose that we approximate e tQ f by means of Euler’s method, taking
n steps of size ∆1, . . . , ∆n in R>0 such that t =∑n

k=1∆n . This means that we
iteratively compute

f̃1 = (I +∆1Q) f , f̃2 = (I +∆2Q) f̃1, . . . , f̃n = (I +∆nQ) f̃n−1.

In order to be able to choose these step sizes in an informed manner later
on, we determine a theoretical upper bound on the approximation error
∥e tQ f − f̃n∥.

Approximating the semi-group

It will be instructive to first look at approximations of the semi-group itself.
For any sequence T 1, . . . , T n of non-negatively homogeneous operators, we
define the non-negatively homogeneous operator

n∏
k=1

T k := T n · · ·T 1,

where we choose to interpret
∏n

k=1 T k as first applying T 1, then T 2, and so on;
this interpretation is a bit unconventional and might feel counter-intuitive,
but it will tremendously simplify our notation in the remainder of this section.

Instead of looking at the approximation error

∥∥e tQ f − f̃n
∥∥=

∥∥∥∥e tQ f −
n∏

k=1
(I +∆kQ) f

∥∥∥∥,

for some given f , we will look at∥∥∥∥e tQ −
n∏

k=1
(I +∆kQ)

∥∥∥∥
op

=
∥∥∥∥ n∏

k=1
e∆kQ −

n∏
k=1

(I +∆kQ)

∥∥∥∥
op

, (4.3)

where the equality follows from the semi-group property (SG2)78. Essential
to this will be the following result, taken from (Krak et al., 2017, Lemma E.4).

Lemma 4.14. Let T 1, . . . , T n and S1, . . . , Sn be two finite sequences of lower
transition operators. Then∥∥∥∥∥ n∏

k=1
T k −

n∏
k=1

Sk

∥∥∥∥∥
op

≤
n∑

k=1
∥T k −Sk∥op.

We use this result to prove a stronger version of Lemma E.5 in (Krak et al.,
2017).

176



4.2 Computing the exponential of a lower rate operator

Lemma 4.15. Consider a lower rate operator Q, a natural number n and for
every k in {1, . . . ,n}, a non-negative real number ∆k such that ∆k∥Q∥op ≤ 2. If
we let ∆ :=∑n

k=1∆k , then∥∥∥∥∥(I +∆Q)−
n∏

k=1
(I +∆kQ)

∥∥∥∥∥
op

≤ 1

2
∆2∥Q∥2

op.

Our proof is essentially the same as that of Lemma E.5 in Krak et al. (2017),
but we repeat it here for the sake of completeness.

Proof. The statement is trivially true in case n = 1, so we may assume without loss of
generality that n > 1. Observe that∥∥∥∥∥(I +∆Q)−

n∏
k=1

(I +∆kQ)

∥∥∥∥∥
op

=
∥∥∥∥∥
(

I +
(n−1∑

k=1
∆k

)
Q

)
+∆nQ −

n−1∏
k=1

(I +∆kQ)−∆nQ
n−1∏
k=1

(I +∆kQ)

∥∥∥∥∥
op

≤
∥∥∥∥∥
(

I +
(n−1∑

k=1
∆k

)
Q

)
−

n−1∏
k=1

(I +∆kQ)

∥∥∥∥∥
op

+
∥∥∥∥∥∆nQ −∆nQ

n−1∏
k=1

(I +∆kQ)

∥∥∥∥∥
op

, (4.4)

where the inequality follows from (N2)76. We take a closer look at the second term. It
follows from (N1)76 and (LR9)113 that∥∥∥∥∥∆nQ −∆nQ

n−1∏
k=1

(I +∆kQ)

∥∥∥∥∥
op

≤∆n∥Q∥op

∥∥∥∥∥I −
n−1∏
k=1

(I +∆kQ)

∥∥∥∥∥
op

,

Observe that I = I n−1 is a lower transition operator, as well as (I +∆kQ) for all k
in {1, . . . ,n −1} due to Lemma 3.72112. Therefore, it follows from Lemma 4.14↶ that∥∥∥∥∥∆nQ −∆nQ

n−1∏
k=1

(I +∆kQ)

∥∥∥∥∥
op

≤∆n∥Q∥op

n−1∑
k=1

∥∥∥I − (I +∆kQ)
∥∥∥

op
=∆n∥Q∥2

op

n−1∑
k=1

∆k ,

where for the final equality we have used (N1)76. From the previous inequality and
Eq. (4.4), we infer that∥∥∥∥∥(I +∆Q)−

n∏
k=1

(I +∆kQ)

∥∥∥∥∥
op

≤
∥∥∥∥∥
(

I +
(n−1∑

k=1
∆k

)
Q

)
−

n−1∏
k=1

(I +∆kQ)

∥∥∥∥∥
op

+∆n∥Q∥2
op

n−1∑
k=1

∆k .

If we apply the same trick n − 1 more times – or, alternatively, use mathematical
induction – we obtain that∥∥∥∥∥(I +∆Q)−

n∏
k=1

(I +∆kQ)

∥∥∥∥∥
op

≤ ∥Q∥2
op

n∑
k=2

∆k

k−1∑
ℓ=1

∆ℓ

≤ 1

2

(
n∑

k=1
∆k

)2

∥Q∥2
op = 1

2
∆2∥Q∥2

op,
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as required.

Next, we use the preceding result to prove a stronger version of Lemma E.9
in (Krak et al., 2017).

Lemma 4.16. Consider a lower rate operator Q. Then for any ∆ in R≥0,

∥e∆Q − (I +∆Q)∥op ≤ 1

2
∆2∥Q∥2

op.

Again, our proof is essentially that of Lemma E.9 in (Krak et al., 2017), but we
repeat it for the sake of completeness.

Proof. Fix any positive real number ϵ. Due to Proposition 3.74114, there is a natural
number n such that ∆∥Q∥op ≤ 2n and

∥∥e∆Q −
(
I +δQ

)n∥∥
op ≤ ϵ,

with δ := ∆/n. It follows from this inequality and Lemma 4.15↶ that

∥∥e∆Q − (I +∆Q)
∥∥

op = ∥∥e∆Q − (I +δQ)n + (I +δQ)n − (I +∆Q)
∥∥

op

≤ ∥∥e∆Q − (I +δQ)n∥∥
op +∥∥(I +δQ)n − (I +∆Q)

∥∥
op

≤ ϵ+∥(I +δQ)n − (I +∆Q)∥op ≤ ϵ+ 1

2
∆2∥Q∥2

op.

Because this inequality holds for any arbitrary positive real number ϵ, we have proven
the statement.

It is Lemma 4.16 that we will need in the remainder, but it would be
strange not to mention that it also implies the following result.

Corollary 4.17. Consider a lower rate operator Q and a time point t
in R≥0. Then for any sequence ∆1, . . . , ∆n of non-negative real numbers such
that

∑n
k=1∆k = t and ∆k∥Q∥op ≤ 2 for all k in {1, . . . ,n},

∥∥∥∥∥e tQ −
n∏

k=1
(I +∆kQ)

∥∥∥∥∥
op

≤ 1

2
∥Q∥2

op

n∑
k=1

∆2
k .

Proof. Follows almost immediately from Eq. (4.3)176, Lemma 3.72112,
Lemma 4.14176 and Lemma 4.16

178



4.2 Computing the exponential of a lower rate operator

Two convenient semi-norms

Remember that our goal is to obtain a theoretical bound on the approxima-
tion error ∥e tQ f −∏n

k=1(I +∆kQ) f ∥. To this end, we will use semi-norms, that
is, non-negative real-valued functions on G(X) that satisfy (N1)76 and (N2)76

but not necessarily (N3)76 (see Schechter, 1997, Section 22.2). Concretely, we
need the variation semi-norm ∥•∥v and the centred semi-norm ∥•∥c, defined
for all f in G(X) by

∥ f ∥v := ∥ f −min f ∥ = max f −min f (4.5)

and

∥ f ∥c :=
∥∥∥∥ f − max f +min f

2

∥∥∥∥= 1

2
(max f −min f ) = 1

2
∥ f ∥v. (4.6)

Verifying that ∥•∥v and ∥•∥c are semi-norms but not norms is straightforward,
and it follows almost immediately from the definition above that

N6. ∥ f +µ∥v = ∥ f ∥v and ∥ f +µ∥c = ∥ f ∥c for all f in G(X) and µ in R.

More importantly, these semi-norms are relevant due to the following three
properties.

Lemma 4.18. For any lower transition operators T , T 1, T 2, S1, S2 and any
gamble f on X,

LT12. ∥T f ∥v ≤ ∥ f ∥v;

LT13. ∥T f ∥c ≤ ∥ f ∥c;

LT14. ∥T f −S f ∥ ≤ ∥T −S∥op∥ f ∥c;

LT15. ∥T 1T 2 f −S1S2 f ∥ ≤ ∥T 2 f −S2 f ∥+∥T 1 −S1∥op∥S2 f ∥c.

Proof. (LT12) follows immediately from (LT4)108, because

∥T f ∥v = maxT f −minT f ≤ max f −min f = ∥ f ∥v.

The same argument proves (LT13), but this also follows immediately from (LT12) and
Eq. (4.6).

Next, we prove (LT14). To that end, we let µ f := (max f +min f )/2 and observe that

∥T f −S f ∥ = ∥T f −µ f −S f +µ f ∥ = ∥T ( f −µ f )−S( f −µ f )∥
= ∥(T −S)( f −µ f )∥ ≤ ∥T −S∥op∥ f −µ f ∥ = ∥T −S∥op∥ f ∥c,

where the second equality follows from (LT5)108, the inequality follows from (N4)77
and the last equality follows from Eq. (4.6).

To prove (LT15), it suffices to observe that

∥T 1T 2 f −S1S2 f ∥ = ∥T 1T 2 f −T 1S2 f +T 1S2 f −S1S2 f ∥
≤ ∥T 1T 2 f −T 1S2 f ∥+∥T 1S2 f −S1S2 f ∥
≤ ∥T 2 f −S2 f ∥+∥T 1S2 f −S1S2 f ∥
≤ ∥T 2 f −S2 f ∥+∥T 1 −S1∥op∥S2 f ∥c,
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where the first inequality follows from (N2)76, the second inequality follows from
(LT8)108 and the third inequality follows from (LT14)↶.

We use the centred semi-norm ∥•∥c in the following result, which estab-
lishes the theoretical bound on the approximation error that we were after.

Lemma 4.19. Consider a lower rate operator Q, a non-negative real number t
and a gamble f on X. Let ∆0, . . . , ∆n−1 be a sequence of non-negative real
numbers such that

∑n−1
k=0∆k = t and, for all k in {0, . . . ,n −1}, ∆k∥Q∥op ≤ 2.

Then ∥∥∥∥∥e tQ f −
n−1∏
k=0

(I +∆kQ) f

∥∥∥∥∥≤ 1

2
∥Q∥2

op

n−1∑
k=0

∆2
k∥ f̃k∥c,

with f̃0 := f and, for every k in {0, . . . ,n −1}, f̃k+1 := (I +∆kQ) f̃k .

Proof. Our proof is one by mathematical induction. Thus, first we verify that the
statement is true in case n = 1. To that end, we observe that t =∆0 and∥∥∥e tQ f − (I +∆0Q) f

∥∥∥≤
∥∥∥e∆0Q − (I +∆0Q)

∥∥∥
op

∥ f ∥c ≤ 1

2
∆2

0∥Q∥2
op∥ f ∥c,

where the first inequality follows from (LT14)↶ and the second from Lemma 4.16178.
It is now a matter of straightforward verification that this agrees with the inequality of
the statement.

For the inductive step, we assume that the statement holds for some natural
number n, and verify that the statement then also holds for n +1. Let tn :=∑n−1

k=0 ∆k ,
and observe that∥∥∥∥∥e tQ f −

n∏
k=0

(I +∆kQ) f

∥∥∥∥∥
=

∥∥∥∥∥e∆nQ e tnQ f − (I +∆nQ)
n−1∏
k=0

(I +∆kQ) f

∥∥∥∥∥
≤

∥∥∥∥∥e∆nQ e tnQ f −e∆nQ
n−1∏
k=0

(I +∆kQ) f

∥∥∥∥∥+∥∥∥e∆nQ f̃n − (I +∆nQ) f̃n

∥∥∥
≤

∥∥∥∥∥e tnQ f −
n−1∏
k=0

(I +∆kQ) f

∥∥∥∥∥+∥∥∥e∆nQ f̃n − (I +∆nQ) f̃n

∥∥∥
≤

∥∥∥∥∥e tnQ f −
n−1∏
k=0

(I +∆kQ) f

∥∥∥∥∥+∥∥∥e∆nQ − (I +∆nQ)
∥∥∥

op
∥ f̃n∥c,

where for the first equality we have used Proposition 3.74114 and (SG2)78, the first
inequality holds due to (N2)76 and because f̃n = ∏n−1

k=0(I +∆kQ) f , the second in-
equality follows from (LT8)108 and the final inequality follows from (LT14)↶. To verify
the induction step, we simply use the induction hypothesis for the first term and
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Lemma 4.16178 for the second term:∥∥∥∥∥e tQ f −
n∏

k=0
(I +∆kQ) f

∥∥∥∥∥≤ 1

2
∥Q∥2

op

n−1∑
k=0

∆2
k∥ f̃k∥c +

∥∥∥e∆nQ − (I +∆nQ)
∥∥∥

op
∥ f̃n∥c

≤ 1

2
∥Q∥2

op

n−1∑
k=0

∆2
k∥ f̃k∥c + 1

2
∆2

n∥Q∥2
op∥ f̃n∥c

= 1

2
∥Q∥2

op

n∑
k=0

∆2
k∥ f̃k∥c.

This is the inequality of the statement, so we have verified the induction step.

4.2.2 The Euler method with a fixed step size

We can use Lemma 4.19↶ to establish approximation methods that ensure
that the approximation error is lower than the desired maximal error ϵ as
follows. The most straightforward method is to use a fixed step size ∆k =∆
for every iteration. The following result establishes how to choose this fixed
step size ∆; it is a strengthened version of (Erreygers et al., 2017b, Lemma 23).

Proposition 4.20. Consider a lower rate operator Q, a non-negative real
number t , a gamble f on X and a desired maximal error ϵ in R>0. Fix some
natural number n such that

n ≥ max

{
1

2
t∥Q∥op,

1

2ϵ
t 2∥Q∥2

op∥ f ∥c

}
,

and let ∆ := t/n, f̃0 := f and, for any k in {0, . . . ,n −1}, f̃k+1 := f̃k +∆Q f̃k . Then

∥∥e tQ f − f̃n
∥∥= ∥∥e tQ f − (

I +∆Q
)n f

∥∥≤ 1

2
∆2∥Q∥2

op

n−1∑
k=0

∥ f̃k∥c ≤ ϵ.

Proof. Due to Lemma 3.72112, the condition on n guarantees that (I+∆Q)k is a lower

transition operator. Thus, ∥ f̃k∥c ≤ ∥ f ∥c by repeated application of (LT13)179. From
this and Lemma 4.19↶, we infer that∥∥∥e tQ f −

(
I +∆Q

)n
f
∥∥∥≤ 1

2
∆2∥Q∥2

op

n−1∑
k=0

∥ f̃k∥c ≤ 1

2

t 2

n
∥Q∥2

op∥ f ∥c ≤ ϵ,

where the final inequality holds due to the condition on n.

Joseph’s Example 4.21. We again consider the lower rate operator Q that is
defined as the lower envelope of Q2 in Joseph’s Example 4.13171. We also use
the numerical values of Joseph’s Example 4.3161, so for any f in G(X),(

f (H)
f (T)

)
7→Q f =

(
min

{
λH( f (T)− f (H)) : λH ∈ {λ,λ}

}
min

{
λT( f (H)− f (T)) : λT ∈ {λ,λ}

}) , (4.7)

181



Computing lower expectations of simple variables

with λ := 1 and λ := 3/2.

Using (LR7)111, we find that ∥Q∥op = 2max{λ,λ} = 2λ = 3. Suppose we
want to approximate e tQ f with t = 1 and f = IH using an approximation of
the form (I + t

n Q)n f up to a desired maximal error ϵ= 1 ·10−3. By Proposi-
tion 4.20↶, we would need at least

max

{
1

2
t∥Q∥op,

1

2ϵ
t 2∥Q∥2

op∥ f ∥c

}
= max

{
3

4
,

9

4 ·10−3

}
= 2250

iterations n. ¢

Proposition 4.20↶ extends a similar result of Krak et al. (2017, Proposi-
tion 8.5) on two fronts. First, the lower bound

max

{
t∥Q∥op,

1

ϵ
t 2∥Q∥2

op∥ f ∥c

}
of Krak et al. (2017, Proposition 8.5) is twice as large as ours – excluding the
edge cases that t = 0 or ∥Q∥op = 0. Second, Proposition 4.20↶ establishes
that we can compute an upper bound

ϵotf := 1

2
∆2∥Q∥2

op

n−1∑
k=0

∥ f̃k∥c

on the approximation error ‘on the fly’ – meaning during the iterations – that
is at least as good as and possibly better than the desired maximal error ϵ. To
prevent any unnecessary iterations, we identify three obvious cases where
e tQ f is equal to f .

Corollary 4.22. Consider a lower rate operator Q, a non-negative real num-
ber t and a gamble f on X. Then e tQ f = f whenever ∥Q∥op = 0 or t = 0
or ∥ f ∥c = 0.

Proof. By (N3)76, ∥Q∥op = 0 if and only Q = 0. Whenever this is the case, it fol-
lows from Proposition 3.78115 that e tQ f = f . In case t = 0, it follows from Propo-

sition 3.74114 and (SG1)77 that e tQ f = I f = f . Finally, we observe that ∥ f ∥c = 0 if
and only if min f = max f = f . Whenever this is the case, it follows from Proposi-

tion 3.74114 and (LT4)108 that min f ≤ e tQ f ≤ max f ; consequently, e tQ f = f .

Using Proposition 4.20↶ and Corollary 4.22, we obtain the approximation
method of Algorithm 4.5↷. The tighter error bound ϵotf is computed on the
fly in line 7, but this step is optional. The main reason for not executing this
step is that, as we will see in the following example, it adds non-negligible
computational overhead.

Joseph’s Example 4.23. Following Joseph’s Example 4.21↶, we use Algo-
rithm 4.5↷ to approximate e tQ f – with the lower rate operator Q as defined

in Eq. (4.7)↶ – with t = 1 and f = IH up to the desired maximal error ϵ= 1·10−3.
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Algorithm 4.5: Euler’s method with a fixed step size, guaranteed
error bound and on-the-fly error bound

Input: A lower rate operator Q, a time point t in R≥0, a gamble f on
X and a desired maximal error ϵ in R>0.

Output: An approximation f̃n of e tQ f with ∥e tQ f − f̃n∥ ≤ ϵotf ≤ ϵ.
1 n := ⌈

max
{ 1

2 t∥Q∥op, 1
2ϵ t 2∥Q∥2

op∥ f ∥c
}⌉

2 f̃0 := f ; ϵotf := 0
3 if n > 0 and ∥ f ∥c > 0 then ▷ Note that n = 0 whenever ∥Q∥op = 0.

4 ∆ := t/n

5 for k ∈ {0, . . . ,n −1} do
6 f̃k+1 := f̃k +∆Q f̃k

7 ϵotf := ϵotf + 1
2∆

2∥Q∥2
op∥ f̃k∥c

8 return f̃n ,ϵotf

Executing Algorithm 4.5 results in n = 2250 direct Euler steps with step size
∆= 1/2250 , and we eventually obtain the approximation

e tQ f = eQ
IH ≈ f̃2250 =

(
0.4492
0.3672

)
with ϵotf ≈ 0.3672 ·10−3.

Note that our on-the-fly error bound ϵotf is well below the desired maximal
error ϵ = 1 · 10−3. Recall from Joseph’s Example 3.79115 that we have an
analytical expression for eQ

IH; because IH(H) > IH(T),

eQ
IH =

(
1
0

)
+ 1−e(λ+λ)

λ+λ

(−λ
λ

)
.

Thus, in this case we can determine the actual error ϵact := ∥eQ
IH − f̃2250∥,

which turns out to be 6.841 ·10−5, up to four significant digits. Note that the
(actual) numerical error ϵact is significantly smaller than the on-the-fly error
bound ϵotf, and more than an order of magnitude smaller than the desired
maximal error ϵ, as is to be expected from the discussion at the beginning of
Section 4.2173. In fact, we find that using Euler’s method with n = 150 steps of
size ∆= 1/150 already results in a numerical error that is approximately equal
to the desired maximal error ϵ= 1 ·10−3.

Computing the on-the-fly error bound ϵotf comes at a cost, though. If
we execute Joseph’s Example 4.21181 without the step in line 7, our (naive
and unoptimized) Python implementation takes about 29.73 ms to run (on
average over 100 runs). However, in case we do compute the on-the-fly error,
our Python implementation takes about 35.86 ms to run (on average over 100
runs), so about 20 % longer; see also Table 4.1186. ¢
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4.2.3 The Euler method with an adaptive step size

Due to Joseph’s Example 4.23182, we are inched to believe that there is sig-
nificant margin for improvement on Euler’s method. To that end, we take a
step back and suppose that we approximate e tQ f using Euler’s method by
taking n steps with – possibly different – step sizes ∆0, . . . , ∆n−1 such that
t =∑n−1

k=0∆k and ∆k∥Q∥op ≤ 2 for all k in {0, . . . ,n −1}. That is, we iteratively
compute

f̃1 = (I +∆0Q) f , f̃2 = (I +∆1Q) f̃1, . . . , f̃n = (I +∆n−1Q) f̃n−1.

By Lemma 4.19180, the approximation error then has a guaranteed upper
bound:

∥e tQ f − f̃n∥ ≤ 1

2
∥Q∥2

op

n−1∑
k=0

∆2
k∥ f̃k∥c.

This upper bound is a sum of the local errors of the iterations, where the local
error of the k-th iteration corresponds to the term

1

2
∥Q∥2

op∆
2
k∥ f̃k∥c.

If we keep track of this local error for every iteration, we can use this
information when choosing our step size. One of the more straightforward
ways to do this, is to choose the step size ∆k such that the local error is
proportional to it. More formally, we choose ∆k such that ∆k∥Q∥op ≤ 2 and

1

2
∆2

k∥Q∥2
op∥ f̃k∥c ≤ ϵ∆k

t
⇔∆k ≤ 2ϵ

t∥Q∥2
op∥ f̃k∥c

.

This way, the step size ∆k of the k-th iteration is at least as large as the step
size ∆k−1 of the previous iteration, because by (LT13)179,

∥ f̃k∥c = ∥(I +∆k−1Q) f̃k−1∥c ≤ ∥ f̃k−1∥c ≤ ·· · ≤ ∥ f̃1∥c = ∥(I +∆0Q) f̃0∥c

≤ ∥ f̃0∥c = ∥ f ∥c.

Recall from Eq. (4.6)179 that ∥ f̃k∥c = (max f̃k −min f̃k )1/2, so this means that
we need to determine max f̃k and min f̃k every iteration. Because this incurs
some computational overhead, we might choose to only re-evaluate the step
size every m iterations instead of every iteration. Taking care to ensure that
our step sizes sum up to t , we obtain the method of Algorithm 4.6↷.

Note that we keep track of a tighter on-the-fly error bound ϵotf in lines 10
and 15. In contrast to Algorithm 4.5↶, this adds negligible computational
overhead because we already need to compute ∥ f̃k∥c every m iterations to
re-evaluate the step size. This is really the sole reason to keep track of this
error, because if this method works as intended and m is not all too large,
then we expect that ϵotf is almost equal to ϵ.
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Algorithm 4.6: Euler’s method with a variable step size, guaranteed
error bound and on-the-fly error bound

Input: A lower rate operator Q, a time point t in R≥0, a gamble f on
X, a maximal error ϵ in R>0 and a natural number m.

Output: An approximation f̃n of e tQ f with ∥e tQ f − f̃n∥ ≤ ϵotf ≤ ϵ.
1 trem := t ; f̃0 := f ; ϵotf := 0; ℓ := m; k := 0; ∆fin := 0
2 if ∥Q∥op > 0 then
3 while trem > 0 and ∥ f̃k∥c > 0 do
4 ∆ := min

{
trem,2/∥Q∥op, (2ϵ)/(t∥Q∥2

op∥ f̃k∥c)
}

5 if ℓ∆≥ trem then ▷ Check the termination condition

6 ℓ := ⌊trem/∆⌋
7 ∆fin := trem −ℓ∆
8 trem := 0
9 else trem := trem −ℓ∆

10 ϵotf := ϵotf + 1
2ℓ∆

2∥Q∥2
op∥ f̃k∥c

11 for i ∈ {0, . . . ,ℓ−1} do
12 f̃k+1 := f̃k +∆Q f̃k

13 k := k +1
14 if ∆fin > 0 then ▷ The final step

15 ϵotf := ϵotf + 1
2∆

2
fin∥Q∥2

op∥ f̃k−ℓ∥c

16 f̃k+1 := f̃k +∆finQ f̃k

17 k := k +1
18 n := k

19 return f̃n ,ϵotf

Joseph’s Example 4.24. Like in Joseph’s Example 4.23182, we use Algorithm 4.6
to obtain an approximation for eQ

IH. We do this for m = 1 and m = 5, and
report our findings in Table 4.1↷. In this table, we see that with the adaptive
step size we only need about 1/3 of the iterations that we need with the fixed
step size, and that the on-the-fly error bound ϵotf is approximately equal to
the desired maximal error ϵ; in other words, the algorithm works as intended.

However, fewer iterations do not necessarily imply a shorter runtime.
Qualitatively, we can conclude the following from Table 4.1↷. First, keeping
track of the on-the-fly error bound ϵotf increases the duration, as expected.
Second, Algorithm 4.6 is faster than Algorithm 4.5183, at least if we choose m
large enough. And third, both methods yield an actual error that is signifi-
cantly lower than the desired maximal error. ¢

The following result establishes what we have empirically observed in
Joseph’s Example 4.24: that Algorithm 4.6 works as intended, and in partic-
ular that the total number of iterations n is at most equal to the number of
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Table 4.1 Comparison of the approximations in Joseph’s Example 4.23182 and
Joseph’s Example 4.24↶.

n denotes the number of iterations, ϵact and ϵotf denote the actual and on-the-fly
error, respectively, and Drel is the relative runtime (averaged over 100 runs).

Algorithm n ϵact/ϵ ϵotf/ϵ Drel

4.5183 2250 0.06841 0.3672 1.235
4.5183 (no ϵotf) 2250 0.06841 / 1
4.5183 (n = 150) 150 1.027 5.518 0.0456
4.6↶ (m = 1) 827 0.3052 0.9987 1.008
4.6↶ (m = 5) 832 0.6183 0.9987 0.5080

iterations that is required by Algorithm 4.5183.

Proposition 4.25. Consider a lower rate operator Q, a non-negative real
number t and a gamble f on X. We fix some desired maximal error ϵ in R>0

and a parameter m in N, and use Algorithm 4.6↶ to determine f̃n and ϵotf.
Then

∥e tQ f − f̃n∥ ≤ ϵotf ≤ ϵ
and

n ≤
⌈

max

{
1

2
t∥Q∥op,

1

2ϵ
t 2∥Q∥2

op∥ f ∥c

}⌉
.

Proof. In case t = 0, ∥Q∥op = 0 or ∥ f ∥c = 0, the statement follows immediately from
Corollary 4.22182. Therefore, we may assume without loss of generality that t > 0,
∥Q∥op > 0 and ∥ f ∥c > 0; consequently, n ≥ 1. To facilitate our proof, for every k

in {0, . . . ,n −1}, we denote the value of ∆ that is used in the computation of f̃k+1 on
line 12 – or, in case k = n −1, possibly ∆fin on line 16 – by ∆k .

Note that the condition of the while loop and the selection of the step sizes
ensures that

∑n−1
k=0 ∆k ≤ t . Set t ′ := ∑n−1

k=0 ∆k , and let δ := t − t ′. Note that δ≥ 0, and

that δ> 0 can only occur if ∥ f̃n∥c = 0 – meaning that f̃n is a constant function. In this
case,

∥e tQ f − f̃n∥ = ∥eδQ e t ′Q f − f̃n∥ = ∥eδQ e t ′Q f −eδQ f̃n∥ ≤ ∥e t ′Q f − f̃n∥, (4.8)

where we have used Proposition 3.74114 and (SG2)78 for the first equality, (LT4)108 for
the second equality and (LT8)108 for the inequality.

We denote the number of times that we run through the while loop by w +1,
with w being a non-negative integer. Due to line 12, for all j in {0, . . . , w − 1}, the
approximations of f̃ j m+1, . . . , f̃( j+1)m all use the same step size δ j :=∆ j m =∆ j m+1 =
·· · = ∆( j+1)m−1. Additionally, it follows from line 5 and following that in the final

run of the while loop, we determine the n −k⋆ approximations f̃k⋆+1, . . . , f̃n , with
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k⋆ := mw . Note that by choice of ∆ and ∆fin in the last while loop, 0 < n −k⋆ ≤ m. It
follows from these observations and lines 10 and 15 that

ϵotf =
1

2
m∥Q∥2

op

w−1∑
j=0

δ2
j ∥ f̃ j m∥c + 1

2
∥Q∥2

op∥ f̃k⋆∥c

n−1∑
k=k⋆

∆2
k

= 1

2
∥Q∥2

op

w−1∑
j=0

∥ f̃ j m∥c

m−1∑
i=0

∆2
j m+i +

1

2
∥Q∥2

op∥ f̃k⋆∥c

n−1∑
k=k⋆

∆2
k . (4.9)

On lines 4 and 7, we see that for every k in {0, . . . ,n −1}, the time step ∆k is chosen
in such a way that ∆k∥Q∥op ≤ 2. Consequently, it follows from Lemma 3.72112 and
repeated application of (LT13)179 that

∥ f̃n∥c = ∥(I +∆n−1Q) f̃n−1∥c ≤ ∥ f̃n−1∥c ≤ ·· · ≤ ∥ f̃0∥c = ∥ f ∥c. (4.10)

It follows immediately from these inequalities and Eq. (4.9) that

ϵotf ≥
1

2
∥Q∥2

op

n−1∑
k=0

∆2
k∥ f̃k∥c ≥ ∥e t ′Q f − f̃n∥, (4.11)

where the last inequality holds due to Lemma 4.19180. To establish the first part of
the statement, we furthermore recall from line 4 that for every j in {0, . . . , w −1} and i
in {0, . . . ,m −1},

∆ j m+i ≤
2ϵ

t∥Q∥2
op∥ f̃ j m∥c

;

and similarly, from lines 4 and 7 that for every k in {k⋆, . . . ,n −1},

∆k ≤ 2ϵ

t∥Q∥2
op∥ f̃k⋆∥c

.

From the two preceding inequalities and Eq. (4.9), we infer that

ϵotf ≤
w−1∑
j=0

m−1∑
i=0

∆ j m+i
ϵ

t
+

n−1∑
k=k⋆

∆k
ϵ

t
= ϵ

t

n−1∑
k=0

∆k = ϵ t ′
t
≤ ϵ. (4.12)

Finally, it follows from Eq. (4.8)↶ – which is only needed in case t ′ < t – and Eqs. (4.11)
and (4.12) that

∥e tQ f − f̃n∥ ≤ ∥e t ′Q f − f̃n∥ ≤ ϵotf ≤ ϵ,

which proves the first part of the statement.
To prove the second part of the statement, we let

∆⋆ := min

{
2

∥Q∥op
,

2ϵ

t∥Q∥2
op∥ f ∥c

}
.

and observe that

n⋆ :=
⌈

max

{
1

2
t∥Q∥op,

1

2ϵ
t 2∥Q∥2

op∥ f ∥c

}⌉
=

⌈
t

∆⋆

⌉
.

Consequently, n⋆∆⋆ ≥ t .
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In case w ≥ 1, it follows from Eq. (4.10)↶ that

2ϵ

t∥Q∥2
op∥ f̃(w−1)m∥c

≥ 2ϵ

t∥Q∥2
op∥ f̃(w−2)m∥c

≥ ·· · ≥ 2ϵ

t∥Q∥2
op∥ f̃0∥c

= 2ϵ

t∥Q∥2
op∥ f ∥c

.

Seeing that in these cases we are not yet in the final run of the while loop, the upper
bound trem for∆ in line 4 is never reached; therefore, the preceding inequalities imply
that

∆k⋆−1 =∆mw−1 ≥∆mw−2 ≥ ·· · ≥∆(w−1)m+i ≥ ·· · ≥∆0 ≥∆⋆. (4.13)

The final execution of the while loop requires some extra care. Let trem := t −∑k⋆−1
k=0 ∆k and

∆ := min

{
trem,

2

∥Q∥op
,

2ϵ

t∥Q∥2
op∥ f̃k⋆∥c

}
.

First, let us consider the case ∆< trem, Then because

2ϵ

t∥Q∥2
op∥ f̃k⋆∥c

≥ 2ϵ

t∥Q∥2
op∥ f ∥c

due to Eq. (4.10)↶, we have that

∆=∆k ≥∆⋆ for all k ∈ {k⋆, . . . ,n −2}, and 0 <∆n−1 ≤∆.

For this reason,
n−1∑

k=k⋆
∆k >

n−2∑
k=k⋆

∆k ≥ (n −1−k⋆)∆⋆. (4.14)

In the alternative case that ∆= trem > 0, it follows from Algorithm 4.6185 that n −1 =
k⋆, and we therefore obtain the same strict inequality:

n−1∑
k=k⋆

∆k =∆n−1 =∆= trem > 0 = (n −1−k⋆)∆⋆. (4.15)

In any case, we finally observe that

n⋆∆⋆ ≥ t ≥ t ′ =
n−1∑
k=0

∆k =
k⋆−1∑
k=0

∆k +
n−1∑

k=k⋆
∆k ≥ k⋆∆⋆+

n−1∑
k=k⋆

∆k

> k⋆∆⋆+ (n −1−k⋆)∆⋆ = (n −1)∆⋆,

where we have used Eq. (4.13) for the second inequality and Eqs. (4.14) and (4.15)
for the third inequality. Dividing both sides of this inequality by ∆⋆, we find that
n⋆+1 > n; because n⋆ and n are both natural numbers, this is equivalent to n⋆ ≥ n,
which is precisely the second part of the statement.

4.3 Ergodicity

Consider a lower rate operator Q, and suppose we are approximating e tQ f
using Algorithm 4.6185. Let us assume that we have done k iterations, and
have fixed the step size

∆ := min

{
trem,

2

∥Q∥op
,

2ϵ

t∥Q∥2
op∥ f̃k∥c

}
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for the next m iterations, with ∥ f̃k∥c > 0. In case trem is sufficiently large,
re-evaluating the step size after these m iterations only yields a larger step
size in case

∥ f̃k+m∥c =
∥∥∥(I +∆Q)m f̃k

∥∥∥
c
< ∥ f̃k∥c.

This inequality is always satisfied whenever(∀∆ ∈R>0,∆∥Q∥op ≤ 2
)(∀g ∈G(X),∥g∥c > 0

) ∥(I +∆Q)m g∥c < ∥g∥c. (4.16)

In fact, since the preceding inequality is invariant under translation or posi-
tive scaling of g – use (N1)76, (LT2)107 and (LT5)108 – it suffices if(∀∆ ∈R>0,∆∥Q∥op ≤ 2

)(∀g ∈G(X),0 ≤ g ≤ 1
) ∥(I +∆Q)m g∥v < 1. (4.17)

Readers that are familiar with (the ergodicity of) lower transition operators –
see (Hermans et al., 2012) or (Škulj et al., 2013) – will probably recognise this
condition, as it essentially states that the coefficient of ergodicity of the lower
transition operator (I +∆Q)m is strictly smaller than 1. It is this link between
our approximation methods and the coefficient of ergodicity – and ergodicity
in general – that we set out to investigate in this section.

For this reason, we discuss the coefficient of ergodicity for lower transition
operators, as well as the associated notion of ergodicity, in Section 4.3.1. In
Section 4.3.2191, we look at the related notion of ergodicity for lower rate op-
erators, and furthermore examine the crucial connection between these two
notions. Finally, we return to our methods to numerically approximate e tQ f
in Section 4.3.3194, where we use ergodicity to obtain an alternative theoreti-
cal error bound.

4.3.1 Ergodicity of lower transition operators

Hermans et al. (2012, Definition 2) put in place the essential notion of ergod-
icity of lower transition operators as follows.

Definition 4.26. A lower transition operator T is ergodic if for all f in G(X),
limn→∞ T n f exists and is a constant function.

The term ergodicity is well-known in the study of transition operators (or
matrices), but there is no universally-adopted meaning of the term. To take
away any possible confusion, we mention that for a transition operator T ,
our notion of ergodicity is equal to Tornambè’s (1995, Definition 4.7) – and
with Iosifescu’s (1980, Section 2.6.2) notion of indecomposability.

The condition of Definition 4.26 is in a form that makes it hard to check,
at least in general. Fortunately, Hermans et al. (2012, Proposition 3) establish
the following necessary and sufficient condition.

Proposition 4.27. The lower transition operator T is ergodic if and only if it is
regularly absorbing, meaning that it is

189



Computing lower expectations of simple variables

(i) top class regular, in the sense that

XT := {
x ∈X : (∃n ∈N)(∀y ∈X)

[
T n Ix

]
(y) > 0

} ̸=∅; (4.18)

(ii) top class absorbing, in the sense that(∀y ∈X \XT
)(∃n ∈N) [

T n IXT

]
(y) > 0.

If T is ergodic, then XT as defined by Eq. (4.18) is called the top class;
this terminology stems from the fact that XT is then the unique maximal
communication class induced by the accessibility relation corresponding
to T – see (Kemeny et al., 1960, Section 2.4) for transition operators and
(De Cooman et al., 2009, Section 4.1) for lower transition operators.

At first sight, one might think that it takes a bit of work to check the
two conditions in Proposition 4.27↶, but Hermans et al. (2012, Section 5)
establish a convenient procedure that simplifies this process considerably.
Since we do not really need this method here, we will not go into detail.
That being said, we do use some of their intermediary results in the proof of
Theorem 4.36194 further on, and it is for this reason that we repeat some of
their intermediary results in Appendix 4.C.1206.

The coefficient of ergodicity

Because a function f on X is constant if and only if ∥ f ∥v = 0 = ∥ f ∥c, it is clear
that if the lower transition operator T is ergodic, then

lim
n→+∞∥T n f ∥v = 0 for all f ∈G(X).

With the help of (LT4)108, one can verify that this condition is not only neces-
sary but also sufficient for ergodicity. For this reason, we take a closer look at
∥T n f ∥v in general and ∥T f ∥v in particular.

For any lower transition operator T , Škulj et al. (2013, Definition 1) define
its coefficient of ergodicity

ρ(T ) := max
{∥T f ∥v : f ∈G(X),0 ≤ f ≤ 1

}
. (4.19)

This coefficient has some interesting properties. For any two lower transition
operators T and S,

EC1. 0 ≤ ρ(T ) ≤ 1;

EC2. ρ(T S) ≤ ρ(T )ρ(S);

EC3. ∥T f ∥v ≤ ρ(T )∥ f ∥v for all f in G(X).

Proof. The first property, (EC1), follows immediately from (LT4)108. The second
property, (EC2), follows almost immediately from (EC3) and (LT4)108 (see also Škulj
et al., 2013, Corollary 15). Thus, what remains for us is to prove (EC3).
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4.3 Ergodicity

First, we consider the case that ∥ f ∥v = 0. Then ∥T f ∥v = 0 by (LT4)108, such
that (EC3)↶ holds. Second, we consider the case that ∥ f ∥v > 0. Note that 0 ≤ ( f −
min f )1/∥ f ∥v ≤ 1. Combining this with – in that order – (N6)179, (LT5)108, (LT2)107,
(N1)76 and Eq. (4.19)↶, we find that

∥T f ∥v = ∥T f −min f ∥v = ∥T ( f −min f )∥v =
∥∥∥∥∥ f ∥vT

(
f −min f

∥ f ∥v

)∥∥∥∥
v

=
∥∥∥∥T

(
f −min f

∥ f ∥v

)∥∥∥∥
v
∥ f ∥v ≤ ρ(T )∥ f ∥v,

as required

Hermans et al. (2012, Proposition 7) establish a second necessary and suffi-
cient condition for ergodicity, this time using the coefficient of ergodicity; a
similar result appears in (Škulj et al., 2013, Theorem 21).

Theorem 4.28. A lower transition operator T is ergodic if and only if there is
some natural number n such that ρ(T n) < 1.

Let us return to Eq. (4.17)189, which was our reason for looking into er-
godicity. With our newly-introduced notation, it follows from (EC3)↶ that
Eq. (4.17)189 holds whenever(∀∆ ∈R>0,∆∥Q∥op ≤ 2

)
ρ
(
(I +∆Q)m)< 1.

Due to Theorem 4.28, this condition implies that (I +∆Q) is ergodic for all
step sizes ∆ in R>0 such that ∆∥Q∥op ≤ 2.

4.3.2 Ergodicity of lower rate operators

As will become apparent, whether or not (I +∆Q) is ergodic is tightly con-
nected with the behaviour of e tQ f for large t . De Bock (2017b) was the first
to study this limit behaviour, and we recall some of his findings here. For
example, he shows that e tQ converges to a lower transition operator as t
recedes to +∞ (see De Bock, 2017b, Theorem 12). From this and (N4)77, we
infer that the limit limt→+∞ e tQ f exists for all f in G(X). Of course, this in
turn implies that the limit limt→+∞[e tQ f ](x) exists for every state x in X, but
take note that these limit values might differ for different x. De Bock (2017b,
Definition 2) calls the lower rate operator Q ergodic whenever the limits are
equal for all states, or equivalently, whenever e tQ f converges to a constant
function.

Definition 4.29. The lower rate operator Q is ergodic if for all f in G(X),
limt→∞ e tQ f is a constant function.

Note that Definition 4.29 is similar to Definition 4.26189. Here as well,
we should remark that different authors use the term ergodicity to refer to
various concepts for rate operators. For a rate operator Q, the definition
above is equal to Tornambè’s 1995, Definition 4.17.
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Computing lower expectations of simple variables

Joseph’s Example 4.30. For the sake of generality, we again consider a general
lower rate operator Q on the state space X = {H,T} which, as we have seen in
Joseph’s Example 3.64109, is of the form(

f (H)
f (T)

)
7→Q f =

(
min

{
λH( f (T)− f (H)) : λH ∈ {λH,λH}

}
min

{
λT( f (H)− f (T)) : λT ∈ {λT,λT}

}) ,

whereλH,λH ,λT andλT are non-negative real numbers such thatλH ≤λH and

λT ≤λT. Furthermore, we recall from Eq. (3.75)115 in Joseph’s Example 3.79115

that

e tQ f = f + 1−e−tλ f

λ f
Q f for all t ∈R≥0 and f ∈G(X),

where λ f := λH+λT if f (H) ≥ f (T) and λ f := λH+λT if f (H) < f (T), and the
second term is only added if λ f > 0. With this expression, we can check if Q
satisfies the condition of Definition 4.29↶.

Let us start with f = IH. If λIH =λH+λT = 0, limt→+∞ e tQ
IH = IH. Because

IH is not a constant function, we may conclude from this that Q is not ergodic

if λH+λT = 0. Using a similar argument with IT, one can verify that whenever

λH+λT = 0, Q is not ergodic either.

Thus, we now assume that λH+λT > 0 and λH+λT > 0. Observe now that
for any f in G(X) such that f (H) ≥ f (T),

lim
t→+∞e tQ f = f + 1

λH+λT

(
λH

(
f (T)− f (H)

)
λT

(
f (H)− f (T)

))= 1

λH+λT
(
λT f (H)+λH f (T)

)
,

where for the first equality we have used that limt→+∞ 1 − e−t (λH+λT) = 1.
Similarly, for any f in G(X) such that f (H) < f (T),

lim
t→+∞e tQ f = 1

λH+λT
(
λH f (T)+λT f (H)

)
.

The two preceding equalities show that e tQ f converges to a constant function
for all f in G(X). In conclusion, we have shown that Q is ergodic if and only
if λH+λT > 0 and λH+λT > 0. ¢

The preceding example illustrates that the condition in Definition 4.29↶
is in a form that is not the most convenient to check. Fortunately, De Bock
(2017b) establishes a necessary and sufficient condition that is a bit more easy
to grasp. The notions of upper and lower reachability allow for an elegant
statement of this condition (see Krak et al., 2017, Definitions 7 and 8).

Definition 4.31. Consider a lower rate operator Q. For any two states x and
y in X, we say that x is upper reachable from y , and denote this by y ,→ x,
if there is some sequence (x0, . . . , xn) in X with n in Z≥0, x0 = y and xn = x
such that [QIxk ](xk−1) > 0 for all k ∈ {1, . . . ,n}.
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4.3 Ergodicity

Note that any state x is always upper reachable from itself. Lower reacha-
bility is a bit more involved.

Definition 4.32. Consider a lower rate operator Q. For any state x in X and
any non-empty subset A of X, we say that A is lower reachable from x, and
denote this by x ←- A, if x belongs to Bn , where (Bk )k∈Z≥0 is the sequence that
is defined by the initial condition B0 := A and by the recursive relation

Bk+1 := Bk ∪
{

y ∈X \ Bk : [QIBk ](y) > 0
}

for all k ∈Z≥0,

and n ≤ |X \ A| is the first index k for which Bk = Bk+1.

The notions of upper and lower reachability might seem a bit daunting
at first, but checking them is actually quite simple in practice (see De Bock,
2017b, Algorithms 1 and 2). More importantly, and as announced, the follow-
ing result makes clear that they are linked to ergodicity in a fundamental way
(see De Bock, 2017b, Theorem 19).

Proposition 4.33. A lower rate operator Q is ergodic if and only if

XQ := {
x ∈X : (∀y ∈X) y ,→ x

} ̸=∅; (4.20)

and
(∀y ∈X \XQ ) y ←- XQ .

Whenever a lower rate operator Q is ergodic, we call the set XQ as defined
by Eq. (4.20) the top class; the reason for this is that in this case, XQ is the
maximal class for the upper reachability relation • ,→• (see De Bock, 2017b,
p. 174).

Proposition 4.33 is reminiscent of Proposition 4.27189, and they turn out
to be even more similar than one would expect at first sight. To make this
similarity more obvious, we repeat (De Bock, 2017b, Propositions 17 and 18).

Lemma 4.34. Consider a lower rate operator Q. Then for any t in R>0, all
states x and y in X and any non-empty subset A of X,

−[
e tQ (−Ix )

]
(y) =:

[
e tQ Ix

]
(y) > 0 ⇔ y ,→ x

and [
e tQ

IA
]
(y) > 0 ⇔ y ←- A.

Joseph’s Example 4.35. Consider again the general lower rate operator Q as
used in Joseph’s Example 4.30↶ and introduced in Joseph’s Example 3.64109.
In Joseph’s Example 4.30↶, it cost us quite a bit of work to determine whether
Q was ergodic or not. Here, we check if Q is ergodic using the simpler condi-
tions of Proposition 4.33.
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Computing lower expectations of simple variables

Because any state is upper reachable from itself, H ,→ H and T ,→ T. Con-
sequently, H belongs to XQ if and only if T ,→ H, and it is not difficult too see
that due to Definition 4.31192, this can only be the case if [QIH](T) =λT > 0.
Similarly,

T ∈XQ ⇔ H ,→ T⇔ [QIT](H) =λH > 0.

Hence, XQ is non-empty if and only if λH > 0 or λT > 0.

In case bothλH > 0 and λT > 0, the second condition of Proposition 4.33↶
is trivially satisfied, and Q is ergodic. What remains is the case that one of

the two is zero, say λH. In this case, XQ = {H}, and the second condition is
satisfied if and only if T ←- {H}. By Definition 4.32↶, this can only be the
case if [QIH](T) =λT > 0. By symmetry, in case λT = 0 and λH > 0, the second
condition of Proposition 4.33↶ is satisfied if and only if

H ←- {T} ⇔ [QIT](H) =λH > 0.

In summary, we have verified that Q is ergodic if and only if either (i) λH >
0 and λT > 0, (ii) λH = 0 and λT > 0, or (iii) λT = 0 and λH > 0. Thus, the lower
rate operator Q is ergodic if and only if λH+λT > 0 and λH+λT > 0, which –
of course – agrees with what we found in Joseph’s Example 4.30192. ¢

It essentially follows from Definitions 4.26189 and 4.29191 (see De Bock,
2017b, Proposition 13) that the lower rate operator Q is ergodic if and only
if for all t in R>0, the generated lower transition operator e tQ is ergodic as
well. It turns out that whenever this is the case, the approximation (I +∆Q) is
ergodic as well for any step size ∆ in R>0 such that ∆∥Q∥op < 2.

Theorem 4.36. A lower rate operator Q is ergodic if and only if there is some
natural number n < |X| such that for some (and then all) natural num-
ber(s) k ≥ n and some (and then all) step size(s)∆ inR>0 such that ∆∥Q∥op < 2:

ρ
(
(I +∆Q)k)< 1.

Because our proof of this result is somewhat lengthy,2 we have relegated
it to Appendix 4.D210. Suffice to say that in our proof, we rely heavily on
Propositions 4.27189 and 4.33↶ and Theorem 4.28191.

4.3.3 Back to numerical integration

Theorem 4.36 guarantees that for an ergodic lower rate operator, Eq. (4.17)189

is satisfied for sufficiently large m. In particular, if the lower rate operator Q is
ergodic, then there is some natural number n < |X| such thatρ((I+∆Q)m) < 1

2This might be a bit of an understatement, as it is almost 3 pages long, excluding the
necessary technical lemmas. Be that as it may, the proof is actually a simplified version of the
proof of a more general result in (Erreygers et al., 2017a,b, Theorem 8).
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4.3 Ergodicity

for all m ≥ n and all ∆ in R>0 such that ∆∥Q∥op < 2. Consequently, if we
choose m ≥ |X|−1 then re-evaluating the step size ∆ in Algorithm 4.6185 will
– except maybe for the last re-evaluation – result in a new step size that is
strictly greater than the previous one. Therefore, we conclude that if the lower
rate operator Q is ergodic, then using Algorithm 4.6185 is certainly justified;
Algorithm 4.6185 will need fewer iterations – that is, evaluations of Q – than
Algorithm 4.5183, provided m is sufficiently large.

Another nice consequence of the ergodicity of a lower rate operator Q
is that we can prove an alternative a priori guaranteed upper bound for the
error of approximations with a fixed step size.

Proposition 4.37. Consider a lower rate operator Q. Fix some gamble f on X,
two natural numbers m and n, and a step size ∆ in R>0 such that ∆∥Q∥op < 2.
For any positive real number β such that ρ((I +∆Q)m) ≤β< 1,

∥∥e tQ f −(I +∆Q)n f
∥∥≤ ϵe := 1

2
m∆2∥Q∥2

op∥ f ∥c
1−βk

1−β ≤ ϵ′e :=
m∆2∥Q∥2

op∥ f ∥c

2(1−β)
,

where we let t := n∆ and k := ⌈n/m⌉.

Proof. Recall from Lemma 4.19180 that∥∥e tQ f − (I +∆Q)n f
∥∥≤ 1

2
∆2∥Q∥2

op

n−1∑
ℓ=0

∥(I +∆Q)ℓ f ∥c

Note that by definition, km ≥ n. We add some non-negative terms to the right-hand
side of the previous inequality, to yield

∥∥e tQ f − (I +∆Q)n f
∥∥≤ 1

2
∆2∥Q∥2

op

km−1∑
ℓ=0

∥(I +∆Q)ℓ f ∥c

= 1

2
∆2∥Q∥2

op

k−1∑
ℓ=0

m∑
i=0

∥(I +∆Q)i (I +∆Q)mℓ f ∥c

Because (I +∆Q)i is a lower transition operator due to Lemma 3.72112 and (LT11)108,
it follows from (LT13)179 that∥∥e tQ f − (I +∆Q)n f

∥∥≤ 1

2
m∆2∥Q∥2

op

k−1∑
ℓ=0

∥(I +∆Q)mℓ f ∥c.

Furthermore, it follows from (EC3)190 and Eq. (4.6)179 that∥∥e tQ f − (I +∆Q)n f
∥∥≤ 1

2
m∆2∥Q∥2

op∥ f ∥c

k−1∑
ℓ=0

ρ
(
(I +∆Q)mℓ),

and from (EC2)190 that∥∥e tQ f − (I +∆Q)n f
∥∥≤ 1

2
m∆2∥Q∥2

op∥ f ∥c

k−1∑
ℓ=0

ρ
(
(I +∆Q)m)ℓ

≤ 1

2
m∆2∥Q∥2

op∥ f ∥c

k−1∑
ℓ=0

βℓ.
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Computing lower expectations of simple variables

The statement follows immediately from the preceding inequality because, by as-
sumption, 0 <β< 1

Interestingly enough, the upper bound ϵ′e is not dependent on t (or n)
at all! This is a significant improvement on the upper bound of Proposi-
tion 4.20181, as that upper bound is proportional to t 2. However, it is clear
from the proof of Proposition 4.37↶ that the a priori error bounds ϵe and ϵ′e
are always greater than the on-the-fly error bound ϵotf.

Recall from Theorem 4.36194 that there always is a natural number m <
|X| such that ρ((I +∆Q)m) < 1 for all ∆ in R>0 with ∆∥Q∥op < 2. Thus, given
such an m, we could theoretically improve Algorithm 4.5183, in the sense that
we might be able to get away with fewer iterations, or equivalently, with a
larger step size ∆. To see how this works in a bit more detail, we recall that on
line 1 of Algorithm 4.5183, we choose n such that

ϵact := ∥e tQ f − (I +∆Q)n f ∥ ≤ ϵn := 1

2
n∆2∥Q∥2

op∥ f ∥c ≤ ϵ.

However, courtesy of Proposition 4.37↶, we also know that

ϵact ≤ ϵe = 1

2
m∆2∥Q∥2

op∥ f ∥c
1−βk

1−β .

Note that this latter is a tighter a priori upper bound on the error if and only if

m
1−βk

1−β < n.

Whenever this is the case, we could go looking for the smallest natural num-
ber n inN that yields

1

2
m∆2

n∥Q∥2
op∥ f ∥c (1−βkn

n ) ≤ (1−βn)ϵ,

where kn = ⌈n/m⌉ and∆n = t/n depend on n, and βn < 1 is an upper bound on
ρ((I +∆nQ)m). This method would yield a smaller n, but the time we gain by
having to execute fewer iterations does not necessarily compensate the time
lost by looking for this smaller n.

Approximating the coefficient of ergodicity

Were we to actually implement this improvement, we would need to be able
to determine (an upper bound on) the coefficient of ergodicity ρ((I +∆Q)m).
In general, this is certainly non-trivial, and it may not even be possible. For
this reason, we will have to make do with the following upper and lower
bounds for the coefficient of ergodicity that can always be computed.
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4.3 Ergodicity

Proposition 4.38. Let T be a lower transition operator. Then

ρ(T ) ≤ max
{
max

{
[T IA](x)− [T IA](y) : x, y ∈X}

: ∅ ̸= A ⊂X
}
,

and

ρ(T ) ≥ max
{
max

{
[T IA](x)− [T IA](y) : x, y ∈X}

: ∅ ̸= A ⊂X
}
.

Proof. Fix some lower transition operator T . The lower bound on ρ(T ) follows from
the fact that for any ∅ ̸= A ⊂X, 0 ≤ IA ≤ 1. To obtain the upper bound, we observe
that

ρ(T ) = max
{∥T f ∥v : f ∈G(X),0 ≤ f ≤ 1

}
= max

{
max

{∣∣[T f ](x)− [T f ](y)
∣∣ : x, y ∈X}

: f ∈G(X),0 ≤ f ≤ 1
}

= max
{

max
{∣∣[T f ](x)− [T f ](y)

∣∣ : f ∈G(X),0 ≤ f ≤ 1
}

: x, y ∈X
}

.

Recall from Corollary 3.61107 that for any x in X, [T •](x) is a coherent lower expecta-
tion on G(X). Thus,

ρ(T ) = max
{

d
(
[T •](x), [T •](y)

)
: x, y ∈X

}
,

where we use the metric d as defined in Eq. (A.1)443. From this and Lemma A.1443, it
follows that

ρ(T ) ≤ max
{

max
{
[T IA](x)− [T IA](y) : ∅ ̸= A ⊂X

}
: x, y ∈X

}
= max

{
max

{
[T IA](x)− [T IA](y) : x, y ∈X}

: ∅ ̸= A ⊂X
}

,

where for the last equality we simply change the order of two maxima. This verifies
the upper bound of the statement, as required.

The upper bound in Proposition 4.38 corresponds to what Škulj et al.
(2013, Section 5.1) call the ‘uniform coefficient of ergodicity’. Observe that
for a transition operator T , the upper and lower bounds in Proposition 4.38
are equal. In this case, it furthermore follows from (Škulj et al., 2013, Proposi-
tion 1) that

ρ(T ) = max

{
1

2

∑
z∈X

|T (x, z)−T (y, z)| : x, y ∈X
}

,

which is (one of) the coefficient(s) of ergodicity for transition operators –
see (Seneta, 1979), (Diener et al., 1995, Section 1.11), (Anderson, 1991, Sec-
tion 6.1) or (Škulj et al., 2013, Section 5). Besides (linear) transition opera-
tors, there are other lower transition operators for which the lower bound
of Proposition 4.38 is equal to the coefficient of ergodicity. Škulj et al. (2013,
Proposition 22 and Corollary 23) show that this is also the case for lower tran-
sition operators defined using Choquet integrals with respect to 2-monotone
lower probabilities.
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Computing lower expectations of simple variables

The upper bound in Proposition 4.38↶ is particularly useful in combi-
nation with Proposition 4.37195, at least in case it is strictly smaller than 1.
In (Erreygers et al., 2017a, Proposition 11), we mistakenly claimed that this
is always the case for lower transition operators of the form (I +∆Q)m , with
Q an ergodic lower rate operator and m sufficiently large. We can use our
running example to illustrate that this may not be the case though.

Joseph’s Example 4.39. As in Joseph’s Example 4.30192 and Joseph’s Exam-
ple 4.35193, we consider a general lower rate operator Q, which by Joseph’s
Example 3.64109 is uniquely characterised by the four parameters λH, λH, λT
and λT. In this counterexample, we take λH = 0 =λT, λH > 0 and λT > 0.

Because λH+λT > 0 and λH+λT > 0, Q is ergodic as per the discussion in
Joseph’s Example 4.30192. Furthermore, it follows immediately from (LR7)111

that ∥Q∥op = 2max{λH,λT} > 0. Fix any natural number m and a step size ∆
in R>0 such that ∆λH < 1 and ∆λT < 1. Then (I +∆Q) is a lower transition
operator due to Lemma 3.72112. Let T := (I +∆Q)m , and observe that by
construction, ρ(T ) < 1 due to Theorem 4.36194.

Let us determine the upper bound on ρ(T ) given in Proposition 4.38↶ .
First, we observe that the only two non-empty strict subsets of X are {H} and
{T}. Second, after some straightforward calculations, we obtain that[

(I +∆Q)IH
]
(H) = 1−∆λH = 1, 0 < [

(I +∆Q)IH
]
(T) =∆λT < 1,

0 < [
(I +∆Q)IT

]
(H) =∆λH < 1,

[
(I +∆Q)IT

]
(T) = 1−∆λT = 1,

and

1 > [
(I +∆Q)IH

]
(H) = 1−∆λH > 0,

[
(I +∆Q)IH

]
(T) =∆λT = 0,[

(I +∆Q)IT
]
(H) =∆λH = 0, 1 > [

(I +∆Q)IT
]
(T) = 1−∆λT > 0.

From this, we infer that IH ≤ (I +∆Q)IH ≤ 1 and 0 ≤ (I +∆Q)IH ≤ IH. Because
(I +∆Q) is a lower transition operator, it follows from these two inequalities
and repeated application of (LT6)108 and (LT4)108 that[

(I +∆Q)m IH
]
(H) = [

T IH
]
(H) = 1 and

[
(I +∆Q)m IH

]
(T) = [

T IH
]
(T) = 0.

Thus, we see that

max
{

max
{
[T IA](x)− [T IA](y) : x, y ∈X}

: ∅ ̸= A ⊂X
}

≥ [
T IH

]
(H)− [

T IH
]
(T) = 1. ¢

4.A Proofs of Proposition 4.8 and Theorem 4.9

In this appendix, we prove the two results in Section 4.1.3162. First, we prove
Proposition 4.8166.
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4.A Proofs of Proposition 4.8 and Theorem 4.9

Proposition 4.8. Consider a Markovian imprecise jump process P that sat-
isfies the sum-product law of iterated lower expectations. Fix a state his-
tory {Xu = xu} in H, a sequence of time-points v = (t1, . . . , tn) in U≻u , and
an Fu-simple variable f with sum-product representation

f =
n∑

k=1
gk

(
X tk

)k−1∏
ℓ=1

hℓ
(
X tℓ

)
over v. Then

EP( f |Xu = xu) = EP( f1(X t1 ) |Xu = xu),

where f1 : X→ R is recursively defined by the initial condition fn := gn and,
for all k in {1, . . . ,n −1}, by the recursive relation

fk : X→R : x 7→ EP( fk+1(X tk+1 ) |X tk = x)hk (x)+ gk (x).

Proof. First, we verify that for all k in {1, . . . ,n −1}, fk as defined in the statement is
indeed a gamble on X, or in other words, that fk is bounded. To this end, we fix some
k in {1, . . . ,n −1} and assume that fk+1 is a gamble on X – for k = n −1, this is true
because fn = gn by the initial condition in the statement. For all x in X and P in P,
it follows from (ES1)37 that

−max| fk+1| ≤ min fk+1 ≤ EP ( fk+1(Xtk+1 ) |Xtk = x) ≤ max fk+1 ≤ max| fk+1|.
Because inequalities are preserved when taking infima, it follows that, for all x in X,

|EP( fk+1(Xtk+1 ) |Xtk = x)| ≤ max| fk+1|,
and therefore

| fk | ≤ (max| fk+1|)(maxhk )+max|gk |,
where we also used that hk ≥ 0. Because fk+1, gk and hk are bounded, it follows from
this inequality that fk is bounded as well, as required.

Next, we verify the equality in the statement. For any k in {1, . . . ,n −1}, we let
t1:k := (t1, . . . , tk ) and let g̃k and h̃k be the gambles on Xt1:k that are defined for all
yt1:k in Xt1:k by

g̃k (yt1:k ) :=
k∑

i=1
gi (yti )

i−1∏
ℓ=1

hℓ(ytℓ ) and h̃k (yt1:k ) :=
k∏
ℓ=1

hℓ(ytℓ ).

Note that h̃k ≥ 0 because hℓ ≥ 0 for all ℓ in {1, . . . ,k} by assumption. In order to
elegantly deal with an edge case, we let t1:0 := ( ) and let g̃0 := 0 and h̃0 := 1 be constant
gambles in G(Xt1:0 ).

We set out to verify that for all k in {0, . . . ,n −1},

EP( f |Xu = xu ) = EP

(
fk+1(Xtk+1 )h̃k (Xt1:k )+ g̃k (Xt1:k )

∣∣ Xu = xu
)
; (4.21)

note that for k = 0, this is the equality in the statement because g̃0 = 0 and h̃0 = 1 by
construction. Our proof will be one by induction. For the base case that k = n −1, we
observe that by construction,

f = fn (Xtn )h̃n−1(Xt1:n−1 )+ g̃n−1(Xt1:n−1 ) = fk+1(Xtk+1 )h̃k (Xt1:k )+ g̃k (Xt1:k );
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clearly, this verifies Eq. (4.21)↶ in case k = n−1. For the inductive step, we fix some ℓ
in {0, . . . ,n −2}, and assume that Eq. (4.21)↶ holds for k = ℓ+1, so

EP( f |Xu = xu ) = EP

(
fℓ+2(Xtℓ+2 )h̃ℓ+1(Xt1:ℓ+1 )+ g̃ℓ+1(Xt1:ℓ+1 )

∣∣ Xu = xu
)
.

Because h̃ℓ+1 ≥ 0 and because P satisfies the sum-product law of iterated lower
expectations by assumption, it follows from this and Eq. (3.70)106 in Definition 3.59106
– with t = tℓ+2 and v = t1:ℓ+1 – that

EP( f |Xu = xu )

= EP

(
f ′ℓ+1(Xu , Xt1:ℓ+1 )h̃ℓ+1(Xt1:ℓ+1 )+ g̃ℓ+1(Xt1:ℓ+1 )

∣∣ Xu = xu
)
, (4.22)

where we let

f ′ℓ+1 : Xu∪t1:ℓ+1 →R : yu∪t1:ℓ+1 7→ EP

(
fℓ+2(Xtℓ+2 )

∣∣ Xu = yu , Xt1:ℓ+1 = yt1:ℓ+1

)
.

The imprecise jump process P is Markovian by assumption, so by Definition 3.84118,

f ′ℓ+1(Xu , Xt1:ℓ+1 ) = EP

(
fℓ+2(Xtℓ+2 )

∣∣ Xu , Xt1:ℓ+1

)= EP

(
fℓ+2(Xtℓ+2 )

∣∣ Xtℓ+1

)
.

Furthermore, we observe that, by construction, h̃ℓ+1(Xt1:ℓ+1 ) = hℓ+1(Xtℓ+1 )h̃ℓ(Xt1:ℓ )
and g̃ℓ+1(Xt1:ℓ+1 ) = gℓ+1(Xtℓ+1 )h̃ℓ(Xt1:ℓ )+ g̃ℓ(Xt1:ℓ ). Consequently,

f ′ℓ+1(Xu , Xt1:ℓ+1 )h̃ℓ+1(Xt1:ℓ+1 )+ g̃ℓ+1(Xt1:ℓ+1 )

= EP

(
fℓ+2(Xtℓ+2 )

∣∣ Xtℓ+1

)
h̃ℓ+1(Xt1:ℓ+1 )+ g̃ℓ+1(Xt1:ℓ+1 )

= EP

(
fℓ+2(Xtℓ+2 )

∣∣ Xtℓ+1

)
hℓ+1(Xtℓ+1 )h̃ℓ(Xt1:ℓ )

+ gℓ+1(Xtℓ+1 )h̃ℓ(Xt1:ℓ )+ g̃ℓ(Xt1:ℓ )

= (
EP

(
fℓ+2(Xtℓ+2 )

∣∣ Xtℓ+1

)
hℓ+1(Xtℓ+1 )+ gℓ+1(Xtℓ+1 )

)
h̃ℓ(Xt1:ℓ )+ g̃ℓ(Xt1:ℓ )

= fℓ+1(Xtℓ+1 )h̃ℓ(Xt1:ℓ )+ g̃ℓ(Xt1:ℓ ).

We substitute this equality in Eq. (4.22), to yield

EP( f |Xu = xu ) = EP

(
fℓ+1(Xtℓ+1 )h̃ℓ(Xt1:ℓ )+ g̃ℓ(Xt1:ℓ )

∣∣ Xu = xu
)
,

which is Eq. (4.21)↶ for k = ℓ, as required.

Second, we use Proposition 4.8166 to prove the following intermediary
result, which we will need in our proof for Theorem 4.9166 further on.

Lemma 4.40. Consider a non-empty set M of initial mass functions, a non-
empty and bounded set Q of rate operators that has separately specified rows
and an imprecise jump process P such that PM

M,Q ⊆P ⊆PM,Q. Fix a sequence
of time-points v = (t1, . . . , tn) in U̸=( ) and a real variable f in V(Ω) that has a
sum-product representation

f (Xv ) =
n∑

k=1
gk (X tk )

k−1∏
ℓ=1

hℓ(X tℓ )
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over v. Let f1 : X→R be recursively defined by the initial condition fn := gn

and, for all k in {1, . . . ,n −1}, by the recursive relation

fk : X→R : x 7→ [
e(tk+1−tk )QQ fk+1

]
(x)hk (x)+ gk (x).

Then for all {Xu = xu} in H such that u ≺ v, and with s := maxu,

EP( f |Xu = xu) =


[
e(t1−s)QQ f1

]
(xs ) if u ̸= ( ),

EM( f1) if u = ( ) and t1 = 0,

EM

(
e t1QQ f1

)
if u = ( ) and t1 > 0,

(4.23)

and therefore

E M
M,Q( f |Xu = xu) = EM,Q( f |Xu = xu) = EP( f |Xu = xu).

Proof. First, we let P be equal to PM
M,Q or PM,Q . Because Q has separately specified

rows by assumption, P is Markovian by Corollary 3.87119 and satisfies the sum-
product law of iterated lower expectations by Theorem 3.89120. Hence, if follows from
Proposition 4.8166 and Proposition 3.81117 that

EP( f |Xu = xu ) = EP( f1(Xt1 ) |Xu = xu ).

By Propositions 3.81117 to 3.83118, this equality implies Eq. (4.23), as required.
Next, we prove the second part of the statement, so we let P be any imprecise

jump process such that PM
M,Q ⊆P ⊆PM,Q . Then clearly

E M
M,Q( f |Xu = xu ) ≤ EP( f |Xu = xu ) ≤ EM,Q( f |Xu = xu ).

From the first part of our proof, we know that Eq. (4.23) holds for PM
M,Q and PM,Q .

Consequently, the preceding inequalities imply that Eq. (4.23) holds for P as well,
and this also proves the other equalities in the statement.

In our proof for Theorem 4.9166, we also need the following intermediary
result, which essentially follows from Lemma 4.40↶.

Lemma 4.41. Consider a non-empty set M of initial mass functions, a non-
empty and bounded set Q of rate operators that has separately specified rows
and an imprecise jump process P such that PM

M,Q ⊆ P ⊆ PM,Q. Fix some
grid v = (t1, . . . , tn) over [s,r ] and a real variable f with sum-product repre-
sentation

f =
n∑

k=1
gk

(
X tk

)k−1∏
ℓ=1

hℓ
(
X tℓ

)
over v. Then for all x in X and {Xu = xu} in H such that u ≺ v,

EP

(
f
∣∣ Xu = xu , X t1 = x

)= f1(x),

where f1 : X→ R is recursively defined by the initial condition fn := gn and,
for all k in {1, . . . ,n −1}, by the recursive relation

fk : X→R : x 7→ [
e(tk+1−tk )QQ fk+1

]
(x)hk (x)+ gk (x).
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Proof. Let us first consider the edge case n = 1. Then f = g1(Xt1 ) = f1(Xt1 ), so it
follows immediately from Corollary 4.1158 that

EP( f |Xu = xu , Xt1 = x) = EP( f1(Xt1 ) |Xu = xu , Xt1 = x)

= EP( f1(x) |Xu = xu , Xt1 = x).

For any jump process P in P, it follows from (ES1)37 that

EP ( f1(x) |Xu = xu , Xt1 = x) = f1(x),

and therefore
EP( f |Xu = xu , Xt1 = x) = f1(x),

as required.
Next, we consider the more involved case that n ≥ 2. Let t2:n := (t2, . . . , tn ), and let

f2:n be the gamble on Xt2:n defined by

f2:n (xt2:n ) :=
n∑

k=2
gk (xtk )

k−1∏
ℓ=2

hℓ(xtℓ ) for all xt2:n ∈Xt2:n .

Note that f = g1(Xt1 )+h1(Xt1 ) f2:n (Xt2:n ), and therefore

EP( f |Xu = xu , Xt1 = x) = EP

(
g1(Xt1 )+h1(Xt1 ) f2:n (Xt2:n )

∣∣ Xu = xu , Xt1 = x
)

= EP

(
g1(x)+h1(x) f2:n (Xt2:n )

∣∣ Xu = xu , Xt1 = x
)
,

where the second equality follows from Corollary 4.1158. For any jump process P
in P, it follows from (ES3)37, (ES1)37 and (ES2)37 that

EP
(
g1(x)+h1(x) f2:n (Xt2:n )

∣∣ Xu = xu , Xt1 = x
)

= g1(x)+h1(x)EP
(

f2:n (Xt2:n )
∣∣ Xu = xu , Xt1 = x

)
.

Because h1(x) ≥ 0, this implies that

EP( f (Xv ) |Xu = xu , Xt1 = x)

= g1(x)+h1(x)EP

(
f2:n (Xt2:n )

∣∣ Xu = xu , Xt1 = x
)
. (4.24)

Now recall from Lemma 4.40200 – with u∪(t1) here in the role of u there and with t2:n
here in the role of v there – that

EP

(
f2:n (Xt2:n )

∣∣ Xu = xu , Xt1 = x
)= [

e(t2−t1)Q f2
]
(x).

We substitute this equality into Eq. (4.24), to yield

EP( f (Xv ) |Xu = xu , Xt1 = x) = g1(x)+h1(x)
[
e(t2−t1)Q f2

]
(x) = f1(x),

as required.

Finally, we use Lemmas 4.40200 and 4.41↶ in our – pretty convoluted –
proof for Theorem 4.9166.
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Theorem 4.9. Consider a non-empty set M of initial mass functions, and a
non-empty and bounded set Q of rate operators that has separately specified
rows. Fix an imprecise jump processP such that PM

M,Q ⊆P ⊆PM,Q, a sequence
of time-points v = (t1, . . . , tn) in U̸=( ) and a real variable f in V(Ω) that has a
sum-product representation

f (Xv ) =
n∑

k=1
gk (X tk )

k−1∏
ℓ=1

hℓ(X tℓ )

over v. Let f1 : X→R be recursively defined by the initial condition fn := gn

and, for all k in {1, . . . ,n −1}, by the recursive relation

fk : X→R : x 7→ [
e(tk+1−tk )QQ fk+1

]
(x)hk (x)+ gk (x).

Then for all x in X,
EP( f |X t1 = x) = f1(x),

and for all {Xu = xu} in H such that s := maxu ≤ t1,

EP( f |Xu = xu) = EP

(
EP( f |X t1 )

∣∣ Xu = xu
)

=


f1(xs ) if u ̸= ( ) and s = t1[
e(t1−s)QQ f1

]
(xs ) if u ̸= ( ) and s < t1,

EM( f1) if u = ( ) and t1 = 0,

EM

(
e t1QQ f1

)
if u = ( ) and t1 > 0,

and therefore

E M
M,Q( f |Xu = xu) = EM,Q( f |Xu = xu) = EP( f |Xu = xu).

Proof. It follows immediately from Lemma 4.41201 that for all x in X,

EP( f |Xt1 = x) = f1(x). (4.25)

Next, we fix any state history {Xu = xu } in H such that s := maxu ≤ t1. First,
let us deal with the case that u ̸= () and s = t1. Then it follows immediately from
Lemma 4.41201 that

EP( f |Xu = xu ) = f1(xs ).

One the other hand, for all P in P, it follows from Lemma 2.3936, (ES1)37, Corol-
lary 3.1871 and Eq. (4.25) that

f1(xs ) = EP ( f1(xs ) |Xu = xu ) = EP ( f1(X1) |Xu = xu ) = EP
(
EP( f |Xs )

∣∣ Xu = xu
)
.

It now follows immediately from the preceding two equalities that

EP( f |Xu = xu ) = EP

(
EP( f |Xs )

∣∣ Xu = xu
)= f1(xs ),

as required.
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The remaining case that either u ̸= () and s < t1 or u = () is much more straight-
forward. In this case, it follows immediately from Lemma 4.40200 that

EP( f |Xu = xu ) =


[
e(t1−s)QQ f1

]
(xs ) if u ̸= ( ),

EM( f1) if u = ( ) and t1 = 0,

EM

(
e t1QQ f1

)
if u = ( ) and t1 > 0.

Because f1(Xt1 ) = EP( f |Xt1 ) due to Eq. (4.25)↶, it follows from the preceding equal-
ity and Propositions 3.81117 to 3.83118 that

EP( f |Xu = xu ) = EP

(
EP( f |Xt1 )

∣∣ Xu = xu
)
,

as required.

4.B Proofs of Proposition 4.11 and Theorem 4.12

This appendix contains proofs for the two results in Section 4.1.4170. First, we
prove Proposition 4.11170.

Proposition 4.11. Consider an imprecise jump process P that satisfies the law
of iterated lower expectations. Fix a state history {Xu = xu} in H, a sequence
of time points v = (t1, . . . , tn) in U≻u and a gamble f on Xv . Then

EP( f (Xv ) |Xu = xu) = EP( f1(X t1 ) |Xu = xu),

where f1 : X→R is defined recursively: the initial condition is fn := f , and for
all k in {1, . . . ,n −1}, we let t1:k := (t1, . . . , tk ) and let fk be the gamble on Xt1:k

defined by

fk (yt1:k ) := EP( fk+1(yt1:k , X tk+1 ) |Xu = xu , X t1:k = yt1:k ) for all yt1:k ∈Xt1:k .

Proof. Observe that in case |v | = n = 1, the statement follows immediately from
Corollary 4.1158. Hence, from here on we assume that n ≥ 2.

Fix some k in {1, . . . ,n −1}. It follows from the law of iterated lower expectations
that

EP( f (Xv ) |Xu = xu ) = EP

(
EP( f (Xv ) |Xu , Xt1:k )

∣∣ Xu = xu
)
.

Using Corollary 4.1158, we infer from this that

EP( f (Xv ) |Xu = xu ) = EP

(
f̃k (Xt1:k )

∣∣ Xu = xu
)
,

where f̃k is the gamble on Xt1:k defined by

f̃k (yt1:k ) := EP( f (Xv ) |Xu = xu , Xt1:k = yt1:k ) for all yt1:k ∈Xt1:k .

To prove the statement, it clearly suffices to show that f̃k = fk for all k in {1, . . . ,n−
1}, with fk as defined in the statement. To this end, we observe that it follows from
Corollary 4.1158 that for all yt1:n−1 in Xt1:n−1 ,

f̃n−1(yt1:n−1 ) = EP( f (xu , yt1:n−1 , Xtn ) |Xu = xu , Xt1:n−1 = yt1:n−1 )

= EP( fn (yt1:n−1 , Xtn ) |Xu = xu , Xt1:n−1 = yt1:n−1 ) = fn−1(yt1:n−1 ).
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Thus, f̃n−1 = fn−1. Second, we fix some k in {1, . . . ,n −2} and yt1:k in Xt1:k . Then it
follows from the law of iterated lower expectations and Corollary 4.1158 that

f̃k (yt1:k ) = EP

(
EP( f (Xv ) |Xu , Xt1:k , Xtk+1 )

∣∣ Xu = xu , Xt1:k = yt1:k

)
= EP

(
f̃k+1(yt1:k , Xtk+1 )

∣∣ Xu = xu , Xt1:k = yt1:k

)
.

Because this equality holds for all k in {1, . . . ,n −2} and yt1:k in Xt1:k , and because we
have previously show that f̃n−1 = fn−1, we conclude that f̃k = fk for all k in {1, . . . ,n−
1}, as required.

Second, we use Proposition 4.11170 to prove Theorem 4.12170.

Theorem 4.12. Consider a non-empty set M of initial probability mass func-
tions, and a non-empty, bounded and convex set Q of rate operators that has
separately specified rows. Fix a state history {Xu = xu} in H, a sequence of
time points v = (t1, . . . , tn) in U≻u and a gamble f on Xv . Then

EM,Q( f (Xv ) |Xu = xu) =


[
e(t1−maxu)QQ f1

]
(xmaxu) if u ̸= ( ),

EM( f1) if u = ( ) and t1 = 0,

EM

(
e(t1−maxu)QQ f1

)
if u = ( ) and t1 > 0,

where f1 : X→R is defined recursively: the initial condition is fn := f , and for
all k in {1, . . . ,n −1}, we let t1:k := (t1, . . . , tk ) and let fk be the gamble on Xt1:k

defined by

fk (yt1:k ) := [
e(tk+1−tk )QQ fk+1(yt1:k ,•)

]
(ytk ) for all yt1:k ∈Xt1:k .

Proof. Because Q is bounded and convex and has separately specified rows by
assumption, Theorem 3.88120 guarantees that PM,Q satisfies the law of iterated
lower expectations. Hence, the statement follows (almost) immediately from
Proposition 4.11170 and Propositions 3.81117 to 3.83118 – see also the the proof of
Lemma 4.40200.

4.C Some additional results regarding ergodicity

The main goal of this appendix is to prove Theorem 4.36194, and we will do
so in Appendix 4.D210. First, however, we take a closer look at ergodic lower
transition operators in Appendix 4.C.1↷ and upper reachability with respect
to lower rate operator in Appendix 4.C.2209.

Throughout this appendix, we will repeatedly make use of the following
almost trivial observation.

Lemma 4.42. Consider a lower transition operator T . Then for any subset A
of X,

T IA = 1−T IAc and T IA = 1−T IAc .

Proof. Observe that the second equality follows from the first. The first equality
holds because due to (LT5)108,

T IA =−T
(−IA)= 1−T

(
1− IA

)= 1−T IAc .
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4.C.1 A qualitative study of ergodicity

We take a closer look at ergodic lower transition operators from the qualitative
point of view of Hermans et al. (2012). Recall from Proposition 4.27189 that a
lower transition operator T is ergodic if and only if it is regularly absorbing,
meaning that it is top class regular and top class absorbing.

The observant reader might have noticed that our definitions of top class
regularity and top class absorption in Proposition 4.27189 differ slightly from
those of Hermans et al. (2012, Proposition 3), but they are actually entirely
equivalent. For top class regularity, we demand that there is some n in N
such that T n Ix ⋗ 0. By (LT6)108, it then holds that T k Ix ⋗0 for any k ≥ n,
which is what Hermans et al. (2012, (TCR)) demand. For top class absorption,
Hermans et al. (2012, (TCA)) demand that(∀y ∈X \XT

)(∃n ∈N)
[T n IA](y) < 1,

where A =X \XT . Recall from Lemma 4.42↶ that [T n IA](y) = 1− [T n IXT ](y),
so their demand is equivalent to ours.

The following two technical lemmas are related to ergodicity, and will
come in handy in the proof of Theorem 4.36194; the first is taken from (Her-
mans et al., 2012, Proposition 4).

Lemma 4.43. Consider a lower transition operator T , a natural number n
and two states x and y in X. Then [T n Ix ](y) > 0 if and only if there is a
sequence (x0, . . . , xn) in X with x0 = y and xn = x such that [T Ixk ](xk−1) > 0
for all k in {1, . . . ,n}.

Lemma 4.44. If the lower transition operator T is top class regular, then for
any state x in the top class XT , any state y in Xc

T =X \XT and any natural

number k inN, [
T k Iy

]
(x) = 0 and

[
T k IXT

]
(x) = 1.

Proof. First we prove the first equality. Our proof will be one by contradiction, so we
assume ex absurdo that there is some k inN such that cx := [T k Iy ](x) ̸= 0. Note that

T k Iy ≥ 0 due to (LT4)108, so cx > 0. Because x is in the top class XT , there is a natural
number nx such that [

T nx Ix
]
(z) > 0 for all z ∈X. (4.26)

Observe that T k Iy ≥ cx Ix . From this, (LT6)108 and (LT2)107, we infer that for all z
in X, [

T k+nx Iy
]
(z) = [

T nx T k Iy
]
(z) ≥ [

T nx (cx Ix )
]
(z) = cx

[
T nx Ix

]
(z) > 0,

where for the last inequality we have used that cx > 0 and Eq. (4.26). However, because
this inequality holds for all z in X, we infer that y belongs to the top class XT , which
contradicts the initial condition on y .
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Next, we prove the second statement. Recall from Lemma 4.42205 that

T k IXT
= 1−T k IXc

T
.

From the conjugacy of T k and T k and (LT3)107, it furthermore follows that

T k IXc
T
= T k

 ∑
z∈Xc

T

Iz

≤ ∑
z∈Xc

T

T k Iz .

From the – already proven – first equality of the statement, we know that∑
z∈Xc

T
[T k Iz ](x) = 0, whence

[
T k IXT

]
(x) = 1− [

T k IXc
T

]
(x) ≥ 1− ∑

z∈Xc
T

[
T k Iz

]
(x) = 1.

Note that by (LT4)108, [T k IXT
](x) ≤ 1. By combining the two preceding inequalities,

we find that the the second equality of the statement holds: [T k IXT
](x) = 1.

The condition in Proposition 4.27189 for top class absorption is in a form
that is not easily verified. Luckily for us, Hermans et al. (2012, Proposition 6)
give an equivalent condition that is more straightforward; the following
lemma establishes this condition in a form that is tailored to how we will use
it.

Lemma 4.45. Let T be a lower transition operator that is top class regular.
Then T is top class absorbing if and only if Bn =X, where (Bk )k∈Z≥0 is the
sequence defined by the initial condition B0 :=XT and, for all k in Z≥0, by the
recursive relation

Bk+1 := Bk ∪
{

x ∈X \ Bk :
[
T IBk

]
(x) > 0

}= {
x ∈X :

[
T IBk

]
(x) > 0

}
,

and where n ≤ |X \XT | is the first index such that Bn = Bn+1.

Proof. Let T be a top class regular lower transition operator with top class XT . By
(Hermans et al., 2012, Proposition 6), T is top class absorbing if and only if An =∅,
where An is the set determined by the initial condition A0 :=X \XT and, for all k
in Z≥0, by the recursive relation

Ak+1 :=
{

x ∈ Ak :
[
T IAk

]
(x) = 1

}
,

and where n ≤ |X \XT | is the first index for which An = An+1. Observe that for all k
in Z≥0, Ak+1 ⊆ Ak by construction.

We now let B ′
k

:= X \ Ak for all k in Z≥0. Note that B ′
k = B ′

k+1 if and only if

Ak = Ak+1. Consequently, T is top class absorbing if and only if B ′
n =X, where n is

the smallest index for which B ′
n = B ′

n+1. Thus, the statement follows if we can shown
that B ′

k = Bk for all k in Z≥0.
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Note that both B ′
0 and B0 are equal to XT , so B ′

k = Bk for k = 0. Thus, it remains

for us to show that B ′
k+1 = Bk+1 for all k in Z≥0. Fix any such k, and observe that

0 ≤ T IAk
≤ 1 due to (LT4)108; therefore,

B ′
k+1 =X \ Ak+1 = (

X \ Ak
)∪{

x ∈ Ak :
[
T IAk

]
(x) < 1

}
= B ′

k ∪
{

x ∈ Ak :
[
T IAk

]
(x) < 1

}
.

From this and Lemma 4.42205, it now follows that

B ′
k+1 = B ′

k ∪
{

x ∈ Ak :
[
T IX\Ak

]
(x) > 0

}
= B ′

k ∪
{

x ∈X \ B ′
k :

[
T IB ′

k

]
(x) > 0

}
.

This verifies that B ′
k+1 = Bk+1, as required.

Finally, we verify the second equality of the statement. For starters, we observe
that Bk ⊆ Bk+1 for all k in Z≥0, so T IBk

≤ T IBk+1
due to (LT6)108. Furthermore, it

follows from Lemma 4.44206 and (LT4)108 that

IB0 = IXT
≤ T IXT

= T IB0 for all x ∈XT = B0.

Due to these two observations, we conclude that [T IBk
](x) > 0 for all x in Bk and k

in Z≥0. Clearly, this verifies the second equality of the statement.

We conclude this section on ergodic lower transition operators with a
technical lemma that is related to Lemma 4.45↶.

Lemma 4.46. Consider a lower transition operator T , a natural number n
and a subset A of X. Then

c1 · · ·cn IAn ≤ T k IA ≤ IAn ,

where An ⊆X is derived from the initial condition A0 := A and the recursive
relation

Ak := {
x ∈X :

[
T IAk−1

]
(x) > 0

}
for all k ∈ {1, . . . ,n},

and the non-negative real numbers c1, . . . ,cn are defined as

ck := min
{[

T IAk−1

]
(x) : x ∈ Ak

}
for all k ∈ {1, . . . ,n},

with the convention that the minimum of an empty set is zero. Further-
more, An ̸=∅ if and only if ck > 0 for all k in {1, . . . ,n}.

Proof. Fix any k in {1, . . . ,n}. On the one hand, it follows from (LT4)108 that T IAk−1
≤

IAk
. On the other hand, T IAk−1

≥ ck IAk
, with 0 ≤ ck ≤ 1 due to (LT4)108. In summary,

ck IAk
≤ T IAk−1

≤ IAk
. We now repeatedly use these inequalities in combination with

(LT2)107 and (LT6)108, to yield

T n IA = T n−1(T IA) ≥ c1T n−1IA1 ≥ ·· · ≥ c1 · · ·cn IAn

and
T n IA = T n−1(T IA) ≤ T n−1IA1 ≤ ·· · ≤ IAn .
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This verifies the first part of the statement.
To prove the second part of the statement, we observe that ck = 0 if and only if

Ak =∅. Thus, it is clear that An ̸=∅ if ck > 0 for all k in {1, . . . ,n}. To verify that the
converse implication, we assume that ck = 0 for some k in {1, . . . ,n}. Because then
Ak =∅, it follows from (LT4)108 that T IAk

= 0, whence Ak+1 =∅. The same argument
proves that Aℓ =∅ for all ℓ in {k +1, . . . ,n} as well, and in particular also for ℓ= n.

4.C.2 Upper reachability

We now turn to ergodic lower rate operators, and more precisely to upper
reachability. Let us start with a result that follows more or less immediately
from Definition 4.31192.

Lemma 4.47. Let Q be a lower rate operator, and fix any two distinct states x
and y in X such that x ̸= y. Then y ,→ x if and only if there is a se-
quence (x0, . . . , xn) in X with n in N, x0 = y and xn = x in which every state
occurs at most once and such that [QIxk ](xk−1) > 0 for all k in {1, . . . ,n}. Con-
sequently, n < |X|.

Proof. The direct implication follows almost immediately from Definition 4.31192.
To prove it, we suppose that y ,→ x, and observe that by Definition 4.31192, there is
some sequence (x0, . . . , xn ) in X with n in Z≥0, x0 = y and xn = x such that for all k
in {1, . . . ,n}, [QIxk ](xk−1) > 0. Assume that there is a state z in X that occurs more
than once in this sequence. Then we can simply delete every element of the sequence
from right after the the first occurrence of z up to and including the last occurrence
of z, and still have a valid sequence. If we continue this way, then we end up with
a sequence in which every state occurs at most once. As every state occurs at most
once, the length n +1 of the sequence is lower than or equal to |X|. Consequently,
n < |X|. Furthermore, since the deletions we executed do not alter the first and the
last element of the sequence, and since x ̸= y , we have that n ̸= 0 – that is, n is a
natural number.

The converse implication holds because the requirements of Definition 4.31192
are trivially satisfied.

In our proof of Theorem 4.36194, we will use the previous lemma in the
following slightly different form.

Lemma 4.48. Let Q be a lower rate operator, and fix any two states x and y
in X such that y ,→ x. Then there is a non-negative integer n < |X| such
that for all natural numbers k ≥ n and all ∆ in R>0 with ∆∥Q∥ < 2, there is a
sequence (x0, . . . , xk ) in X with x0 = y and xk = x such that[

(I +∆Q)Ixℓ
]
(xℓ−1) > 0 for all ℓ ∈ {1, . . . ,k}.

Proof. We first consider the special case that x = y . For all ∆ ∈R>0 such that ∆∥Q∥ <
2, [

(I +∆Q)Ix
]
(x) = Ix (x)+∆[

QIx
]
(x) = 1+∆[

QIx
]
(x) > 0, (4.27)
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where the inequality follows from (LR5)111, (LR7)111 and the requirement that∆∥Q∥ <
2. Consequently, the sequence (x0, . . . , xk ) with xℓ = x for all k in {1, . . . ,k} is an
example of a sequence that satisfies the condition of the statement.

Next, we consider the case that y ̸= x. From Lemma 4.47, we know that there is a
sequence Sy := (x0, . . . , xn ) in X with n in N, x0 = y and xn = x in which every state

occurs at most once – so n < |X| – and such that [QIxℓ ](xℓ−1) > 0 for all ℓ in {1, . . . ,n}.
Fix an arbitrary natural number k ≥ n and a step size ∆ in R>0 with ∆∥Q∥ < 2. Note
that for all ℓ in {1, . . . ,n},

0 <∆[QIxℓ ](xℓ−1) = Ixℓ (xℓ−1)+∆[QIxℓ ](xℓ−1) = [(I +∆Q)Ixℓ ](xℓ−1),

where the inequality holds because 0 <∆ and [QIxℓ ](xℓ−1) > 0, and the first equality

holds because xℓ ̸= xℓ−1. Also, from Eq. (4.27)↶ we know that [(I +∆Q)Ix ](x) > 0.
Hence, appending the sequence Sy with (k −n) times x yields a sequence (x0, . . . , xk )

in X with x0 = y and xk = x such that [(I +∆Q)Ixℓ ](xℓ−1) > 0 for all ℓ in {1, . . . ,k}, as
required.

4.D Proof of Theorem 4.36

With the help of the technical lemmas of the two preceding sections, we can
prove Theorem 4.36194, which we repeat here for good measure.

Theorem 4.36. A lower rate operator Q is ergodic if and only if there is some
natural number n < |X| such that for some (and then all) natural num-
ber(s) k ≥ n and some (and then all) step size(s)∆ inR>0 such that ∆∥Q∥op < 2:

ρ
(
(I +∆Q)k)< 1.

Proof. First, we prove the direct implication. To this end, we assume that Q is ergodic,
let n := |X|−1 and fix some natural number k ≥ n and a step size ∆ in R>0 such that
∆∥Q∥ < 2. Note that by construction, T := (I +∆Q) is a lower transition operator due
to Lemma 3.72112.

For the direct implication, we need to prove thatρ(T k ) < 1. We will provide a proof
by contradiction, so we assume ex absurdo that ρ(T k ) = 1. Due to Eq. (4.19)190 and
(LT12)179, there is some f inG(X) with min f = 0 and max f = 1 such that ∥T k f ∥v = 1.
It furthermore follows from (LT4)108 that there are states y0 and y1 in X such that
[T k f ](y0) = 0 and [T k f ](y1) = 1.

We define the – obviously non-empty – set

{ f = 0} := {
x ∈X : f (x) = 0

} ∋ y0,

and distinguish two cases: either XQ ∩ { f = 0} ̸=∅ or XQ ∩ { f = 0} =∅.

First, we consider the case XQ ∩ { f = 0} ̸=∅, and fix any arbitrary element x0 in

this intersection. Note that, by construction, Ix0 ≤ 1− f . Using the conjugacy of T k

and T k and (LT6)108, we find that

T k Ix0 ≤ T k (1− f ) = 1+T k (− f ) = 1−T k f ,
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where for the first equality we have used (LT5)108. From the previous inequality and
(LT4)108, it follows that

0 ≤ [T k Ix0 ](y1) ≤ 1− [T k f ](y1) = 0,

and hence [T k Ix0 ](y1) = 0. Because x0 is a state in the top class XQ , it follows from

Proposition 4.33193 that y1 ,→ x0. Seeing that k ≥ n = |X|−1, it therefore follows from
Lemma 4.48209 that there is a sequence (z0, . . . , zk ) in X with z0 = y1 and zk = x0
such that [T Izℓ ](zℓ−1) > 0 for all ℓ in {1, . . . ,k}. Because of Lemma 4.43206, this implies

that [T
k
Ix0 ](y1) > 0, contradicting our earlier finding that [T

k
Ix0 ](y1) = 0. Thus, we

have established that ρ(T k ) < 1 in case XQ ∩ { f = 0} ̸=∅.

Next, we consider the case XQ ∩ { f = 0} =∅. We let c := min
{

f (x) : x ∈XQ
} > 0

– note that due to Proposition 4.33193, XQ ̸=∅ because Q is ergodic – and observe

that cIXQ
≤ f . Thus, using (LT2)107 and (LT6)108, we find that cT k IXQ

≤ T k f . From

Lemma 4.46208, we furthermore know that

c1 · · ·ck IAk
≤ T k IXQ

,

where A0 :=XQ and, for all ℓ in {1, . . . ,k},

Aℓ :=
{

x ∈X :
[
T IAℓ−1

]
(x) > 0

}
and cℓ := min

{[
T IAℓ−1

]
(x) : x ∈ Aℓ

}
≥ 0.

Combining the two obtained inequalities yields

cc1 · · ·ck IAk
(y0) ≤ c[T k IXQ

](y0) ≤ [T k f ](y0) = 0.

Because by the second part of Lemma 4.46208 either Ak = ∅ or cℓ > 0 for all ℓ
in {1, . . . ,k}, we infer from this inequality that y0 ∉ Ak .

We now prove that Ak =X, which contradicts the previous because y0 ∈X = Ak .
To this end, observe that for all ℓ in {0, . . . ,k −1},

Aℓ+1 = {
x ∈ Aℓ : [(I +∆Q)IAℓ ](x) > 0

}∪{
x ∈X \ Aℓ : [(I +∆Q)IAℓ ](x) > 0

}
.

Note that for all x in Aℓ, IAℓ ≥ Ix . Thus, it follows from (LT6)108 that (I +∆Q)IAℓ ≥
(I +∆Q)Ix , and more particularly that[

(I +∆Q)IAℓ
]
(x) ≥ 1+∆[

QIx
]
(x) > 0 for all x ∈ Aℓ,

where the inequality follows from (LR7)111 because ∆∥Q∥ < 2. Additionally, we ob-
serve that for all x in X \ Aℓ,[

(I +∆Q)IAℓ
]
(x) =∆[

QIAℓ
]
(x) > 0 ⇔ [

QIAℓ
]
(x) > 0,

where we have used that ∆ is a positive real number. Combining these two observa-
tions, we see that for all ℓ in {0, . . . ,k −1},

Aℓ+1 = Aℓ∪
{

x ∈X \ Aℓ :
[
QIAℓ

]
(x) > 0

}
.

From this recursive relation, it is obvious that A0, . . . , Ak is equal to the first (k +1)
terms of the sequence {Bℓ}ℓ∈Z≥0

that is defined in Definition 4.32193 for B0 =XQ .
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Because Q is ergodic and k ≥ |X|−1 ≥ |X\XQ |, it follows from Definition 4.32193 and

Proposition 4.33193 that Ak = Bk =X. In particular, y0 is an element of Ak , and this
contradicts what we have previously found. Thus, ρ(T k ) < 1 in case XQ ∩ { f = 0} =∅
as well, as required.

Next, we prove the converse implication. More precisely, we assume there is a
natural number k and a step size ∆ in R>0 such that ∆∥Q∥ < 2 and ρ(T k ) < 1, where
T := (I +∆Q) is a lower transition operator. It now follows from Theorem 4.28191
that T is ergodic, and then from Proposition 4.27189 that T is regularly absorbing,
meaning that

(i) XT := {
x ∈X : (∃m ∈N)(∀y ∈X)

[
T m Ix

]
(y) > 0

} ̸=∅ and

(ii) (∀y ∈X \XT )(∃m ∈N)
[
T m IXT

]
(y) > 0.

We now use this and Proposition 4.33193 to show that Q is ergodic. First, we show that
XQ =XT , and we will do this by showing that XT ⊆XQ and XQ ⊆XT .

Fix any x in XT and y in X. By (i), there is a natural number m such that

[T m Ix ](y) > 0. Due to Lemma 4.43206, there is a sequence (x0, . . . , xm ) in X with
x0 = y and xm = x such that [T Ixℓ ](xℓ−1) > 0 for all ℓ in {1, . . . ,m}. Without loss of gen-
erality, we may assume that xℓ ̸= xℓ−1 for all ℓ in {1, . . . ,m}. If this is not the case, then
we simply shorten the sequence by replacing every instance of consecutive equal con-
secutive entries with a single entry; note that if all states in the sequence (x0, . . . , xm )
are equal to x0, then we end up with the monuple (x0) with m = 0. Then for all ℓ
in {1, . . . ,m},

0 < [
T Ixℓ

]
(xℓ−1) = [

(I +∆Q)Ixℓ
]
(xℓ−1) = Ixℓ (xℓ−1)+∆[

QIxℓ
]
(xℓ−1) =∆[

QIxℓ
]
(xℓ−1).

Because ∆ > 0, we infer from this strict inequality that (x0, . . . , xm ) is a sequence
in X with x0 = y and xm = x such that [QIxℓ ](xℓ−1) > 0 for all ℓ in {1, . . . ,m}. By
Definition 4.31192, this means that y ,→ x; because y is an arbitrary state in X, we
have shown that x is in the top class XQ . Even more, because x was an arbitrary

element in XT , this shows that XT ⊆XQ .

To verify that XQ ⊆ XT as well, we fix an arbitrary state x in XQ and let m :=
|X|−1. Note that XQ =XT =X whenever |X| = 1, so we may assume without loss of

generality that m = |X|−1 ≥ 1. It follows from the definition ofXQ and Lemma 4.48209

that for any state y in X, there is a sequence (x0, . . . , xm ) in X with x0 = y and xm = x
such that

0 < [
(I +∆Q)Ixℓ

]
(xℓ−1) = [

T Ixℓ
]
(xℓ−1) for all ℓ ∈ {1, . . . ,m}.

Therefore, it follows from Lemma 4.43206 that [T m Ix ](y) > 0 for all y in X; by (i), this
implies that x belongs to the top class XT . Since x was an arbitrary state in XQ , this

verifies that XQ ⊆XT .

To summarise, we have shown that XQ =XT . For this reason, it follows from (i)

that
XQ =XT ̸=∅,

which settles the first condition of Proposition 4.33193.
To prove that Q also satisfies the second condition of Proposition 4.33193, we fix

any y in X \XQ =X \XT , and prove that y ←- XQ . Since T is ergodic, we know from
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Proposition 4.27189 that it is top class regular and top class absorbing. It therefore
follows from Lemma 4.45207 that Bℓ⋆ =X, where (Bℓ)ℓ∈Z≥0

is the sequence that is
derived from the initial condition B0 :=XT and the recursive relation

Bℓ+1 := Bℓ∪
{

x ∈X \ Bℓ :
[
T IBℓ

]
(x) > 0

}
for all ℓ ∈Z≥0,

and where ℓ⋆ is the first index such that Bℓ⋆ = Bℓ⋆+1. Observe that B0 =XQ and that

for all ℓ in Z≥0,

Bℓ+1 = Bℓ∪
{

x ∈X \ Bℓ :
[
(I +∆Q)IBℓ

]
(x) > 0

}= Bℓ∪
{

x ∈X \ Bℓ :
[
QIBℓ

]
(x) > 0

}
,

where the second equality holds because IBℓ−1
(x) = 0 and ∆> 0. It now follows from

this and Definition 4.32193 that y ←- XQ .

Seeing that we have shown that XQ ̸= ∅ and y ←- XQ for all y in X \XQ , it

now follows from Proposition 4.27189 that Q is ergodic, which is what we needed to
prove.
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Extension to
idealised inferences 5

The inferences that we can make using an imprecise jump process are rather
limited: by construction, we only deal with finitary events, that is, those
events that depend on the state of the system at a finite number of time
points. Therefore, we have only defined the lower and upper expectation
of finitary variables – which are all gambles – and, as a particular case, the
lower and upper probability of finitary events. In many applications, however,
finitary variables do not suffice. More often than not, one is interested in
inferences – or, more precisely, in events and variables – that depend on the
state of the system at the time points in some closed time interval [s,r ] ⊂R≥0,
or even on the state of the system at all time points in R≥0. As always, we can
make this more concrete with our running example.

Joseph’s Example 5.1. Recall from Joseph’s Example 3.1365 that Cecilia is
convinced that Joseph’s machine will always display heads. For this reason,
she should assign probability one to the event⋂

t∈R≥0

{X t = H} = {ωH},

where ωH is the path that is always H. By the laws of probability, she should
then assign probability zero to the complement⋃

t∈R≥0

{X t = T} =Ω\ {ωH}.

The probability of the second event is an example of what is commonly
known as a hitting probability. For this reason, we call the event that a
subset A of X is ever ‘hit’ – that is, that some situation ω(t ) along the path ω
belongs to A at some time point t – a hitting event.

Often, we are also interested in the time it takes to hit the subset A of X.
This is captured by the hitting time τA : the variable that is equal to the earliest
time point such that the state of the system at that time point belongs to A.
In the present setting, the hitting time of {H} is

τH : Ω→R : ω 7→ inf
{

t ∈R≥0 : ω(t ) = H
}
.
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Note that τH depends on the value of the path ω at all time points in R≥0, so
it is not finitary. Even worse, so to speak, τH is not a gamble but an extended
real variable: τH(ω) =+∞ if ω never hits H because the infimum of the empty
set in R (or R≥0) is +∞. ¢

In the setting of jump processes, we will only deal with idealised events
and variables, meaning that they are ‘point-wise limits’ of finitary events and
variables, respectively – that is, the ‘point-wise limit’ of events in Fu and
variables in S(Fu), respectively. Because they are defined as limits of finitary
variables, idealised variables may be unbounded; in fact, as the preceding
example illustrates, it makes sense to allow them to be extended real-valued.
Because these idealised variables are defined through a limit, it is reasonable
to determine their expectation through limit arguments as well, and it is
precisely this we will do in this chapter.

We will not immediately set about to extending the domain of the lower
and upper expectations corresponding to an imprecise jump process. Instead,
we start this chapter in Section 5.1 with some general theory on how to extend
the domain of the expectation that corresponds to a probability charge. In
Section 5.2228, we use this theory to extend the domain of the conditional
expectation corresponding to a (countably additive) jump process. Finally,
in Section 5.3238 we extend the domain of the conditional lower and upper
expectations corresponding to an imprecise jump process.

5.1 Extension through limit arguments

Suppose we have a probability charge P on some field F of events over a
possibility spaceX. Recall that in Section 2.3.335, we have defined the corre-
sponding expectation EP on the linear space S(F ) of F -simple variables –
which, by Definition 2.3836, is a subspace of the set of all gambles – through
the Dunford integral. In this section, we seek to extend the domain of the
expectation EP to more general variables, that is, to bounded real variables
that are not F -simple, to unbounded real variables and even to extended
real variables.

We go about this as follows. First, we explain in Section 5.1.1↷ why the
natural extension is ill-suited for this purpose. Next, in Sections 5.1.2219 and
5.1.3224 we explain how Daniell (1918) uses limit arguments to extend EP .
Finally, in Section 5.1.4227 we briefly investigate the relationship of this ex-
tension with coherence.

For the duration of this section, we return to the discrete-time setting in
our running example because it is conceptually easier.

Bruno’s Example 5.2. Recall from Bruno’s Example 2.3332 that the field

F = {
{X1:n ∈ A} : n ∈N, A ⊆ {H,T}n}
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consists of all events that depend on the outcome of a finite – but unbounded
– number of coin flips. Furthermore, we recall from Eq. (2.17)35 in Bruno’s
Example 2.3735 that for a given probability mass function q on the state
space {H,T}, the real-valued map P on F defined by

P (X1:n ∈ A) = ∑
y1:n∈A

n∏
k=1

q(yk ) for all {X1:n ∈ A} ∈F (5.1)

is a probability charge. í

5.1.1 Why not the natural extension?

From Proposition 2.4338, we know that EP is a coherent expectation on S(F ).
Thus, due to Proposition 2.2025, we can always extend the coherent expec-
tation EP to a coherent expectation on G(X), and we have seen in Propo-
sition 2.2226 that the natural extension EP := EEP

provides tight lower and
upper bounds on these coherent extensions. Moreover, because S(F ) is a
real vector space that includes all constant gambles – see Lemma 2.3936 – it
follows from Proposition 2.2427 that

EP (g ) = sup
{
EP (h) : h ∈S(F ),h ≤ g

}
for all g ∈G(X) (5.2)

and, by conjugacy, that

EP (g ) = inf
{
EP (h) : h ∈S(F ),h ≥ g

}
for all g ∈G(X). (5.3)

Note that for any F -simple variable g , EP (g ) = EP (g ) = EP (g ). Whenever
the lower and upper expectation of an arbitrary – so not necessarily F -simple
– gamble g coincide, we call that gamble g C-integrable, where the ‘C’ refers
to coherence. In this case, we denote the common value of EP (g ) and EP (g )
by E C

P (g ), and simply call it the expectation of g .1 This way, we can extend
the domain of EP from the set of F -simple variables S(F ) to the set of C-
integrable gambles

DC
P := {

g ∈G(X) : EP (g ) = EP (g )
}
.

In other words, E C
P is the restriction of EP to DC

P , those gambles for which
the natural extension EP is self-conjugate. By (Troffaes et al., 2014, Proposi-
tion 8.2), E C

P is a coherent expectation on DC
P .

Unfortunately, a lot of practically relevant gambles are not C-integrable.
This is illustrated by the following example, for which we are indebted to
Troffaes (2013).

1Troffaes et al. (2014, Definition 8.1) use different terminology: they use the term EP -
integrable instead of C-integrable, and call EC

P (g ) the EP -integral of g .
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Bruno’s Example 5.3. Cecilia is not only sceptical about Joseph’s machine,
but also about Bruno’s coin flipping machine. More precisely, Cecilia is
convinced that Bruno’s machine will always flip heads – or, equivalently, she
has very strong doubts that a flip of the machine will ever come out tails. In
our formalism, the event that Bruno’s machine never flips tails corresponds
to the event

Hlim :={
(xn)n∈N ∈X : (∀n ∈N) xn = H

}= {
(xn)n∈N ∈X : (∃n ∈N) xn = T

}c

= ⋂
n∈N

{Xn = H} = ⋂
n∈N

n⋂
k=1

{Xk = H} = ⋂
n∈N

Hn ,

where {Xn = H} and Hn are as defined in Bruno’s Example 2.3332. From the
last equality, we infer that Hlim is a countable intersection of events in the
field F . However, because Hlim depends on the result of all coin flips and
not just on a finite number of them, Hlim itself does not belong to the field F .

We now set out to determine whether or not Hlim is a C-integrable event,
meaning that IHlim is a C-integrable gamble. Observe that ∅⊆ Hlim ⊆ Hn for
any natural number n, so 0 = I∅ ≤ IHlim ≤ IHn . One can furthermore check
that if h is an F -simple variable such that h ≤ IHlim , then also h ≤ I∅ = 0;
similarly, if h is an F -simple variable such that h ≥ IHlim , then there is some
natural number n such that IHn ≤ h. Thus, it follows from this, (LE6)30 and
Eqs. (5.2)↶ and (5.3)↶ that

EP (IHlim ) = P (∅) = 0 and EP (IHlim ) = inf
{
P (Hn) : n ∈N}= inf

{
qn : n ∈N}

.

In case 0 ≤ q < 1, we infer from this that IHlim is C-integrable and
E C

P (IHlim ) = 0. If on the other hand q = 1, then IHlim is not C-integrable
because EP (IHlim ) = 0 and EP (IHlim ) = 1. So even though in the latter case
P (Hn) = EP (IHn ) – the probability that the first n flips of the machine are all
heads – is equal to one for every natural number n, we cannot conclude on the
basis of coherence alone that the probability of Hlim is one as well. In fact, this
probability can be can be any real number r in [0,1], because it follows from
Proposition 2.2226 that for every r in [0,1] = [EP (IHlim ),EP (IHlim )], there is a
coherent extension E⋆ of EP from S(F ) to G(X) such that E⋆(IHlim ) = r . í

In this example, the event Hlim is an ‘idealisation’ because it concerns
an infinite number of coin flips. Note that it is the ‘limit’

⋂
n∈N Hn of the

non-increasing sequence of events (Hn)n∈N, where Hn only depends on n
consecutive coin flips. In spite of this, this limit behaviour of the events is
not carried over to their probabilities whenever q = 1. In short, this example
reveals that coherence might not be the right tool when dealing with ideali-
sations, especially so if we want that ‘monotone limits’ of events are carried
over to monotone limits of probabilities – and, more generally, monotone
limits of variables carry over to expectations.

A second argument against extending using the coherence framework
in general and the natural extension in particular, is that this framework
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is motivated using a gambling interpretation, and it does not always make
sense to use such an interpretation for every gamble in G(X). More precisely,
we have previously mentioned in Section 2.2.116 that this gambling interpre-
tation only makes sense for determinable gambles. The event Hlim in Bruno’s
Example 5.3↶ is clearly not determinable, because we can never be sure that
the next toss will not be tails instead of heads.

A third argument for not using the coherence framework, is that it is
restricted to gambles. This makes sense because the interpretation of coher-
ence does not seem compatible with unbounded real variables – let alone
extended real variables – because no rational subject should be disposed
to agree to a transaction that has no lower bound on the utility that it can
cost her. Nonetheless, the theory of coherence has been extended to un-
bounded real variables – but, to the best of our knowledge, not to extended
real variables. Crisma et al. (1997) have extended the notion of coherence
for expectations to real variables, but their work is subsumed by that of Trof-
faes et al. (2014, Chapter 13), who treat coherence for (conditional) lower
expectations on real variables.

Troffaes et al. (2014, Section 13.11) also argue that in this more general
setting, the natural extension might be too conservative to be of any prac-
tical use. More specifically, they conclude that ‘perhaps, starting from the
well-understood bounded case, and taking limits, might lead to more prac-
tical answers.’ They subsequently put their money where their mouth is,
and thoroughly explain how this works: in (Troffaes et al., 2014, Chapter 15),
they extend a coherent lower expectation E on the set G(X) of all gambles
to the set of ‘previsible’ real variables. However, their results are not (imme-
diately) applicable to our setting, because we seek to extend the coherent
expectation EP from the set S(F ) of F -simple variables to (a subset of) the
extended real variables. We could follow the approach of Troffaes et al. (2014,
Chapter 15) starting from the natural extension EP of EP to G(X), but we
choose not to because (i) we already know from Bruno’s Example 5.3↶ that
the natural extension EP lacks continuity properties, and (ii) this does not
permit us to deal with extended real variables. This being said, we will relate
our method of extending to the coherence framework in Section 5.1.4227

further on, and we will also reflect on this again in Section 5.3238.

5.1.2 Daniell extension through monotone convergence

There are a lot of ways to extend the expectation EP that corresponds to
the probability charge P . For example, Bhaskara Rao et al. (1983, Defini-
tion 4.4.11) extend EP to the linear space of the ‘Dunford integrable’ real-
valued variables by means of limit arguments (see also Troffaes et al., 2014,
Definition 8.29). However, this extension is ill-suited for our purposes be-
cause it is restricted to real variables.
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A well-known alternative that can deal with extended real variables is
the standard way to go in measure-theoretic probability theory: extend the
charge to a probability measure using Carathéodory’s Theorem, and sub-
sequently use the Lebesgue integral with respect to this measure to extend
the domain of EP . This extension essentially uses limit arguments, as is de-
tailed in Appendix C461 (see also D. Williams, 1991; Billingsley, 1995; Shiryaev,
2016). However, in this dissertation we follow Daniell’s (1918) slightly dif-
ferent approach. Apart from my being slightly contrarian, my main reason
for doing so is that the limit arguments are more obvious. Nonetheless, in
Theorem C.19471 of Appendix C.3470, we establish that, for all intents and
purposes, these two approaches are equivalent.

Daniell (1918) extends the domain of the expectation EP that corresponds
to a probability charge P on the basis of limit arguments. His work is actually
more general, because he extends a general ‘elementary integral operator’
over some abstract ‘vector lattice of functions’. Royden (1968, Chapter 13)
and Taylor (1985, Chapter 6) also stick to this general setting in their more
recent treatments of Daniell’s approach. Our exposition is to a large extent
in line with Taylor’s (1985), but there are two notable differences. The first
key difference is that we do not consider a general ‘elementary integral’, but
instead take the special case of an expectation with respect to a (countably
additive) probability charge as starting point. The second difference is that
our extension is extended-real-valued, whereas Daniell (1918), Royden (1968),
and Taylor (1985) restrict the domain in order to end up with a real-valued
extension.

As a consequence of these two differences, we cannot simply borrow
all results from the aforementioned references, but almost all of the results
in this section are straightforward adaptations of well-known results. For
this reason, we have chosen to nonetheless refer to Taylor’s (1985) results
throughout the main text; a justification for why we can use these results can
be found in Appendix B.1451. In order to not unnecessarily burden the main
text with technicalities, we have also relegated to that appendix the proofs of
most of the results in the remainder of this section.

Taking these caveats into account, we construct the Daniell extension
as follows. Our starting point is a countably additive probability charge P
on a field of events F over some possibility spaceX. Next, a limit argument
extends the domain of EP to extended real variables that are the limits of
monotone sequences of F -simple variables. Finally, in Section 5.1.3224 we
use this first extension to extend the domain EP even further, this time by ap-
proximating any extended real variable with limits of monotone sequences of
extended real variables that are themselves the limit of a monotone sequence
of F -simple variables.
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Monotone sequences of F -simple variables

Essential to Daniell’s (1918) extension are sequences of (extended) real vari-
ables that converge in some sense. In this context, the basic notion of conver-
gence is that of point-wise convergence. A sequence ( fn)n∈N of extended real
variables converges point-wise if for all x inX, the limit limn→+∞ fn(x) exists.
Whenever this is the case, we say that ( fn)n∈N converges point-wise to

p-w lim
n→+∞

fn : X→R : x 7→ lim
n→+∞ fn(x). (5.4)

The second notion of convergence deals with monotone sequences of
extended real variables, that is, sequences that are non-decreasing, non-
increasing or both. Formally, we call a sequence ( fn)n∈N of extended real
variables non-decreasing if fn ≤ fn+1 for all n inN. For such a non-decreasing
sequence, it is clear that the limit limn→+∞ fn(x) exists for all x in X, but
it can be equal to +∞ for some x in X; hence, ( fn)n∈N converges point-
wise. Therefore, we say that the non-decreasing sequence ( fn)n∈N converges
monotonically to f := p-w limn→+∞ fn and denote this by ( fn)n∈N↗ f . Con-
versely, we call a sequence ( fn)n∈N of extended real variables non-increasing
if (− fn)n∈N is non-decreasing; in this case we also say that ( fn)n∈N converges
monotonically to the extended real variable f := p-w limn→+∞, but denote
this by ( fn)n∈N↘ f .

Consider any F -simple variable f , and suppose ( fn)n∈N is a non-
decreasing sequence of F -simple variables that converges monotonically
to f . Observe that for all n inN, fn ≤ fn+1 ≤ f , so EP ( fn) ≤ EP ( fn+1) ≤ EP ( f )
due to (ES4)37. It follows from this and (ES1)37 that (EP ( fn))n∈N is a non-
decreasing sequence of real numbers that is bounded above by EP ( f ) ≤
max f <+∞, so this sequence converges to a real number and

lim
n→+∞EP ( fn) ≤ EP ( f ).

Whenever this inequality holds with equality for all f in S(F ) and ( fn)n∈N
in S(F ) with ( fn) ↗ f , we call the probability charge P countably additive. It
might be a bit counter-intuitive to refer to this property of monotone limits
using the term ‘countable additivity’, but this terminology is well-established.
The more conventional necessary and sufficient conditions of Lemma C.3463

in Appendix C461 explain the origins of this terminology.

Definition 5.4. Consider a probability charge P on a field of events F over
some possibility space X. Then the following three conditions are equiva-
lent. Whenever P satisfies one (and hence all) of them, we call P countably
additive.

(i) For any F -simple variable f and any sequence ( fn)n∈N of F -simple
variables such that ( fn)n∈N↗ f , EP ( f ) = limn→+∞ EP ( fn).
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(ii) For any F -simple variable f and any sequence ( fn)n∈N of F -simple
variables such that( fn)n∈N↘ f , EP ( f ) = limn→+∞ EP ( fn).

(iii) For any sequence ( fn)n∈N of F -simple variables such that ( fn)n∈N↘ 0,
limn→+∞ EP ( fn) = 0.

Bruno’s Example 5.5. Billingsley (1995, Theorem 2.3) shows that any proba-
bility charge on the field F of events that depend on the outcome of a finite
number of coin flips – as defined in Bruno’s Example 2.3332 – is countably
additive. In particular, this holds for our probability charge P on F as defined
in Eq. (2.17)35. í

F -over and F -under variables

The first step towards Daniell’s (1918) extension is to extend the domain
of EP to extended real variables that are the limits of monotone sequences
of F -simple variables. If ( fn)n∈N is a non-decreasing sequence of F -simple
variables, then we call the extended real variable f := p-w limn→+∞ fn an F -
over variable. Similarly, an F -under variable is an extended real variable f
such that there is at least one non-increasing sequence ( fn)n∈N of F -simple
variables that converges point-wise to f . Note that an F -over variable f can
attain +∞ but not −∞ because f is bounded below; conversely, an F -under
variable can attain −∞ but not +∞ because it is bounded above. Hence,
an extended real variable f that is both an F -over and F -under variable is
bounded below and above, so simply a gamble.

We denote the set of all F -over and F -under variables by Vo(F ) and
Vu(F ), respectively. Observe that

Vu(F ) =−Vo(F ) = {− f : f ∈Vo(F )
}

(5.5)

because ( fn)n∈N ↗ f implies that (− fn)n∈N ↘− f and vice versa. Further-
more, because any F -simple variable f is the limit of the constant (and
hence non-decreasing and non-increasing) sequence ( f )n∈N of F -simple
variables, we conclude that S(F ) is included in Vo(F ) and Vu(F ) – so
S(F ) ⊆ Vo(F )∩Vu(F ). For ease of notation, we denote the set of all F -
over and all F -under variables by Vo

u(F ) :=Vo(F )∪Vu(F ).
Take any F -over or F -under variable f . By definition, it is the limit

of some sequence ( fn)n∈N of F -simple variables that is non-decreasing
or non-increasing. In either case, it follows from (ES4)37 that (EP ( fn))n∈N
is a non-decreasing or non-increasing sequence of real numbers, so the
limit limn→+∞ EP ( fn) exists. Note that this limit need not be real-valued,
but can be equal to −∞ if ( fn)n∈N is non-increasing and +∞ if ( fn)n∈N is
non-decreasing. Crucial to Daniell’s extension is that if ( fn)n∈N and (gn)n∈N
are two monotone sequences of F -simple variables that converge to the
same variable f , then the limits of their respective expectations should be
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equal. The following result – essentially due to Taylor (1985, Section 6-2) –
establishes that this holds if P is countably additive.

Lemma 5.6. Consider a countably additive probability charge P on a field
of events F over some possibility space X, and some f in Vo

u(F ). If ( fn)n∈N
and (gn)n∈N are monotone sequences of F -simple variables that both con-
verge point-wise to f , then

lim
n→+∞EP ( fn) = lim

n→+∞EP (gn).

Because the limit limn→+∞ EP ( fn) is the same for any monotone se-
quence ( fn)n∈N that converges point-wise to the same limit variable f , it
seems sensible to accept this limit value as the expectation of f . In this way,
we obtain the extension E mc

P of EP to Vo
u(F ) defined by

E mc
P ( f ) := lim

n→+∞EP ( fn) for all f ∈Vo
u(F ), (5.6)

where ( fn)n∈N is any monotone sequence of F -simple variables that con-
verges point-wise to f . Observe that E mc

P coincides with EP onS(F ) because
– as we have seen before – any F -simple variable f is the monotone limit of
the constant sequence ( f )n∈N.

Let us confirm that this extension does not suffer from the same issue as
the coherence approach in Bruno’s Example 5.3218.

Bruno’s Example 5.7. Recall from Bruno’s Example 5.3218 that

Hlim = ⋂
n∈N

Hn .

We know that Hn belongs to F from Bruno’s Example 2.3332, and it is clear
that Hn ⊇ Hn+1 for all n in N. For this reason, (IHn )n∈N is a non-increasing
sequence of F -simple variables. It is easy to verify that (IHn )n∈N converges
point-wise to IHlim , which makes IHlim an F -under variable. Therefore,

E mc
P (IHlim ) = lim

n→+∞EP (IHn ) = lim
n→+∞P (Hn) = lim

n→+∞qn =
{

0 if q < 1

1 if q = 1.

Thus, IHlim belongs to the domain Vo
u(F ) of the extension E mc

P , regardless of
the value of p(H) = q . í

It is important to realise that E mc
P need not be real-valued, as is illustrated

by the next example.

Bruno’s Example 5.8. To illustrate that E mc
P need not be real-valued, we

consider the hitting time of T:

τT : X→R : φ 7→ τT(φ) := inf{n ∈N : φn = T}.
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Observe that τT is always real-valued, except when every coin flip in the
outcome is H. In the latter case, the set in the definition above is empty, so
the variable τT assumes the value +∞. We now set out to establish that τT is
an F -over variable.

To this end, we consider for any natural number n the real variable τT∧n :=
τT∧n. Observe that, by construction, τT∧n only depends on the first n flips of
the machine. It is essentially for this reason that τT∧n is an F -simple variable.
To establish this formally, we observe that

τT∧n =
n∑

k=1
kI{X1:k=yk

1:k } +nI{X1:n=(H,...,H)},

where for any natural number k, yk
1:k is the k-tuple in {H,T}k such that yk

k = T
and yk

ℓ
= H for all ℓ< k. From this and Eqs. (2.16)35 and (2.19)36, we infer that

EP
(
τT∧n

)= n∑
k=1

kqk−1(1−q)+nqn =
{

n if q = 1,
1−qn

1−q if 0 ≤ q < 1.
. (5.7)

We know that (τT∧n)n∈N is a sequence of F -simple variables. It is further-
more easy to see that this sequence is non-decreasing and that it converges
point-wise to τT; in other words, τT is an F -over variable. Consequently, it
follows from Eqs. (5.6)↶ and (5.7) that

E mc
P

(
τT

)= lim
n→+∞EP

(
τT∧n

)={
+∞ if q = 1,

1
1−q if 0 ≤ q < 1.

í

5.1.3 Daniell extension through inner and outer approximations

In many cases, including that of jump processes, F -over and F -under vari-
ables do not make up all idealised variables that one might be interested
in. For this reason, we take the second and final step in Daniell’s extension,
which consists in approximating general extended real variables from above
and below. This step is similar to what we did in Proposition 2.2427, where we
obtained the natural extension E (and its conjugate E) of a coherent lower
expectation E through inner and outer approximation. The difference is that
instead of approximating a gamble g from above and below with gambles h in
the domainG of E , we now approach the extended real variable f from above
with F -over variables and from below with F -under variables. Formally, we
define the inner Daniell extension E i

P : V(X) →R by

E i
P ( f ) := sup

{
E mc

P (h) : h ∈Vu(F ),h ≤ f
}

for all f ∈V(X) (5.8)

and the outer Daniell extension E o
P : V(X) →R

E o
P ( f ) := inf

{
E mc

P (h) : h ∈Vo(F ),h ≥ f
}

for all f ∈V(X). (5.9)
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Because Eqs. (5.8)↶ and (5.9)↶ are so similar to the two expressions for
the natural extension in Proposition 2.2427, it should not come as a surprise
that the inner and outer Daniell extensions satisfy similar properties as co-
herent lower and upper expectations, respectively. We refer to (Taylor, 1985,
Section 6-3) or Lemma B.6455 in Appendix B.1451 for a list of properties. In
order to understand the remainder, it suffices to know that

E i
P ( f ) = E o

P ( f ) = E mc
P ( f ) for all f ∈Vo

u(F ) (5.10)

and, because EP and E mc
P coincide for F -simple variables, therefore also

E i
P ( f ) = E o

P ( f ) = E mc
P ( f ) = EP ( f ) for all f ∈S(F ). (5.11)

The inner and outer Daniell extension typically coincide on more vari-
ables than just the F -over and F -under ones. Whenever the inner and outer
Daniell extensions E i

P ( f ) and E o
P ( f ) of an extended real variable f coincide,

we call f D-integrable. In that case, we denote the common value of E i
P ( f )

and E o
P ( f ) by E D

P ( f ) and call this the Daniell expectation – sometimes also
Daniell integral – of f . In this way, E D

P is an extended real-valued functional
with domain

DD
P := {

f ∈V(X) : E i
P ( f ) = E o

P ( f )
}
. (5.12)

Note that, due to Eqs. (5.10) and (5.11),

S(F ) ⊆Vo
u(F ) ⊆DD

P . (5.13)

Our definition of the domain DD
P of the Daniell extension E D

P is more general
than Taylor’s (1985, Section 6–3), because he ensures that E D

P is real-valued
by restricting its domain to

D̃D
P := {

f ∈V(X) : −∞< E i
P ( f ) = E o

P ( f ) <+∞}
.

Taylor (1985, Theorem 6-3 II) lists several properties of E D
P on D̃D

P . For the
sake of conciseness, we only generalise some of these properties to DD

P .

Theorem 5.9. Consider a countably additive probability charge P on a field
of events F over some possibility space X. Then

DE1. S(F ) ⊆DD
P and E D

P ( f ) = EP ( f ) for all f in S(F );

DE2. S(F ) ⊆Vo
u(F ) ⊆DD

P and E D
P ( f ) = E mc

P ( f ) for all f in Vo
u(F ).

Furthermore, for all D-integrable extended real variables f and g in DD
P and

all real numbers µ in R,

DE3. inf f ≤ E D
P ( f ) ≤ sup f ;

DE4. µ f is D-integrable and E D
P (µ f ) =µE D

P ( f );

DE5. f + g is D-integrable and E D
P ( f + g ) = E D

P ( f )+E D
P (g ) whenever f + g

and E D
P ( f )+E D

P (g ) are well-defined;
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DE6. E D
P ( f ) ≤ E D

P (g ) whenever f ≤ g .

Finally, for all D-integrable real variables f and g in D̃D
P ,

DE7. f ∨ g and f ∧ g also belong to D̃D
P .

Observe that the properties (DE3)↶–(DE6) of the Daniell expectation E D
P

are generalisations of the properties (ES1)37–(ES4)37 of the Dunford expecta-
tion EP .

Limit theorems

Even more important, however, are the following two quintessential limit
properties. The first is known as the Monotone Convergence Theorem; we
extend Taylor’s (1985, Theorem 6-3 III) statement from D̃D

P to DD
P here.

Theorem 5.10. Consider a countably additive probability charge P on a field
of events F over some possibility space X. Let ( fn)n∈N be a non-decreasing
sequence of D-integrable variables with E D

P ( f1) > −∞. Then the point-wise
limit of ( fn)n∈N is D-integrable, and

E D
P

(
p-w lim

n→+∞
fn

)
= lim

n→+∞E D
P ( fn).

The same holds in case ( fn)n∈N is non-increasing and E D
P ( f1) <+∞.

In the second convergence theorem, we substitute the requirement that
the sequence ( fn)n∈N of extended real variables should be bounded for the
requirement that it should be monotone. This second convergence result
is known as Lebesgue’s Dominated Convergence Theorem (see Taylor, 1985,
Theorem 6-3 IV).

Theorem 5.11. Consider a countably additive probability charge P on a
field of events F over some possibility space X. Let ( fn)n∈N be a sequence
of D-integrable variables that converges point-wise. If there is a D-integrable
variable g with E D

P (g ) <+∞ such that | fn | ≤ g for all n inN, then the point-
wise limit of ( fn)n∈N is D-integrable, and

E D
P

(
p-w lim

n→+∞
fn

)
= lim

n→+∞E D
P ( fn).

Recall from (DE2)↶ that the set DD
P of D-integrable variables includes all

F -simple, F -over and F -under variables. In other words, these variables are
D-integrable for every countably additive probability P on F ; quite remark-
ably, we can identify a lot more variables for which this holds as well. To show
this, we recall from the beginning of Section 5.1.2219 that, by Theorem C.19471

in Appendix C.3470, the Daniell extension E D
P essentially coincides with the

usual extension of EP in measure-theoretic probability theory. More precisely
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put, Theorem C.19471 establishes that the domain of the measure-theoretical
extension of EP is contained inDD

P , and that this extension coincides with E D
P

on that domain. For this reason, we can use standard results from measure
theory to identify a larger class of variables that are D-integrable for any
countably additive probability charge P on F .

As we did for the F -over and F -under variables, we consider sequences
of F -simple variables that converge point-wise. Here, we do not require that
these sequences should be monotone; instead, all that we need is that these
sequences are uniformly bounded below or above. A sequence ( fn)n∈N of
extended real variables is called uniformly bounded below if there is some real
number β such that fn ≥β for all n inN. Furthermore, ( fn)n∈N is said to be
uniformly bounded above if (− fn)n∈N is uniformly bounded below, and simply
called uniformly bounded if it is uniformly bounded above and below. We
collect all extended real variables that are the point-wise limit of a sequence
of F -simple variables that is either bounded above or bounded below in

Vlim(F ) :=Vb(F )∪Vb(F ), (5.14)

where we let Vb(F ) denote the set of all extended real variables f in V for
which there is a sequence ( fn)n∈N of F -simple variable that is uniformly
bounded below and that converges point-wise to f , and similarly, we let
Vb(F ) denote the set of all extended real variables f in V for which there is
a sequence ( fn)n∈N of F -simple variables that is uniformly bounded above
and that converges point-wise to f . Note that every f inVb(F ) is bounded
below – in the sense that inf f >−∞ – and every f inVb(F ) is bounded above
– in the sense that sup f <+∞. Furthermore, it is clear thatVb(F ) =−Vb(F ),
so Vlim(F ) is negation invariant.

The following result establishes that every variable in Vlim(F ) is always
D-integrable. Our proof relies on Theorem C.19471, and on the well-known
fact that the point-wise limit of a sequence of measurable extended real
variables is a measurable extended real variable – see Lemma C.13467 in
Appendix C.2.1467. For this reason, we have relegated it to Appendix C.3470.
Note that in Corollary C.25474 in Appendix C.3470, we also show that DD

P
contains every σ(F )-measurable variable – see Appendices C.1.1464 and
C.2.1467 – that is either bounded below or bounded above.

Theorem 5.12. Consider a field of events F over some possibility space X.
Then for any countably additive probability charge P on F ,

S(F ) ⊆Vo
u(F ) ⊆Vlim(F ) ⊆DD

P .

5.1.4 Daniell extension from the point of view of coherence

We have accomplished what we set out to do: we have defined an extension
of EP to point-wise limits of sequences of F -simple variables, and this exten-
sion carries over monotone limit behaviour of events and variables to their
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probabilities and expectations in a consistent manner. To tie things up, we
take a look at the Daniell extension E D

P from the point of view of coherence.

In Section 5.1.1217, we defined the class DC
P of C-integrable gambles as

those gambles g inG(X) whose lower and upper natural extension EP (g ) and
EP (g ) coincide. The following result establishes that C-integrable gambles
are always D-integrable; we have relegated our proof to Appendix B.2458.

Proposition 5.13. Consider a countably additive probability charge P on
a field of events F over some possibility space X. Then for any gamble g
in G(X), EP (g ) ≤ E i

P (g ) and EP (g ) ≥ E o
P (g ). Consequently, DC

P is included
in DD

P , and

E C
P (g ) = E D

P (g ) for all g ∈DC
P .

By definition, the domainDD
P of the Daniell expectation E D

P contains those
extended real variables f whose inner and outer Daniell expectations E i

P ( f )
and E o

P ( f ) coincide; this is similar to the definition of E C
P , although the lower

and upper natural extensions EP and EP are replaced by the inner and outer
Daniell extensions E i

P and E o
P . As E C

P is a coherent expectation, this leads us
wondering whether the Daniell expectation E D

P , when restricted to gambles,
is coherent as well. That this is indeed the case follows almost immediately
from Proposition 2.1522 and Theorem 5.9225; a formal proof for this result
can be found in Appendix B.2458.

Proposition 5.14. Consider a countably additive probability charge P on a
field of events F over some possibility space X. Then the restriction of the
Daniell extension E D

P to G(X)∩DD
P is a coherent expectation.

5.2 Extending the domain of a jump process

It is about time we put Daniell’s extension method to work in the setting
of jump processes. In Section 5.2.1, we show that for any jump process P
that has (uniformly) bounded rate and for any state history {Xu = xu} in H,
the probability charge P (•|Xu = xu) on Fu is countably additive; hence,
we can then use Daniell’s method to extend the domain of the conditional
expectation EP corresponding to this jump process P . Subsequently, in
Section 5.2.2231 we consider the number of jumps as a first example of a
variable in this extended domain; we show that this real variable is the point-
wise limit of a non-decreasing sequence of simple variables, and also provide
an upper bound on its expectation.

5.2.1 Countably additive jump processes

Recall from Section 3.1.365 that the domain D of a jump process P is a struc-
ture of fields. Due to Corollary 2.5846, we therefore know that for every state

228



5.2 Extending the domain of a jump process

history {Xu = xu} in H, P (•|Xu = xu) is a probability charge on Fu . When-
ever each of these probability charges is countably additive, we follow Berti
et al. (2002, Section 3) and Lopatatzidis (2017, Definition 6) in calling the
jump process P countably additive as well.

Definition 5.15. A jump process P is countably additive if for all {Xu = xu}
in H, the probability charge P (•|Xu = xu) on Fu is countably additive.

Suppose P is a countably additive jump process. Because every probabil-
ity charge P (•|Xu = xu) is then countably additive, we can use the material in
Section 5.1216 to extend the induced conditional expectation EP (•|Xu = xu).
More concretely, for any state history {Xu = xu} inH, we obtain the extended
conditional expectation

E D
P (•|Xu = xu) : Vlim(Fu) →R : f 7→ E D

P ( f |Xu = xu) := E D
P (•|Xu=xu )( f ),

where E D
P (•|Xu=xu ) is the Daniell extension of the expectation EP (•|Xu=xu ) cor-

responding to the countably additive probability charge P (•|Xu = xu). This
way, we have defined the conditional Daniell extension E D

P on

JD := {
( f |Xu = xu) : u ∈U, xu ∈Xu , f ∈Vlim(Fu)

}
. (5.15)

For any {Xu = xu} in H and A in P(Ω) such that (IA |Xu = xu) belongs to JD,
it makes sense to think of

P D(A |Xu = xu) := E D
P (IA |Xu = xu)

as a conditional probability.
Note that we could have also used the more general set DD

P (•|Xu=xu ) of D-
integrable variables in the definition of E D

P (•|Xu = xu), but we have chosen
not to for two reasons. The pragmatic reason is that this smaller domain
is all we really need in the remainder, because the idealised variables that
we will consider belong to the smaller domain Vlim(Fu). The second, more
important, reason is that due to Theorem 5.12227, we are guaranteed that the
Daniell extension E D

P (•|Xu=xu ) is defined on Vlim(Fu) for any countably addi-
tive jump process. In other words, this restriction ensures that the domain JD
of the conditional Daniell expectation E D

P is the same for any countably ad-
ditive jump process P . This will turn out to be convenient in Section 5.3238

further on, where for imprecise jump processes that exclusively consist of
countably additive jump processes, this will allow us to extend their lower
(and upper) envelope to JD. Due to Corollary C.25474 in Appendix C.3470, an-
other way to ensure that the extensions E D

P (•|Xu=xu ) have the same domain, is
to restrict their domain to those extended real variables that are measurable
with respect to the σ-field σ(Fu) generated by Fu – see Appendices C.1.1464

and C.2.1467 – and that are either bounded below or bounded above. This
would yield a larger domain, but the extra variables in this domain do not
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have an immediate obvious interpretation as being the point-wise limit of a
sequence of simple variables. For this reason, we will not pursue this idea
here; instead, we refer the interested reader to (Erreygers & De Bock, 2021,
Section 4).

Uniformly bounded rate

Our extension of EP from JS to JD only works if the jump process P is
countably additive. Seeing that the conditions of Definition 5.4221 are not the
most easy to check, it would be nice to have an easier sufficient condition
for countable additivity tailored to jump processes. With this in mind, we
introduce the notion of uniformly bounded rate, which is a stronger version
of the notion of ‘bounded rate’ in Definition 3.53101.

Definition 5.16. A jump process P has uniformly bounded rate if there is
some non-negative real number λ in R≥0 such that for any current time
point t in R≥0 and any state history {Xu = xu} in H with u ≺ t ,

limsup
r↘t

∥∥Q(Xu=xu )
t ,r

∥∥≤λ and, if t > 0, limsup
s↗t

∥∥Q(Xu=xu )
s,t

∥∥≤λ.

Whenever this is the case, we call λ a rate bound.

This condition is not only reminiscent of Definition 3.53101, but also of
Proposition 3.4291 and Lemma 3.55102. In fact, it follows immediately from
Proposition 3.4291 that any homogeneous Markovian jump process that is
characterised by a rate operator has uniformly bounded rate.

Corollary 5.17. Consider a probability mass function p0 on X and a rate
operator Q. Then the corresponding homogeneous and Markovian jump
process Pp0,Q has uniformly bounded rate, and λ= ∥Q∥op is a rate bound.

Similarly, any jump process that is consistent with a bounded set of rate
operators has uniformly bounded rate due to Lemma 3.55102.

Corollary 5.18. Consider a non-empty and bounded set Q of rate operators.
Then any jump process P that is consistent with Q has uniformly bounded
rate, and λ= ∥Q∥op is a rate bound.

In short, all of the jump processes that we are interested in have uni-
formly bounded rate. This is extremely convenient, because having uniformly
bounded rate is sufficient for a jump process to be countably additive.

Theorem 5.19. If a jump process P has uniformly bounded rate, then it is
countably additive.
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Our proof takes a lot of work, which is why we have relegated it to Ap-
pendix 5.C252. This does not mean that this result is unimportant, though;
quite the contrary, we regard Theorem 5.19↶ as one of the cornerstones of
this chapter.

Rather ironically, our proof of Theorem 5.19↶ makes use of the more
conventional measure-theoretic approach to jump processes, and one cause
for the excessive length of our proof is that we need to modify that approach
to fit our setting. For this reason, we also discuss the measure-theoretical
approach in quite some detail in Appendix 5.B245. As far as the difference be-
tween the measure-theoretic approach and our approach to modelling jump
processes is concerned, it suffices to understand that in the former, one starts
from the set Ω̃ of all (so not necessarily càdlàg) paths and subsequently mod-
ifies or adapts the projector variables (X̃ t )t∈R≥0 with respect to this set Ω̃ in
such a way as to end up with càdlàg ‘sample paths’; in essence, one modifies
the outcomes of the original jump process. Whether or not this makes sense
is a question that is often overlooked by advocates of the measure-theoretic
approach. Furthermore, seeing that the end goal is to obtain a jump process
with càdlàg sample paths, the question arises why one does not immediately
start with the set Ω of càdlàg paths as the possibility space; this appears to
be something that is rarely done. In contrast, our approach starts from the
càdlàg paths, so we do not need to modify the outcomes.

5.2.2 The expected number of jumps

A pivotal argument in our proof of Theorem 5.19↶ is that the notion of uni-
formly bounded rate allows us to bound the expected number of jumps over a
finite time horizon, albeit in the measure-theoretic framework. The number
of jumps is also interesting in our framework; in fact, it is the monotone limit
of a non-decreasing sequence of simple variables, which makes it a prime
example of an idealised variable.

Jumps of càdlàg paths

For any càdlàg path ω in Ω, we say that a jump occurs at time t in R>0 if

lim
∆↘0

ω(t −∆) ̸=ω(t ).

Note that the limit on the left always exists because ω is càdlàg – that is, due
to Eq. (3.2)58. For any time points s and r in R≥0 such that s ≤ r and any
càdlàg path ω, the corresponding set

J[s,r ](ω) :=
{

t ∈ ]s,r ] : lim
∆↘0

ω(t −∆) ̸=ω(t )

}
(5.16)

of the jump times of ω in [s,r ] is always finite, as the following lemma makes
clear. This result is essentially well-known, but we provide a proof for the
sake of completeness.
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Lemma 5.20. Consider a càdlàg path ω in Ω and time points s and r in R≥0

such that s ≤ r . Then the set J[s,r ](ω) of the jump times of ω in the inter-
val [s,r ] is finite.

Proof. As the statement holds trivially whenever s = r , we may assume without loss
of generality that s < r . First, we observe that due to Eq. (3.1)58, there is an s′ in ]s,+∞[
such that ω(t) =ω(s) for all t in [s, s′]. Consequently, lim∆↘0ω(t −∆) =ω(t) =ω(s)
for all t in [s, s′]. If s′ ≥ r , then clearly |J[s,r ](ω)| = 0 so the statement is true.

We continue with the case that s′ < r . Because ω is constant on [s, s′],

J[s,r ](ω) =
{

t ∈ ]s,r ] : lim
∆↘0

ω(t −∆) ̸=ω(t )

}
=

{
t ∈ ]s′,r ] : lim

∆↘0
ω(t −∆) ̸=ω(t )

}
. (5.17)

Fix any t in the closed interval [s′,r ]. Observe that, due to Eqs. (3.1)58 and (3.2)58,
there is a δ−t in R>0 such that ω(t ′) =ω(t ′′) for all t ′, t ′′ in ]t −δ−t , t [ and a δ+t in R>0
such that ω(t ′) =ω(t) for all t ′ in ]t , t +δ+t [. Thus, the open interval ]t −δ−t , t +δ+t [
contains at most a single time point t ′ where lim∆↘0ω(t ′−∆) ̸= ω(t ′): the point t
itself.

Observe that
(
]t −δ−t , t +δ+t [

)
t∈[s′,r ] is an open cover of [s′,r ]. Because [s′,r ] is

a closed and bounded subset of R, it follows from the Heine-Borel theorem that it
is compact. Consequently, there is a finite subcover

(
]t −δ−t , t +δ+t [

)
t∈C of [s′,r ],

where C is a finite subset of [s′,r ]. Recall that by construction, the open interval ]t −
δ−t , t +δ+t [ contains at most a single jump point of the path ω for every t in C, and if
it contains one, then it must be equal to t . For this reason, and by Eq. (5.17),

J[s,r ](ω) =
{

t ∈ ]s′,r ] : lim
∆↘0

ω(t −∆) ̸=ω(t )

}
⊆C.

Since the set on the right-hand side of the inclusion is finite, the set on the left-hand
side of the inclusion is finite as well.

Due to the preceding lemma, for all time points s and r in R≥0 such that
s ≤ r , the number of jumps in [s,r ], denoted by

η[s,r ] : Ω→R≥0 : ω 7→ η[s,r ](ω) := ∣∣J[s,r ](ω)
∣∣, (5.18)

is a non-negative real-valued variable. To prove that η[s,r ] is the point-wise
limit of simple variables, we will make use of grids of time points.

Grids of time points

Consider a closed interval [s,r ] of the time axis R≥0. A grid over [s,r ] is a
non-empty sequence of time points that starts in s and ends in r , as depicted
in Fig. 5.1↷. More formally, for all s and r in R≥0 such that s ≤ r , a grid v =
(t0, . . . , tn) over [s,r ] is a non-empty sequence of time points that starts in
t0 = s and ends in tn = r . Thus, a grid v = (t0, . . . , tn) over [s,r ] divides the
interval [s,r ] in n subintervals [tk−1, tk ], with k in {1, . . . ,n}. Note that in
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s

t0

r

tnt1 tn−1tk−1 tk

Figure 5.1 A grid (t0, . . . , tn) over the time interval [s,r ].

contrast to general sequences of time points, the first time point of a grid has
index 0 instead of index 1; we do this for aesthetic reasons, as will become
clear later on. We collect all grids over [s,r ] in the set

U[s,r ] =
{
(t0, . . . , tn) ∈ U̸=( ) : t0 = s, tn = r

}
; (5.19)

note that U[s,s] is a singleton because there is precisely one sequence of time
points that starts and ends in s: the monuple (s).

For any grid v = (t0, . . . , tn) in U̸=( ) with n ≥ 1, we define the grid
width ∆(v) of v as the width of the largest subinterval:

∆(v) := max
{

tk − tk−1 : k ∈ {1, . . . ,n}
}
. (5.20)

As a special case, we set ∆(v) = 0 for the degenerate grid v = (s) over the
degenerate interval [s, s]. If v and w are grids over [s,r ], then we say that w
refines v whenever every subinterval in w is a subset of some subinterval in v ,
or equivalently, whenever the time points in w include the time points in v ;
hence, we denote this by w ⊇ v . Note that in this case, ∆(w) ≤∆(v).

Expected number of jumps as a limit

Let s and r be time points in R≥0 such that s ≤ r . For any grid v = (t0, . . . , tn)
over [s,r ], the number of jumps along the grid v is the non-negative real
variable

ηv : Ω→R≥0 : ω 7→ ηv (ω) := ∣∣{k ∈ {1, . . . ,n} : ω(tk−1) ̸=ω(tk )
}∣∣. (5.21)

It is easy to see that

ηv =
n∑

k=1
I{X tk−1

̸=X tk
}, (5.22)

where we follow the convention that the empty sum is zero and where for
any t and t ′ in R≥0, we let

{X t ̸= X t ′ } := {
ω ∈Ω : ω(t ) ̸=ω(t ′)

}
. (5.23)

It is intuitively clear that ηv is an Fu-simple variable for any sequence of time
points u in U such that maxu ≤ s, but we nonetheless establish this formally.
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Lemma 5.21. Consider a sequence of time points u in U and time points s,r
in R≥0 such that maxu ≤ s ≤ r . Let v = (t0, . . . , tn) be a grid over [s,r ]. Then for
all k in {1, . . . ,n}, {X tk−1 ̸= X tk } belongs to Fu . Therefore, ηv is an Fu-simple
variable.

Proof. Note that for all k in {1, . . . ,n}, (tk−1, tk )≽ u and

{Xtk−1 ̸= Xtk } = {X(tk−1,tk ) ∈ B} with B := {
(x, y) ∈X2 : x ̸= y

}
,

so {Xtk−1 ̸= Xtk } belongs to Fu due to Eq. (3.16)63. For this reason, it follows immedi-
ately from Eq. (5.22)↶ that ηv is Fu -simple.

We now establish some convenient properties of ηv . First, we observe
that we can add the number of jumps over two grids if the last time point of
the first coincides with the first time point of the second.

Lemma 5.22. Consider time points s, t ,r in R≥0 such that s ≤ r ≤ t . If v1 is a
grid over [s, t ] and v2 is a grid over [t ,r ], then v := v1 ∪ v2 is a grid over [s,r ],
and

ηv = ηv1 +ηv2 .

Proof. Follows immediately from Eq. (5.22)↶.

Second, we observe that whenever we refine a grid, the number of jumps
stays the same or increases in steps of 2.

Lemma 5.23. Consider time points s and r in R≥0 such that s ≤ r , and two
grids v and w over [s,r ] such that w refines v – that is, w ⊇ v. Then for all ω
in Ω, there is some kω in Z≥0 such that

ηw (ω) = ηv (ω)+2kω;

consequently, ηw ≥ ηv .

Lemma 5.23 follows almost immediately from Lemma 5.22 and the fol-
lowing straightforward observation.

Lemma 5.24. Consider time points s,r in R≥0 such that s < r and a grid v =
(t0, . . . , tn) over [s,r ] with n ≥ 2. Then

ηv = η(s,r ) +2
n−1∑
k=1

I{
X tk−1

̸=X tk
̸=Xr

}.

Proof. Crucial to our proof is the following observation. Let w = (s0, . . . , sm ) be any
grid over [s,r ], and fix some time point t in ]sm−1, sm [. Then for all ω in Ω,

ηw∪(t )(ω) =
{
ηw (ω)+2 if ω(sm−1) ̸=ω(t ) ̸=ω(sn ),

ηw (ω) otherwise.

234



5.2 Extending the domain of a jump process

Hence,
ηw∪(t ) = ηw +2I{

Xsm−1 ̸=X t ̸=Xsm

}. (5.24)

Fix some ω in Ω, and let v0 := (s,r ). Furthermore, for all k in {1, . . . ,n −1}, we let
vk := (t0, t1, . . . , tk , tn ); note that vn−1 = v . Then it follows from Eq. (5.24) that for all k
in {1, . . . ,n −1},

ηvk = ηvk−1 +2I{
X tk−1

̸=X tk
̸=Xr

}.

We repeatedly apply the preceding equality, to yield

ηv = ηvn−1 = ηvn−2 +2I{
X tn−2 ̸=X tn−1 ̸=Xr

} = ·· · = η(s,r ) +2
n−1∑
k=1

I{
X tk−1

̸=X tk
̸=Xr

}.

Proof of Lemma 5.23↶. The statement is clearly trivial in case [s,r ] is a degenerate
interval, so we assume without loss of generality that s < r . Enumerate the time points
in v as (t0, . . . , tn ), and note that n ≥ 1 because s < r . For all ℓ in {1, . . . ,n}, we let wℓ

be the sequence of time points that consists of those time points in w that belong
to [tℓ−1, tℓ]; because w refines v , wℓ is a grid over [tℓ−1, tℓ]. It follows from repeated
application of Lemma 5.22↶ that

ηv =
n∑
ℓ=1

η(tℓ−1,tℓ) and ηw =
n∑
ℓ=1

ηwℓ
. (5.25)

Fix some ω in Ω. Then it follows from Lemma 5.24↶ that for all ℓ in {1, . . . ,n},
there is a non-negative integer kω,ℓ such that

ηwℓ
(ω) = η(tℓ−1,tℓ)(ω)+2kω,ℓ.

It follows immediately from this and Eq. (5.25) that

ηw (ω) =
n∑
ℓ=1

ηwℓ
(ω) =

n∑
ℓ=1

(
η(tℓ−1,tℓ)(ω)+2kω,ℓ

)= ηv (ω)+
n∑
ℓ=1

2kω,ℓ = ηv (ω)+2kω,

where we let kω :=∑n
ℓ=1 kω,ℓ.

Third, we establish that for every càdlàg path ω, there is some grid
width ∆ω[s,r ] such that every grid v with a grid width ∆(v) smaller than ∆ω[s,r ]
captures all jumps of the path ω in [s,r ].

Lemma 5.25. Consider time points s,r in R≥0 such that s ≤ r . For any càdlàg
path ω in Ω, there is a positive real number ∆ω[s,r ] such that if v is a grid
over [s,r ] with ∆(v) <∆ω[s,r ], then

ηv (ω) = η[s,r ](ω).

Proof. Fix some path ω in Ω. Recall from Lemma 5.20232 that the set J[s,r ](ω) of the
jump times of ω in [s,r ] is finite. If this set is empty, then η[s,r ](ω) = 0 and ω is clearly
constant over [s,r ]. Consequently, ηv (ω) = 0 for any grid v of time points over [s,r ],
so the statement holds for any positive real number ∆ω[s,r ].

If on the other hand the set J[s,r ](ω) of jump times is non-empty, then we can
order the time points in this finite set. This way, we obtain a grid (t0, . . . , tn ) over [s,r ]
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– where we always add t0 = s and only add tn = r if it is not a jump time. Note that for
all k in {1, . . . ,n}, ω(t) =ω(tk−1) for all t in [tk−1, tk [, so ω is constant over [tk−1, tk [.
Let

∆ω[s,r ] := min
{

tk − tk−1 : k ∈ {1, . . . ,n}
}
,

and take any grid v over [s,r ] such that ∆(v) <∆ω[s,r ]. It follows from this condition
on v that, for all k in {1, . . . ,n}, v contains at least one time point t in the subinterval
[tk−1, tk [ where ω is constant. For this reason, η[s,r ](ω) = ηv (ω), as required.

Finally, we can use the three preceding intermediary results to establish
that for every u inU with maxu ≤ s, η[s,r ] is the monotone limit of a sequence
of Fu-simple variables; hence, we can determine the (conditional) expected
number of jumps as the limit of the expectation of these simple variables.

Theorem 5.26. Consider a sequence of time points u in U and time points s,r
in R≥0 such that maxu ≤ s ≤ r . Let (vn)n∈N be a sequence of grids
over [s,r ] with limn→+∞∆(vn) = 0. Then (ηvn )n∈N is a sequence of non-
negative Fu-simple variables that converges point-wise to η[s,r ], so η[s,r ]

belongs to Vlim(Fu). If furthermore vn ⊆ vn+1 for all n in N, then the se-
quence (ηvn )n∈N is non-decreasing. Hence, in that case, for any countably
additive jump process P and any xu in Xu ,

E D
P (η[s,r ] |Xu = xu) = lim

n→+∞EP (ηvn |Xu = xu).

Proof. For all n inN, we recall from Lemma 5.21234 that ηvn is Fu -simple; that ηvn

is non-negative follows immediately from Eq. (5.22)233. Because limn→+∞∆(vn ) =
0 by assumption, it follows from Lemma 5.25↶ that for every càdlàg path ω,
limn→+∞ηvn (ω) = η[s,r ](ω). Thus, (ηvn )n∈N is a sequence of Fu -simple variables
that is uniformly bounded below and that converges point-wise to η[s,r ]. This implies
that η[s,r ] belongs to Vlim(Fu ).

In case vn ⊆ vn+1 for all n inN, it follows immediately from Lemma 5.23234 that
the sequence (ηvn )n∈N is non-decreasing. Furthermore, E D

P (ηv1 |Xu = xu ) ≥ 0 due to
(DE3)225 because ηv1 ≥ 0. Therefore, it follows from Theorem 5.10226 and (DE1)225
that

E D
P (η[s,r ] |Xu = xu ) = lim

n→+∞EP (ηvn |Xu = xu ),

which completes our proof.

An upper bound for the expected number of jumps

For jump processes that have uniformly bounded rate, any rate bound λ

naturally bounds the expected number of jumps. More precisely, the follow-
ing result establishes that λ/2 is an upper bound on the expected number of
jumps per unit of time.

Theorem 5.27. Consider a jump process P that has uniformly bounded rate,
with rate bound λ. Fix some state history {Xu = xu} in H and time points s,r
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such that maxu ≤ s ≤ r . Then for any grid v over [s,r ],

EP (ηv |Xu = xu) ≤ (r − s)
λ

2
;

consequently,

E D
P (η[s,r ] |Xu = xu) ≤ (r − s)

λ

2
.

Our proof of Theorem 5.27↶ relies on the following technical result, the
proof of which has been relegated to Appendix 5.A242.

Lemma 5.28. Consider a jump process P that has uniformly bounded rate
with rate bound λ. Fix a state history {Xu = xu} in H and time points s,r
in R≥0 such that maxu ≤ s < r . Then for any positive real number ϵ in R>0,
there is a grid v = (t0, . . . , tn) over [s,r ] such that(∀k ∈ {1, . . . ,n}

)
P (X tk−1 ̸= X tk |Xu = xu) < (tk − tk−1)

(
λ

2
+ϵ

)
.

Proof of Theorem 5.27↶. Observe that the statement is trivial whenever s = r , so
we may assume that s < r without loss of generality. Let v = (t0, . . . , tn ) be any grid
over [s,r ]. It follows from repeated application of Lemma 5.22234 and the additivity of
EP – that is, (ES3)37 – that

EP (ηv |Xu = xu ) = EP

(
n∑

k=1
η(tk−1,tk )

∣∣∣∣∣ Xu = xu

)
=

n∑
k=1

EP (η(tk−1,tk ) |Xu = xu ). (5.26)

Fix an arbitrary positive real number ϵ. For every k in {1, . . . ,n}, we use Lemma 5.28
to obtain a grid vk = (tk,0, . . . , tk,nk

) over [tk−1, tk ] such that

(∀ℓ ∈ {1, . . . ,nk }) P
(
Xtk,ℓ−1 ̸= Xtk,ℓ

∣∣ Xu = xu
)< (tk,ℓ− tk,ℓ−1)λϵ,

with λϵ := ϵ+λ/2. It follows immediately from this, Lemma 5.21234 and Eqs. (5.22)233
and (2.19)36 that for every k in {1, . . . ,n},

EP (ηvk |Xu = xu ) =
nk∑
ℓ=1

P
(
Xtk,ℓ−1 ̸= Xtk,ℓ

∣∣ Xu = xu
)

<
nk∑
ℓ=1

(tk,ℓ− tk,ℓ−1)λϵ = (tk,nk
− tk,0)λϵ

= (tk − tk−1)λϵ.

Recall from Lemma 5.23234 that ηvk ≥ η(tk−1,tk ) because vk refines (tk−1, tk ). It fol-
lows from this, the above inequality and the monotonicity of EP – that is, (ES4)37 –
that for all k in {1, . . . ,n},

EP (η(tk−1,tk ) |Xu = xu ) ≤ EP (ηvk |Xu = xu ) < (tk − tk−1)λϵ.

Because this inequality holds for any positive real number ϵ, we conclude that

EP (η(tk−1,tk ) |Xu = xu ) ≤ (tk − tk−1)
λ

2
. (5.27)
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We now combine Eqs. (5.26)↶ and (5.27)↶, to yield

EP (ηv |Xu = xu ) ≤
n∑

k=1
(tk − tk−1)

λ

2
= (tn − t0)

λ

2
= (r − s)

λ

2
, (5.28)

establishing the first part of the statement.
The second part of the statement essentially follows from the first part due to

Theorem 5.26236. Let (vn )n∈N be the sequence grids over [s,r ] such that for any
natural number n in N, vn is the grid over [s,r ] that divides [s,r ] in 2n subintervals
of equal length. Then by construction, limn→+∞∆(vn ) = limn→+∞ (r−s)/2n = 0 and
vn ⊆ vn+1 for all n inN. Hence, it follows from Theorem 5.26236 that

E D
P (η[s,r ] |Xu = xu ) = lim

n→+∞EP (ηvn |Xu = xu ),

The second inequality of the statement now follows immediately from this limit
expression and Eq. (5.28).

5.3 Extending the domain of the lower and upper expecta-
tions of an imprecise jump process

If every jump process P in an imprecise jump processP is countably additive,
then every induced conditional expectation operator EP on JS can be ex-
tended to a conditional expectation operator E D

P on JD. Instead of taking the
lower and upper envelope of the conditional expectations EP on JS, we can
therefore also take the lower and upper envelope of the conditional Daniell
extensions E D

P on JD. Thus, we define the lower envelope E D
P

on JD by

E D
P( f |Xu = xu) := inf

{
E D

P ( f |Xu = xu) : P ∈P}
for all ( f |Xu = xu) ∈ JD,

and the upper envelope E D
P

on JD by

E D
P( f |Xu = xu) := sup

{
E D

P ( f |Xu = xu) : P ∈P}
for all ( f |Xu = xu) ∈ JD,

where we will leave the conditioning event {Xu = xu} out of our notation
whenever it is the sure event Ω. Due to (DE4)225, the lower and upper enve-
lope satisfy the conjugacy relation

E D
P( f |Xu = xu) =−E D

P(− f |Xu = xu) for all ( f |Xu = xu) ∈ JD. (5.29)

We extend our notation for lower and upper probabilities as well, so for all
events A in P(Ω) and state histories {Xu = xu} in H such that (IA |Xu = xu)
belongs to JD, we let

P D
P(A |Xu = xu) := E D

P(IA |Xu = xu)

and

P D
P(A |Xu = xu) := E D

P(IA |Xu = xu).
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5.3 Extending the domain of an imprecise jump process

In particular, we can extend the domain of the lower (and upper) expecta-
tions with respect to PHM

M,Q, PM
M,Q and PM,Q. First, we establish that we can do

this for PHM
M,Q.

Corollary 5.29. Consider a non-empty set M of initial mass functions and
a non-empty set Q of rate operators. Then every jump process P in PHM

M,Q is
countably additive.

Proof. Due to Eq. (3.46)90 and Corollary 5.17230, every P in PHM
M,Q has uniformly

bounded rate. Therefore, it follows from Theorem 5.19230 that every P in PHM
M,Q is

countably additive.

Second, we establish that every jump process in PQ is countably additive,
given thatQ is bounded.

Corollary 5.30. Consider a non-empty and bounded set Q of rate operators.
Then every imprecise jump process P such that P ⊆PQ only contains count-
ably additive jump processes. In particular, for every non-empty set M of
initial mass functions, the imprecise jump processes PHM

M,Q, PM
M,Q and PM,Q

only contain countably additive jump processes.

Proof. Follows immediately from Corollary 5.18230 and Theorem 5.19230.

Due to the this last result, we can extend the domain of the conditional
lower expectations E HM

M,Q E M
M,Q and EM,Q from JS to JD whenever Q is

bounded, and the same holds for the conjugate upper expectations. In order
not to needlessly complicate our notation, we will do this implicitly.

5.3.1 Continuity properties of the lower and upper envelopes

Suppose P is an imprecise jump process that consists of countably addi-
tive jump processes. Then for every jump process P in P, the (conditional)
Daniell expectation E D

P is continuous with respect to point-wise convergence
for (some) sequences of idealised variables – monotone ones due to Theo-
rem 5.10226 and ‘dominated’ ones due to Theorem 5.11226. Unfortunately,
the lower and upper expectations E D

P
and E D

P
with respect to P do not nec-

essarily have the same continuity properties.
This potential lack of continuity is not exclusive to the (conditional) lower

and upper envelopes with respect to an imprecise jump process. More pre-
cisely, Miranda et al. (2017, Section 5.1) establish that for any given setM of
coherent expectations on some domain G ⊆G(X) that are continuous with
respect to monotone sequences,2 the corresponding lower envelope EM is
always continuous with respect to monotone non-increasing sequences but
may not be continuous with respect to non-decreasing sequences.

2More precisely, that satisfy (i) and (ii) of Definition 5.4221 on G.
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The following two results formally establish the potential lack of conti-
nuity in our setting of imprecise jump processes. Because the established
properties are essentially well-known, we have relegated their proofs to Ap-
pendix 5.D269.

Theorem 5.31. Consider an imprecise jump process P that consists of count-
ably additive jump processes. Fix some {Xu = xu} inH and f inVlim(Fu), and
let ( fn)∈N be a sequence of variables inVlim(Fu) that converges monotonically
to f . If ( fn)n∈N↗ f and E D

P
( f1 |Xu = xu) >−∞, then

lim
n→+∞E D

P( fn |Xu = xu) ≤ E D
P( f |Xu = xu)

and

lim
n→+∞E D

P( fn |Xu = xu) = E D
P( f |Xu = xu).

Similarly, if ( fn)n∈N↘ f and E D
P

( f1 |Xu = xu) <+∞, then

lim
n→+∞E D

P( fn |Xu = xu) = E D
P( f |Xu = xu)

and

lim
n→+∞E D

P( fn |Xu = xu) ≥ E D
P( f |Xu = xu).

Theorem 5.32. Consider an imprecise jump process P that consists of count-
ably additive jump processes. Fix some {Xu = xu} inH and f inVlim(Fu), and
let ( fn)∈N be a sequence of variables inVlim(Fu) that converges point-wise to f .
If there is some g in Vlim(Fu) with E D

P
(g |Xu = xu) < +∞ such that | fn | ≤ g

for all n inN, then

limsup
n→+∞

E D
P( fn |Xu = xu) ≤ E D

P( f |Xu = xu)

≤ E D
P( f |Xu = xu) ≤ liminf

n→+∞ E D
P( fn |Xu = xu).

Often, we will invoke Theorems 5.31 and 5.32 for a sequence ( fn)n∈N of
variables that trivially satisfies the additional conditions in the statement.
For Theorem 5.31, the condition E D

P
( f1 |Xu = xu) >−∞ in the first part of the

statement is trivially satisfied for a non-decreasing sequence of variables that
is uniformly bounded below due to (DE3)225, and similarly for the condition
in the second part of the statement.

Corollary 5.33. Consider an imprecise jump process P that consists of count-
ably additive jump processes. Fix some {Xu = xu} inH and f inVlim(Fu), and
let ( fn)∈N be a sequence of variables inVlim(Fu) that converges monotonically
to f . If ( fn)n∈N↗ f and inf f1 >−∞, then

lim
n→+∞E D

P( fn |Xu = xu) ≤ E D
P( f |Xu = xu)
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5.3 Extending the domain of an imprecise jump process

and

lim
n→+∞E D

P( fn |Xu = xu) = E D
P( f |Xu = xu).

Similarly, if ( fn)n∈N↘ f and sup f1 <+∞, then

lim
n→+∞E D

P( fn |Xu = xu) = E D
P( f |Xu = xu)

and

lim
n→+∞E D

P( fn |Xu = xu) ≥ E D
P( f |Xu = xu).

Proof. Follows immediately from Theorem 5.31↶ and (DE3)225.

For a sequence ( fn)n∈N in Vlim(Fu) that is uniformly bounded, the con-
dition in Theorem 5.32↶ concerning g is trivially satisfied due to (DE6)226.
Hence, we have the following immediate consequence to Theorem 5.32↶.

Corollary 5.34. Consider an imprecise jump process P that consists of count-
ably additive jump processes. Fix some {Xu = xu} in H and f in Vlim(Fu),
and let ( fn)∈N be a uniformly bounded sequence of variables in Vlim(Fu) that
converges point-wise to f . Then

limsup
n→+∞

E D
P( fn |Xu = xu) ≤ E D

P( f |Xu = xu)

≤ E D
P( f |Xu = xu) ≤ liminf

n→+∞ E D
P( fn |Xu = xu).

Proof. Because ( fn )n∈∈N is uniformly bounded by assumption,

β := sup{sup| fn | : n ∈N} <+∞

Note that E D
P

(β |Xu = xu ) = β < +∞ due to Lemma 2.3936, (DE1)225 and (DE3)225.
Because furthermore | fn | ≤β for all n inN, the statement follows immediately from
Theorem 5.32↶ with g =β.

Unfortunately, the inequalities in these results can be strict. In Joseph’s
Example 6.17287 in Chapter 6273 further on, we will construct an example
where this is indeed the case.

An alternative approach, and why we do not follow it

At this point, it is only fair to mention again that Troffaes et al. (2014, Chap-
ter 15) also propose a way to extend a coherent lower expectation E from
gambles to real variables. They start from a coherent lower expectation E
on the set G(X) of all gambles, and then extend the domain of E to the
‘previsible’ real variables, where a real variable f is ‘previsible’ if there is a se-
quence ( fn)n∈N of gambles that converge ‘in upper probability’ to f and that
satisfies a Cauchy-like condition (see Troffaes et al., 2014, Definition 15.6).
They subsequently show that their extension is continuous for any sequence
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of previsible real variables that converges ‘in upper probability’ and satis-
fies a Cauchy condition (Troffaes et al., 2014, Theorem 15.16), and they also
establish a generalisation of Lebesgue’s Dominated Convergence Theorem
(Troffaes et al., 2014, Theorem 15.25). As mentioned before in Section 5.1.1217,
the reason why we do not use their extension is twofold. First and foremost,
our setting does not line up well with theirs, because we start from a coherent
expectation EP (•|Xu = xu) on S(Fu) – or, alternatively, a coherent lower
expectation EP(•|Xu = xu) on S(Fu) or even a coherent conditional lower
expectation EP on JS. The second reason is that Troffaes et al. (2014) only
consider real variables, and we are also interested in extended real variables.

How to deal with the potential lack of continuity

The (potential) lack of continuity of our approach is perhaps a bit disappoint-
ing, but for the most part, it poses no real issue for the idealised variables and
imprecise jump processes that we are interested in. In Chapter 6273 further
on, we investigate the continuity properties of the lower and upper envelopes
for four types of idealised variables, including the number of jumps. There,
we show that in (most of) these particular cases, the lower and upper en-
velopes are continuous, in the sense that the inequalities in Theorems 5.31240

and 5.32240 hold with equality.

5.A Proof of Lemma 5.28

In the first appendix to this chapter, we prove Lemma 5.28237. For the sake of
convenience, we repeat the formulation here.

Lemma 5.28. Consider a jump process P that has uniformly bounded rate
with rate bound λ. Fix a state history {Xu = xu} in H and time points s,r
in R≥0 such that maxu ≤ s < r . Then for any positive real number ϵ in R>0,
there is a grid v = (t0, . . . , tn) over [s,r ] such that(∀k ∈ {1, . . . ,n}

)
P (X tk−1 ̸= X tk |Xu = xu) < (tk − tk−1)

(
λ

2
+ϵ

)
.

The following intermediary result will come in handy in our proof.

Lemma 5.35. Consider a jump process P that has uniformly bounded rate
with rate bound λ. Then for any state history {Xu = xu} in H and any time
point t in R≥0 such that t ≥ maxu,

limsup
r↘t

P (X t ̸= Xr |Xu = xu)

r − t
≤ λ

2

and, if t > maxu,

limsup
s↗t

P (Xs ̸= X t |Xu = xu)

t − s
≤ λ

2
.
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Proof. We need to distinguish two cases, and we start with the simplest case that
t ≻ u – meaning that either u ̸= () and t > maxu or u = (). Fix some time point r

in R≥0 such that t < r . Because Q{Xu=xu }
t ,r is a rate operator, it follows from (R5)81 that

∥∥Q{Xu=xu }
t ,r

∥∥
op = 2max

{−Q{Xu=xu }
t ,r (x, x) : x ∈X}

.

Observe now that for all x in X,

Q{Xu=xu }
t ,r (x, x) = 1

r − t

(
T {Xu=xu }

t ,r (x, x)−1
)= 1

r − t

(
P (Xr = x |Xu = xu , Xt = x)−1

)
=− 1

r − t
P (Xr ̸= x |Xu = xu , Xt = x),

where we let {Xr ̸= x} := {Xr = x}c, and where we have used Eq. (3.36)84 and (CP7)42.
Combining the two preceding equalities, we conclude that

∥∥Q{Xu=xu }
t ,r

∥∥
op = 2

r − t
max

{
P (Xr ̸= x |Xu = xu , Xt = x) : x ∈X}

. (5.30)

Because ({Xt = x})x∈X is a partition of Ω, it follows from (CP3)41 and (CP4)41 that

P (Xt ̸= Xr |Xu = xu ) = P

(( ⋃
x∈X

{Xt = x}

)
∩ {Xt ̸= Xr }

∣∣∣∣∣ Xu = xu

)

= P

( ⋃
x∈X

{Xt = x}∩ {Xt ̸= Xr }

∣∣∣∣∣ Xu = xu

)
= ∑

x∈X
P

(
{Xt = x}∩ {Xt ̸= Xr }

∣∣ X u = xu
)

= ∑
x∈X

P
(
Xt ̸= Xr

∣∣ Xu = xu , Xt = x
)
P (Xt = x |Xu = xu ).

From the final equality, it follows that

P (Xt ̸= Xr |Xu = xu )

= ∑
x∈X

P
(
Xr ̸= x

∣∣ Xu = xu , Xt = x
)
P (Xt = x |Xu = xu )

≤ max
{

P
(
Xr ̸= x

∣∣ Xu = xu , Xt = x
)

: x ∈X
} ∑

x∈X
P (Xt = x |Xu = xu )

= max
{

P
(
Xr ̸= x

∣∣ Xu = xu , Xt = x
)

: x ∈X
}

,

where for the first equality we used (JP1)69, the inequality holds due to (CP2)41 and
the last equality holds due to (CP3)41 and (CP1)41. From this and Eq. (5.30), it follows
that

P (Xt ̸= Xr |Xu = xu ) ≤ r − t

2

∥∥Q{Xu=xu }
t ,r

∥∥
op.

Because P has rate bound λ, it follows from the previous inequality that

limsup
r↘t

P (Xt ̸= Xr |Xu = xu )

r − t
≤ limsup

r↘t

∥∥Q{Xu=xu }
t ,r

∥∥
op

2
≤ λ

2
,
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which is the first inequality of the statement. An analoguous argument proves the
second inequality of the statement.

We can use the previous to verify the statement for the remaining case that u ̸= ( )
and t = maxu. To this end, we let u′ := u \ (t ). Then for any r > t ,

P (Xt ̸= Xr |Xu = xu ) = P (Xt ̸= Xr |Xu′ = xu′ , Xt = xt )

= P ({Xt = xt }∩ {Xt ̸= Xr } |Xu′ = xu′ , Xt = xt )

= P (Xr ̸= xt |Xu′ = xu′ , Xt = xt )

≤ r − t

2

∥∥Q
{Xu′=xu′ }
t ,r

∥∥
op,

where the second equality follows from (CP1)41 and (CP9)42 – because, due to the for-
mer, P (Xt = xt |Xu′ = xu′ , Xt = xt ) = 1 – and the inequality follows from Eq. (5.30)↶.
Again, the inequality of the statement follows immediately from the preceding in-
equality and the fact that λ is a rate bound.

Proof of Lemma 5.28237. We use the same standard trick as in the proof by Krak
et al. (2017, Lemma F.1). Because P has uniformly bounded rate with bound λ, we
know from Lemma 5.35242 that for every t in [s,r ] there is a δt in R>0 such that

(∀rt ∈ ]t , t +δt [
)

P (Xt ̸= Xrt |Xu = xu ) < (rt − t )

(
λ

2
+ϵ

)
and, if t > s,

(∀st ∈ ]t −δt , t [
)

P (Xst ̸= Xt |Xu = xu ) < (t − st )

(
λ

2
+ϵ

)
If r −δr < s +δs , then the statement holds trivially for the grid v := (s, t ,r ) with t any
time point in ]r −δr , s +δs [∩ ]s,r [.

Therefore, without loss of generality we assume that s +δs ≤ r −δr . Fix some s′
in ]s, s +δs [ and r ′ in ]r −δr ,r [, and observe that [s′,r ′] is a bounded interval, and
therefore a compact set. For this reason, it follows from the Heine-Borel theorem that
the open cover (

]t −δt , t +δt [
)

t∈[s′,r ′]

of [s′,r ′] has a finite subcover (
]t −δt , t +δt [

)
t∈C ,

where C is a finite subset of [s′,r ′]. Without loss of generality, we may assume that
this cover is minimal, in the sense that by removing an element we do not have a
subcover any more.

We order the time points in C from small to large, denote this order by t ′1, . . . , t ′m
and set δ′k := δt ′k

for all k in {1, . . . ,m}. It is not difficult but slightly cumbersome to

verify (see Krak et al., 2017, Eqn. (F.4)) that by construction, t ′1 −δ′1 < s′, r ′ < t ′m +δ′m
and

t ′k+1 −δ′k+1 < t ′k +δ′k for all k ∈ {1, . . . ,m −1}.

For this reason, we can define a grid v = (t0, . . . , tn ) over [s,r ], with n := 2m +2, as
follows. Clearly, we need to set t0 := s and tn = t2m+2 := r . Next, we choose a t1
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in ]s, s′[∩]t ′1−δ′1, t ′1[ and a tn−1 = t2m+1 in ]t ′m , t ′m +δ′m [∩]r ′,r [ and let tn−2 = t2m :=
t ′m – note that this is always possible because t ′1 −δ′1 < s′ ≤ t ′1 and t ′m ≤ r ′ < t ′m +δ′m .
Finally, for any k in {1, . . . ,m −1}, we let t2k := t ′k and choose some t2k+1 in]

t ′k , t ′k +δ′k
[∩ ]

t ′k+1 −δ′k+1, t ′k+1

[
.

This way, we have constructed a grid v = (t0, . . . , tn ) over [s,r ] such that

(∀k ∈ {1, . . . ,n}) P (Xtk−1 ̸= Xtk |Xu = xu ) < (tk − tk−1)

(
λ

2
+ϵ

)
.

5.B Measure-theoretic jump processes

Stochastic processes in general and jump processes in particular have re-
ceived a lot of attention in the measure-theoretic framework. A good starting
point is the influential work of Doob (1953), but more recent introductions
can be found in (Todorovic, 1992, Chapter 1), (Billingsley, 1995, Chapter 7),
(Fristedt et al., 1997, Chapter 31) or (Borovkov, 2013, Chapter 18). In this ap-
pendix, we summarise the relevant concepts and results regarding measure-
theoretic jump processes; for a primer on measure-theoretic probability in
general, see Appendix C461.

5.B.1 The general framework

Recall from Section 2.1.313 that a variable is any function on a possibility
spaceX. In measure-theoretical probability theory, a stochastic process with
state space X is simply a family (Yt )t∈T of X-valued variables – that is, a
family of maps from the possibility spaceX to some state space X – that is
indexed by an ordered set of time points T and satisfies some measurability
condition with respect to a field F overX. In the setting of jump processes,
the state space X is finite and the set of time points T is the set of non-
negative real numbers, so the following measurability condition suffices.

Definition 5.36. Consider a field of events F over some possibility spaceX.
An F -measurable jump process (with state space X) is a family (Yt )t∈R≥0

of X-valued variables such that for all time points t in R≥0 and all states x
in X,

{Yt = x} := {
ω ∈X : Yt (ω) = x

} ∈F . (5.31)

Note that in this definition, we have used ω instead of x to denote a
generic outcome in the abstract possibility space X in order to avoid con-
fusion with states; we adhere to this ‘new’ convention throughout the re-
mainder of this section. It is also important to note that in contrast to Defini-
tion 3.1265, (conditional) probabilities do not play a role in this definition.

Because F is a field, we immediately obtain that more general events
concerning the state of the system at a finite number of time points t1, . . . ,
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tn belong to F as well. Following the notational conventions of Chapter 353,
for any such sequence of time points u in U and any state instantiation xu

in Xu , we define

{Yu = xu} := {
ω ∈X : (∀t ∈ u) Yt (ω) = xt

}= ⋂
t∈u

{Yt = xt }. (5.32)

Because {Yu = xu} is a finite intersection of events in the field F , it also
belongs to the field F . Similarly, for any subset B of Xu ,

{Yu ∈ B} := ⋃
xu∈B

{Yu = xu} (5.33)

also belongs to the field F because it is a finite union of events in this field.

Equivalence and modifications

Consider two F -measurable jump processes (Yt )t∈R≥0 and (Zt )t∈R≥0 . We
now ask ourselves when these two processes are, in some sense, equivalent.
Clearly, events of the form

{Yt = Zt } := {
ω ∈X : Yt (ω) = Zt (ω)

}
will play an essential role. Note that

{Yt = Zt } = ⋃
x∈X

{Yt = x}∩ {Zt = x},

so these events always belong to the field F because they consist of finite
unions of finite intersections of events in F .

Definition 5.37. Consider a probability charge P on a field of events F over
a possibility spaceX, and two F -measurable jump processes (Yt )t∈R≥0 and
(Zt )t∈R≥0 with state space X. Then (Yt )t∈R≥0 and (Zt )t∈R≥0 are equivalent with
respect to P if

P (Yt = Zt ) = 1 for all t ∈R≥0.

Whenever this is the case, we also say that (Yt )t∈R≥0 is a modification of
(Zt )t∈R≥0 with respect to P , and vice versa.

Crucially, whenever the two F -measurable jump processes (Yt )t∈R≥0 and
(Zt )t∈R≥0 are equivalent with respect to P , they have the same probabilities
for the finitary events.

Lemma 5.38. Consider a probability charge P on a field of events F over
some possibility space X, and two F -measurable jump processes (Yt )t∈R≥0

and (Zt )t∈R≥0 . If (Yt )t∈R≥0 and (Zt )t∈R≥0 are equivalent with respect to P, then

P (Yu ∈ B) = P (Zu ∈ B) for all u ∈U,B ⊆Xu .
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Proof. If u is the empty time sequence (), then the statement holds trivially; for this
reason, we assume without loss of generality that u is non-empty. Let

{Yu = Zu } := ⋂
t∈u

{Yt = Zt }.

Observe now that because {Yt }t∈R≥0 and {Zt }t∈R≥0 are equivalent, P (Yt = Zt ) = 1 for
all t in u. It follows from this and repeated application of (PM8)461 that P (Yu = Zu ) = 1.
Observe now that

P (Yu ∈ B) = P ({Yu ∈ B}∩ {Yu = Zu }) = P ({Yu = Zu }∩ {Zu ∈ B}) = P (Zu ∈ B),

where for the first and last equality we used (PM8)461 again.

Sample paths

Let (Yt )t∈R≥0 be some F -measurable jump process with state space X. For
any outcome ω in the possibility spaceX, the function

Y•(ω) : R≥0 →X : t 7→ Yt (ω)

is called a sample path. Important to realise is that the set of sample paths{
Y•(ω) : ω ∈X}

is not necessarily equal to the possibility space X. Because every sample
path Y•(s) is a path – that is, a map from R≥0 to X – the set of sample paths is
included in – but not necessarily equal to – the set of all paths Ω̃. Furthermore,
a sample path is not necessarily càdlàg.

5.B.2 Constructing a probability measure for a jump process

In order to define a measure-theoretic jump process, we need to define (i) a
possibility space X, (ii) a field of events F over X, (iii) a family (Yt )t∈R≥0 of
X-valued variables that forms an F -measurable jump process, and (iv) a
probability charge on F . Note that we have more or less already done this
in Section 3.155, albeit we considered there a structure of fields instead of a
field of events and a coherent conditional probability instead of a probability
charge. In fact, the conventional measure-theoretical approach is largely
analoguous to the approach that we followed in Section 3.155, although
there is one important difference. In the measure-theoretic approach, it is
customary to use as a possibility space the set Ω̃ of all paths instead of the
set Ω of all càdlàg paths; the reason for this difference will become clear in
Corollary 5.41249 further on.

For all t in R≥0, we let X̃ t be the X-valued variable on Ω̃ that assumes the
value of the path ω in Ω̃ at time t :

X̃ t : Ω̃→X : ω 7→ X̃ t (ω) :=ω(t ).
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This way, we extend the use of the tilde to distinguish the set Ω̃ of all paths
from the set Ω of càdlàg paths to the corresponding projector variables: X̃ t

corresponds to Ω̃ just like X t – as defined by Eq. (3.3)59 – corresponds to Ω.
Because by definition,

X̃ t (ω) =ω(t ) for all ω ∈ Ω̃ and t ∈R≥0,

the set of sample paths corresponding to (X̃ t )t∈R≥0 is equal to the set of paths:

{X̃•(ω) : ω ∈ Ω̃} = Ω̃.

Finitary events

Note that the finitary events corresponding to (X̃ t )t∈R≥0 are of the form

{X̃u ∈ B} = {
ω ∈ Ω̃ : ω|u ∈ B

}
,

where u is a sequence of time points in U and B is a subset of Xu . The
corresponding set of finitary events is

F̃ := {
{X̃u ∈ B} : u ∈U,B ⊆Xu

}
,

and, for all time sequences u in U, the set of finitary events with time points
in or succeeding u is

F̃u := {
{X̃v ∈ B} : v ∈U≽u ,B ⊆Xv

}
,

with F̃( ) = F̃. As above, we use a tilde to distinguish the sets of finitary events
for all paths from the sets of finitary events for the càdlàg paths; in other
words, F̃ and F̃u are to Ω̃ what F and Fu are to Ω.

Using entirely similar reasoning as in the proof of Lemma 3.1063, we can
show that for any sequence of time points u, the corresponding set of finitary
events F̃u is a field.

Lemma 5.39. For any sequence of time points u in U, the set of finitary
events F̃u is a field over the set Ω̃ of all paths.

Up to now, we have defined a possibility space Ω̃, a field of events F̃u and
a family (X̃ t )t∈R≥0 of X-valued variables. Observe that by construction of F̃,
the event {X̃ t = x} belongs to F̃ for all t in R≥0 and x in X. Consequently, the
family (X̃ t )t∈R≥0 of X-valued variables is an F̃-measurable jump process. In
short, the mathematical foundations for our uncertainty model are in place,
and it is time to look at the part of the model that quantifies the uncertainty
regarding the jump process.
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Fixing the finite dimensional distribution

In the measure-theoretic approach, one’s uncertainty is modelled by a prob-
ability charge P̃ on the field of finitary events F̃. In other words, we fix the
probability P̃ (X̃u ∈ B) of every finitary event of the form {X̃u ∈ B}; in measure-
theoretic parlance, we fix the finite-dimensional distributions of the process.
As before, we use P̃ to emphasise that we consider all paths and not only the
càdlàg paths.

It is at this point that it becomes essential that we have chosen the
set of all paths Ω̃ as a possibility space, because any probability charge P̃
on F̃ is countably additive. This well-known result is a special case of Theo-
rem 5.44252 further on.

Proposition 5.40. Any probability charge P̃ on the field of finitary events F̃
over the set of all paths Ω̃ is countably additive.

Proof. Follows immediately from Theorem 5.44252 with u = ( ).

Extension to a probability measure

Due to Proposition 5.40, we can always invoke Theorem C.10466,
Carathéodory’s Theorem, to end up with a probability measure P̃σ on
σ(F̃).

Corollary 5.41. For every probability charge P̃ on the field of finitary events F̃
over the set of all paths Ω̃, there is a unique probability measure P̃σ on the
generated σ-field σ(F̃) that extends it.

By Corollary 5.41, any probability charge P̃ on F̃ has a unique probability
measure P̃σ onσ(F̃) that extends it. For this reason, we can extend the expec-
tation EP̃ of the F -simple variables with respect to P̃ to the expectation E L

P̃σ
on the set DL

P̃σ
of all L-integrable σ(F)-measurable variables.

Unfortunately, the generated σ-field σ(F̃) is not very rich because – gen-
erally speaking – it only contains events that depend on a countable number
of time points, and many inferences depend on the state of the path at an
uncountable number of time points. In fact, it can be shown – see for instance
(Billingsley, 1995, Theorem 36.3) – that for any event A in the generated σ-
field σ(F̃), there is a countable set S A ⊂ R≥0 of time points such that if ω
is a path in A, any path ω′ in Ω̃ that agrees with ω on S A – meaning that
ω(t ) =ω′(t ) for all t in S A – belongs to A as well.

For this reason, we are not guaranteed that inferences that depend on
the state at all time points – like temporal averages, hitting times or hitting
probabilities – are σ(F̃)-measurable. Take, for example, the hitting time τ̃A

of a subset A of X, defined by

τ̃A(ω) := inf
{

t ∈R≥0 : ω(t ) ∈ A
}

for all ω ∈ Ω̃.
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Recall from Definition C.12467 that for τ̃A to be σ(F̃)-measurable, we need
that the level set {τ̃A ⋗α} belongs to σ(F̃) for all α in R. It is easy to see that
for a given non-negative real number α, this level set depends on all time
points t that precede α:

{τ̃A ⋗α} = {
ω ∈ Ω̃ :

(∀t ∈ [0,α]
)
ω(t ) ∉ A

}= ⋂
t∈[0,α]

{X̃ t ∈ Ac}.

That is, we can write the level set {τ̃A ⋗α} as an uncountable intersection
of finitary events in the field F̃. However, this does not imply that the level
set {τ̃A ⋗α} belongs to σ(F̃), because we are only guaranteed that the gen-
erated σ-field σ(F̃) includes countable intersections of events in F̃. In fact,
we can easily show that {τ̃A ⋗α} does not belong to σ(F̃).

Assume ex absurdo that the level set B := {τ̃A ⋗α} belongs to σ(F̃) –
to avoid any edge cases, we also assume that α is positive and that A is
non-empty. Then from the preceding – that is, from (Billingsley, 1995, The-
orem 36.3) – we know that there is some countable subset SB of R≥0 such
that for any ω in B , any ω′ in Ω̃ that coincides with ω on SB must also belong
to B . Because SB is countable, we can fix some time point s in [0,α] \ SB . To
obtain a contradiction, we simply change the path ω at the point s: we let ω′
be the path that is defined for all t in R≥0 byω′(t ) :=ω(t ) if t ̸= s andω′(t ) := x
if t = s, where x is an arbitrary element of A. Note that, by construction, ω′
coincides with ω on SB , so ω′ should belong to B . However, we also see that
τ̃A(ω′) = s ≤α by construction, so ω′ does not belong to B = {τ̃A ⋗α}, a clear
contradiction.

Hence, we have shown that for positive real numbers α, the correspond-
ing level sets {τ̃A ⋗α} of τ̃A do not belong to σ(F̃). Therefore, the hitting
time τ̃ is not σ(F̃)-measurable.

Càdlàg modification through separation and continuity

To ensure that the level sets of inferences that depend on the state of the
system at an uncountable number of time points do belong to the generated
σ-field, it would be helpful if the sample paths of our F -measurable jump
process were determined by the states that they assume on some countable
subset D of R≥0. One way to achieve this, is to require that the jump process
should have càdlàg sample paths, provided D is dense in R≥0.

Lemma 5.42. Consider a countable dense subset D of R≥0, and two càdlàg
paths ω1 and ω2 in Ω. If ω1(t ) =ω2(t ) for all t in D, then ω1 =ω2.

Proof. To prove the statement, we fix any arbitrary time point t in R≥0 and prove
that ω1(t ) =ω2(t ). We may assume without loss of generality that t does not belong
to D. Because ω1 and ω2 are both càdlàg, there is a strictly positive real number δ
such that(∀r ∈ ]t , t +δ[

)
ω1(r ) =ω1(t ) and

(∀r ∈ ]t , t +δ[
)
ω2(r ) =ω2(t ).
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Because D is dense in R≥0, we can choose an r in D ∩ ]t , t +δ[. Due to the previous,
we are guaranteed thatω1(t ) =ω1(r ) andω2(t ) =ω2(r ). Becauseω1(r ) =ω2(r ) by the
assumption of the statement, we can infer that ω1(t ) =ω2(t ), as required.

Due to Lemma 5.42↶, it is customary to define a modification (Ỹt )t∈R≥0

of (X̃ t )t∈R≥0 that has càdlàg sample paths. Pivotal in obtaining this càdlàg
modification are the concepts of ‘separability’ and ‘stochastic continuity’. In
essence, an R-valued stochastic process (Yt )t∈R≥0 is ‘separable’ if its sample
paths are fully determined by the states they assume on some countable
dense subset; this crucial property was first introduced by Doob (1953), see
also (Todorovic, 1992, Section 1.7), (Billingsley, 1995, Section 38) or (Borovkov,
2013, Definition 18.2.1). Additionally, (Yt )t∈R≥0 is ‘stochastically continuous’
if for all t in R≥0 and ϵ in R>0, the probability of the event {|Yt −Yr | > ϵ} goes
to zero as r approaches t – see (Todorovic, 1992, Section 1.10) or (Borovkov,
2013, Definition 18.2.2).

Because our state space X is finite, we follow a slightly different path,
but the underlying ideas remain the same. After quite a bit of work – we will
discover the details in Sections 5.C.2255 and 5.C.3259 further on – we obtain
the following result.

Proposition 5.43. Consider a probability measure P̃σ on the σ-field σ(F̃)
generated by the finitary events. If there is a non-negative real number λ such
that

limsup
r→t

P̃σ(X̃ t ̸= X̃r )

|r − t | ≤λ for all t ∈R≥0,

then there is a σ(F̃)-measurable jump process (Ỹt )t∈R≥0 with càdlàg sample
paths that is a modification of (X̃ t )t∈R≥0 with respect to P̃σ.

Proof. This is an obvious special case of Theorem 5.52261 further on.

It is now customary to use the càdlàg modification (Ỹt )t∈R≥0 of (X̃ t )t∈R≥0

with respect to P̃σ as if it were the original jump process (X̃ t )t∈R≥0 , because
the càdlàg property ensures that all relevant inferences areσ(F̃)-measurable.
Take for example the hitting time of the subset A of X, which is then defined
as

τ̃A
(Ỹt )t∈R≥0

(ω) := inf
{

t ∈R≥0 : Ỹt (ω) ∈ A
}

for all ω ∈ Ω̃.

It is not difficult to prove that{
τ̃A

(Ỹt )t∈R≥0
⋗α

}= ⋂
t∈[0,α]∩D

{Ỹt ∈ Ac} for all α ∈R≥0,

where D is any countable dense subset of R≥0. Observe that this level set
belongs toσ(F̃) because the events {Ỹt ∈ Ac} belong toσ(F̃) by construction
and the σ-field σ(F̃) is closed under taking countable intersections due to
Lemma C.7465 (ii). Thus, the hitting time τ̃A

(Ỹt )t∈R≥0
is σ(F̃)-measurable.
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Note that by using the modification (Ỹt )t∈R≥0 as if it were the original
process (X̃ t )t∈R≥0 , one is essentially changing the outcome of the experiment:
any outcomeω in the possibility space Ω̃ is modified to the sample path Ỹ•(ω).
As we have previously mentioned at the end of Section 5.2.1228, advocates
of the measure-theoretic approach provide little or no motivation as to why
working with this modification makes sense, besides the (implicit) pragmatic
justification that ‘it works’.

5.C Countable additivity of a jump process with uniformly
bounded rate

In this appendix, we will use the measure-theoretic framework for jump
processes – as summarised in Appendix 5.B245 – to prove the following
quintessential result that forms the basis of the approach that was outlined
in Section 5.2228. Amusingly, the result itself has nothing to do with the
measure-theoretic framework.

Theorem 5.19. If a jump process P has uniformly bounded rate, then it is
countably additive.

Our proof for this result is rather lengthy, which is why we have chosen
to break it up into parts that are more easily digestible on their own. More
concretely, we fix some jump process P with uniformly bounded rate and
some state history {Xu = xu} in H, and set out to prove that the probabil-
ity charge P (•|Xu = xu) is countably additive. We start our dirty detour in
Appendix 5.C.1 by moving from the probability charge P (•|Xu = xu) on the
field Fu of events over the set Ω of càdlàg paths to a probability measure P̃ xu

σ

on the σ-field of events σ(F̃u) over the set Ω̃ of all paths. Next, for this proba-
bility measure P̃ xu

σ , we obtain an upper bound on the expected number of
jumps in Appendix 5.C.2255. In Appendix 5.C.3259, we construct a modifi-
cation (Ỹt )t∈R≥0 of (X̃ t )t∈R≥0 with càdlàg sample paths, essentially following
the classical approach towards constructing jump processes as outlined in
Appendix 5.B.2247. Finally, we use this modification (Ỹt )t∈R≥0 and the rela-
tion between the probability measure P̃ xu

σ and the probability charge P (•|
Xu = xu) to prove that the latter is countably additive in Appendix 5.C.5267.

5.C.1 From càdlàg paths to all paths

Our first step towards proving Theorem 5.19230 is to move from the set of
càdlàg paths Ω to the set of all paths Ω̃ as the possibility space. Our sole
reason for doing so is the following result, which is well-known but almost
always stated without a formal proof.

Theorem 5.44. Fix some sequence of time points u in U. Then any probability
charge P̃ on F̃u is countably additive.
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Our proof of Theorem 5.44↶ is a straightforward modification of Billings-
ley’s (1995, Theorem 2.3) argument from discrete time to continuous time,
and it hinges on the following important lemma.

Lemma 5.45. Consider a sequence of time points u in U. Then for any non-
increasing sequence (Ãn)n∈N of non-empty events in F̃u ,⋂

n∈N
Ãn ̸=∅.

Proof. In essence, the statement holds because any countable sequence of events
in F̃u only fixes the path on a countable sequence of time points, and one can always
construct a path that assumes these given values. To prove the statement formally,
we letN be the sequence of natural numbers that is constructed by starting with the
initial index n1 := 1, then adding the smallest natural number n2 such that Ãn2 ̸= Ãn1

whenever this exists, and so on. Note that, by construction, (Ãn )n∈N is decreasing – in
the sense that Ãn ⊃ Ãm for all n and m inN such that n < m – and that

⋂
n∈N Ãn =∅.

Furthermore, we observe that N is finite if and only if Ãn = ∅ for some n in N;
whenever this is the case, the statement is trivially true. For this reason, we may
assume without loss of generality that the sequence (Ãn )n∈N is decreasing, in the
sense that Ãn ⊃ Ãn+1 for all n inN.

First, we observe that due to the definition of F̃u , for every natural number n
there is a sequence of time points v ′

n in U≽u and a subset B ′
n of Xv ′

n
such that

Ãn = (X̃v ′
n
∈ B ′

n ). For any n in N, we let vn := ⋃n
k=1 v ′

k be the ordered union of the

time points in v ′
1, . . . , v ′

n , and furthermore define

Bn := {
xvn ∈Xvn : xv ′

n
∈ B ′

n
}
.

This way, Ãn = {X̃vn ∈ Bn } and vn ⊆ vn+1 for all n inN.
Observe that because the sequence (Ãn )n∈N = ({X̃vn ∈ Bn })n∈N of non-empty

events is decreasing, either vn ⊂ vn+1, or vn = vn+1 and Bn ⊃ Bn+1 ̸=∅. Because Bn
is a subset of the finite set Xvn , we infer from this that for every natural number n,
there is a smallest natural number n′ > n such that vn ⊂ vn′ .

Let (tk )k∈N be the sequence of time points in R≥0 that is constructed by starting
with the time points in v1, subsequently appending the time points in v2 \ v1, then
appending those in v3 \ v2, and so on. By construction, there is a non-decreasing
sequence (kn )n∈N of natural numbers such that for all n in N, vn is the ordered
version of (t1, . . . , tkn

). Conversely, for every natural number k, we let nk be the
smallest natural number n such that tk belongs to vn and vn ⊂ vn+1 – recall from
before that this last condition is always satisfied for some n. Note that (nk )k∈N is a
non-decreasing sequence of natural numbers because whenever tk is in vn then so is
tk−1, and that nkn

≥ n for every natural number n.
For any k inN, we fix a path ωk in Ãnk – note that this is possible because Ãnk is

non-empty by the assumption in the statement. Consider the sequence (ωk (t1))k∈N.
Because the state spaceX is finite, there is at least one state that occurs infinitely often
in this sequence; we choose any such state, and denote it by x⋆t1

. Additionally, we let

(ℓ1,i )i∈N denote the increasing sequence of natural numbers ℓ such that ωℓ(t1) = x⋆t1
.

Next, we consider the sequence (ωℓ1,i
(t2))i∈N. Again, there is at least one state

that occurs infinitely often in this sequence. We choose any such state, denote it
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by x⋆t2
and let (ℓ2,n )n∈N denote the increasing subsequence of (ℓ1,i )i∈N such that

ωℓ(t2) = x⋆t2
for all ℓ in this sequence. Note that due to the previous, ωℓ(t1) = x⋆t1

for
all ℓ in the sequence (ℓ2,i )i∈N.

It is clear that if we continue in the same manner, then for every natural num-
ber k – and the corresponding time point tk – we choose a state x⋆tk

and obtain a

subsequence (ℓk,i )i∈N such that ωℓ(tk ) = x⋆tk
for all ℓ in this sequence, and also

ωℓ(t j ) = x⋆t j
for all ℓ in (ℓk,i )i∈N and j in {1, . . . ,k −1}. Observe that ℓk := ℓk,k ≥ k

because we always take increasing subsequences.
Fix any natural number n. Observe that nℓkn

≥ nkn
because ℓkn

≥ kn and the
sequence (nk )k∈N is non-decreasing. We have seen before that nkn

≥ n, so nℓkn
≥

nkn
≥ n. Because (Ãk )k∈N is decreasing, it follows from these inequalities that

ωℓkn
∈ Ãnℓkn

⊆ Ãnkn
⊆ Ãn = {X̃vn ∈ Bn },

where we have also used that ωℓ belongs to Ãnℓ because of how ωℓ was chosen. For
this reason,

ωℓkn

∣∣∣
vn

=
(
ωℓkn

(t )
)

t∈vn
∈ Bn . (5.34)

On the other hand, we observe that by construction,

ωℓkn
(tk ) = x⋆tk

for all k ∈ {1, . . . ,kn };

because vn is the ordered version of (t1, . . . , tkn
),

ωℓkn

∣∣∣
vn

=
(
ωℓkn

(t )
)

t∈vn
= (x⋆t )t∈vn = x⋆vn

. (5.35)

Combining Eqs. (5.34) and (5.35), we obtain that

x⋆vn
= (x⋆t )t∈vn ∈ Bn . (5.36)

Finally, we fix some x⋆ in X and define the path

ω⋆ : R≥0 →X : t 7→ω⋆(t ) :=
{

x⋆tn
if t = tn for some n ∈N,

x⋆ otherwise.

It is obvious that by construction, ω⋆|vn = x⋆vn
for any natural number n. From this

and Eq. (5.36), we infer that

ω⋆ ∈ {X̃vn ∈ Bn } = Ãn for all n ∈N.

Of course, this implies that
⋂

n∈N Ãn ̸=∅, which is precisely the claim that we set out
to prove.

Proof of Theorem 5.44252. Recall from Lemma C.3463 (CA4) that in order to
prove that the probability charge P̃ is countably additive, it suffices to verify that
limn→+∞ P̃ (An ) = 0 for any non-increasing sequence (An )n∈N of non-empty events
in F̃u such that

⋂
n∈N An =∅. Because no such sequence exists due to Lemma 5.45↶,

the probability charge P̃ is trivially countably additive.
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5.C.2 An upper bound on the expected number of jumps

Our next step consists in bounding the expected number of jumps. Our
approach is for the most part similar to that in Section 5.2.2231, but there are
two notable differences. The first is that we consider a probability measure
on σ(F̃u) instead of a probability charge on Fu . For this reason, we only deal
with the number of jumps along some countable dense set D, which is the
second difference.

Number of jumps along a grid

Fix some time sequence u in U. For any time points s and r in R≥0 such that
maxu ≤ s ≤ r , it is clear that the event

{X̃s ̸= X̃r } := {
ω ∈ Ω̃ : ω(s) ̸=ω(r )

}
belongs to F̃u , and therefore also toσ(F̃u). Consider some grid v = (t0, . . . , tn)
in U̸=( ). Similar to how we defined ηv , the number of jumps of the càdlàg
paths over v , we define the number of jumps of all paths over v as

η̃v : Ω̃→R≥0 : ω 7→ η̃v (ω) := ∣∣{k ∈ {1, . . . ,n} : ω(tk−1) ̸=ω(tk )
}∣∣,

where we again follow the notational convention of using a tilde to distinguish
functions on Ω̃ from their counterparts on Ω. Because

η̃v =
n∑

k=1
I{

X̃ tk−1
̸=X̃ tk

}, (5.37)

we see that η̃v is an F̃u-simple variable – and therefore also a σ(F̃u)-simple
variable. Furthermore, we also see that if v and w are grids such that w
refines v , then η̃w ≥ η̃v .

The number of jumps along a countable dense set

Fix some time points s and r in R≥0 such that s ≤ r . For any countable dense
subset D ofR≥0, we letUD

[s,r ] be the subset of all grids over [s,r ] whose interior
grid points belong to D :

UD
[s,r ] := {

(t0, . . . , tn) ∈U[s,r ] : v ⊆ D ∪ {s,r }
}
.

With this notation, we can define the number of jumps over the time inter-
val [s,r ] and along the countable dense subset D of R≥0 as

η̃D
[s,r ] : Ω̃→R : ω 7→ η̃D

[s,r ](ω) := sup
{
η̃v (ω) : v ∈UD

[s,r ]

}
. (5.38)

Important for the remainder is that this non-negative extended real vari-
able η̃D

[s,r ] is a σ(F̃u)-over variable, and therefore also σ(F̃u)-measurable.

255



Extension to idealised inferences

Lemma 5.46. Consider a sequence of time points u in U and time points s
and r inR≥0 such that maxu ≤ s ≤ r . Let D be a countable dense subset of R≥0.
Then there is a sequence (vn)n∈N of grids in UD

[s,r ] such that (η̃vn )n∈N is a
sequence of σ(F̃u)-simple variables that is non-decreasing and that converges
point-wise to η̃D

[s,r ]. Consequently, η̃D
[s,r ] is σ(F̃u)-measurable.

Proof. First, we prove that η̃D
[s,r ] is an F̃u -over variable. Because D is countable,

there is a sequence (vn )n∈N in UD
[s,r ] such that vn ⊆ vn+1 for all n inN and

⋃
n∈N vn =

{s,r }∪ (
[s,r ]∩D

)
. If s = r , the only possible such sequence is given by vn = (s) for all

n in N. If on the other hand s < r , there are many such sequences; to give just one
example, consider the sequence that is recursively defined by letting v0 := (s,r ) and
vn := vn−1 ∪ (tn ) for all n inN, where (tn )n∈N is any enumeration of the time points
in the countable set ]s,r [∩D .

Observe that η̃vn+1 ≥ η̃vn because vn+1 refines vn , so (η̃vn )n∈N is a non-
decreasing sequence of F̃u -simple variables. Thus, to prove that η̃D

[s,r ] is an F̃u -over
variable, it remains for us to verify that the monotone limit p-w limn→+∞ η̃vn is equal
to η̃D

[s,r ]. To this end, we observe that for all n in N, η̃vn ≤ η̃D
[s,r ] due to Eq. (5.38)↶.

Consequently,
p-w lim
n→+∞

η̃vn (ω) ≤ η̃D
[s,r ](ω).

On the other hand, we observe that for any grid v in UD
[s,r ], there is an index n in N

such that v ⊆ vn . Therefore,

η̃v (ω) ≤ p-w lim
n→+∞

η̃vn (ω) for all v ∈UD
[s,r ].

From the two previous inequalities, we infer that

η̃D
[s,r ](ω) = sup

{
η̃v (ω) : v ∈UD

[s,r ]

}= p-w lim
n→+∞

η̃vn (ω) for all ω ∈ Ω̃.

To summarise, we have shown that (η̃vn )n∈N is a non-decreasing sequence of F̃u -
simple variables that converges point-wise to η̃D

[s,r ]. Because every F̃u -simple variable
is trivially σ(F̃u )-simple as well, we conclude that the non-negative extended real
variable η̃D

[s,r ] is an σ(F̃u )-over variable, and therefore also a σ(F̃u )-measurable
variable due to Lemma C.20471.

An upper bound on the expected number of jumps along a countable dense
set

Next, we determine an upper bound on the expected number of jumps along
the countable dense set D . We start with a version of Definition 5.16230 – or,
more precisely, Lemma 5.35242 – that is adapted to our different setting.

Definition 5.47. Consider a sequence of time points u. A probability mea-
sure P̃σ on σ(F̃u) has uniformly bounded rate if there is a non-negative real
number λ such that for any time point t in [maxu,+∞[,

limsup
r↘t

P̃σ(X̃ t ̸= X̃r )

r − t
≤ λ

2
and, if t > maxu, limsup

s↗t

P̃σ(X̃s ̸= X̃ t )

t − s
≤ λ

2
.
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5.C Countable additivity of a jump process with uniformly bounded rate

Whenever this is the case, we call λ a rate bound.

Because Lemma 5.35242 and Definition 5.47↶ are so similar, we more or
less immediately obtain the following intermediary result that is similar to
Lemma 5.28237.

Lemma 5.48. Consider a sequence of time points u in U and a probability
measure P̃σ onσ(F̃u) that has uniformly bounded rate, with rate bound λ. Fix
any countable dense subset D of R≥0 and any two time points s and r in R≥0

such that maxu ≤ s < r . Then for all ϵ in R>0, there is a grid v = (t0, . . . , tn)
over [s,r ] such that(∀k ∈ {1, . . . ,n}

)
P̃σ(X̃ tk−1 ̸= X̃ tk ) < (tk − tk−1)

(
λ

2
+ϵ

)
.

Proof. The proof is almost entirely the same as that of Lemma 5.28237; the only real
difference is that we need to invoke Definition 5.47↶ instead of Lemma 5.35242.

With the help of this intermediary result, we can easily prove a version of
Theorem 5.27236 that is suited for the present setting.

Lemma 5.49. Consider a sequence of time points u in U, time points s and r
in R≥0 such that maxu ≤ s ≤ r and a probability measure P̃σ on σ(F̃u) that
has uniformly bounded rate, with bound λ. Then for any grid v over [s,r ],

EP̃σ (η̃v ) ≤ (r − s)
λ

2
;

consequently, for any countable dense subset D of R≥0,

E D
P̃σ

(
η̃D

[s,r ]

)≤ (r − s)
λ

2
.

Proof. The proof of this result is more or less the same as the proof of Theo-
rem 5.27236, except for some minor differences. Here too, the statement clearly
trivially holds whenever s = r , so we may assume that s < r without loss of generality.

To prove the first part of the statement, we let v = (t0, . . . , tn ) be any grid over [s,r ].
Then due to Eq. (5.37)255,

η̃v =
n∑

k=1
η̃(tk−1,tk ).

For all k in {1, . . . ,n}, we now use Lemma 5.48 – and not Lemma 5.28237 – to construct
a grid vk = (tk,0, . . . , tk,nk

) over [tk−1, tk ] such that

(∀ℓ ∈ {1, . . . ,nk }
)

P̃σ(X̃tk,ℓ−1 ̸= X̃tk,ℓ ) < (tk,ℓ− tk,ℓ−1)

(
λ

2
+ϵ

)
.

Observe that for any k in {1, . . . ,n},

η̃(tk−1,tk ) ≤ η̃vk =
nk∑
ℓ=1

I{X̃ tk,ℓ−1
̸=X̃ tk,ℓ

}.
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Thus, as in the proof of Theorem 5.27236, it follows from the additivity and mono-
tonicity of EP̃σ

– so (ES3)37 and (ES4)37 – that

EP̃σ
(η̃v ) =

n∑
k=1

EP̃σ
(η̃(tk−1,tk ))

≤
n∑

k=1
EP̃σ

(η̃vk ) <
n∑

k=1

nk∑
ℓ=1

(tk,ℓ− tk,ℓ−1)

(
λ

2
+ϵ

)
= (r − s)

(
λ

2
+ϵ

)
.

Because this inequality holds for any positive real number ϵ, we conclude that

EP̃σ
(η̃v ) ≤ (r − s)

λ

2
,

which verifies the first part of the statement.
To prove the second part of the statement, we recall from Lemma 5.46256 that

there is a sequence (vn )n∈N of grids over [s,r ] such that (η̃vn )n∈N is a non-decreasing
sequence of σ(F̃u )-simple variables that converges point-wise to η̃D

[s,r ]. It follows
from this and (DE2)225 that

E D
P̃σ

(
η̃D

[s,r ]

)= lim
n→+∞EP̃σ

(η̃vn ).

The second part of the statement follows immediately from the preceding equality
and the first part of the statement.

Finally, the previous result allows us to prove that for a probability mea-
sure with uniformly bounded rate, the probability of having a finite number
of jumps along a dense set is 1.

Proposition 5.50. Consider a sequence of time points u in U and a proba-
bility measure P̃σ on σ(F̃u) that has uniformly bounded rate. Then for any
countable dense subset D of R≥0 and any time points s and r in R≥0 such
that maxu ≤ s ≤ r ,{

η̃D
[s,r ] ⋖+∞}

:= {
ω ∈Ω : η̃D

[s,r ](ω) <+∞}
is an event in σ(F̃u), and

P̃σ
({
η̃D

[s,r ] ⋖+∞})= 1.

Proof. For the sake of notational brevity, we let Ã := {η̃D
[s,r ] ⋖+∞}. For any natural

number n, we furthermore let

Ãn := {
η̃D

[s,r ] ⋖n
}
.

Recall from Lemma 5.46256 that η̃D
[s,r ] is σ(F̃u )-measurable, so Ãn belongs to σ(F̃u )

by Definition C.12467 (iv). Observe that (Ãn )n∈N is a non-decreasing sequence of
events in σ(F̃u ) with ⋃

n∈N
Ãn = {

η̃D
[s,r ] ⋖+∞}= Ã.
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5.C Countable additivity of a jump process with uniformly bounded rate

By Lemma C.7465 (iii), this implies that Ã belongs to σ(F̃u ), which proves the first
part of the statement.

To prove the second part of the statement, we recall from (PM6)461 that

P̃σ(Ã) = 1− P̃σ(Ãc). (5.39)

Observe that (Ãc
n )n∈N = ({η̃D

[s,r ] ≥ n})n∈N is a non-increasing sequence of events

in σ(F̃u ) with
⋂

n∈N Ãc
n = Ãc. For this reason, it follows from Lemma C.3463 (CA3)

that

P̃σ(Ãc) = lim
n→+∞ P̃σ(Ãc

n ).

Observe that for all n inN, because η̃D
[s,r ] ≥ 0

nIÃc
n
= nI{η̃D

[s,r ]≥n} ≤ η̃D
[s,r ].

It follows from this, Eq. (2.19)36, (DE1)225, (DE6)226 and (DE4)225 – essentially
Markov’s inequality – that for all n inN,

P̃σ(Ãc
n ) = P̃σ

(
{η̃D

[s,r ] ≥ n}
)= E D

P̃σ

(
I{η̃D

[s,r ]≥n}

)≤ E D
P̃σ

( 1

n
η̃D

[s,r ]

)
= 1

n
E D

P̃σ

(
η̃D

[s,r ]

)
.

Because P̃σ has uniformly bounded rate with bound λ, it follows from Lemma 5.49257
and the previous inequality that

P̃σ(Ãc
n ) ≤ 1

n
E D

P̃σ
(η̃D

[s,r ]) ≤ (r − s)λ

2n
for all n ∈N.

Additionally, we recall from (P2)34 that P̃σ(Ãc
n ) ≥ 0. From these two inequalities, we

infer that

0 ≤ P̃σ(Ãc) = lim
n→+∞ P̃σ(Ãc

n ) ≤ lim
n→+∞

(r − s)λ

2n
= 0.

From this and Eq. (5.39), it follows that P̃σ(Ã) = 1, which proves the second part of
the statement.

5.C.3 A càdlàg modification

We now use Proposition 5.50↶ to obtain a càdlàg modification of (X̃ t )t∈R≥0 .
Crucial in this step is the following observation inspired by (Le Gall, 2016,
Lemma 3.16), which concerns the right-sided limit of a path ω at a time
point t ‘coming along D’, denoted by limD∋r↘t ω(r ). Formally, for any path ω
in Ω̃ and time point t in R≥0, we say that limD∋r↘t ω(r ) exists whenever there
is some x in X such that(∃δ ∈R>0

)(∀r ∈ ]t , t +δ[∩D
)
ω(r ) = x,

and whenever this is the case, we let limD∋r↘t ω(r ) = x.
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Lemma 5.51. Consider any countable dense subset D of R≥0, any time point s
in R≥0 and any path ω in Ω̃. If η̃D

[s,r ](ω) <+∞ for all r in D such that s < r ,
then the right limit

lim
D∋t ′↘t

ω(t ′)

exists for every time point t in [s,+∞[. Moreover, the modified path

ω′ : [s,+∞[ →X : t 7→ω′(t ) := lim
D∋t ′↘t

ω(t ′)

is then càdlàg over [s,+∞[, meaning that it is continuous from the right at
all t in [s,+∞[ and the limit from the left exists at all t in ]s,+∞[.

Proof. Fix any time points t in R≥0 and r in D such that s ≤ t < r . Because
η̃D

[s,r ](ω) <+∞ due to the conditions of the statement, there is a non-negative in-
teger n and a grid v = (t0, . . . , tk ) in UD

[s,r ] such that

η̃D
[s,r ](ω) = n = η̃v (ω).

Furthermore, for any grid w in UD
[s,r ] that refines v , η̃w (ω) = η̃v (ω) = n because

n = η̃v (ω) ≤ η̃w (ω) ≤ η̃D
[s,r ](ω) = n.

Thus, we see that no matter how many time points of ]s,r [∩D we add to the grid v ,
the number of jumps of ω along the grid will always be the same. This implies that for
every ℓ in {1, . . . ,k}, the path ω is piece-wise constant and changes states at most once
along [tℓ−1, tℓ]∩D ; that is, for all ℓ in {1, . . . ,k}, there is a t⋆

ℓ
in [tℓ−1, tℓ] such that

ω(t ′) =
{
ω(tℓ−1) if t ′ < t⋆

ℓ

ω(tℓ) if t ′ > t⋆
ℓ

for all t ′ ∈ [tℓ−1, tℓ]∩D.

Set t⋆0 := s and t⋆k+1
:= r . Then for every ℓ in {1, . . . ,k +1},

ω(t ′) =ω(t ′′) for all t ′, t ′′ ∈ ]
t⋆ℓ−1, t⋆ℓ

[∩D,

where we interpret the interval ]t⋆
ℓ−1, t⋆

ℓ
[ as the empty set whenever t⋆

ℓ−1 = t⋆
ℓ

. Be-

cause s ≤ t < r , there is an ℓt in {0, . . . ,k} such that t⋆
ℓt

≤ t < t⋆
ℓt+1. Therefore,

]t , t⋆
ℓt+1[∩D ̸=∅ and

ω(t ′) =ω(t ′′) for all t ′, t ′′ ∈ ]
t , t⋆ℓt+1

[∩D. (5.40)

Clearly, this implies that limD∋t ′↘t ω(t ′) exists, which verifies the first part of the
statement.

It also follows immediately from Eq. (5.40) that the modified path ω′ is right-
continuous at t . Furthermore, it is easy to see that the modified path ω′ is constant
over the intervals [t⋆

ℓ−1, t⋆
ℓ

[. For this reason, the left-sided limit lim∆↘0ω
′(t −∆) at

t exists as well whenever t > s. Because t is an arbitrary time point in [s,+∞[, this
proves the second part of the statement.
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Finally, we combine Proposition 5.50258 with Lemma 5.51↶ to construct
a càdlàg modification of (X̃ t )t∈R≥0 .

Theorem 5.52. Consider a sequence of time points u in U and a probability
measure P̃σ on σ(F̃u) that has uniformly bounded rate. Let s := maxu. Then
there is a family (Ỹt )t∈[s,+∞[ of X-valued variables such that

(i) for any path ω in Ω̃, the sample path

Ỹ•(ω) : [s,+∞[ →X : t 7→ Ỹt (ω)

is càdlàg over [s,+∞[;

(ii) for any t in [s,+∞[ and x in X, the event

{Ỹt = x} := {
ω ∈ Ω̃ : Ỹt (ω) = x

}
belongs to σ(F̃u);

(iii) for any t in [s,+∞[, the event

{X̃ t = Ỹt } := ⋃
x∈X

{X̃ t = x}∩ {Ỹt = x}

belongs to σ(F̃u) and P̃σ(X̃ t = Ỹt ) = 1;

(iv) for any sequence of time points v in U such that v ⊆ [s,+∞[ and any
subset B of Xv , the event

{Ỹv ∈ B} := ⋃
xv∈B

⋂
t∈v

{Ỹt = xt }

belongs to σ(F̃u), and

P̃σ(Ỹv ∈ B) = P̃σ(X̃v ∈ B).

Proof. Fix any countable dense subset D of R≥0. Recall from Proposition 5.50258
that for any future time point r in [s,+∞[, {η̃D

[s,r ] ⋖+∞} belongs to σ(F̃u ) and

P̃σ
({
η̃D

[s,r ] ⋖+∞})= 1. (5.41)

Let (rn )n∈N be any enumeration of D ∩ [s,+∞[. For any natural number n, we
define the event

Ãn := {
η̃D

[s,rn ] ⋖+∞}
.

Recall from (right above) Eq. (5.41) that Ãn belongs to σ(F̃u ), so it follows from
Lemma C.7465 (ii) that the event

ÃD := ⋂
n∈N

Ãn
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belongs to σ(F̃u ). Furthermore, it follows from repeated application of Eq. (5.41)↶
and (PM8)461 that for all k inN,

P̃σ

(
k⋂

n=1
Ãn

)
= P̃σ

(
k⋂

n=1

{
η̃D

[s,rn ] ⋖+∞})= 1; (5.42)

from this equality and Lemma C.3463 (CA3), it follows immediately that

P̃σ(ÃD ) = lim
k→+∞

P̃σ

(
k⋂

n=1
Ãn

)
= 1.

The key point is that by construction, every path ω in ÃD satisfies the conditions
of Lemma 5.51260. Consequently, for every t in [s,+∞[ we can define the X-valued
variable Ỹt by

Ỹt (ω) :=
{

limD∋r↘t ω(r ) if ω ∈ ÃD

ω(s) otherwise
for all ω ∈ Ω̃.

Observe that (i)↶ follows immediately from the definition above and Lemma 5.51260.
Thus, what is left, is to prove the three remaining properties of (Ỹt )t∈[s,+∞[.

To prove (ii)↶, we fix a future time point t in [s,+∞[ and a state x. Let (rn )n∈N
be any decreasing sequence in ]t ,+∞[∩D that converges to t . Then it follows imme-
diately from the definition of the variable Ỹt that for all ω in Ω̃,

Ỹt (ω) =
{

limn→+∞ω(rn ) if ω ∈ ÃD ,

ω(s) otherwise.
(5.43)

Consequently,

{Ỹt = x} =
(

ÃD ∩
( ⋃

n∈N

+∞⋂
k=n

{X̃rk = x}

))
∪ (

Ãc
D ∩ {X̃s = x}

)
.

Because ÃD and all {X̃rn = x} and {X̃s = x} belong to σ(F̃u ), it follows from this and
the properties of σ-fields that {Ỹt = x} belongs to σ(F̃u ).

Next, we prove (iii)↶. Again, we fix any future time point t in [s,+∞[, and let
(rn )n∈N be any decreasing sequence in ]t ,+∞[∩D that converges to t . Recall that
for all x in X, {X̃t = x} belongs to σ(F̃u ) by construction of F̃u and {Ỹt = x} belongs
to σ(F̃u ) by (ii)↶. Consequently,

{X̃t = Ỹt } = ⋃
x∈X

{X̃t = x}∩ {Ỹt = x}

belongs to σ(F̃u ) as well because this σ-field is closed under countable – and hence
finite – unions. Consequently, {X̃t ̸= Ỹt } := {X̃t = Ỹt }c belongs to σ(F̃u ) due to (F2)32,
and it follows from (PM6)461 that

P̃σ(X̃t = Ỹt ) = 1− P̃σ(X̃t ̸= Ỹt ). (5.44)

Observe that
{X̃t ̸= Ỹt } = (

ÃD ∩ {X̃t ̸= Ỹt }
)∪ (

Ãc
D ∩ {X̃t ̸= Ỹt }

)
.
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From this and Eq. (5.43)↶, it follows that

I{X̃ t ̸=Ỹt } = I(ÃD∩{X̃ t ̸=Ỹt }
)
∪
(

Ãc
D∩{X̃ t ̸=Ỹt }

) = p-w lim
n→+∞

I(
ÃD∩{X̃ t ̸=X̃rn }

)
∪
(

Ãc
D∩{X̃ t ̸=X̃s }

).

Because ÃD , {X̃t ̸= X̃rn } and {X̃t ̸= X̃s } belong to σ(F̃u ), it follows from this, (DE1)225
and Theorem 5.11226, that

P̃σ(X̃t ̸= Ỹt ) = E D
P̃σ

(I{X̃ t ̸=Ỹt }) = lim
n→+∞E D

P̃σ

(
I(

ÃD∩{X̃ t ̸=X̃rn }
)
∪
(

Ãc
D∩{X̃ t ̸=X̃s }

))
= lim

n→+∞ P̃σ
((

ÃD ∩ {X̃t ̸= X̃rn }
)∪ (

Ãc
D ∩ {X̃t ̸= X̃s }

))
.

Observe that because P̃σ(ÃD ) = 1, it follows from (PM8)461 that for all n inN,

P̃σ
((

ÃD ∩ {X̃t ̸= X̃rn }
)∪ (

Ãc
D ∩ {X̃t ̸= X̃s }

))= P̃σ
(

ÃD ∩ {X̃t ̸= X̃rn }
)= P̃σ

(
X̃t ̸= X̃rn

)
.

We substitute this equality in the preceding equality, to yield

P̃σ(X̃t ̸= Ỹt ) = lim
n→+∞ P̃σ

(
X̃t ̸= X̃rn

)
.

Finally, because (rn )n∈N decreases to t and P̃σ has uniformly bounded rate, we can
conclude that

P̃σ(X̃t ̸= Ỹt ) = lim
n→+∞ P̃σ(X̃t ̸= X̃rn ) = 0.

The statement follows immediately from this and Eq. (5.44)↶.

Finally, we prove (iv)261. The statement holds trivially in case v is the empty
sequence of time points, so we may assume without loss of generality that v is non-
empty. Because in the definition

{Ỹv ∈ B} = ⋃
xv∈B

⋂
t∈v

{Ỹt = xt },

all events on the right-hand side belong to σ(F̃) due to (ii)261, so does {Ỹv ∈ B}. This
verifies the first part of (iv)261. To verify the second part, we observe that

{X̃v = Ỹv } := ⋂
t∈v

{X̃t = Ỹt }

belongs to σ(F̃u ) because all events on the right-hand side belong to σ(F̃u ), this time
by construction of F̃u and due to (iii)261. Because furthermore P̃σ(X̃t = Ỹt ) = 1 for all
t in v due to (iii)261, it follows from (PM8)461 that P̃σ(X̃v = Ỹv ) = 1. For this reason, it
follows from (PM8)461 that

P̃σ(Ỹv ∈ B) = P̃σ
(
{Ỹv ∈ B}∩ {X̃v = Ỹv }

)= P̃σ
(
{X̃v = Ỹv }∩ {X̃v ∈ B}

)= P̃σ(X̃v ∈ B),

which verifies the second part of (iv)261.
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5.C.4 From the set of càdlàg paths to the set of all paths and back

In order to use the results that we have just proven, we need a way to go
from finitary events on the set of càdlàg paths to finitary events on the set
of all paths and vice versa. The most obvious way to do this is through the
following ‘projection’. For any sequence of time points u in U, we let

Γu : F̃u 7→Fu : Ã 7→ Γu(Ã) := Ã∩Ω. (5.45)

To see that the image Γ(Ã) of an event Ã in F̃u indeed belongs toFu , we recall
that by construction, the event Ã in F̃u has a (non-unique) representation of
the form (X̃v ∈ B), with v in U≽u . Observe that

Γu(Ã) = Ã∩Ω= {X̃v ∈ B}∩Ω= {
ω ∈ Ω̃ : ω|v ∈ B

}∩Ω
= {

ω ∈Ω : ω|v ∈ B
}= {Xv ∈ B},

from which we infer that Γu(Ã) belongs to Fu . In fact, it is straightforward to
verify that Γu is a bijection between Fu and F̃u that has some nice properties.

Lemma 5.53. Consider some sequence of time points u inU. The projectionΓu

is a bijection, and

(i) Γu(Ω̃) =Ω;

(ii) Γu(Ãc) =Ω\Γu(Ã) for all Ã in F̃u ;

(iii) Γu(Ã ∪ B̃) = Γu(Ã)∪Γu(B̃) for all Ã, B̃ in F̃u , and Γu(Ã)∩Γu(B̃) = ∅
whenever Ã∩ B̃ =∅.

Proof. First, we recall that every event A in Fu has a (non-unique) representa-
tion {Xv ∈ B}, and similarly for every event Ã in F̃u . To prove that Γu is a bijection,
we verify that it is injective (one-to-one) and subsequently verify that it is surjective
(onto).

In order to verify that Γu is injective, we fix two events Ã1 and Ã2 in F̃u . Let
{X̃v1 ∈ B1} and {X̃v2 ∈ B2} be non-unique representations of Ã1 and Ã2, respectively.
Let v := v1 ∪ v2, B ′

1 := {xv ∈Xv : xv1 ∈ B1} and B ′
2 := {xv ∈Xv : xv2 ∈ B2}. Then by

construction,

Ã1 = {X̃v1 ∈ B1} = {X̃v ∈ B ′
1} and Ã2 = {X̃v2 ∈ B2} = {X̃v ∈ B ′

2},

and therefore
Ã1 = Ã2 ⇔ B ′

1 = B ′
2. (5.46)

By definition of Γu ,

Γu (Ã1) = Ã1 ∩Ω= {X̃v ∈ B ′
1}∩Ω= {Xv ∈ B ′

1}

and
Γu (Ã2) = Ã2 ∩Ω= {X̃v ∈ B ′

2}∩Ω= {Xv ∈ B ′
2}.
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It follows from this and Eq. (5.46)↶ that

Γu (Ã1) = Γu (Ã2) ⇔ B ′
1 = B ′

2 ⇔ Ã1 = Ã2,

so Γu is injective.
In order to verify that Γu is surjective, we fix an arbitrary event A in Fu . Let

{Xv ∈ B} be a non-unique representation of the event A. It is clear that the event Ã :=
{X̃v ∈ B} in F̃ is mapped to A by Γu :

Γu (Ã) = {X̃v ∈ B}∩Ω= {Xv ∈ B} = A,

so Γu is indeed onto.
Finally, the three properties of the second part of the statement follow immedi-

ately from the definition of Γu .

Let P be any jump process. Recall from Corollary 2.5846 that for any state
history {Xu = xu} in H, P (•|Xu = xu) is a probability charge on the field Fu .
This probability charge induces a probability charge P̃ xu on F̃u through the
projection Γu :

P̃ xu : F̃u →R : Ã 7→ P̃ xu (Ã) := P (Γu(Ã) |Xu = xu).

Corollary 5.54. Consider a jump process P. Then for any {Xu = xu} in H, P̃ xu

is a probability charge on F̃u .

Proof. That P̃ xu is a probability charge on F̃u follows immediately from Corol-
lary 2.5846, Lemma 5.53↶ and Definition 2.3634.

This induced probability charge P̃ xu is countably additive due to Theo-
rem 5.44252, so it follows from Theorem C.10466 that there is a unique prob-
ability measure P̃ xu

σ on σ(F̃u) that extends it. Even more, this measure has
bounded rate whenever P has bounded rate.

Lemma 5.55. Consider a jump process P. Then for any state history {Xu = xu}
in H, there is a unique probability measure P̃ xu

σ on σ(F̃u) that extends P̃ xu .
If the jump process P has uniformly bounded rate, then so does the induced
probability measure P̃ xu

σ .

Proof. Recall from Corollary 5.54 that P̃ xu is a probability charge on F̃u , so it is
countably additive due to Theorem 5.44252. For this reason, it follows immediately
from Theorem C.10466 that there is a unique probability charge P xu

σ on σ(F̃u ) that
extends it.

To verify the second part of the statement, we assume that P has bounded rate
and we fix two time points s and r in R≥0 such that maxu ≤ s < r . Observe that
{Xs ̸= Xr } = {Xv ∈ B}, with v := (s,r ) and B := {yv ∈Xv : ys ̸= yr }, and similarly for
{X̃s ̸= X̃r }. Because

Γu
(
{X̃s ̸= X̃r }

)= Γu
(
{X̃v ∈ B}

)= {Xv ∈ B} = {Xs ̸= Xr },
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it follows from the definition of P̃ xu that

P (Xs ̸= Xr |Xu = xu ) = P̃ xu (X̃s ̸= X̃r ) = P̃ xu
σ (X̃s ̸= X̃r ).

Because this equality holds for any two time points s and r in R≥0 such that maxu ≤
s < r , it follows from Lemma 5.35242 that P̃ xu

σ has uniformly bounded rate.

The final intermediary result that we will need in the proof of Theo-
rem 5.19230 deals with non-increasing sequences of events in Fu .

Lemma 5.56. Consider a jump process P, a state history {Xu = xu} in H and
a sequence (An)n∈N in Fu , and let s := maxu. Then for every n inN, there is a
sequence of time points vn in U≽(s) with s ∈ vn and a subset Bn of Xvn such
that

P (An |Xu = xu) = P (Xvn ∈ Bn |Xu = xu) for all n ∈N.

Whenever the sequence (An)n∈N is non-increasing and
⋂

n∈N An =∅, the same
holds for the sequence ({Xvn ∈ Bn})n∈N.

Proof. From Lemma 3.1164, we recall that for every n in N, there is a sequence of
time points v ′

n in U≻u and a subset B ′
n of Xu∪v ′

n
such that An = {Xu∪v ′

n
∈ B ′

n }. For

any natural number n, we let vn := (s)∪ v ′
n – note that vn ≽ (s) and s ∈ vn – and

Bn := {
yvn : yu∪v ′

n
∈ B ′′

n
}

with B ′′
n := {

yu∪v ′
n
∈ B ′

n : yu = xu
}
,

and observe that

{Xu = xu }∩ An = {Xu = xu }∩ {Xu∪v ′
n
∈ B ′

n } = {Xu = xu }∩ {Xvn ∈ Bn }. (5.47)

Recall from (CP1)41 that P (Xu = xu |Xu = xu ) = 1. For this reason, it follows from
Eq. (5.47) and (CP9)42 that

P (An |Xu = xu ) = P ({Xu = xu }∩ An |Xu = xu )

= P ({Xu = xu }∩ {Xvn ∈ Bn } |Xu = xu )

= P (Xvn ∈ Bn |Xu = xu ).

Because this equality holds for all n inN, we have proven the first part of the statement.
Next, we turn to the second part of the statement; that is, from here on we

assume that (An )n∈N is non-increasing with
⋂

n∈N An = ∅. In order to show that
the sequence ({Xvn ∈ Bn })n∈N is non-increasing, we assume ex absurdo that it is not,
meaning that there is an n in N such that {Xvn+1 ∈ Bn+1}∩ {Xvn ∈ Bn }c ̸=∅. Fix any
càdlàg path ω1 in {Xvn+1 ∈ Bn+1}∩ {Xvn ∈ Bn }c. Due to Corollary 3.963, there is a
càdlàg path ω2 in {Xu = xu }. Note that ω1(s) = xs by definition of Bn+1; because
ω2(s) = xs as well, the path

ω : R≥0 →X : t 7→
{
ω1(t ) if t ≥ s

ω2(t ) if t < s
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is càdlàg. By construction, ω clearly belongs to {Xu = xu }. Furthermore, we recall
that ω1 ∈ {Xvn+1 ∈ Bn+1} by assumption and we observe that ω|vn+1 = ω1|vn+1 be-
cause vn+1 ≽ (s); consequently, ω ∈ {Xvn+1 ∈ Bn+1} as well. However, ω ∉ {Xvn ∈ Bn },
because ω|vn =ω1|vn and because ω1 ∉ {Xvn ∈ Bn } by assumption. Thus,

ω ∈ (
{Xu = xu }∩ {Xvn+1 ∈ Bn+1}

)
\
(
{Xu = xu }∩ {Xvn ∈ Bn }

)
,

so by Eq. (5.47)↶,

ω ∈ (
{Xu = xu }∩ An+1

)
\
(
{Xu = xu }∩ An

)
. (5.48)

However, because (Am )m∈N is non-increasing, An ⊇ An+1 and therefore

{Xu = xu }∩ An ⊇ {Xu = xu }∩ An+1,

which clearly contradicts Eq. (5.48). Consequently, ({Xvn ∈ Bn })n∈N is non-increasing,
as required.

Finally, we show that
⋂

n∈N{Xvn ∈ Bn } =∅. To this end, we assume ex absurdo that⋂
n∈N{Xvn ∈ Bn } ̸=∅. Fix any ω1 in

⋂
n∈N{Xvn ∈ Bn } and ω2 in {Xu = xu }. Because

ω1(s) = xs =ω2(s), the path

ω : R≥0 →X : t 7→
{
ω1(t ) if t ≥ s

ω2(t ) if t < s

is càdlàg. Furthermore, ω ∈ {Xu = xu } and, for all n in N, ω ∈ {Xvn ∈ Bn } – because
ω1 ∈ {Xvn ∈ Bn } and ω|vn =ω1|vn since vn ≽ (s). Consequently,

ω ∈ {Xu = xu }∩
( ⋂

n∈N
{Xvn ∈ Bn }

)
. (5.49)

In order to obtain the contradiction that we are after, we observe that

{Xu = xu }∩
( ⋂

n∈N
{Xvn ∈ Bn }

)
= ⋂

n∈N

(
{Xu = xu }∩ {Xvn ∈ Bn }

)
= ⋂

n∈N

(
{Xu = xu }∩ An

)= {Xu = xu }∩
( ⋂

n∈N
An

)
,

where the second equality holds due to Eq. (5.47)↶. Because
⋂

n∈N An =∅ by as-
sumption, we infer from this that

{Xu = xu }∩
( ⋂

n∈N
{Xvn ∈ Bn }

)
=∅,

which contradicts Eq. (5.49). Consequently,
⋂

n∈N{Xvn ∈ Bn } =∅.

5.C.5 Assembling the proof

Finally, we can join all the preceding intermediary results in our proof of
Theorem 5.19230.
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Theorem 5.19. If a jump process P has uniformly bounded rate, then it is
countably additive.

Proof of Theorem 5.19230. We need to verify that for every state history {Xu = xu }
in H, P (•|Xu = xu ) is countably additive. To this end, we fix any state history {Xu =
xu } in H. By Lemma C.3463 (CA4), it suffices to check that limn→+∞ P (An |Xu =
xu ) = 0 for any non-increasing sequence (An )n∈N of non-empty events in Fu such
that

⋂
n∈N An =∅. Hence, we fix any such sequence.

Let s := maxu. By Lemma 5.56266, for every n in N, there is a vn in U≽(s) with
s ∈ vn and a subset Bn of Xvn such that

P (An |Xu = xu ) = P (Xvn ∈ Bn |Xu = xu )

and such that ({Xvn ∈ Bn })n∈N is non-increasing and
⋂

n∈N{Xvn ∈ Bn } =∅. Therefore,
it is clear that

lim
n→+∞P (An |Xu = xu ) = lim

n→+∞P (Xvn ∈ Bn |Xu = xu ). (5.50)

We now show that the limit on the right is equal to 0, which of course implies that the
limit on the left is equal to 0 as well, as required.

Recall from Lemma 5.55265 that P̃ xu
σ is the unique probability measure on σ(F̃u )

that extends the induced probability charge P̃ xu on F̃u , and that P̃ xu
σ has uniformly

bounded rate. Observe that

P̃ xu
σ (X̃vn ∈ Bn ) = P̃ xu (X̃vn ∈ Bn ) = P (Xvn ∈ Bn |Xu = xu ) for all n ∈N, (5.51)

where the final equality holds due to the definition of P̃ xu . Because P̃ xu
σ has uniformly

bounded rate, we can invoke Theorem 5.52261 to obtain a family (Ỹt )t∈[s,+∞[ with
the four properties as specified in that theorem. More precisely, it follows from
Theorem 5.52261 (iv) that

P̃ xu
σ (Ỹvn ∈ Bn ) = P̃ xu

σ (X̃vn ∈ Bn ) for all n ∈N. (5.52)

Recall that ({Xvn ∈ Bn })n∈N is non-increasing with
⋂

n∈N{Xvn ∈ Bn } = ∅. We
now set out to prove that this implies that ({Ỹvn ∈ Bn })n∈N is non-increasing with⋂

n∈N{Ỹvn ∈ Bn } =∅.
First, we establish that ({Ỹvn ∈ Bn })n∈N is non-increasing. To this end, we assume

ex absurdo that there is a natural number n such that {Ỹvn ∈ Bn }c∩{Ỹvn+1 ∈ Bn+1} ̸=∅,
and we fix any path ω̃ in this non-empty intersection. Then the path

ω⋆ : R≥0 →X : t 7→ω⋆(t ) :=
{

Ỹt (ω̃) it t ≥ s,

Ỹs (ω̃) otherwise

is càdlàg because (Ỹt )t∈[s,+∞[ has càdlàg sample paths by Theorem 5.52261 (i).
Furthermore, it is clear that ω⋆|vn ∈ Bc

n and ω⋆|vn+1 ∈ Bn+1 because ω̃ is an ele-
ment of {Ỹvn ∈ Bn }c = {Ỹvn ∈ Bc

n } and {Ỹvn+1 ∈ Bn+1}. For this reason, ω⋆ belongs
to {Xvn ∈ Bc

n } = {Xvn ∈ Bn }c and {Xvn+1 ∈ Bn+1}; this implies that

{Xvn ∈ Bn }c ∩ {Xvn+1 ∈ Bn+1} ̸=∅,

but this is a contradiction because ({Xvn ∈ Bn })n∈N is non-increasing.
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Second, we establish that
⋂

n∈N{Ỹvn ∈ Bn } =∅. To this end, we assume ex absurdo
that there is a path ω̃ in

⋂
n∈N{Ỹvn ∈ Bn }. Then the path

ω⋆ : R≥0 →X : t 7→ω⋆(t ) :=
{

Ỹt (ω̃) it t ≥ s,

Ỹs (ω̃) otherwise

is càdlàg because (Ỹt )t∈[s,+∞[ has càdlàg sample paths by Theorem 5.52261 (i). Fur-
thermore, because

vn ≽ (s) and ω̃ ∈ {Ỹvn ∈ Bn } for all n ∈N,

we see that, by construction,

ω⋆|vn ∈ Bn for all n ∈N.

This implies that ω⋆ ∈ ⋂
n∈N{Xvn ∈ Bn }, but this is a contradiction because⋂

n∈N{Xvn ∈ Bn } =∅.
Because ({Ỹvn ∈ Bn })n∈N is a non-increasing sequence of events in σ(F̃u ) with⋂

n∈N{Ỹvn ∈ Bn } =∅, it follows from Lemma C.3463 (CA4) that

lim
n→+∞ P̃ xu

σ (Ỹvn ∈ Bn ) = 0.

Finally, it follows from this and Eqs. (5.50)↶ to (5.52)↶ that

lim
n→+∞P (An |Xu = xu ) = lim

n→+∞ P̃ xu
σ (Ỹvn ∈ Bn ) = 0,

as required.

5.D Continuity properties of the lower and upper envelopes

In the final appendix to this chapter, we prove the two continuity proper-
ties of the lower and upper expectations with respect to an imprecise jump
process P. First, we investigate the continuity with respect to monotone
sequences of limit variables.

Theorem 5.31. Consider an imprecise jump process P that consists of count-
ably additive jump processes. Fix some {Xu = xu} inH and f inVlim(Fu), and
let ( fn)∈N be a sequence of variables inVlim(Fu) that converges monotonically
to f . If ( fn)n∈N↗ f and E D

P
( f1 |Xu = xu) >−∞, then

lim
n→+∞E D

P( fn |Xu = xu) ≤ E D
P( f |Xu = xu)

and

lim
n→+∞E D

P( fn |Xu = xu) = E D
P( f |Xu = xu).

Similarly, if ( fn)n∈N↘ f and E D
P

( f1 |Xu = xu) <+∞, then

lim
n→+∞E D

P( fn |Xu = xu) = E D
P( f |Xu = xu)

and

lim
n→+∞E D

P( fn |Xu = xu) ≥ E D
P( f |Xu = xu).
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Proof. We only prove the first part of the statement; the proof for the second part is
analoguous. Note that because ( fn )n∈N↗ f by assumption, fn ≤ fn+1 for all n inN
and p-w limn→+∞ fn = f . Furthermore, for all n inN, fn is a D-integrable variable –
that is, belongs to DD

P (•|Xu=xu ) – due to Theorem 5.12227.

Fix some P in P. Then it follows from (DE6)226 that the sequence (E D
P ( fn |Xu =

xu ))n∈N of extended real numbers is non-decreasing. Furthermore, we observe that

E D
P ( f1 |Xu = xu ) ≥ E D

P( f1 |Xu = xu ) >−∞,

where the strict inequality holds by assumption. Consequently, it follows from Theo-
rem 5.10226 that

E D
P ( f |Xu = xu ) = lim

n→+∞E D
P ( fn |Xu = xu ) = sup

{
E D

P ( fn |Xu = xu ) : n ∈N}
, (5.53)

where the final equality holds because (E D
P ( fn |Xu = xu ))n∈N is non-decreasing.

Because for every P in P, (E D
P ( fn |Xu = xu ))n∈N is a non-decreasing sequence of

extended real numbers, it is easy to see that(
E D
P( fn |Xu = xu )

)
n∈N and

(
E D
P( fn |Xu = xu )

)
n∈N

are non-decreasing sequences of extended real numbers, so the limits of these se-
quences exist. Because these sequences are non-decreasing,

lim
n→+∞E D

P( fn |Xu = xu ) = sup
{
E D
P( fn |Xu = xu ) : n ∈N}

(5.54)

and

lim
n→+∞E D

P( fn |Xu = xu ) = sup
{
E D
P( fn |Xu = xu ) : n ∈N}

(5.55)

To verify the equality in the first part of the statement, we recall that by definition
of the upper envelope E D

P
,

E D
P( f |Xu = xu ) = sup

{
E D

P ( f |Xu = xu ) : P ∈P}
.

From this and Eq. (5.53), it follows that

E D
P( f |Xu = xu ) = sup

{
sup

{
E D

P ( fn |Xu = xu ) : n ∈N}
: P ∈P

}
= sup

{
sup

{
E D

P ( fn |Xu = xu ) : P ∈P}
: n ∈N

}
= sup

{
E D
P( fn |Xu = xu ) : n ∈N}

.

The equality in the first part of the statement follows immediately from the preceding
equality and Eq. (5.55):

E D
P( f |Xu = xu ) = sup

{
E D
P( fn |Xu = xu ) : n ∈N}= lim

n→+∞E D
P( fn |Xu = xu ).

The inequality in the first part of the statement follows from a similar argument.
By definition of E D

P
,

E D
P( f |Xu = xu ) = inf

{
E D

P ( f |Xu = xu ) : P ∈P}
.
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From this and Eq. (5.53)↶, it follows that

E D
P( f |Xu = xu ) = inf

{
sup

{
E D

P ( fn |Xu = xu ) : n ∈N}
: P ∈P

}
≥ sup

{
inf

{
E D

P ( fn |Xu = xu ) : P ∈P}
: n ∈N

}
= sup

{
E D
P( fn |Xu = xu ) : n ∈N}

,

where the inequality holds because we have changed the order of the supremum and
the infimum (see Troffaes et al., 2014, Lemma 15.18). The inequality in the first part
of the statement follows immediately from the preceding inequality and Eq. (5.54)↶:

E D
P( f |Xu = xu ) ≥ sup

{
E D
P( fn |Xu = xu ) : n ∈N}= lim

n→+∞E D
P( fn |Xu = xu ).

Second, we consider uniformly bounded sequences of limit variables that
converge point-wise.

Theorem 5.32. Consider an imprecise jump process P that consists of count-
ably additive jump processes. Fix some {Xu = xu} inH and f inVlim(Fu), and
let ( fn)∈N be a sequence of variables inVlim(Fu) that converges point-wise to f .
If there is some g in Vlim(Fu) with E D

P
(g |Xu = xu) < +∞ such that | fn | ≤ g

for all n inN, then

limsup
n→+∞

E D
P( fn |Xu = xu) ≤ E D

P( f |Xu = xu)

≤ E D
P( f |Xu = xu) ≤ liminf

n→+∞ E D
P( fn |Xu = xu).

Proof. As in the proof of Theorem 5.31240, it clearly suffices to prove the continuity
properties for the conditional lower expectation E D

P
, because they imply those of the

conditional upper expectation E D
P

through the conjugacy relation of Eq. (5.29)238.
Observe that by assumption,

(∀P ∈P) E D
P (g |Xu = xu ) ≤ E D

P(g |Xu = xu ) =:β<+∞.

Because −g ≤ fn ≤ g by assumption, it follows from this, (DE6)226 and (DE4)225 that

(∀n ∈N)(∀P ∈P) −β≤ E D
P ( fn |Xu = xu ) ≤β. (5.56)

Hence, −β≤ E D
P

( fn |Xu = xu ) ≤β for all n inN.
Recall from Theorem 5.12227 that for all n inN, fn is a D-integrable variable – that

is, belongs to DD
P (•|Xu=xu ) – because fn belongs to Vlim(Fu ) by assumption. Because

furthermore by assumption ( fn )n∈N converges point-wise to f and | fn | ≤ g , it follows
from Theorem 5.11226 that

(∀P ∈P) E D
P ( f |Xu = xu ) = lim

n→+∞E D
P ( fn |Xu = xu ).

From this equality and Eq. (5.56), we infer that −β≤ E D
P ( f |Xu = xu ) ≤β for all P in P,

and therefore also −β≤ E D
P

( f |Xu = xu ) ≤β.
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Fix some ϵ in R>0. As E D
P

( f |Xu = xu ) is real-valued, there is some P in P such
that

E D
P( f |Xu = xu ) > E D

P ( f |Xu = xu )−ϵ= lim
n→+∞E D

P ( fn |Xu = xu )−ϵ.

Note that E D
P ( fn |Xu = xu ) ≥ E D

P
( fn |Xu = xu ) for all n inN, and therefore

lim
n→+∞E D

P ( fn |Xu = xu ) = limsup
n→+∞

E D( fn |Xu = xu ) ≥ limsup
n→+∞

E D
P( fn |Xu = xu ).

It follows immediately from the preceding to inequalities that

E D
P( f |Xu = xu ) > limsup

n→+∞
E D
P( fn |Xu = xu )−ϵ.

Because ϵ was an arbitrary positive real number, we conclude that

E D
P( f |Xu = xu ) ≥ limsup

n→+∞
E D
P( fn |Xu = xu ),

and this is what we set out to prove.
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Computing lower expectations
of idealised variables 6

Extending the domain of EP and EP to idealised variables is one thing, but
computing the lower and upper expectation for a specific idealised variable
is quite another. We have dealt with the former in the previous chapter, and
we will deal with the latter in the present chapter. That is to say, here we
will argue that we can compute the lower and upper expectation of four
types of idealised variables: the number of jumps that we encountered in the
previous chapter, but also until events, hitting times and Riemann integrals.
By no means is that an exhaustive list of idealised variables that might pop
up in practice, but they will go a long way. Crucial to our exposition is that
these four types of idealised variables all have in common that they are the
point-wise limit of a (monotone or uniformly bounded) sequence of simple
variables, and that the lower and upper expectations of these simple variables
converge to the lower and upper expectation of the idealised variable.

In Section 6.1, we prove this continuity for the number of jumps, and we
generalise part of our argument to (some) ‘generic’ idealised variables. In
Sections 6.2281 to 6.4295, we define three other important types of idealised
variables – until events, hitting times and Riemann integrals – as point-wise
limits of simple variables, and we show that the lower (or upper) expectation
of these simple variables converges to the lower (or upper) expectation of the
limit variable. Finally, for each of these three types of variables, we propose an
intuitive method to (efficiently) compute their lower and upper expectations
in Section 6.5310.

6.1 Establishing continuity

In the context of the present chapter, we will always assume that there is
a non-empty and bounded set Q of rate operators such that every jump
process P in the jump process P is consistent with Q – meaning that P is
contained in PQ. Our reason for doing so is twofold. First, Corollary 5.30239

then ensures that every jump process P in P is countably additive. Second,
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it then follows from Corollary 5.18230 that every jump process P in P has
uniformly bounded rate with rate bound ∥Q∥op, and it is this rate bound that
essentially allows us to prove the desired continuity properties.

In Section 6.1.1, we will discover how in the particular case of η[s,r ], the
number of jumps in [s,r ], we can use this rate bound ∥Q∥op to establish
that the lower (upper) expectation of ηv for some grid v over [s,r ] converges
to the lower (upper) expectation of η[s,r ] as the grid width ∆(v) vanishes.
We then use these results to establish some important intermediary results
in Section 6.1.2278; it is these results that we will use in Sections 6.2281 to
6.4295 to prove the desired continuity properties for the other three types of
idealised variables.

6.1.1 The particular case of the number of jumps

Consider an imprecise jump process P ⊆PQ, a state history {Xu = xu} in H

and time points s,r in R≥0 such that maxu ≤ s ≤ r , and let (vn)n∈N be a
sequence of grids over [s,r ] such that limn→+∞∆(vn) = 0. Then by The-
orem 5.26236, the idealised variable η[s,r ] is the point-wise limit of the se-
quence (ηvn )n∈N of Fu-simple variables. In order to prove that the lower
and upper expectation of ηvn converge to the lower and upper expectation
of η[s,r ], it suffices to find an upper bound, say ϵn , on∣∣E D

P (η[s,r ] |Xu = xu)−EP (ηvn |Xu = xu)
∣∣

that holds for any jump process P in P and that vanishes as n recedes to +∞.
The reason for this is the following important intermediary result.

Lemma 6.1. Consider an imprecise jump process P that consists of countably
additive jump processes. Fix some {Xu = xu} in H, f in Vlim(Fu) and g
in S(Fu). If ϵ is a non-negative real number such that

(∀P ∈P)
∣∣E D

P ( f |Xu = xu)−EP (g |Xu = xu)
∣∣≤ ϵ,

then ∣∣E D
P( f |Xu = xu)−EP(g |Xu = xu)

∣∣≤ ϵ
and ∣∣E D

P( f |Xu = xu)−EP(g |Xu = xu)
∣∣≤ ϵ.

Proof. Here we only prove the inequality of the statement for the lower expectation.
The inequality for the upper expectation can be proven in an analoguous manner, but
also follows from the one for the lower expectation due to conjugacy.

Note that for all P in P, min g ≤ EP (g |Xu = xu ) ≤ max g due to (ES1)37. From
this, we infer that min g ≤ EP(g |Xu = xu ) ≤ max g ; in other words, EP(g |Xu = xu )
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6.1 Establishing continuity

is real valued. Observe that

E D
P( f |Xu = xu ) = inf

{
E D

P ( f |Xu = xu ) : P ∈P}≤ inf
{
EP (g |Xu = xu )+ϵ : P ∈P}

= inf
{
EP (g |Xu = xu ) : P ∈P}+ϵ

= EP(g |Xu = xu )+ϵ,

where for the inequality we have used the assumption of the statement. Similarly, we
find that

E D
P( f |Xu = xu ) ≥ EP(g |Xu = xu )−ϵ.

The inequality of the statement follows immediately from these two inequalities
because EP(g |Xu = xu ) is real valued.

Thus, we need to determine an upper bound ϵn on the difference between
the Daniell expectation of η[s,r ] and the expectation of ηvn that holds for any
jump process P in P. The following result establishes such an upper bound.
It follows from Theorem 5.27236, but the proof is rather long; for this reason,
we have relegated it to Appendix 6.A321.

Proposition 6.2. Consider a jump process P that has uniformly bounded rate,
with rate bound λ. Fix a state history {Xu = xu} in H, time points s,r in R≥0

such that maxu ≤ s < r and a grid v = (t0, . . . , tn) over [s,r ]. Then η[s,r ] −ηv is
a non-negative Fu-over variable, and

E D
P (η[s,r ] −ηv |Xu = xu) = E D

P (η[s,r ] |Xu = xu)−EP (ηv |Xu = xu)

≤ 1

4
∆(v)(r − s)λ2.

It is now obvious that Corollary 5.18230, Lemma 6.1↶ and Proposition 6.2
imply the following result, which establishes the upper bound ϵn that we are
after. Generally speaking, this result prescribes how fine the grid v over [s,r ]
should be in order for the lower and upper expectation of ηv to be ϵ-close to
those of η[s,r ].

Proposition 6.3. Consider a non-empty and bounded set Q of rate operators
and an imprecise jump process P such that P ⊆PQ. Fix some {Xu = xu} in H

and s,r in R≥0 such that maxu ≤ s ≤ r . Then for any grid v over [s,r ],

∣∣E D
P(η[s,r ] |Xu = xu)−EP(ηv |Xu = xu)

∣∣≤ 1

4
∆(v)(r − s)∥Q∥2

op

and ∣∣E D
P(η[s,r ] |Xu = xu)−EP(ηv |Xu = xu)

∣∣≤ 1

4
∆(v)(r − s)∥Q∥2

op.

In particular, this holds for P = PHM
M,Q, P = PM

M,Q and P = PM,Q, with M a
non-empty set of initial mass functions.
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Proof. Recall from Corollary 5.18230 that every jump process P in P has uniformly
bounded rate with rate bound ∥Q∥op. Thus, it follows from Proposition 6.2↶ that for
all P in P,

0 ≤ E D
P (η[s,r ] −ηv |Xu = xu ) = E D

P (η[s,r ] |Xu = xu )−EP (ηv |Xu = xu )

≤ 1

4
∆(v)(r − s)∥Q∥2

op,

where for the first inequality we used (DE6)226 because η[s,r ] −ηv is non-negative.
Because these inequalities hold for all P in P, they imply the inequalities of the
statement due to Lemma 6.1274.

Because we have fixed the sequence of grids (vn)n∈N over [s,r ] such that
limn→+∞∆(v) = 0, it follows almost immediately from Proposition 6.3↶ that
the lower and upper expectation of ηvn converge to the lower and upper
Daniell expectation of η[s,r ], respectively.

Corollary 6.4. Consider a non-empty and bounded set Q of rate operators
and an imprecise jump process P such that P ⊆PQ. Fix some {Xu = xu} in H

and s,r in R≥0 such that maxu ≤ s ≤ r . Then for any sequence (vn)n∈N of grids
over [s,r ] with limn→+∞∆(vn) = 0,

lim
n→+∞EP(ηvn |Xu = xu) = E D

P(η[s,r ] |Xu = xu)

and

lim
n→+∞EP(ηvn |Xu = xu) = E D

P(η[s,r ] |Xu = xu).

In particular, this holds for P = PHM
M,Q, P = PM

M,Q and P = PM,Q, with M a
non-empty set of initial mass functions.

Proof. Follows immediately from Proposition 6.3↶.

Note that Corollary 6.4 is an example where the limits in Theorem 5.32240

provide tight bounds. It might not be immediately obvious that Theo-
rem 5.32240 is applicable here, but we can invoke it with g = η[s,r ] because
the upper expectation of η[s,r ] is different from +∞ due to Theorem 5.27236.
If we additionally assume that vn ⊆ vn+1 for all n inN, then (ηvn )n∈N is non-
decreasing due to Theorem 5.26236; in this case, Corollary 6.4 is an example
where (one of) the inequalities in Corollary 5.33240 hold(s) with equality!

To conclude our discussion of the continuity for the expected number of
jumps, we highlight a second important consequence of Proposition 6.3↶.
Due to this result, we can compute the lower and upper expected number of
jumps up to arbitrary precision using Algorithm 4.3171, albeit only for PM,Q

in case Q is convex and has separately specified rows.1 Let us illustrate this
with our running example.

1 It is possible to establish a much more efficient computation method in the spirit of the
methods in Section 6.5310 that also works for PM

M,Q and that does not require Q to be convex.
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Joseph’s Example 6.5. Recall from Joseph’s Example 4.13171 that Eleanor’s
beliefs about Joseph’s machine are accurately modelled by EM,Q2

, with M =
{IH} as defined in Joseph’s Example 4.3161 and

Q2 =
{(−λH λH

λT −λT
)

: λH,λT ∈ [λ,λ]

}
as defined in Joseph’s Example 4.4163. Note thatQ2 is non-empty, bounded
and convex and has separately specified rows.

Suppose Eleanor is interested in the expected number of times that
Joseph’s machine jumps – that is, that its display changes from heads to
tails or from tails to heads – over the first r time units, with r a positive real
number. That is, she is interested in

EM,Q2
(η[0,r ]) and EM,Q2 (η[0,r ]).

Say we want to approximate the lower and upper expected number of jumps
with a maximum error of ϵ, with ϵ a positive real number. Then by Proposi-
tion 6.3275, we need to construct a grid v = (t0, . . . , tn) over [0,r ] such that

1

4
∆(v)r∥Q2∥2

op ≤ ϵ.

The most obvious way to do so, is to divide the interval [0,r ] into subintervals
of equal length. From the preceding inequality, it follows immediately that it
suffices to use

n :=
⌈

r 2∥Q2∥2
op

4ϵ

⌉
(6.1)

subintervals to attain the desired accuracy; that is, with v := (t0, . . . , tn) the
grid over [0,r ] such that tk := kr/n for all k in {0, . . . ,n},∣∣∣EM,Q2

(η[0,r ])−EM,Q2
(ηv )

∣∣∣≤ ϵ and
∣∣∣EM,Q2 (η[0,r ])−EM,Q2 (ηv )

∣∣∣≤ ϵ.

It follows from Eq. (5.22)233 that ηv = f (Xv ), where f is the gamble on Xv

defined for all xv in Xv by

f (xv ) :=
n∑

k=1
IA(xtk−1 , xtk ), with A :=X2 \

{
(x, x) : x ∈X}

.

Hence, and becauseQ2 has separately specified rows and is convex, we can
use Algorithm 4.3171 to compute EM,Q2

(ηv ); due to conjugacy, we can also
use Algorithm 4.3171 to compute the conjugate upper expectation.

Proving the validity of this method would require us to establish an ‘approximate second-order’
sum-product law of iterated lower expectations – that is, the continuous-time counterpart of
Definition 2 in (De Bock et al., 2021) – and this would lead us too far. We refer to Section 5.2
in (Erreygers & De Bock, 2021) for some preliminary related results (stated there without proof),
and to Section 5.2 in (De Bock et al., 2021) for some results for the discrete-time setting (stated
there with proof).
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Computing lower expectations of idealised variables

Let us do so for some numerical values. As in Joseph’s Example 4.21181,
we take λ := 1 and λ := 3/2; then

∥Q2∥op = sup
{∥Q∥op : Q ∈Q2

}= sup
{
2max{λH,λT} : λH,λT ∈ [λ,λ]

}= 2λ= 3,

where the first equality is the definition of ∥Q2∥op and the second equality
holds due to (R5)81. Furthermore, we choose the time point r := 1 and tol-
erance ϵ := 1 ·10−4. By Eq. (6.1)↶, n = 22500 subintervals suffice to obtain
the desired maximal error. Executing Algorithm 4.3171 for these parameter
values, and using Eq. (3.75)115 to determine e∆Q , we find that

EM,Q2
(η[0,1]) ≈ 0.9999 and EM,Q2 (η[0,1]) ≈ 1.500,

up to four significant digits.
Remarkably, the lower and upper expected number of jumps in [0,r ]

are (approximately) equal to rλ and rλ, respectively. This is interesting for
several reasons.

First, one can show – but we will not do this here – that rλ is the ex-
pected number of jumps in [0,r ] for the homogeneous Markovian jump
process PIH,Q in PHM

M,Q2
with Q(H,T) = λ= Q(T,H), and similarly, rλ is the ex-

pected number of jumps in [0,r ] for the homogeneous Markovian jump
process PIH,Q in PHM

M,Q2
with Q(H,T) =λ=Q(T,H); so in this particular case, the

lower and upper expectations for PHM
M,Q, PM

M,Q and PM,Q coincide.
A second reason is that this shows that the parameters λ and λ are lower

and upper bounds on the expected number of decay events per time unit.
This should come as no surprise though, as it is precisely (the precise version
of) this fact that we implicitly used in Joseph’s Example 3.3887 to construct a
homogeneous Markovian jump process to model Joseph’s machine.

Thirdly, we know from Theorem 5.27236 that the (upper) expected number
of jumps in [0,r ] is bounded above by r∥Q∥op/2 = rλ. Thus, in this case, this
upper bound is reached by the upper expectation. This is a coincidence
though, and this will not be the case in general! ¢

6.1.2 The general case

The approach that we used to establish continuity for the number of jumps
is, to some extent, also applicable to other limit variables, and this is precisely
what we do in Sections 6.2281 to 6.4295 further on. In each of the three cases
that we consider, we consider an idealised variable f that depends on the
state of the system at the time points in some time horizon [s,r ], and we
approximate this variable with a simple variable g (Xv ), with v a grid over [s,r ].
As in Proposition 6.2275, we then need to bound the difference between the
Daniell expectation of f and the expectation of g (Xv ); interestingly, we will
always use the number of jumps η[s,r ] or the ‘number of extra jumps’ η[s,r ]−ηv

to do so. For that reason, the following generalisations of Propositions 6.2275
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6.1 Establishing continuity

and 6.3275 will play a critical role in the remainder; the proof of the first result
can be found in Appendix 6.B325.

Lemma 6.6. Consider a jump process P that has uniformly bounded rate,
with rate bound λ. Fix a state history {Xu = xu} in H, time points s,r in R≥0

such that maxu ≤ s ≤ r , a grid v over [s,r ], a limit variable f inVlim(Fu) and
an Fu-simple variable g . If there are non-negative real numbers α,β,γ such
that

| f − g | ≤α∆(v)+β(
η[s,r ] −ηv

)+γ∆(v)η[s,r ],

then∣∣E D
P ( f |Xu = xu)−EP (g |Xu = xu)

∣∣≤∆(v)

(
α+ 1

4
β(r − s)λ2 + 1

2
γ(r − s)λ

)
.

Proposition 6.7. Consider a non-empty and bounded set Q of rate operators
and an imprecise jump process P such that P ⊆PQ. Fix a state history {Xu =
xu} in H, time points s,r in R≥0 such that maxu ≤ s ≤ r , a grid v over [s,r ],
a limit variable f in Vlim(Fu) and an Fu-simple variable g . If there are
non-negative real numbers α,β,γ such that

| f − g | ≤α∆(v)+β(
η[s,r ] −ηv

)+γ∆(v)η[s,r ],

then∣∣E D
P( f |Xu = xu)−EP(g |Xu = xu)

∣∣
≤∆(v)

(
α+ 1

4
β(r − s)∥Q∥2

op +
1

2
γ(r − s)∥Q∥op

)
,

and the same upper bound holds for
∣∣E D

P
( f |Xu = xu)−EP(g |Xu = xu)

∣∣.
Proof. Recall from Corollary 5.18230 that any jump process P in P has uniformly
bounded rate with rate bound ∥Q∥op. Therefore, it follows from Lemma 6.6 that

(∀P ∈P)
∣∣E D

P ( f |Xu = xu )−EP (g |Xu = xu )
∣∣

≤∆(v)

(
α+ 1

4
β(r − s)∥Q∥2

op + 1

2
γ(r − s)∥Q∥op

)
.

The statement follows immediately from this due to Lemma 6.1274.

To establish that the idealised variable f and its approximating simple
variable g (Xv ) satisfy the condition in Proposition 6.7, the following two
intermediary results can come in handy. For example, we will use Lemmas 6.8
and 6.9↷ in the proofs of Lemmas 6.11282 and 6.20292 further on.

Lemma 6.8. Consider some time points s and r in R≥0 such that s < r . Then
for any grid v over [s,r ],

1

2
(η[s,r ] −ηv ) ≥ IA with A := {

ω ∈Ω : ηv (ω) < η[s,r ](ω)
}
.
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Proof. Let (vℓ)ℓ∈N be the sequence of grids as constructed in the proof of Proposi-
tion 6.2275 – see Appendix 6.A321. Furthermore, for all ℓ inN, we let

Aℓ := {
ω ∈Ω : ηv (ω) < ηvℓ (ω)

}
.

Fix some ℓ in N. Then because vℓ ⊇ v by construction, it follows from
Lemma 5.23234 that for any ω in Ω, ηvℓ (ω)−ηv (ω) is either equal to 0 or greater
than or equal to 2. Consequently,

IAℓ = (ηvℓ −ηv )∧1 ≤ 1

2
(ηvℓ −ηv ). (6.2)

Recall from the proof of Proposition 6.2275 that the sequence (ηvℓ −ηv )ℓ∈N con-
verges point-wise to η[s,r ] −ηv . It follows immediately from this and Eq. (6.2) that IAℓ
converges point-wise to IA , and that

IA = p-w lim
ℓ→+∞

IAℓ ≤ p-w lim
ℓ→+∞

1

2
(ηvℓ −ηv ) = 1

2
(η[s,r ] −ηv ),

as required.

Lemma 6.9. Consider some time points s,r in R≥0 such that s ≤ r and a
grid v = (t0, . . . , tn) over [s,r ]. Fix some ω in Ω. If there is some t in [s,r ]
and some k in {1, . . . ,n} such that tk−1 < t < tk and ω(tk−1) ̸= ω(t) ̸= ω(tk ),
then ηv (ω) < η[s,r ](ω).

Proof. The statement is trivial whenever s = r , so we may assume without loss of
generality that s < t . It follows from repeated application of Lemma 5.22234 that

ηv (ω) =
n∑
ℓ=1

η(tℓ−1,tℓ)(ω).

Observe that the sets J[t0,t1](ω), . . . , J[tn−1,tn ](ω) of jump times for the subintervals
of v are pair-wise disjoint. Hence, it follows from Eq. (5.18)232 that

η[s,r ](ω) =
n∑
ℓ=1

η[tℓ−1,tℓ](ω).

Thus, we see that

η[s,r ](ω)−ηv (ω) =
n∑
ℓ=1

η[tℓ−1,tℓ](ω)−η(tℓ−1,tℓ)(ω).

Recall from Proposition 6.2275 that for all ℓ in {1, . . . ,n}, η[tℓ−1,tℓ](ω)−η(tℓ−1,tℓ)(ω) ≥
0. Observe furthermore that η[tk−1,tk ] −η(tk−1,tk ) > 0 due to the assumption of the
statement. From all this we conclude that η[s,r ](ω)−ηv (ω) > 0, as required.
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6.2 Until events

The first type of limit variables that we will consider are indicators of ‘until
events’; as we will discover in Section 6.2.3287 further on, these include indi-
cators of hitting events. In Joseph’s Example 5.1215, we somewhat informally
defined a hitting event corresponding to a subset G of X as the event that
the path ω ever ‘hits’, or belongs to, G at some future time point. An ‘until
event’ is similar, although it concerns two subsets of X instead of one: a
set G of ‘goal’ states and a set S of ‘safe’ states. These until events play an
important role in the setting of model checking for jump processes (see Baier
et al., 2003, 2008; Katoen et al., 2012). Formally, for any two subsets S,G of
X and any subset R of R≥0, Baier et al. (2003, Definition 6) and Katoen et al.
(2012, Section 2.2) consider the event

H S,G
R

:= {
ω ∈Ω : (∃t ∈R) ω(t ) ∈G and (∀s ∈R, s < t ) ω(s) ∈ S

}
(6.3)

that the state of the system is in the set G of goal states at some time point t
in R, while it is in the set S of safe states at all time points in R that precede t .
To simplify our notation, we will denote the indicator of H S,G

R
by hS,G

R
:= IH S,G

R

.

We focus on three types of subsets R of R≥0:

1. sequences of time points of the form v = (t0, . . . , tn), in which case we
call H S,G

v an approximating until event;

2. bounded time intervals of the form [s,r ], in which case we call H S,G
[s,r ] a

time-bounded until event;

3. unbounded time intervals of the form [s,+∞[, in which case we call
H S,G

[s,+∞[ an (unbounded) until event.

It will prove to be the case that (the indicators of) each of these events belong
to our domain: the indicator of an approximating until event is a simple
variable, while the indicator of a time-bounded until event is the point-wise
limit of the indicators of a sequence of approximating until events, as is the
indicator of an until event.

6.2.1 From approximating to time-bounded until events

First things first, we establish that an approximating until event is a finitary
event. We do so through a bit of a detour: we actually establish that its
indicator is a simple variable because it has a sum-product representation.

Lemma 6.10. Consider subsets S,G of X, a sequence of time points u inU and
time points s,r inR≥0 such that maxu ≤ s ≤ r , and fix some grid v = (t0, . . . , tn)
over [s,r ]. Then

hS,G
v =

n∑
k=0

IG (X tk )
k−1∏
ℓ=0

IS\G (X tℓ ),
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so hS,G
v has a sum-product representation over v. Consequently, hS,G

v is Fu-
simple, so H A,B

v belongs to Fu .

Proof. That hS,G
v has the sum-product representation over v of the statement is a

matter of straightforward verification. Observe that v ≽ u because, by assumption, v

is a grid over [s,r ] and maxu ≤ s. Therefore, it follows from Lemma 4.6164 that hS,G
v

is an Fu -simple variable. That HS,G
v belongs to Fu follows from the preceding and

Lemma C.4463.

Next, we set out to approximate the time-bounded until event H S,G
[s,r ] with

a sequence (H S,G
vn

)n∈N of approximating until events that corresponds to a
sequence (vn)n∈N of grids over [s,r ] with vanishing grid width. To do so, we
determine an upper bound on the difference between the indicators of H S,R

[s,r ]
and H S,G

vn
.

Lemma 6.11. Consider subsets S,G of X and time points s,r in R≥0 such
that s ≤ r . Then for any grid v over [s,r ],

∣∣hS,G
[s,r ] −hS,G

v

∣∣≤ 1

2
(η[s,r ] −ηv ).

Proof fo Lemma 6.11. We enumerate the time points in v as (t0, . . . , tn ) and fix any

path ω in Ω. Because hS,G
[s,r ] and hS,G

v are indicators, it is clear that hω := ∣∣hS,G
[s,r ](ω)−

hS,G
v (ω)

∣∣ can only assume one of two values: 0 or 1. We will now show that

hω = ∣∣hS,G
[s,r ](ω)−hS,G

v (ω)
∣∣≤ IA(ω) with A := {

ω′ ∈Ω : ηv (ω′) < η[s,r ](ω′)
}
. (6.4)

If hω = 0, then this inequality holds trivially. The alternative case hω = 1 occurs if and

only if ω belongs to precisely one of the two events HS,G
[s,r ] and HS,G

v .

First, we assume that ω belongs to HS,G
[s,r ] \ HS,G

v . Then there is a time point t
in [s,r ] such that

ω(t ) ∈G and
(∀t ′ ∈ [s,r ], t ′ < t

)
ω(t ′) ∈ S \G .

Note that t cannot belong to v because otherwise ω would belong to HS,G
v ; hence,

there is a k in {1, . . . ,n} such that tk−1 < t < tk . Note that ω(tk−1) ∈ S \G and ω(t ) ∈G .

Furthermore, ω(tk ) ∈Gc, because otherwise ω would again belong to HS,G
v . Hence,

we see that ω(tk−1) ̸= ω(t) ̸= ω(tk ); it follows from this and Lemma 6.9280 that ω
belongs to A, so hω = 1 ≤ IA(ω).

Second, we assume that ω belongs to HS,G
v \ HS,G

[s,r ]. Then there is an index k
in {0, . . . ,n} such that

ω(tk ) ∈G and
(∀i ∈ {0, . . . ,k −1}

)
ω(ti ) ∈ S \G .

Note that k ̸= 0, because otherwise ω would belong to HS,G
[s,r ]. For the same reason,

there is at least one time point t in [t0, tk ] \ v such that ω(t) ∈ Sc ∩Gc. Let ℓ be the
element of {1, . . . ,k} such that tℓ−1 < t < tℓ. Then ω(tℓ−1) ̸= ω(t) ̸= ω(tℓ) because
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ω(tℓ−1) ∈ S \G , ω(t ) ∈ Sc ∩Gc and ω(tℓ) ∈ S ∪G . Consequently, ω belongs to A due to
Lemma 6.9280, so hω = 1 ≤ IA(ω).

Thus, we have shown that Eq. (6.4)↶ holds for all ω in Ω. The inequality of the
statement follows immediately from Eq. (6.4)↶ and Lemma 6.8279.

It is now a piece of cake to show that hS,G
[s,r ] is a limit variable, because this

follows almost immediately from Lemmas 5.25235, 6.10281 and 6.11↶.

Lemma 6.12. Consider subsets S,G of X, a sequence of time points u inU and
time points s,r in R≥0 such that maxu ≤ s ≤ r . Let (vn)n∈N be a sequence of
grids over [s,r ] with limn→+∞∆(vn) = 0. Then

(
hS,G

vn

)
n∈N is a sequence of Fu-

simple variables that is uniformly bounded and that converges point-wise
to hS,G

[s,r ], so hS,G
[s,r ] belongs to Vlim(Fu).

Proof. For all n in N, vn is a grid over [s,r ] and it therefore follows from

Lemma 6.10281 that hS,G
vn

is an Fu -simple variable. Thus,
(
hS,G

vn

)
n∈N is a sequence of

Fu -simple variables, and it obvious that this sequence is uniformly bounded. Hence,
it remains for us to prove that for all ω in Ω,

lim
n→+∞hS,G

vn
(ω) = hS,G

[s,r ](ω). (6.5)

To this end, we fix some ω in Ω. Recall from Lemma 6.11↶ that for all n inN,∣∣hS,G
[s,r ](ω)−hS,G

vn
(ω)

∣∣≤ 1

2

(
η[s,r ](ω)−ηvn (ω)

)
.

Furthermore, because limn→+∞∆(vn ) = 0 by the assumptions of the statement, it
follows from Lemma 5.25235 that limn→+∞ηvn (ω) = η[s,r ](ω). Hence,

lim
n→+∞

∣∣hS,G
[s,r ](ω)−hS,G

vn
(ω)

∣∣≤ lim
n→+∞

1

2

(
η[s,r ](ω)−ηvn (ω)

)= 0,

which implies Eq. (6.5).

The upper bound on the difference between the indicators hS,G
[s,r ] and hS,G

v
in Lemma 6.11↶ also gives rise to an upper bound on the difference between
the lower and upper probabilities of the corresponding events.

Proposition 6.13. Consider a non-empty and bounded set Q of rate oper-
ators, and an imprecise jump process P such that P ⊆ PQ. Fix some sub-
sets S,G of X, a state history {Xu = xu} in H and time points s,r in R≥0 such
that maxu ≤ s ≤ r . Then for any grid v over [s,r ],∣∣P D

P

(
H S,G

[s,r ]

∣∣ Xu = xu
)−PP

(
H S,G

v

∣∣ Xu = xu
)∣∣≤ 1

8
∆(v)(r − s)∥Q∥2

op

and ∣∣P D
P

(
H S,G

[s,r ]

∣∣ Xu = xu
)−PP

(
H S,G

v

∣∣ Xu = xu
)∣∣≤ 1

8
∆(v)(r − s)∥Q∥2

op.

In particular, this holds for P = PHM
M,Q, P = PM

M,Q and P = PM,Q, with M a
non-empty set of initial mass functions.
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Proof. Due to Lemmas 6.10281, 6.11282 and 6.12↶, this follows immediately from
Proposition 6.7279 with α= 0, β= 1/2 and γ= 0.

As we will now see, it follows from Proposition 6.13↶ and Theorem 4.9166

that we can compute the lower and upper probability of H S,G
[s,r ] up to arbitrary

precision, at least for any imprecise jump process P such that PM
M,Q ⊆P ⊆

PM,Q whenever Q has separately specified rows. Say we want to approximate
the lower (or upper) probability of H S,G

[s,r ] with a maximum error of ϵ. Then we
choose a grid v over [s,r ] such that

1

8
∆(v)(r − s)∥Q∥2

op ≤ ϵ;

for example, we can use a grid that consists of

n ≥
(r − s)2∥Q∥2

op

8ϵ

subintervals of equal length. Then the lower probability of H S,G
v is ϵ-close

to that of H S,G
v . Recall from Lemma 6.10281 that hS,G

v has a sum-product
representation over v . BecauseQ has separately specified rows, we can there-
fore use the iterative procedure in Algorithm 4.2168 to compute the lower (or
conjugate upper) probability of H S,G

v for any imprecise jump process P such
that PM

M,Q ⊆P ⊆ PM,Q. However, this is not the most natural computation
method; we argue why in Section 6.5310 further on, where we also propose a
more intuitive – and more efficient – method to compute lower and upper
probabilities of time-bounded until events.

As a second important consequence of Proposition 6.13↶, we can
strengthen Corollary 5.34241 in the particular case of time-bounded until
events.

Corollary 6.14. Consider a non-empty and bounded set Q of rate opera-
tors, and an imprecise jump process P such that P ⊆ PQ. Fix some sub-
sets S,G of X, a state history {Xu = xu} in H and time points s,r in R≥0

such that maxu ≤ s ≤ r . Then for any sequence (vn)n∈N of grids over [s,r ]
with limn→+∞∆(vn) = 0,

P D
P

(
H S,G

[s,r ]

∣∣ Xu = xu
)= lim

n→+∞PP

(
H S,G

vn

∣∣ Xu = xu
)

and

P D
P

(
H S,G

[s,r ]

∣∣ Xu = xu
)= lim

n→+∞PP

(
H S,G

vn

∣∣ Xu = xu
)
.

In particular, this holds for P = PHM
M,Q, P = PM

M,Q and P = PM,Q, with M a
non-empty set of initial mass functions.

Proof. Follows immediately from Proposition 6.13↶.
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6.2 Until events

6.2.2 Approximating unbounded until events

Next, we move from time-bounded until events to unbounded until events.
As is to be expected, the time-bounded until event H S,G

[s,r ] approximates the
unbounded until event H S,G

[s,+∞[ as r recedes to +∞.

Lemma 6.15. Consider subsets S,G of X and a time point s in R≥0. Then for
any sequence (rn)n∈N in [s,+∞[ with limn→+∞ rn =+∞,

p-w lim
n→+∞

hS,G
[s,rn ] = hS,G

[s,+∞[.

Proof. We need to prove that for all ω in Ω,

lim
n→+∞hS,G

rn
(ω) = hS,G

[s,+∞[(ω). (6.6)

To do so, we fix some ω in Ω and distinguish two cases.

If hS,G
[s,+∞[(ω) = 0, then it is clear that hS,G

[s,rn ](ω) = 0 for all n inN, so Eq. (6.6) holds

in this case.
If on the other hand hS,G

[s,+∞[(ω) = 1, then there is a time point t in [s,+∞[ such
that

ω(t ) ∈G and
(∀t ′ ∈ [s,+∞[, t ′ < t

)
ω(t ′) ∈ S \G .

Thus, it is clear that hS,G
[s,rn ](ω) = 1 for all n in N such that rn ≥ t . Because

limn→+∞ rn = +∞ by assumption, we infer from this that Eq. (6.6) also holds in
this case.

Unfortunately, it does not follow from Lemma 6.15 that hS,G
[s,+∞[ is a limit

variable, because we only include the point-wise limit of sequences of simple
variables and hS,G

[s,r ] is not a simple variable. This is not an issue though,
because we can also directly approximate the unbounded until event H S,G

[s,+∞[
with a sequence of approximating until events.

Lemma 6.16. Consider subsets S,G of X, a sequence of time points u
in U and a time point s in R≥0 such that maxu ≤ s. Let (vn)n∈N be a se-
quence in U̸=( ) such that min vn = s for all n in N, limn→+∞ max vn = +∞
and limn→+∞∆(vn) = 0. Then (hS,G

vn
)n∈N is a uniformly bounded sequence

of Fu-simple variables that converges point-wise to hS,G
[s,+∞[, so hS,G

[s,+∞[ belongs

to Vlim(Fu).

Proof. Our proof is similar to that of Lemma 6.15. Recall from Lemma 6.10281 that

for all n in N, hS,G
vn

is an Fu -simple variable. Hence, (hS,G
vn

)n∈N is a sequence of Fu -
simple variables, and this sequence is trivially uniformly bounded. In order to prove
the statement, it therefore remains for us to show that for all ω in Ω,

lim
n→+∞hS,G

vn
(ω) = hS,G

[s,+∞](ω) =: hω. (6.7)

Thus, we fix any ω in Ω, and note that hω can assume two values: 0 and 1.
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Let us start with the case hω = 0. Then there is a time point t in [s,+∞[ such that

ω(t ) ∈ Sc ∩Gc and
(∀t ′ ∈ [s,+∞[, t ′ < t

)
ω(t ′) ∈ S \G .

Because ω is càdlàg, it follows from Eq. (3.1)58 in Definition 3.457 that there is some δ
in R>0 such thatω(r ) =ω(t ) ∈ Sc∩Gc for all r in [t , t+δ[. Because limn→+∞ max vn =
+∞ and limn→+∞∆(vn ) = 0 by assumption, there is a natural number N such that
for all n ≥ N , max vn ≥ t and ∆(v) < δ – this ensures that there is a time point tn,k

in vn that also belongs to [t , t +δ[. It is obvious that then HS,G
vn

= 0, so this verifies
Eq. (6.7)↶ in case hω = 0.

Next, we consider the case hω = 1. Then there is a time point t in [s,+∞[ such
that

ω(t ) ∈G and
(∀t ′ ∈ [s,+∞[, t ′ < t

)
ω(t ′) ∈ S \G .

Because ω is càdlàg, it follows from Eq. (3.1)58 in Definition 3.457 that there is some δ
in R>0 such that ω(r ) =ω(t ) ∈G for all r in [t , t +δ[. Because limn→+∞ max vn =+∞
and limn→+∞∆(vn ) = 0 by assumption, there is a natural number N such that for
all n ≥ N , max vn ≥ t and ∆(v) < δ – this ensures that there is a time point tn,k in vn
that also belongs to [t , t+δ[. It is obvious that then HS,G

vn
= 1, so this verifies Eq. (6.7)↶

in case hω = 1.

Of course, Lemma 6.16↶ is only useful if there is a sequence (vn)n∈N in
U̸=( ) that satisfies the three conditions given there. One easy way to construct
such a sequence is as follows. For all n inN, we let vn be the grid over [s, s+n]
that has n2 subintervals of width 1/n, so

vn =
(

s, s + 1

n
, . . . , s +n2 1

n

)
. (6.8)

Then by construction, min vn = s, max vn = s +n and ∆(vn) = 1/n for all n
inN, and therefore limn→+∞ max vn =+∞ and limn→+∞∆(vn) = 0.

Now that we know that the extended domain contains (unbounded) until
events, we wonder whether we can also approximate their lower and upper
probabilities up to arbitrary precision. To the best of our knowledge this
is not the case, at least not in general. The best that we can do is combine
Lemma 6.15↶ or Lemma 6.16↶ with Corollary 5.34241 to obtain bounds on
the lower and upper probability. In the former case, the lower and upper prob-
ability of H S,G

[s,r ] provide bounds on the lower and upper probability of H S,G
[s,+∞[

as we let r recede to +∞; in the latter case, the lower and upper probability
of H S,G

vn
provide bounds on the lower and upper probability of H S,G

[s,+∞[ as we
let n recede to +∞. As Joseph’s Example 6.17↷ further on illustrates, these
bounds need not be tight – at least not for PHM

M,Q if we only require that Q
should have separately specified rows. However, as we will see at the end of
Section 6.2.3↷, there might very well be another way to determine the lower
and upper probability of specific unbounded until events.
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6.2 Until events

6.2.3 Lower and upper hitting probabilities

Let us focus on a special type of until events. Suppose that we are interested
in whether or not the state of the system is in some set G ⊆X of goal states at
some time point t in R⊆R≥0, but we do not care which state the system was
in before this time point t . In Joseph’s Example 5.1215, we called this event

HG
R

:= HX,G
R

a hitting event; following Norris (1997, Section 3.3), we call the (lower and
upper) probabilities of these type of events (lower and upper) hitting proba-
bilities.

Interestingly, we can use lower hitting probabilities to illustrate that the
inequalities in Theorems 5.31240 and 5.32240 and Corollaries 5.33240 and
5.34241 can be strict. Up to some extent, the following example can be seen
as the continuous-time counterpart of Bruno’s Example 5.3218.

Joseph’s Example 6.17. For any rate λ in R≥0, we let Qλ be the rate operator
with Qλ(H,T) = λ and Qλ(T,H) = 0, and we let Pλ denote the homogeneous
Markovian jump process PIH,Qλ

that is defined by the initial probability mass
function IH and this rate operator Qλ. Here, we focus on the imprecise Marko-
vian jump process

PHM
M,Q = {

Pλ : λ ∈ ]0,1]
}
,

with M := {IH} and Q := {Qλ : λ,λT ∈ ]0,1]}. Note that the set Q of rate opera-
tors is non-empty and bounded – and also convex with separately specified
rows – so PHM

M,Q consists of countably additive jump processes due to Corol-
lary 5.30239.

We want to determine the lower probability of ‘hitting’ tails starting from
heads at time t = 0. That is, we seek to determine

P HM
M,Q

(
HT ∣∣ X0 = H

)= E HM
M,Q(hT |X0 = H)

where hT denotes the indicator of

HT := H {T}
[0,+∞[ = HX,{T}

[0,+∞[ =
{
ω ∈Ω :

(∃t ∈ [0,+∞[
)
ω(t ) = T

}
.

For all n inN, we let vn be the grid over [0,n] as defined in Eq. (6.8)↶, so

vn = (
0,∆n , . . . ,n2∆n

)
,

where we let ∆n := 1/n. Furthermore, we let hT
n := h{T}

vn
be the indicator of

HT
n := H {T}

vn
= HX,{T}

vn
.

Let us first compute the lower probability of HT directly. To this end, we
need to determine the probability of HT for every P in PHM

M,Q. Fix some λ and
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λT in ]0,1]. It follows from Lemma 6.16285 and Theorem 5.11226 – with the
trivial dominating variable g = 1 – that

P D
λ (HT |X0 = H) = E D

Pλ
(hT |X0 = H)

= lim
n→+∞EPλ (hT

n |X0 = H) = lim
n→+∞Pλ(HT

n |X0 = H). (6.9)

Fix some n inN. Observe that Hn is the complement of
⋂n2

k=0{Xk∆n = H},
so by (CP7)42,

Pλ(Hn |X0 = H) = 1−Pλ(X0∆n = H, . . . , Xn2∆n
= H |X0 = H).

It follows from this, (JP3)70 and (CP1)41 that

Pλ(Hn |X0 = H) = 1−
n2∏

k=1
Pλ(Xk∆n = H |X0∆n = H, . . . , X(k−1)∆n = H).

We use the Markovianity and homogeneity of Pλ, to yield

Pλ(Hn |X0 = H) = 1−
n2∏

k=1
Pλ(Xk∆n = H |X(k−1)∆n = H)

= 1− (
Pλ(X∆n = H |X0 = H)

)n2

.

Because Pλ = PIH,Qλ
by definition, it follows from Theorem 3.3787 and

Eq. (3.34)84 that Pλ(X∆n = H |X0 = H) = e∆nQλ (H,H). From Joseph’s Exam-
ple 3.3283, we know that e∆nQλ (H,H) = e−∆nλ, so

Pλ(Hn |X0 = H) = 1− (
e−

λ
n
)n2 = 1−e−nλ. (6.10)

Substituting this into Eq. (6.9), we find that

P D
λ (HT |X0 = H) = lim

n→+∞Pλ(Hn |X0 = H) = lim
n→+∞1−e−nλ = 1, (6.11)

where the final equality holds because λ> 0.
Due to Eq. (6.11), we can directly determine the lower probability of HT:

P HM
M,Q(HT |X0 = H) = inf

{
P D
λ (HT |X0 = H) : λ ∈ ]0,1]

}= 1.

On the other hand, it follows from Eq. (6.10) that for all n inN,

P HM
M,Q(Hn |X0 = H) = inf

{
Pλ(Hn |X0 = H) : λ ∈ ]0,1]

}= 0.

All of this work has not been for nothing, because we see that

lim
n→+∞P HM

M,Q(Hn |X0 = H) = lim
n→+∞E HM

M,Q(hn |X0 = H)

< E HM
M,Q(hT |X0 = H) = P HM

M,Q(HT |X0 = H).
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To understand why this is significant, we recall from Lemma 6.16285 that
(hn)n∈N is a uniformly bounded sequence of F(0)-simple variables that con-
verges point-wise to hT, and that the latter belongs to Vlim(F(0)). Hence, we
have constructed an example where the inequalities in Corollary 5.34241 –
and therefore also Theorem 5.32240 – are strict. Even more, it is not difficult
to verify that (hn)n∈N is a non-decreasing sequence; thus, this also illustrates
that the inequalities in Corollary 5.33240 – and therefore also Theorem 5.31240

– can be strict! Unfortunately, there is no obvious way to check whether or
not in this case the lower probabilities corresponding to PM

M,Q or PM,Q are
continuous; however, an optimist would say that this does not rule out that –
in some general case – the inequalities in Theorem 5.31240 actually hold with
equality for PM

M,Q or PM,Q. ¢

In this example, we went through more trouble than necessary to de-
termine the hitting probability. Indeed, suppose we have a homogeneous
Markovian jump process Pp0,Q and that we are interested in the probability
of hitting G ⊂X. That is, we want to determine the gamble hG on X defined
by

hG (x) := Pp0,Q (HG
[0,+∞[ |X0 = x) for all x ∈X.

Then it is well-known – see for example (Norris, 1997, Theorem 3.3.1) – that
hG is the minimal and non-negative solution to

IG h = IG + IGcQh,

where hG is minimal in the sense that hG ≤ h for any non-negative gamble h
on X that also satisfies this equality.

It would be interesting to investigate whether or not a similar result holds
– but with QQ and QQ instead of Q – for the lower and upper probability with
respect to any of the three Markovian imprecise jump processes characterised
by Q. Krak et al. (2019, Corollary 19) generalise the discrete-time counterpart
of this result (see Norris, 1997, Theorem 1.3.2) to imprecise Markov chains,
and it is not all too far fetched to assume that their proofs can be adapted
to the continuous-time setting. Be that as it may, we elect to leave this path
undiscovered, even though the prospect of going down this rabbit hole is
alarmingly alluring.

6.3 Hitting times

Besides hitting events, we also informally introduced hitting times in Joseph’s
Example 5.1215. Consider a set G ⊆X of ‘goal’ states and any time point s
in R≥0. Following Norris (1997, Section 3.3), we defined the hitting time of G
after s as the non-negative extended real variable τG

[s,+∞[ defined by

τG
[s,+∞[(ω) := inf

{
t ∈ [s,+∞[ : ω(t ) ∈G

}
for all ω ∈Ω. (6.12)
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Furthermore, for any r in R≥0 such that s ≤ r , we define the truncated hitting
time

τG
[s,r ] := τG

[s,+∞[ ∧ r ; (6.13)

it is easy to see that, for all ω in Ω,

τG
[s,r ](ω) = min

({
t ∈ [s,r ] : ω(t ) ∈G

}∪ {r }
)
,

where the infimum is reached because ω is càdlàg, and therefore continuous
from the right. Additionally, for any grid v = (t0, . . . , tn) over [s,r ], we call

τG
v : Ω→ [s,r ] : ω 7→ min

({
t ∈ v : ω(t ) ∈G

}∪ {r }
)

(6.14)

an approximating hitting time.
Because hitting times are similar to hitting events, it is reasonable to

expect that a hitting time is the point-wise limit of a sequence of approximat-
ing hitting times and/or a sequence of truncated hitting times, and that, in
turn, a truncated hitting time is the point-wise limit of approximating hitting
times. We will prove that this is the case, in Section 6.3.1 for hitting times and
in Section 6.3.2292 for truncated hitting times. First, however, we show that
the approximating hitting time τG

v is a simple variable.

Lemma 6.18. Consider a subset G of X, a sequence of time points u in U and
time points s,r in R≥0 such that maxu ≤ s ≤ r , and fix some grid v over [s,r ].
Then

τG
v = s +

n∑
k=1

(tk − tk−1)
k−1∏
ℓ=0

IGc
(
X tℓ

)
,

so τG
v has a sum-product representation over v. Consequently, τG

v is Fu-simple.

Proof. That τG
v has the sum-product representation over v of the statement is a

matter of straightforward verification. Observe that v ≽ u because, by assumption, v
is a grid over [s,r ] and maxu ≤ s. For this reason, and because τG

v has a sum-product
representation over v , it follows from Lemma 4.6164 that τG

v is Fu -simple.

6.3.1 From approximating hitting times to hitting times

Our investigation into hitting times starts with the following counterpart of
Lemma 6.16285 for hitting times.

Lemma 6.19. Consider a subset G of X, a sequence of time points u in U

and a time points s in R≥0 such that maxu ≤ s. Let (vn)n∈N be a se-
quence in U̸=( ) such that min vn = s for all n in N, limn→+∞ max vn = +∞
and limn→+∞∆(vn) = 0. Then (τG

vn
)n∈N is a sequence of Fu-simple variables

that is uniformly bounded below and that converges point-wise to τG
[s,+∞[, so

τG
[s,+∞[ belongs to Vlim(Fu).
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6.3 Hitting times

Proof. For all n in N, τG
vn

is Fu -simple due to Lemma 6.18↶ and bounded below
by s due to Eq. (6.14)↶. To prove the statement, we still need to show that the
sequence (τG

vn
)n∈N converges point-wise to τG

[s,+∞[; that is, for all ω in Ω we need to
show that

lim
n→+∞τG

vn
(ω) = τG

[s,+∞[(ω). (6.15)

To this end, we fix any path ω in Ω. Observe that τG
[s,+∞[(ω) =+∞ if and only if

ω(t ) ∉G for all t in R≥0. Whenever this is the case, it is clear that τG
vn

(ω) = max vn for
all n inN. Because limn→+∞ max vn =+∞ by assumption, this verifies Eq. (6.15).

What remains is the case t := τG
[s,+∞[(ω) <+∞; note that then

ω(t ) ∈G and
(∀t ′ ∈ [s, t [

)
ω(t ′) ∉G . (6.16)

Because ω is càdlàg, it is continuous from the right at t ; hence, there is a positive real
number r > t such that (∀t ′ ∈ [t ,r [

)
ω(t ′) =ω(t ) ∈G . (6.17)

As limn→+∞ max vn =+∞ by assumption, there is a natural number Nt such that
max vn > t for all n ≥ Nt . Furthermore, for all ϵ in R>0, there is a natural number Nϵ

such that ∆(vn ) < ϵ because limn→+∞∆(vn ) = 0 by assumption. Fix any positive
real number ϵ such that ϵ < r − t . Then for any natural number n ≥ max{Nt , Nϵ},
max vn > t and ∆(vn ) < ϵ< r − t , so there is at least one time point in vn that belongs
to [t ,r [; let us denote the smallest one by tn,k . Observe that τG

vn
(ω) = tn,k due to

Eqs. (6.16) and (6.17), so

|τG
[s,+∞[(ω)−τG

vn
(ω)| = |t − tn,k | ≤∆(vn ) < ϵ.

Because ϵ was an arbitrary – yet sufficiently small – positive real number, we infer
from this that Eq. (6.15) also holds whenever τG

[s,+∞[(ω) <+∞, as required.

Besides establishing that hitting times are limit variables, Lemma 6.19↶
does not have much useful consequences. Because it establishes that a
hitting time is the point-wise limit of a sequence of simple variables that are
uniformly bounded below, we could rely on Theorem 5.32240 to determine
bounds on the lower and upper expected hitting time. However, we can only
do so if there is a limit variable g that (i) has finite upper expectation, and (ii)
dominates the approximating hitting times. To our great dismay, there is no
obvious or natural candidate for this, so we are left empty handed – for now.

In this regard, a promising avenue of research is to investigate whether the
following result regarding expected hitting times for homogeneous Marko-
vian jump processes generalises to imprecise ones. Consider a homogeneous
Markovian jump process Pp0,Q , let G be a subset of the state space X, and let
hG be the non-negative extended real valued function on X defined by

hG (x) := Ep0,Q
(
τG

[0,+∞[

∣∣ X0 = x
)
.

Then it is well-known (see Norris, 1997, Theorem 3.3.3) that hG is the minimal
non-negative solution of

IG h = IGc (1+Qh);
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note that h is non-negative but can attain +∞, so technically we should
extend the domain of Q accordingly. Krak et al. (2019, Corollary 13) establish
that the discrete-time counterpart of this result (see Norris, 1997, Theo-
rem 1.3.5) also holds for imprecise Markov chains, and an optimist might be
inclined to conjecture that the same is true for continuous time. To protect
ourselves from going down a rabbit hole, we do not pursue this attractive
avenue of research here; instead, we opt for a detour that involves truncated
hitting times.

6.3.2 Truncated hitting times

In our study of truncated hitting times, we will follow more or less the same
approach as in Section 6.2.1281, albeit this time for approximating and trun-
cated hitting times instead of approximating and time-bounded until events.
First, we establish an upper bound on the difference between the truncated
hitting time τG

[s,r ] and the approximating hitting time τG
v corresponding to

any grid v over [s,r ].

Lemma 6.20. Consider a subset G of X and time points s,r in R≥0 such
that s ≤ r . Then for any grid v over [s,r ],∣∣τG

[s,r ] −τG
v

∣∣≤∆(v)+ 1

2
(r − s)(η[s,r ] −ηv ).

Proof. The statement is trivially true whenever s = r , so without loss of generality
we may assume that s < r . We enumerate the time points in v by (t0, . . . , tn ), and fix
an arbitrary path ω in Ω. Then by Eq. (6.13)290, the truncated hitting time τG

[s,r ](ω)
assumes a value in [s,r ]; let us denote this value by t . Similarly, it follows from
Eq. (6.14)290 that τG

v (ω) = tk for some k in {0, . . . ,n}. Note that

τG
[s,r ](ω) = t ≤ tk = τG

v (ω).

Furthermore, it is clear from Eqs. (6.13)290 and (6.14)290 that if t belongs to v , then t
has to be equal to tk ; whenever this is the case,∣∣τG

[s,r ](ω)−τG
v (ω)

∣∣= tk − t = 0. (6.18)

Next, we investigate the remaining case that t does not belong to v ; observe
that in this case t < tk . We let tℓ denote the first – or smallest – time point in v that
succeeds t ; that is, ℓ is the unique index in {1, . . . ,n} such that tℓ−1 < t < tℓ. Note that
the path ω jumps to G somewhere in the interval ]tℓ−1, tℓ[. As t < tk by assumption,
it is clear that tℓ−1 < t < tℓ ≤ tk and therefore 0 < ℓ≤ k. In case ℓ= k,∣∣τG

[s,r ](ω)−τG
v (ω)

∣∣= tk − t ≤ tk − tk−1. (6.19)

In case ℓ < k, the path ω is in Gc at tℓ−1, in G at t and in Gc at tℓ; clearly, this
implies thatω(tℓ−1) ̸=ω(t ) ̸=ω(tℓ). For this reason, it follows from Lemma 6.9280 that
ω belongs to A := {ω′ ∈Ω : ηv (ω′) < η[s,r ](ω′)}, so∣∣τG

[s,r ](ω)−τG
v (ω)

∣∣= tk − t ≤ (r − s) = (r − s)IA ≤ 1

2
(r − s)

(
η[s,r ](ω)−ηv (ω)

)
, (6.20)
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where the second inequality follows from Lemma 6.8279.
To finalise our proof, we recall from Proposition 6.2275 that (η[s,r ] −ηv ) is non-

negative. Because furthermore (tk − tk−1) ≤∆(v) for all k in {1, . . . ,n}, the inequality
of the statement follows immediately from Eqs. (6.18)↶ to (6.20)↶.

Next, we use Lemma 6.20↶ to establish that the truncated hitting
time τG

[s,r ] is the point-wise limit of a uniformly bounded sequence of approx-
imating hitting times.

Lemma 6.21. Consider a subset G of X, a sequence of time points u in U and
time points s,r in R≥0 such that maxu ≤ s ≤ r . Let (vn)n∈N be a sequence of
grids over [s,r ] such that limn→+∞∆(vn) = 0. Then (τG

vn
)n∈N is a uniformly

bounded sequence of Fu-simple variables that converges point-wise to τG
[s,r ],

so τG
[s,r ] belongs to Vlim(Fu).

Proof. Fix some n inN. Because vn is a grid over [s,r ], it follows from Lemma 6.18290
that τG

vn
is an Fu -simple variable. Furthermore, it follows immediately from

Eq. (6.14)290 that s ≤ τG
vn

≤ r for all n in N. Thus, we have shown that (τG
vn

)n∈N
is a uniformly bounded sequence of Fu -simple variables. To verify the statement, it
remains for us to prove that this sequence converges point-wise to τG

[s,r ]; that is, we
need to show that for all ω in Ω,

lim
n→+∞τG

vn
(ω) = τG

[s,r ](ω). (6.21)

Fix an arbitrary path ω in Ω, and recall from Lemma 6.20↶ that for all n inN,∣∣τG
[s,r ](ω)−τG

vn
(ω)

∣∣≤∆(vn )+ 1

2
(r − s)

(
η[s,r ](ω)−ηv (ω)

)
.

Note that because limn→+∞∆(vn ) = 0 by assumption, it follows from Lemma 5.25235
that limn→+∞

(
η[s,r ](ω)−ηvn (ω)

)= 0. Hence, we infer from the preceding inequality
that

lim
n→+∞

∣∣τG
[s,r ](ω)−τG

vn
(ω)

∣∣≤ lim
n→+∞

(
∆(vn )+ 1

2
(r − s)

(
η[s,r ](ω)−ηv (ω)

))= 0,

and this implies Eq. (6.21), as required.

Additionally, Lemma 6.20↶ induces an upper bound on the difference
between the lower and upper expectation of the truncated hitting time τG

[s,r ]
on the one hand and the lower and upper expectation of the approximating
hitting time τG

v corresponding to any grid v over [s,r ] on the other hand.

Proposition 6.22. Consider a non-empty and bounded set Q of rate operators,
and an imprecise jump process P such that P ⊆PQ, and let λ := ∥Q∥op. Fix
some subset G of X, a state history {Xu = xu} in H and time points s,r in R≥0

such that maxu ≤ s ≤ r . Then for any grid v over [s,r ],∣∣E D
P

(
τG

[s,r ]

∣∣ Xu = xu
)−EP

(
τG

v

∣∣ Xu = xu
)∣∣≤∆(v)+ 1

8
∆(v)(r − s)2∥Q∥2

op
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and∣∣E D
P

(
τG

[s,r ]

∣∣ Xu = xu
)−EP

(
τG

v

∣∣ Xu = xu
)∣∣≤∆(v)+ 1

8
∆(v)(r − s)2∥Q∥2

op.

In particular, this holds for P = PHM
M,Q, P = PM

M,Q and P = PM,Q, with M a
non-empty set of initial mass functions.

Proof. Due to Lemmas 6.20292 and 6.21↶, the statement follows immediately from
Proposition 6.7279 with α= 1, β= 1

2 (r − s) and γ= 0.

Because of the preceding result, we can approximate lower and upper
expected truncated hitting times up to arbitrary precision. Similar comments
hold here as those that we made right after Proposition 6.13283; again, we
postpone an in-depth investigation until Section 6.5310 further on. Propo-
sition 6.22↶ also implies that in the particular case of approximating and
truncated hitting times, the bounds in Corollary 5.34241 are tight.

Corollary 6.23. Consider a non-empty bounded set Q of rate operators, and
an imprecise jump process P such that P ⊆PQ. Fix a subset G of X, a state
history {Xu = xu} in H and time points s,r in R≥0 such that maxu ≤ s ≤ r .
Then for any sequence (vn)n∈N of grids over [s,r ] with limn→+∞∆(vn) = 0,

E D
P

(
τG

[s,r ]

∣∣ Xu = xu
)= lim

n→+∞EP

(
τG

vv

∣∣ Xu = xu
)

and

E D
P

(
τG

[s,r ]

∣∣ Xu = xu
)= lim

n→+∞EP

(
τG

vn

∣∣ Xu = xu
)
.

In particular, this holds for P = PHM
M,Q, P = PM

M,Q and P = PM,Q, with M a
non-empty set of initial mass functions.

Proof. Follows almost immediately from Proposition 6.22↶.

This result is particularly interesting because the truncated hitting
time τG

[s,r ] converges monotonically to the hitting time τG
[s,+∞[ for increasing r .

Lemma 6.24. Consider a subset G of X, a sequence of time points u in U and
a time point s in R≥0 such that maxu ≤ s. Let (rn)n∈N be a non-decreasing
sequence of time points in [s,+∞[ with limn→+∞ rn = +∞. Then the corre-
sponding sequence (τG

[s,rn ])n∈N of truncated hitting times in Vlim(Fu) is non-
decreasing and uniformly bounded below, and this sequence converges point-
wise to τG

[s,+∞[.

Proof. Recall from Lemma 6.21↶ that for all n in N, τG
[s,rn ] belongs to Vlim(Fu ).

Because (rn )n∈N is non-decreasing by assumption, it follows immediately from
Eq. (6.13)290 that (τG

[s,rn ])n∈N is a non-decreasing sequence. Furthermore, it is clear
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that infτG
vn

≥ s >−∞ for all n in N. Finally, the sequence of truncated hitting times
converges point-wise to the hitting time because for all ω in Ω,

lim
n→+∞τG

[s,rn ](ω) = lim
n→+∞

(
τG

[s,+∞[(ω)∧ rn

)
= τG

[s,+∞[(ω),

where for the first equality we used Eq. (6.13)290 and where the second equality holds
because limn→+∞ rn =+∞.

Due to the preceding result and Corollary 5.33240, we can determine
(a bound on) the lower and upper expectation of the hitting time τG

[s,+∞[
by determining the lower and upper expectation of the truncated hitting
time τG

[s,r ] for increasing values of r . Unfortunately, there seems to be no clear
cut way to show that the bound for the lower expectation is actually tight.
The imprecise jump process in Joseph’s Example 6.17287 does not provide a
counterexample this time around, as the lower and upper expected truncated
hitting times do converge to the lower and upper expected hitting times.

6.4 Idealised variables in the form of Riemann integrals

Suppose that for some gamble f on X, we are interested in the integral of
f (X t ) over the time period [s,r ], where s and r are time points in R≥0 such
that s ≤ r . For example, ‘the length of time that the system is in the state x
over [s,r ]’ corresponds to the integral of Ix (X t ). Alternatively, if r > s, ‘the
average value of f (X t ) over [s,r ]’ corresponds to the integral of 1

r−s f (X t ).
Formally, the integral of f (X t ) is a variable on Ω that we define through

Riemann integration; hence, we need that for all ω in Ω,

f ◦ω : [s,r ] →R : t 7→ [ f ◦ω](t ) = f
(
ω(t )

)
is Riemann integrable. We show in Proposition 6.30298 further on that this is
always the case. The variable

Ω→R : ω 7→
∫ r

s
[ f ◦ω](t )dt =

∫ r

s
f
(
ω(t )

)
dt

is therefore well-defined, and this variable is what we will call the integral
of f (X t ) over [s,r ]. We treat the particular case of these integrals in Sec-
tion 6.4.4305 further on. First, however, in Section 6.4.1↷ we recall the defini-
tion of the Riemann integral, as well as some of its convenient properties. We
subsequently consider more general idealised variables that are defined as
the ‘Riemann integral of a family ( ft )t∈[s,r ] of gambles on X’. More precisely,
we introduce these variables through limit arguments in Section 6.4.2297, and
investigate if and how these limit arguments carry over to the (conditional)
lower and upper expectations in Section 6.4.3301.
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6.4.1 The Riemann integral

Consider two real numbers s and r such that s ≤ r , and a real-valued func-
tion h on [s,r ]. The Riemann integral of h, sometimes also called the
Riemann-Darboux integral, has multiple equivalent definitions: it can be de-
fined through an epsilon-delta statement, through ‘lower and upper Darboux
sums’ or as the ‘limit of a net’ (see Schechter, 1997, Chapter 24). These three
equivalent definitions all use ‘(tagged) partitions of [s,r ]’: a ‘partition of [s,r ]’
is a grid v = (t0, . . . , tn) over [s,r ], and we ‘tag’ this grid by fixing a point sk in
the subinterval [tk−1, tk ], for all k in {1, . . . ,n}. The epsilon-delta definition of
the Riemann integral uses ‘tagged partitions’ as follows (see Schechter, 1997,
Definition 24.3).

Definition 6.25. Consider real numbers s,r such that s ≤ r . A func-
tion h : [s,r ] → R is called Riemann integrable if there is some real num-
ber γ such that for any positive real number ϵ, there is some maximum grid
width δϵ in R>0 such that for any grid v = (t0, . . . , tn) over [s,r ] with ∆(v) < δϵ
and any s1, . . . , sn in [s,r ] with tk−1 ≤ sk ≤ tk for all k in {1, . . . ,n},∣∣∣∣∣ n∑

k=1
h(sk )(tk − tk−1)−γ

∣∣∣∣∣< ϵ.

Whenever such a real number γ exists, it is unique; hence, we call it the
Riemann integral of h, and denote it by

∫ r
s h(t )dt .

It is well-known that the set of Riemann integrable functions is a real
vector space that includes the constant functions – much like the simple
variables with respect to some field of events. The following result establishes
this, as well as that the Riemann integral is homogeneous, additive and
monotone – similar to the expectation corresponding to a probability charge.

Proposition 6.26. Consider real numbers s,r such that s ≤ r , real-valued
functions h, g on [s,r ] that are Riemann integrable, and a real number µ.
Then

RI1. µh is Riemann integrable, and
∫ r

s [µh](t )dt =µ∫ r
s h(t )dt ;

RI2. h+g is Riemann integrable, and
∫ r

s [h+g ](t )dt = ∫ r
s h(t )dt +∫ r

s g (t )dt ;

RI3. the constant function µ is Riemann integrable, and
∫ r

s µdt = (r − s)µ.

Furthermore,

RI4.
∫ r

s h(t )dt ≤ ∫ r
s g (t )dt whenever h ≤ g ;

RI5. for every grid v = (t0, . . . , tn) over [s,r ], the restrictions of h to the subin-
tervals [tk−1, tk ] of v are Riemann integrable, and∫ r

s
h(t )dt =

n∑
k=1

∫ tk

tk−1

h(t )dt
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Proof. These properties are well-known; for their proofs, we refer to (Schechter, 1997,
Chapter 24) and/or (Rudin, 1976, Theorem 6.12)

Lebesgue’s integrability criterion (see Schechter, 1997, Theorem 24.46)
substantiates a necessary and sufficient condition for the Riemann integra-
bility of a real-valued function f on [s,r ]. For our objectives, the following
sufficient condition for Riemann integrability will suffice (see Schechter,
1997, Definition 19.28 and Section 24.26).

Definition 6.27. Consider real numbers s,r such that s ≤ r . The func-
tion h : [s,r ] →R is called piece-wise continuous if (i) h has a left-sided limit
in R at all t in ]s,r ], (ii) h has a right-sided limit in R at all t in [s,r [, and (iii)
the set of discontinuity points{

t ∈ ]s,r ] : h(t ) ̸= lim
∆↘0

h(t −∆)
}
∪

{
t ∈ [s,r [ : h(t ) ̸= lim

∆↘0
h(t +∆)

}
is finite.

Proposition 6.28. Consider real numbers s and r such that s ≤ r and a func-
tion h : [s,r ] →R. If h is piece-wise continuous, then h is Riemann integrable.

6.4.2 The integral of a piece-wise continuous family of gambles

Suppose that instead of a fixed gamble f on X, we have a gamble ft on X

for every time point t in [s,r ]. Then we can only define a variable that corre-
sponds to ‘the integral of ft (X t ) over [s,r ]’ if for all ω in Ω,

f• ◦ω : [s,r ] →R : t 7→ ft
(
ω(t )

)
is Riemann integrable. We could set out to characterise all families ( ft )t∈[s,r ]

that satisfy this requirement with the help of Lebesgue’s criterion for Riemann
integrability, but this would lead us rather far astray. Instead, we opt to
establish a sufficient condition with the help of Proposition 6.28. For this, we
use a notion of piece-wise continuity for families of gambles on X – that is,
piece-wise continuity in the sense of Schechter (1997, Definition 19.28) for
maps from [s,r ] to G(X).

Definition 6.29. Consider time points s and r in R≥0 such that s ≤ r . The
family ( ft )t∈[s,r ] of gambles on X is piece-wise continuous if (i) lim∆↘0 ft−∆
exists for all t in ]s,r ], (ii) lim∆↘0 ft+∆ exists for all t in [s,r [, and (iii) the set
of discontinuity points{

t ∈ ]s,r ] : ft ̸= lim
∆↘0

ft−∆
}
∪

{
t ∈ [s,r [ : ft ̸= lim

∆↘0
ft+∆

}
is finite.
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Because we have chosen to restrict ourselves to the càdlàg paths, this
condition is sufficient for f• ◦ω to be Riemann integrable.

Proposition 6.30. Consider time points s,r in R≥0 such that s ≤ r , and a
family ( ft )t∈[s,r ] of gambles on X that is piece-wise continuous. Then for all ω
in Ω, the function

f• ◦ω : [s,r ] →R : t 7→ ft
(
ω(t )

)
is piece-wise continuous, and therefore Riemann integrable.

Proof. Due to Proposition 6.28↶, it suffices to check whether f•◦ω is piece-wise con-
tinuous; that is, we need to check whether the three requirements in Definition 6.27↶
hold. First, we verify that f• ◦ω has a left-sided limit at all t in ]s,r ]. To this end, we fix
some t in ]s,r ]. Because ω is càdlàg, there is a δ1 in ]0, t ] such that(∀s1, s2 ∈ ]t −δ1, t [

)
ω(s1) =ω(s2);

that is, the path ω is constant over ]t −δ1, t [. We denote the value of ω on ]t −δ1, t [ by
x; then (∀s′ ∈ ]t −δ1, t [

)
[ f• ◦ω](s′) = fs′

(
ω(s′)

)= fs′ (x). (6.22)

Because the family ( ft )t∈[s,r ] is piece-wise continuous by assumption, the left-sided
limit lim∆↘0 ft−∆ exists. We denote this limit by f −t , and fix any positive real number ϵ.
Then there is a positive real number δ2 in ]0, t ] such that(∀s′ ∈ ]t −δ2, t [

) ∥ fs′ − f −t ∥ < ϵ. (6.23)

Let δ := min{δ1,δ2}. It follows immediately from Eqs. (6.22) and (6.23) and the defini-
tion of the supremum norm ∥•∥ that(∀s′ ∈ ]t −δ, t [

) ∣∣[ f• ◦ω](s′)− f −t (x)
∣∣= ∣∣ fs′ (x)− f −t (x)

∣∣≤ ∥ fs′ − f −t ∥ < ϵ.

Because ϵ was an arbitrary positive real number, we infer from this that the left-sided
limit of f• ◦ω at t is equal to f −t (x); because f −t = lim∆↘0 ft−∆ and x = lim∆↘0ω(t −
∆),

lim
∆↘0

[ f• ◦ω](t −∆) = f −t (x) =
[

lim
∆↘0

ft−∆
](

lim
∆↘0

ω(t −∆)

)
. (6.24)

An entirely analogous argument shows that f• ◦ω has a limit from the right at all
t in [s,r [. Furthermore,

lim
∆↘0

[ f• ◦ω](t +∆) =
[

lim
∆↘0

ft+∆
](

lim
∆↘0

ω(t +∆)

)
=

[
lim
∆↘0

ft+∆
](
ω(t )

)
, (6.25)

where for the second equality we used that ω is continuous from the right.
Finally, we verify that the set of discontinuity points{

t ∈ ]s,r ] : [ f• ◦ω](t ) ̸= lim
∆↘0

[ f• ◦ω](t −∆)
}
∪

{
t ∈ [s,r [ : [ f• ◦ω](t ) ̸= lim

∆↘0
[ f• ◦ω](t +∆)

}
is finite. To this end, we observe that by Eqs. (6.24) and (6.25), t in [s,r ] is a disconti-
nuity point of f• ◦ω only if t is a discontinuity point of ( ft )t∈[s,r ] and/or t is a jump
time of ω. Hence, the set of discontinuity points of f• ◦ω is a subset of the union of
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the set of discontinuity points of ( ft )t∈[s,r ] and the set of jump times J[s,r ](ω). The
former is finite because ( ft )t∈[s,r ] is piece-wise continuous by assumption, and the
latter is finite due to Lemma 5.20232. Thus, the set of discontinuity points of f• ◦ω is
finite, as required.

We cannot emphasise enough that the preceding result only holds be-
cause we have restricted ourselves to càdlàg paths. Because of this result,
we can formally define the ‘Riemann integral of the family ( ft )t∈[s,r ]’ as fol-
lows. For any time points s and r in R≥0 such that s ≤ r and any piece-wise
continuous family ( ft )t∈[s,r ] of gambles on X, we call∫ r

s
ft (X t )dt : Ω→R : ω 7→

∫ r

s
ft

(
ω(t )

)
dt (6.26)

the Riemann integral of ft (X t ) over [s,r ]. Note that
∫ r

s ft (X t )dt is a real vari-
able because every Riemann integral is real-valued. Furthermore,

∫ r
s ft (X t )dt

turns out to be bounded, so it is a gamble. This essentially holds because
every piece-wise continuous family ( ft )t∈[s,r ] is bounded in the following
sense.

Lemma 6.31. Consider time points s,r in R≥0 such that s ≤ r . Then for any
piece-wise continuous family ( ft )t∈[s,r ] of gambles on X,

−∞< inf
{
min ft : t ∈ [s,r ]

}≤ sup
{
max ft : t ∈ [s,r ]

}<+∞.

Proof. Observe that for all t in [s,r ], −∥ ft ∥ ≤ min ft ≤ max ft ≤ ∥ ft ∥. These inequali-
ties imply the middle inequality of the statement. The outer inequalities hold because
the piece-wise continuous family ( ft )t∈[s,r ] is (uniformly) bounded, in the sense
that sup

{∥ ft ∥ : t ∈ [s,r ]
}<+∞; this well-known property follows immediately from

(Schechter, 1997, Definition 19.28 (C)) and (Rudin, 1976, Theorem 4.15).

That
∫ r

s ft (X t )dt is bounded follows immediately from the preceding
lemma and some properties of the Riemann integral.

Corollary 6.32. Consider time points s,r in R≥0 such that s ≤ r , and a piece-
wise continuous family ( ft )t∈[s,r ] of gambles on X. Then

(r − s) inf
{
min ft : t ∈ [s,r ]

}≤ ∫ r

s
ft (X t )dt ≤ (r − s)sup

{
max ft : t ∈ [s,r ]

}
,

so
∫ r

s ft (X t )dt is bounded.

Proof. Fix an arbitrary path ω in Ω, and let

γ− := inf
{
min ft : t ∈ [s,r ]

}
and γ+ := sup

{
max ft : t ∈ [s,r ]

}
.

Note that for all t in [s,r ],

−∞< γ− ≤ ft
(
ω(t )

)≤ γ+ <+∞,
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where the outer inequalities hold due to Lemma 6.31↶. It follows from these inequal-
ities, (RI3)296 and (RI4)296 that

−∞< (r − s)γ− ≤
∫ r

s
ft

(
ω(t )

)
dt ≤ (r − s)γ+ <+∞.

As ω is an arbitrary path in Ω, this proves the statement.

What is left is to verify that the gamble
∫ r

s ft (X t )dt is an idealised variable,
in the sense that it is the point-wise limit of a uniformly bounded sequence
of simple variables. To do so, we turn to approximating Riemann sums.

Approximating Riemann sum

Recall from Definition 6.25296 that the Riemann integral of f• ◦ω : [s,r ] →R

is essentially defined as the limit of approximating Riemann sums, where
every Riemann sum corresponds to a (tagged) grid v over [s,r ]. For any
time points s and r in R≥0 such that s ≤ r , any piece-wise continuous fam-
ily ( ft )t∈[s,r ] of gambles on X and any grid v = (t0, . . . , tn) over [s,r ], we define
the corresponding approximating Riemann sum as

〈 f•〉v :=
n∑

k=1
(tk − tk−1) ftk (X tk ). (6.27)

In this definition, we could replace ftk (X tk ) with fsk (Xsk ) where sk is any time
point in [tk−1, tk ]. We have chosen to always use the end point of this interval
because this ensures that 〈 f•〉v has a sum-product representation over v ;
note that this would also be the case if we were to use the starting point tk−1

instead of the end point tk of the subinterval [tk−1, tk ].

Lemma 6.33. Consider a sequence of time points u in U, time points s and r
in R≥0 such that maxu ≤ s ≤ r , and a piece-wise continuous family ( ft )t∈R≥0

of gambles on X. Then for any grid v over [s,r ], the corresponding approxi-
mating Riemann sum 〈 f•〉v has a sum-product representation over v, so it is
an Fu-simple variable; furthermore,

(r − s) inf
{
min ft : t ∈ [s,r ]

}≤ 〈 f•〉v ≤ (r − s)sup
{
min ft : t ∈ [s,r ]

}
.

Proof. It follows immediately from Eq. (6.27) that

〈 f•〉v =
n∑

k=0
gk

(
Xtk

)k−1∏
ℓ=1

hℓ
(
Xtℓ

)
,

with g0 := 0 and, for all k in {1, . . . ,n}, gk := (tk − tk−1) ftk and hk−1 := 1. Hence, 〈 f•〉v
has a sum-product representation over v . Observe that v ≽ u because, by assumption,
v is a grid over [s,r ] and maxu ≤ s. Hence, it follows from Lemma 4.6164 that 〈 f•〉v is
Fu -simple. That the inequalities of the statement hold is a matter of straightforward
verification.
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The point-wise limit of approximating Riemann sums

Finally, we verify that the integral
∫ r

s ft (X t )dt of the family ( ft )t∈[s,r ] belongs
to our extended domain. To do so, we argue that it is the point-wise limit
of a uniformly bounded sequence of approximating Riemann sums that
corresponds to a sequence of grids over [s,r ] with vanishing grid width.

Lemma 6.34. Consider a sequence of time points u in U, time points s,r
in R≥0 such that maxu ≤ s < r and a piece-wise continuous family ( ft )t∈[s,r ]

of gambles on X. Let (vn)n∈N be a sequence of grids over [s,r ] such
that limn→+∞∆(vn) = 0. Then (〈 f•〉vn )n∈N is a uniformly bounded se-
quence of Fu-simple variables that converges point-wise to

∫ r
s ft (X t )dt ,

so
∫ r

s ft (X t )dt belongs to Vlim(Fu).

Proof. Let f := ∫ r
s ft (Xt )dt . Recall from Lemma 6.33↶ that for all n in N, 〈 f•〉vn is

an Fu -simple variable with

(r − s) inf
{
min ft : t ∈ [s,r ]

}≤ 〈 f•〉vn ≤ (r − s)sup
{
min ft : t ∈ [s,r ]

}
.

Furthermore, because limn→+∞∆(vn ) = 0, it follows immediately from Defini-
tion 6.25296 that p-w limn→+∞〈 f•〉vn = f . Consequently,

(〈 f•〉vn

)
n∈N is a uniformly

bounded sequence of Fu -simple variables that converges point-wise to f , so f be-
longs to Vlim(Fu ).

6.4.3 The integral of a Lipschitz continuous family of gambles

So far, we have established that the integral
∫ r

s ft (X t )dt of the family ( ft )t∈[s,r ]

is the point-wise limit of a uniformly bounded sequence of simple variables.
Next, we investigate whether this limit behaviour carries over to the lower
and upper expectations with respect to an imprecise jump process. As will be-
come clear in Corollary 6.39304 further on, it suffices that the family ( ft )t∈[s,r ]

is Lipschitz continuous – with respect to the supremum norm ∥•∥ – in the
sense of Schechter (1997, Definition 18.2).

Definition 6.35. Consider time points s,r in R≥0 such that s ≤ r . The fam-
ily ( ft )t∈[s,r ] of gambles on X is Lipschitz continuous if there is some κ in R≥0

such that for all t1 and t2 in [s,r ], ∥ ft1 − ft2∥ ≤ κ|t1 − t2|. Whenever this is the
case, we call κ a Lipschitz constant.

Note that Lipschitz continuity implies (ordinary) continuity, and therefore
also piece-wise continuity. Hence, it follows from Proposition 6.30298 that
the Riemann integral

∫ r
s ft (X t )dt of a Lipschitz continuous family ( ft )t∈[s,r ]

is well-defined.

Corollary 6.36. Consider time points s and r in R≥0 such that s ≤ r , and
a family ( ft )t∈[s,r ] of gambles on X that is Lipschitz continuous. Then the
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corresponding Riemann integral
∫ r

s ft (X t )dt is well-defined because for all ω
in Ω, the function

f• ◦ω : [s,r ] →R : t 7→ ft
(
ω(t )

)
is Riemann integrable.

Proof. The Lipschitz continuous family ( ft )t∈[s,r ] is trivially (piece-wise) continuous,
so the statement is a special case of Proposition 6.30298.

Whenever the family ( ft )t∈[s,r ] is Lipschitz continuous, we can use the
Lipschitz constant κ to bound the difference between between the Riemann
integral

∫ r
s ft (X t )dt and the approximating Riemann sum 〈 f•〉v that corre-

sponds to a grid v over [s,r ].

Lemma 6.37. Consider time points s,r in R≥0 such that s ≤ r , a Lipschitz
continuous family ( ft )t∈[s,r ] of gambles on X with Lipschitz constant κ, and
let

γ := sup
{
max ft : t ∈ [s,r ]

}− inf
{
min ft : t ∈ [s,r ]

}
.

Then for any grid v over [s,r ],∣∣∣∣∫ r

s
ft (X t )dt −〈 f•〉v

∣∣∣∣≤∆(v)
(
(r − s)κ+γη[s,r ]

)
.

Proof. We enumerate the time points in v as (t0, . . . , tn ). Then by definition of 〈 f•〉v ,∣∣∣∣∫ r

s
ft (Xt )dt −〈 f•〉v

∣∣∣∣=
∣∣∣∣∣
∫ r

s
ft (Xt )dt −

n∑
k=1

ftk (Xtk )(tk − tk−1)

∣∣∣∣∣
It follows from this equality, (RI5)296 and the triangle inequality that∣∣∣∣∫ r

s
ft (Xt )dt −〈 f•〉v

∣∣∣∣=
∣∣∣∣∣ n∑
k=1

∫ tk

tk−1

ft (Xt )dt −
n∑

k=1
ftk (Xtk )(tk − tk−1)

∣∣∣∣∣
≤

n∑
k=1

∣∣∣∣∫ tk

tk−1

ft (Xt )dt − ftk (Xtk )(tk − tk−1)

∣∣∣∣. (6.28)

We now investigate the terms of the sum on the right-hand side of this inequality
individually. To this end, we fix some k in {1, . . . ,n} and ω in Ω. Note that by (RI3)296,∣∣∣∣∫ tk

tk−1

ft
(
ω(t )

)
dt − ftk

(
ω(tk )

)
(tk+1 − tk )

∣∣∣∣= ∣∣∣∣∫ tk

tk−1

ft
(
ω(t )

)− ftk

(
ω(tk )

)
dt

∣∣∣∣. (6.29)

First, we consider the case that ω is constant over [tk−1, tk ], meaning that
η[tk−1,tk ](ω) = 0. Let xk := ω(tk ); then for all t in [tk−1, tk ], ω(t) = ω(tk ) = xk , and
hence ft

(
ω(t)

) = ft (xk ). Because ( ft )t∈[s,r ] is Lipschitz continuous with Lipschitz
constant κ, (∀t ∈ [tk−1, tk ]

) ∥ ft − ftk ∥ ≤ κ(tk − t ) ≤ κ(tk − tk−1),
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and therefore(∀t ∈ [tk−1, tk ]
) ∣∣ ft

(
ω(t )

)− ftk

(
ω(tk )

)∣∣= ∣∣ ft (xk )− ftk (xk )
∣∣≤ ∥ ft − ftk ∥
≤ κ(tk − tk−1). (6.30)

It follows from Eqs. (6.29)↶ and (6.30) that∣∣∣∣∫ tk

tk−1

ft
(
ω(t )

)
dt − ftk

(
ω(tk )

)
(tk+1 − tk )

∣∣∣∣≤ κ(tk − tk−1)2.

where for the inequality we also used (RI4)296 and (RI3)296. Because (tk −tk−1) ≤∆(v)
and γη[tk−1,tk ](ω) = 0, it follows that∣∣∣∣∫ tk

tk−1

ft
(
ω(t )

)
dt − ftk

(
ω(tk )

)
(tk+1 − tk )

∣∣∣∣≤∆(v)
(
(tk − tk−1)κ+γη[tk−1,tk ](ω)

)
.

Second, we consider the case that ω is not constant over [tk−1, tk ], in the sense
that η[tk−1,tk ](ω) > 0. Observe that(∀t ∈ [tk−1, tk ]

) ∣∣ ft
(
ω(t )

)− ftk

(
ω(tk )

)∣∣≤ γ.

As before, it follows from Eq. (6.29)↶ and this inequality that∣∣∣∣∫ tk

tk−1

ft
(
ω(t )

)
dt − ftk

(
ω(tk )

)
(tk+1 − tk )

∣∣∣∣≤ (tk − tk−1)γ≤∆(v)γ,

where for the second equality we used that (tk − tk−1) ≤∆(v). Hence, and because
η[tk−1,tk ](ω) ≥ 1 and κ(tk − tk−1) ≥ 0, it follows that∣∣∣∣∫ tk

tk−1

ft
(
ω(t )

)
dt − ftk

(
ω(tk )

)
(tk+1 − tk )

∣∣∣∣≤∆(v)γη[tk−1,tk ](ω)

≤∆(v)
(
(tk − tk−1)κ+γη[tk−1,tk ](ω)

)
.

Thus, we have shown that for all k in {1, . . . ,n},∣∣∣∣∫ tk

tk−1

ft (Xt )dt − ftk (Xtk )(tk − tk−1)

∣∣∣∣≤∆(v)
(
(tk − tk−1)κ+γη[tk−1,tk ](ω)

)
.

It follows from this and Eq. (6.28)↶ that∣∣∣∣∫ r

s
ft (Xt )dt −〈 f•〉v

∣∣∣∣≤ n∑
k=1

∆(v)
(
(tk − tk−1)κ+γη[tk−1,tk ](ω)

)
=∆(v)

(
(r − s)κ+γη[s,r ](ω)

)
,

where for the equality we used that
∑n

k=1(tk − tk−1) = tn − t0 = r − s and that∑n
k=1η[tk−1,tk ](ω) = η[s,r ](ω).

By virtue of Proposition 6.7279, the bound in Lemma 6.37↶ induces an
upper bound on the difference of the lower (or upper) expectation of the
Riemann integral

∫ r
s ft (X t )dt and the lower (or upper) expectation of the

approximating Riemann sum 〈 f•〉v for any grid v over [s,r ].
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Proposition 6.38. Consider a non-empty and bounded set Q of rate oper-
ators, and an imprecise jump process P such that P ⊆ PQ. Fix some state
history {Xu = xu} in H, time points s,r in R≥0 such that maxu ≤ s ≤ r and
a Lipschitz continuous family ( ft )t∈[s,r ] of gambles on X with Lipschitz con-
stant κ, and let f := ∫ r

s ft (X t )dt and

γ := sup
{
max ft : t ∈ [s,r ]

}− inf
{
min ft : t ∈ [s,r ]

}
.

Then for any grid v over [s,r ],∣∣E D
P( f |Xu = xu)−EP

(〈 f•〉v
∣∣ Xu = xu

)∣∣≤∆(v)(r − s)
(
κ+ γ

2
∥Q∥op

)
and ∣∣∣E D

P( f |Xu = xu)−EP

(〈 f•〉v
∣∣ Xu = xu

)∣∣∣≤∆(v)(r − s)
(
κ+ γ

2
∥Q∥op

)
.

In particular, this holds for P = PHM
M,Q, P = PM

M,Q and P = PM,Q, with M a
non-empty set of initial mass functions.

Proof. Due to Lemmas 6.34301 and 6.37302, the statement follows immediately from
Proposition 6.7279 with α= (r − s)κ and β= 0.

Crucially, the preceding result implies that the lower (and upper) expec-
tation of the Riemann integral

∫ r
s ft (X t )dt is equal to the limit of the lower

(and upper) expectation of the approximating Riemann sums 〈 f•〉vn that cor-
respond to a sequence (vn)n∈N of grids over [s,r ] with vanishing grid width.
In the particular case of the ‘Riemann integral of a Lipschitz continuous
family ( ft )t∈[s,r ]’, we can therefore strengthen Corollary 5.34241 as follows.

Corollary 6.39. Consider a non-empty bounded set Q of rate operators, and an
imprecise jump processP such that P ⊆PQ. Fix a state history {Xu = xu} inH,
time points s,r in R≥0 such that maxu ≤ s ≤ r and a Lipschitz continuous
family ( ft )t∈[s,r ] of gambles on X. Then for any sequence (vn)n∈N of grids
over [s,r ] with limn→+∞∆(vn) = 0,

E D
P

(∫ r

s
ft (X t )dt

∣∣∣∣ Xu = xu

)
= lim

n→+∞EP

(〈 f•〉vn

∣∣ Xu = xu
)

and

E D
P

(∫ r

s
ft (X t )dt

∣∣∣∣ Xu = xu

)
= lim

n→+∞EP

(〈 f•〉vn

∣∣ Xu = xu
)
.

In particular, this holds for P = PHM
M,Q, P = PM

M,Q and P = PM,Q, with M a
non-empty set of initial mass functions.

Proof. Follows immediately from Corollary 5.34241, Lemma 6.34301 and Proposi-
tion 6.38.
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6.4.4 The special case of temporal averages

To conclude this section on variables that are defined through Riemann
integrals, we take a closer look at the special case of a constant family
( ft )t∈[s,r ] = ( f )t∈[s,r ] of gambles on X, so at the integral of f (X t ). As we have
already mentioned at the beginning of Section 6.4295, a common example
of such variables are occupancy times – see (Kulkarni, 2011, Section 4.5) or
(Iosifescu, 1980, Section 8.6). In particular, for any subset G of X and any
time points s and r in R≥0 such that s ≤ r ,

∫ r
s IG (X t )dt is the length of time

that (the state of) the system occupies G . Here, we shall focus on general
integrals of f (X t ), albeit in the form of temporal averages.

For any gamble f on X and any time points s and r in R≥0 such that s < r ,
we define the temporal average of f (X t ) over [s,r ] as

� f �[s,r ] := 1

r − s

∫ r

s
f (X t )dt : Ω→R : ω 7→ 1

r − s

∫ r

s
f
(
ω(t )

)
dt ;

additionally, for any grid v = (t0, . . . , tn) over [s,r ], we let

� f �v := 1

r − s

n∑
k=1

(tk − tk−1) f (X tk ).

To verify that the variable � f �[s,r ] is well-defined, we let ( ft )t∈[s,r ] be the family
of gambles on X that is defined by ft := f/(r−s) for all t in [s,r ]. Because the
family ( ft )t∈[s,r ] is constant, it is trivially Lipschitz continuous with Lipschitz
constant κ= 0, so we may specialise all of the results in Section 6.4.3301. For
example, it follows from Corollary 6.36301 that

� f �[s,r ] =
∫ r

s

1

r − s
f (X t )dt =

∫ r

s
ft (X t )dt (6.31)

is well-defined. Furthermore, Proposition 6.38↶ specialises as follows.

Corollary 6.40. Consider a non-empty and bounded set Q of rate operators,
and an imprecise jump process P such that P ⊆ PQ. Fix some state his-
tory {Xu = xu} in H, time points s,r in R≥0 such that maxu ≤ s < r and a
gamble f on X. Then for any grid v over [s,r ],∣∣E D

P(� f �[s,r ] |Xu = xu)−EP

(� f �v
∣∣ Xu = xu

)∣∣≤∆(v)∥ f ∥c∥Q∥op

and ∣∣∣E D
P(� f �[s,r ] |Xu = xu)−EP

(� f �v
∣∣ Xu = xu

)∣∣∣≤∆(v)∥ f ∥c∥Q∥op.

In particular, this holds for P = PHM
M,Q, P = PM

M,Q and P = PM,Q, with M a
non-empty set of initial mass functions.

Proof. For all t in [s,r ], we let ft := f/(r−s). Then the family ( ft )t∈[s,r ] of gambles
on X is Lipschitz continuous with Lipschitz constant κ := 0. Furthermore, we observe

305



Computing lower expectations of idealised variables

that � f �[s,r ] =
∫ r

s ft (Xt )dt and that, for any grid v over [s,r ], � f �v = 〈 f•〉v . Finally, it
is easy to see that

γ := sup
{
max ft : t ∈ [s,r ]

}− inf
{
min ft : t ∈ [s,r ]

}= max f −min f

r − s
= 2∥ f ∥c

r − s
.

With all this in mind, the statement follows immediately from Proposition 6.38304.

Long-term temporal averages

In many applications, for example in Power Network Example 6.51319 and
Section 8.2.4417 further on, we are interested in the (lower and upper) ex-
pected ‘long-term temporal average of f (X t )’. Formally, this means that we
are interested in the (lower and upper) expectation of

� f �[s,r ] = 1

r − s

∫ r

s
f (X t )dt

as r recedes to +∞. Instead, one could also try to define ‘the long-term
temporal average of f (X t )’ as a point-wise limit, that is, as the real variable
that maps every path ω in Ω to the limit of � f �[s,r ] as r recedes to +∞. Unfor-
tunately, this approach does not work because the point-wise limit may not
exist. We will once again use our running example to illustrate this.

Joseph’s Example 6.41. We are interested in the proportion of time that
Joseph’s machine displays heads. That is, we want to determine the ‘long-
term temporal average of IH(X t )’. We now set out to explicitly construct a
path ω in Ω for which

�IH�[0,r ](ω) = 1

r

∫ r

0
IH

(
ω(t )

)
dt

does not converge as r recedes to +∞.
To this end, we let r0 := 0 and r1 := 1, and for any natural number n,

we let rn+1 := 4× 3n−1. Note that the sequence (rn)n∈N is increasing with
limn→+∞ rn =+∞.2 We denote by ω the path that starts with heads, jumps
to tails at r1 = 1, jumps back to heads at r2 = 4, and so on; that is, we let

ω : R≥0 →X : t 7→ω(t ) :=
{
H if t ∈ [r2n−2,r2n−1[ for some n ∈N,

T if t ∈ [r2n−1,r2n[ for some n ∈N.

By construction, the path ω is càdlàg. Furthermore, it is not all too difficult –
but slightly cumbersome – to verify that as a function of r ,

�IH�[0,r ](ω) = 1

r

∫ r

0
IH

(
ω(t )

)
dt

2The sequence (rn )n∈N is catalogued as sequence A052156 in The On-Line Encyclopedia of
Integer Sequences.

306

http://oeis.org/A052156
http://oeis.org
http://oeis.org


6.4 Idealised variables in the form of Riemann integrals

r1r2 r3 r4 r5
0

1
4

3
4

1

Figure 6.1 Graph of 1
r

∫ r
0 IH

(
ω(t )

)
dt as function of r for the path ω as defined

in Joseph’s Example 6.41↶

evolves as depicted in Fig. 6.1: �IH�[0,r ](ω) is 1 on ]r0,r1], then decreases
on [r1,r2] to end up in 1/4 at r2, and subsequently increases on [r2,r3] to 3/4

at r3; further along the r -axis, this pattern of decreasing to 1/4 and increasing
to 3/4 repeats ad infinitum. In other words, as r grows, �IH�[0,r ](ω) oscillates
between 1/4 and 3/4. Consequently,

1

4
= liminf

r→+∞ �IH�[0,r ](ω) < limsup
r→+∞

�IH�[0,r ](ω) = 3

4
,

so limr→+∞�IH�[0,r ](ω) does not exist. ¢

Because ‘the long-term temporal average of f (X t )’ cannot be expressed
as a point-wise limit, we need to go about this in a different manner. This
is why, instead of looking at the limit of � f �[s,r ] directly, we look at the limit
of the (lower and upper) expectation of � f �[s,r ] as r recedes to +∞. This
limit has been thoroughly studied for homogeneous and Markovian jump
processes, so let us start there.

Consider a homogeneous Markovian jump process Pp0,Q with an ergodic
rate operator Q. Then it is well-known that for all f in G(X),

lim
r→+∞Ep0,Q

(
1

r

∫ r

0
f (X t )dt

∣∣∣∣ X0 = x

)
= Elim( f ) for all x ∈X, (6.32)

where Elim is the so-called limit expectation of Q that maps f to the value of
the constant function limr→+∞ erQ f – see also Section 7.3373 in Chapter 7337

further on. The proper result, known as the Point-Wise Ergodic Theorem,
is actually stronger; Iosifescu (1980, Section 8.6.6) and Norris (1997, Theo-
rem 3.8.1) formulate it as follows: the event{

ω ∈Ω : liminf
r→+∞

1

r

∫ r

0
f
(
ω(t )

)
dt = limsup

r→+∞
1

r

∫ r

0
f
(
ω(t )

)
dt = Elim( f )

}
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has probability one – for a suitable extension of Pp0,Q . Note that the possible
lack of convergence of 1

r

∫ r
0 f (X t )dt is dealt with in this case.

So, do these results generalise to imprecise Markovian jump processes?
Before even thinking of trying to answer this question, it is wise to consult
the literature regarding the discrete-time setting. De Cooman et al. (2016,
Theorem 32) have shown that the discrete-time counterpart of the second
result – so the point-wise ergodic theorem for Markov chains (see Norris, 1997,
Theorem 1.10.2) – generalises to imprecise Markov chains. However, because
they assume the framework of game-theoretic stochastic processes and we
do not work in this framework, their result is not immediately relevant to our
setting. Later, T’Joens et al. (2021, Theorem 14) have shown that the discrete-
time counterpart of Eq. (6.32)↶ also generalises to imprecise Markov chains;
their result is relevant to our setting, because their imprecise Markov chains
are defined as sets of ‘consistent discrete-time stochastic processes’. One
crucial difference is that they only show that the limit of the lower expected
temporal average exists and does not depend on the initial state, but not that
it is equal to the limit lower expectation; their reason for doing so is simple:
the limit of the lower expected temporal average can be (strictly) greater than
the limit of the lower expectation (see T’Joens et al., 2021, Example 2). They
do show, however, that the limit of the lower expected temporal average is
the same for the discrete-time counterparts of PHM

M,Q, PM
M,Q and PM,Q.

Because nearly all results for imprecise Markov chains translate to im-
precise homogeneous Markovian jump processes, we are led to believe that
these results regarding the convergence of expected temporal averages might
very well generalise to imprecise Markovian jump processes. We have to draw
the line somewhere though, so we will not investigate this in any theoretical
manner. We will, however, provide anecdotal evidence for our conjecture; of
course, we turn to our running example for this.

Joseph’s Example 6.42. Recall from Joseph’s Example 4.13171 that Eleanor’s
beliefs about Joseph’s machine are accurately modelled by EM,Q2

, with M =
{IH} as in Joseph’s Example 4.3161 and

Q2 =
{(−λH λH

λT −λT
)

: λH,λT ∈ [λ,λ]

}
as in Joseph’s Example 4.4163. Note that Q2 is non-empty, bounded and
has separately specified rows, and recall from Joseph’s Example 4.30192 that
Q :=QQ is ergodic if and only if λ+λ> 0.

In this example, we assume that Eleanor is interested in the long-term
expected proportion of time that Joseph’s machine displays heads. That is,
she is interested in the limit of

E D
M,Q2

(
1

r

∫ r

0
IH(X t )dt

∣∣∣∣ X0 = x

)
and E D

M,Q2

(
1

r

∫ r

0
IH(X t )dt

∣∣∣∣ X0 = x

)
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as r recedes to +∞, with x in X. By virtue of Corollary 6.40305 and Algo-
rithm 4.2168, we can compute these lower and upper expectations up to
arbitrary precision – note though that it is arguably more efficient to do this
with the recursive method in Theorem 6.50318 further on. Say we want to ap-
proximate the lower and upper expected temporal average with a maximum
error of ϵ, with ϵ a positive real number. Then by Corollary 6.40305, we need
to construct a grid v = (t0, . . . , tn) over [0,r ] such that

∆(v)∥IH∥c∥Q2∥op ≤ ϵ.

As in Joseph’s Example 6.5277, we divide the interval [0,r ] into n subintervals
of equal length. From the preceding inequality, it follows immediately that it
suffices to use

n :=
⌈

r∥IH∥c∥Q2∥op

ϵ

⌉
(6.33)

subintervals to attain the desired accuracy; that is, with v := (t0, . . . , tn) the
grid over [0,r ] such that tk := kr/n for all k in {0, . . . ,n},∣∣∣∣E D

M,Q2

(
1

r

∫ r

0
IH(X t )dt

∣∣∣∣ X0 = x

)
−EM,Q2

(�IH�v |X0 = x)

∣∣∣∣≤ ϵ
and ∣∣∣∣E D

M,Q2

(
1

r

∫ r

0
IH(X t )dt

∣∣∣∣ X0 = x

)
−EM,Q2 (�IH�v |X0 = x)

∣∣∣∣≤ ϵ.

Crucially, we can compute EM,Q2
(�IH�v |X0 = x) and EM,Q2 (�IH�v |X0 = x) be-

cause �IH�v has a sum-product representation over v . In particular, since
Q2 has separately specified rows, we can use Algorithm 4.2168 to com-
pute EM,Q2

(�IH�v |X0 = x). The same is true for EM,Q2 (�IH�v |X0 = x) be-

cause of Lemma 4.7165 and because, by conjugacy, EM,Q2 (�IH�v |X0 = x) =
−EM,Q2

(−�IH�v |X0 = x).

As in Joseph’s Example 4.21181, we take λ := 1 and λ := 3/2; then

∥Q2∥op = sup
{∥Q∥op : Q ∈Q2

}= sup
{
2max{λH,λT} : λH,λT ∈ [λ,λ]

}= 2λ= 3,

where the first equality is the definition of ∥Q2∥op and the second equality
holds due to (R5)81. Furthermore, we choose the tolerance ϵ := 1·10−4, and we
consider a grid of n = 200 equally-spaced time points r in the interval ]0,40].
We run Algorithm 4.2168 for these parameter values – using Eq. (3.75)115 to
determine e(tk−tk−1)Q – and plot our results in Fig. 6.2↷. The evolution of the
lower and upper expected averages of IH(X t ) agree with what we conjectured:
they converge, and their limit values are the same for all initial states x.
Furthermore, the lower expected average of IH(X t ) seems to converge to 2/5,
and this is precisely the limit lower expectation: for all x in {H,T},

lim
r→+∞[erQ

IH](x) = lim
r→+∞ IH(x)+ 1−e−r (λ+λ)

λ+λ
λx = λ

λ+λ
= 2

5
,
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0
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(•|X0 = T) EM,Q2 (•|X0 = T)

Figure 6.2 Lower and upper expectation of �IH�[0,r ] as a function of r .

where for the first equality we used Eq. (3.75)115; as we will see in Exam-
ple 6.52320 further on, this is a coincidence. More importantly, 2/5 is also the
limit expectation of the rate operator Q inQ2 with Q(H,T) =λ and Q(T,H) =λ.
The reason why this is important is that for the corresponding homogeneous
Markovian jump process PIH,Q , this limit expectation of IH is equal to the
limit of the expected temporal average of IH(X t ) due to the Point-Wise Er-
godic Theorem. Therefore, and because this homogenous Markovian jump
processPIH,Q belongs to PM,Q2 , we see that in this case, the limit of the lower
expected temporal average of IH(X t ) is actually reached by a homogeneous
and Markovian jump process. This strengthens our belief that the limit of
the lower expected temporal average is the same for PHM

M,Q, PM
M,Q and PM,Q.

Similar observations hold for the limit of the upper expected temporal aver-
age. ¢

6.5 Computing lower and upper expectations of idealised
variables

To conclude this chapter, we propose intuitive methods to compute lower
and upper expectations of the three types of idealised variables that we
have investigated in Sections 6.2281 to 6.4295. All of these variables have one
thing in common: they are the point-wise limit of simple variables with
a sum-product representation. In Section 6.5.1↷, we make two important
observations for such variables. We use these observations in Section 6.5.2313,
where we will propose and test our computation methods.
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6.5 Computing lower and upper expectations of idealised variables

6.5.1 Approximating idealised variables

Fix some non-empty set M of initial probability mass functions, a non-empty
and bounded setQ of rate operators that has separately specified rows and
an imprecise jump process P such that PM

M,Q ⊆P ⊆PM,Q. Suppose that we
want to determine the lower expectation of the limit variable f – for example,
the indicator of a time-bounded until event, a truncated hitting time or a
temporal average – up to some maximal error ϵ inR>0, and that we can do this
by determining the lower expectation of some simple variable – for example,
the indicator of an approximating until event, an approximating hitting time
or an approximating Riemann sum – of the form

g :=
n∑

k=0
gk (X tk )

k−1∏
ℓ=0

hℓ(X tℓ ),

with v = (t0, . . . , tn) a grid over [s,r ], g0, . . . , gn gambles on Xand h0, . . . , hn−1

non-negative gambles on X – note that this is the case in all considered
instances.

Because f has a sum-product representation over v , we can use Algo-
rithm 4.2168 to determine its lower expectation conditional on any {Xu = xu}
in H such that maxu ≤ s = min v . There is one main drawback to the
recursive approximation procedure in Algorithm 4.2168 though: for all k
in {0, . . . ,n−1}, we need to determine e(tk+1−tk )QQ fk+1. In general, we can only
do so by means of the numerical methods in Section 4.2173. That is, for all k
in {0, . . . ,n −1}, we need to construct a grid vk = (tk,0, . . . , tk,nk

) over [tk , tk+1]
and then evaluate (I + (tk,ℓ− tk,ℓ−1)QQ) as ℓ decreases from nk to 1. Intu-
itively, however, we expect that whenever the grid v is sufficiently fine, we
can get away with a ‘one-step estimate’, because then

e(tk+1−tk )QQ fk+1 ≈ (I + (tk+1 − tk )QQ) fk+1

due to Lemma 4.16178 and (LT14)179. The following result bounds the error
that is made by relying on this one-step estimate; its proof is straightforward,
and can be found in Appendix 6.C327.

Lemma 6.43. Consider a lower rate operator Q and a sequence of time
points v = (t0, . . . , tn) in U̸=( ) such that ∆(v)∥Q∥op ≤ 2. Fix gambles g0, . . . , gn

and h0, . . . , hn−1 in G(X) such that 0 ≤ hk ≤ 1 for all k in {0, . . . ,n −1}. Let f0

and f̃0 be the gambles on X defined by the initial condition fn := gn =: f̃n and,
for all k in {0, . . . ,n −1}, by the recursive relations

fk := gk +hk e∆k+1Q fk+1 and f̃k := gk +hk (I +∆k+1Q) f̃k+1,

where for all k in {0, . . . ,n −1}, we let ∆k+1 := (tk+1 − tk ). Then

∥∥ f0 − f̃0
∥∥≤ 1

2
∥Q∥2

op

n∑
k=1

∆2
k∥ f̃k∥c.
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Computing lower expectations of idealised variables

In Section 6.5.2↷ further on, we use this idea to arrive at methods to
compute the lower and upper expectations of time-bounded until events,
truncated hitting times and Riemann integrals of a Lipschitz continuous fam-
ily. These methods will only consider conditioning events of the form {Xs = x},
with s the first time point of the interval on which these variables depend. In
the remainder of this section, we explain why this can be done without any
loss of generality.

All three of the types of idealised variables that we will consider have in
common that they are defined over a time interval [s,r ], and that for any de-
sired maximal error ϵ in R>0, we can use the bounds in Propositions 6.13283,
6.22293 or 6.38304 to determine a grid v over [s,r ] such that the lower and
upper expectations of the corresponding approximating sum-product vari-
able fv are ϵ-close to the lower and upper Daniell expectations of the idealised
variable f[s,r ]. More formally, they clearly satisfy the condition of the follow-
ing result. We state this result for the lower expectation only, but it is clear
that a similar statement holds for the upper expectation due to conjugacy; in
order not to disrupt the main text too much, we have relegated our proof to
Appendix 6.C327.

Lemma 6.44. Consider a non-empty set M of initial mass functions, a non-
empty and bounded set Q of rate operators that has separately specified rows
and an imprecise jump process P such that PM

M,Q ⊆ P ⊆ PM,Q. Fix some
time points s,r in R≥0 and an idealised variable f such that for all u in U

with maxu ≤ s, f belongs to Vlim(Fu). If for all ϵ in R>0, there is some grid v
over [s,r ] and some real variable g inV(Ω) with a sum-product representation
over v such that, for all {Xu = xu} in H with maxu ≤ s,∣∣E D

P( f |Xu = xu)−EP(g |Xu = xu)
∣∣≤ ϵ,

then the map fs on X defined by

fs (x) := E D
P( f |Xs = x) for all x ∈X

is a gamble on X, and for all {Xu = xu} in H with maxu ≤ s,

E D
P( f |Xu = xu) = EP

(
E D
P( f |Xs )

∣∣ Xu = xu
)= EP( fs (Xs ) |Xu = xu).

Note that fs (Xs ) in this result is a real variable that trivially has a sum-
product representation over (s), so we can compute EP( fs (Xs ) |Xu = xu) with
Theorem 4.9166. Therefore, we can henceforth indeed focus on computing

fs (x) = E D
P( f |Xs = x) for all x ∈X,

without loss of generality.
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6.5 Computing lower and upper expectations of idealised variables

6.5.2 Recursive computational methods

Lemma 6.43311 is not the only result that we need to establish our ‘intuitive’
approximation methods. For lower and upper probabilities of time-bounded
until events, we also need Proposition 6.13283, for lower and upper expect
truncated hitting times we invoke Proposition 6.22293, and for lower and
upper expectations of Riemann integrals we rely on Proposition 6.38304. For
each of these three cases, we consider the limit variable f corresponding
to [s,r ], with s,r in R≥0 such that s < r , and construct a sequence ( f̃n,0(x))n∈N
of approximations of the lower expectation of this limit variable f conditional
on {Xs = x}.

Our usual running example is just a tad too basic to illustrate our methods.
The slogan ‘four legs good, two legs bad’ is applicable here: we increase the
size of the state space from 2 to 4.

Power Network Example 6.45. Troffaes et al. (2015) use an imprecise jump
process to asses the reliability of a power network. They follow up on their
earlier work (Troffaes et al., 2013) and consider a power network that consists
of two parallel power lines, called A and B, so the network is up and running
as long as at least one of the two power lines is in operation. Thus, an inde-
pendent failure of one of the two power lines is not that much of an issue,
because it does not cause a power outage as long as the other power line is in
operation. If both power lines fail due to the same cause, this does result in a
power outage; whenever this occurs, we speak of a common cause failure.

Troffaes et al. (2015, Sections 2.2 and 3.4) model this power network
with an imprecise jump process as follows. The state space of the network is
X := {AB,A,B,F}, where the state F corresponds to a failure of both power lines
and where the other state labels indicate the power lines that are working.
The setQ of rate operators is specified through lower and upper bounds on
the off-diagonal components of corresponding matrices:

Q := {
Q ∈Q : (∀x, y ∈X, x ̸= y) QL(x, y) ≤Q(x, y) ≤QU(x, y)

}
,

where the matrices

QL :=


∗ 0.32 0.32 0.19

730 ∗ 0 0.51
730 0 ∗ 0.51

0 730 730 ∗

 and QU :=


∗ 0.37 0.37 0.24

1460 ∗ 0 0.61
1460 0 ∗ 0.61

0 1460 1460 ∗


collect the bounds on the off-diagonal components – so QL(A,B) = 0 and
QU(B,F) = 0.61. Because every rate matrix has rows that sum to zero, the
constraints on the diagonal elements of Q are implied by the others. Note
thatQ is non-empty and bounded, and that it has separately specified rows by
construction. It is also easy to see thatQ is convex, soQ is equal to the setQQ

of rate operators that dominate its lower envelope Q := QQ. Furthermore,
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Computing lower expectations of idealised variables

evaluating the lower envelope Q :=QQ of Q is almost trivial because of the
specific structure ofQ. For example, we immediately find that

∥Q∥op = 2max
{−[QIx ](x) : x ∈X}=−2[QIF](F) =−2(−2×1460) = 5840,

where the first equality is (LR7)111.
Troffaes et al. (2015) do not explicitly specify a set M of initial probability

mass functions, and use (an informal version of) the imprecise jump pro-
cess PM,Q to model the power network; because M does not play a role in
our analysis, we take it to be equal to ΣX . £

Time-bounded until events

First, we use Proposition 6.13283, Theorem 4.9166 and Lemma 6.43311 to
establish a method to recursively compute the lower and upper probability
of a bounded until event. Our proof is relatively straightforward, so we have
relegated it to Appendix 6.D330.

Theorem 6.46. Consider a non-empty set M of initial mass functions, a
non-empty and bounded set Q of rate operators that has separately specified
rows and an imprecise jump process P such that PM

M,Q ⊆ P ⊆ PM,Q. Fix
subsets S,G of X and time points s,r in R≥0 such that s < r . For all n inN, we
let ∆n := (r−s)/n and let f̃n,0 be the gamble on X that is defined by the initial
condition f̃n,n := IG and, for all k in {0, . . .n −1}, by the recursive relation

f̃n,k := IG + IS\G
(
I +∆nQQ

)
f̃n,k+1. (6.34)

Then for all x in X and n inN such that (r − s)∥QQ∥op ≤ 2n,

∣∣P D
P

(
H S,G

[s,r ]

∣∣ Xs = x
)− f̃n,0(x)

∣∣≤ 3

8

(r − s)2

n
∥QQ∥2

op,

and therefore
P D
P

(
H S,G

[s,r ]

∣∣ Xs = x
)= lim

n→+∞ f̃n,0(x).

The same holds for P D
P

if in Eq. (6.34) we replace QQ by QQ.

Let us test the recursive method in Theorem 6.46 in the setting of our new
running example.

Power Network Example 6.47. Troffaes et al. (2015, Sections 2.3 and 3.5) look
at the network over a period of 10 years, and we will do the same. Here, we
are interested in the event that over this 10 year period, there is a common
cause failure first, in the sense that both power lines never fail separately
before the first time that the network is down. In our model, this corre-
sponds to a jump from AB to F, without visiting other states; hence, the event
‘there is a common cause failure first’ corresponds to the time-bounded until
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6.5 Computing lower and upper expectations of idealised variables

event HAB,F
[0,10] := H S,G

[0,10] with S := {AB} and G := {F} – ironically, in this instance
the set of ‘goal’ states contains the only state that we do not want our system
to be in. We make the natural assumption that both lines of the network are
currently working, so we need to determine

PM,Q

(
HAB,F

[0,10]

∣∣ X0 = AB
)

and PM,Q
(
HAB,F

[0,10]

∣∣ X0 = AB
)
.

Needless to say, we use Theorem 6.46↶ to do so. The minimum number of
iterations that Theorem 6.46↶ dictates is

nmin :=
⌈10∥Q∥op

2

⌉
=

⌈
10×5840

2

⌉
= 29200.

With the recursive procedure in Theorem 6.46↶ for n = nmin, we find that

PM,Q

(
HAB,F

[0,10]

∣∣ X0 = AB
)≈ 0.2043 and PM,Q

(
HAB,F

[0,10]

∣∣ X0 = AB
)≈ 0.2726.

Quite remarkably, increasing the number of iterations does not change the
first four significant digits of these approximations.

For both the lower and the upper probability, we determine f̃n,0(xs ) for
increasing values of n, starting from the minimum number of iterations n =
nmin and then repeatedly doubling the number of iterations until n = 210nmin.
In Fig. 6.3↷, we report the relative difference

f̃2k nmin,0(xs )− f̃210nmin,0(xs )

f̃210nmin,0(xs )

between the k-th estimate and the last estimate, with k ranging from 0 to 9.
The relative difference for k = 0 is less than 1 ·10−6 and then decreases as the
number of iterations grows; the decrease is linear on the log-log graph, so
the error decreases exponentially as the number of iterations increases. For
n = 2k nmin, the theoretical upper bound on the error in Theorem 6.46↶ is

3

8

102

2k nmin
∥Q∥2

op = 43800

2k
.

While this bound does decrease exponentially, it is clearly overly conservative;
it overestimates the error by about ten orders of magnitude!

Finally, we use Theorem 6.46↶ to determine the lower and upper proba-
bility of HAB,F

[0,r ] for various values of r and plot these in Fig. 6.4↷. From this
graph, it is clear that these lower and upper probabilities converge; these
limit values are approximately equal to the lower and upper probability
of HAB,F

[0,10]. £
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Figure 6.3 Relative difference between the approximation for n = 2k nmin and
that for n = 210nmin for the lower and upper probability of HAB,F

[0,10].
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0
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PM,Q(HAB,F
[0,r ] |X0 = AB) PM,Q(HAB,F

[0,r ] |X0 = AB)

Figure 6.4 Lower and upper probability of HAB,F
[0,r ] as a function of r .

Truncated hitting times

Next, we propose a recursive method to iteratively compute the lower and
upper expectation of a truncated hitting time. The proof is similar to the proof
of Theorem 6.46314, although we now rely on Proposition 6.22293 instead of
on Proposition 6.13283; for the details, see Appendix 6.D330.

Theorem 6.48. Consider a non-empty set M of initial mass functions, a
non-empty and bounded set Q of rate operators that has separately specified
rows and an imprecise jump process P such that PM

M,Q ⊆P ⊆PM,Q. Fix some
subset G of X and time points s,r in R≥0 such that s < r . For all n in N, we
let ∆n := (r−s)/n and let f̃n,0 be the gamble on X that is defined by the initial
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6.5 Computing lower and upper expectations of idealised variables

condition f̃n,n :=∆n and, for all k in {0, . . .n −1}, by the recursive relation

f̃n,k :=
{
∆n + IGc

(
I +∆nQQ

)
f̃n,k+1 if k ≥ 1,

s + IGc
(
I +∆nQQ

)
f̃n,k+1 if k = 0.

(6.35)

Then for all x in X and all n inN such that (r − s)∥QQ∥op ≤ 2,

∣∣E D
P

(
τG

[s,r ]

∣∣ Xs = x
)− f̃n,0(x)

∣∣≤ r − s

n
+ 1

8

(r − s)3

n

2n +1

n
∥QQ∥2

op,

and therefore

E D
P

(
τG

[s,r ]

∣∣ Xs = x
)= lim

n→+∞ f̃n,0(x).

The same holds for E D
P

if in Eq. (6.35) we replace QQ by QQ.

Here too, we use our running example to put our new recursive computa-
tion method to the test.

Power Network Example 6.49. In our model, the time until a failure occurs
corresponds to τF := τ{F}

[0,+∞[, so this is a prime example of a hitting time. Due
to Lemma 6.24294 and Corollary 5.33240,

EM,Q

(
τF[0,r ]

∣∣ X0 = AB
)

and EM,Q
(
τF[0,r ]

∣∣ X0 = AB
)

converge to a conservative lower bound on the lower expected hitting time
and to the exact value of the upper expected hitting time, respectively.

Let us again start with r = 10. The minimum number of iterations that
Theorem 6.48↶ dictates is nmin = 29200. With the recursive procedure in
Theorem 6.48↶ for n = nmin, we find that

EM,Q

(
τF[0,10]

∣∣ X0 = AB
)≈ 3.784 and EM,Q

(
τF[0,10]

∣∣ X0 = AB
)≈ 4.474.

As in Power Network Example 6.47314, increasing the number of iterations
does not change the first four significant digits of these approximations.
In Fig. 6.5↷, we report the relative difference between the k-th estimate
corresponding to n = 2k nmin and the estimate corresponding to n = 210nmin,
with k ranging from 0 to 9. The relative difference for k = 0 is less than 1 ·10−4

and then decreases as the number of iterations grows; as in Fig. 6.3↶, the
error decreases exponentially.

Let us get back to determining the lower and upper expected hitting
time. To this end, we determine the lower and upper expectation of τF[0,r ] for
various values of r and plot these in Fig. 6.6↷. The lower and upper expected
truncated hitting time converges, as required. Up to four significant digits,
the limit values are 4.160 and 5.2590; about twice as large as the lower and
upper expectation of τF[0,10]. £
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Figure 6.5 Relative difference between the approximation corresponding to
n = 2k nmin and the one corresponding to n = 210nmin for the lower
and upper expectation of τF[0,10].
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Figure 6.6 Lower and upper expectation of τF[0,r ] as a function of r .

Riemann integrals

Finally, we propose a method to compute the lower and upper expectation of
an idealised variable in the form of a Riemann integral.

Theorem 6.50. Consider a non-empty set M of initial mass functions, a non-
empty and bounded set Q of rate operators that has separately specified rows
and an imprecise jump process P such that PM

M,Q ⊆P ⊆PM,Q. Fix some time
points s,r in R≥0 such that s < r and a Lipschitz continuous family ( ft )t∈[s,r ]

of gambles on X with Lipschitz constant κ, and let

γ := sup
{
max ft : t ∈ [s,r ]

}− inf
{
min ft : t ∈ [s,r ]

}
.
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6.5 Computing lower and upper expectations of idealised variables

For all n in N, we let ∆n := (r−s)/n and let f̃n,0 be the gamble on X that is
defined by the initial condition f̃n,n :=∆n fr and, for all k in {0, . . .n −1}, by
the recursive relation

f̃n,k :=
{
∆n fs+k∆n +

(
I +∆nQQ

)
f̃n,k+1 if k ≥ 1,(

I +∆nQQ

)
f̃n,k+1 if k = 0.

(6.36)

Then for all x in X and n inN such that (r − s)∥QQ∥op ≤ 2n,∣∣∣∣E D
P

(∫ r

s
ft (X t )dt

∣∣∣∣ Xs = x

)
− f̃n,0(x)

∣∣∣∣
≤ (r − s)2

n

(
κ+ γ

2
∥Q∥op + 1

8
(r − s)

n +1

n
∥Q∥2

op

)
,

and therefore

E D
P

(∫ r

s
ft (X t )dt

∣∣∣∣ Xs = x

)
= lim

n→+∞ f̃n,0(x).

The same holds for E D
P

if in Eq. (6.36) we replace QQ by QQ.

Let us use the recursive method in Theorem 6.50↶ to compute a temporal
average for our running example.

Power Network Example 6.51. Troffaes et al. (2015) assess the reliability of
the power network by looking at two inferences: the number of failures and
the length of time that the network is down, both over a ten year period. In
their model, the latter corresponds to the time that the system spends in the
state F, so to

∫ 10
0 IF(X t )dt . Thus, we should determine

EM,Q

(∫ 10

0
IF(X t )dt

∣∣∣∣ X0 = AB
)

and EM,Q

(∫ 10

0
IF(X t )dt

∣∣∣∣ X0 = AB
)
,

the lower and upper expected downtime of the system over a ten year pe-
riod. Of course, we do so with the method in Theorem 6.50↶. As in Power
Network Examples 6.47314 and 6.49317, the minimum number of iterations is
nmin = 29200. With n = nmin in Theorem 6.50↶, we find the approximations
6.512 · 10−4 and 1.647 · 10−3 for the lower and upper expected down time,
respectively. In contrast to Power Network Examples 6.47314 and 6.49317, in-
creasing the number of iterations does change the fourth significant digit of
these approximations. In Fig. 6.7↷, we report the relative difference between
the k-th estimate corresponding to n = 2k nmin and the estimate correspond-
ing to n = 210nmin, with k ranging from 0 to 9. The relative difference for
k = 0 is still well below 1·10−4, and then decreases as the number of iterations
grows; here too, the error decreases exponentially.

Troffaes et al. (2015) approximate the lower (and upper) expected
downtime heuristically. In essence, they use the limit lower expectation
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Figure 6.7 Relative difference between the approximation corresponding to
n = 2k nmin and the one corresponding to n = 210nmin for the lower
and upper expectation of

∫ 10
0 IF(X t )dt .

limt→+∞ e tQ
IF as an approximation for the limit of the lower expected tem-

poral average, and then multiply this approximation by 10, the length of
the time period. In this way, they find approximations for the lower and
upper expected downtime that are virtually the same as ours: 6.513 ·10−4 and
1.647 ·10−3, respectively. Hence, this is a second example where the lower
and upper expected temporal average seem to converge to the lower and
upper limit expectation. This need not always be the case, as Example 6.52
further on illustrates, so the heuristic of Troffaes et al. (2015) can sometimes
yield overly conservative bounds.

Another issue with this heuristic method, is that the resulting approxima-
tion is the same for every initial state x. This is not necessarily the case for
the actual value though! For example, we find that conditional on {X0 = F},
the lower and upper expected downtime is 9.938 ·10−4 and 2.332 ·10−3, re-
spectively. To explain this difference, we plot the lower and upper expected
temporal average of IF as function of the time horizon in Fig. 6.8↷. We see
that when starting from the initial state AB, the expected temporal average
converges almost instantaneously compared to the expected temporal aver-
age starting from F. It is this extensive transient phase that causes our values
to be so different. £

To conclude this chapter on computing lower and upper expectations for
idealised variables, we give an example where the upper expected temporal
average does not converge to the upper limit expectation.

Example 6.52. We consider a ternary state space X := {a,b,c}, the set of rate
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0

2 ·10−4

4 ·10−4

r

EM,Q
(�IF�[0,r ]

∣∣ X0 = AB
)

EM,Q
(�IF�[0,r ]

∣∣ X0 = AB
)

EM,Q
(�IF�[0,r ]
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(�IF�[0,r ]

∣∣ X0 = F
)

Figure 6.8 Lower and upper expectation of �IF�[0,r ] = 1
r

∫ r
0 IF(X t )dt as a func-

tion of r .

operators

Q :=


−λa λa 0
µb −µb−λb λb
0 µc −µc

 :

λa = 1,µb = 10,

λb ∈ [1,100],

µc ∈ [1,100]


and an arbitrary non-empty set M ⊆ΣX of initial probability mass functions.
For the Markovian imprecise jump process PM,Q, we are after the upper
expected fraction of time that the system is in state b. For each initial state x
in X and for increasing values of r in R≥0, we determine

EM,Q

(
1

r

∫ r

0
Ib(X t )dt

∣∣∣∣ X0 = x

)
=−EM,Q

(
1

r

∫ r

0
[−Ib](X t )dt

∣∣∣∣ X0 = x

)
with Theorem 6.50318. For large enough r , we obtain 0.091 – or 9.1 % –
and this value does not depend on the initial state x. To compare with the
heuristic of Troffaes et al. (2015), we determine the upper limit expectation
limt→+∞−e tQQ (−Ib). Remarkably, this upper expectation is 0.703 – or 70.3 %
– so this shows that the upper expected temporal average need not converge
to the upper limit expectation, and that it can converge to a significantly
lower value. ⋄

6.A Proof of Proposition 6.2

This appendix is devoted to the proof of Proposition 6.2275. Before we can get
around to our proof, we need to establish the following upper bound on the
probability of the event of having a jump over two consecutive subintervals.

321



Computing lower expectations of idealised variables

Lemma 6.53. Consider a jump process P that has uniformly bounded rate,
with rate bound λ. Fix a state history {Xu = xu} in H and time points s, t ,r
in R≥0 such that maxu ≤ s < t < r . Then

{Xs ̸= X t ̸= Xr } := {
ω ∈Ω : ω(s) ̸=ω(t ) ̸=ω(r )

}
belongs to Fu , and

P (Xs ̸= X t ̸= Xr |Xu = xu) ≤ 1

4
(t − s)(r − t )λ2.

Proof. To verify the first part of the statement, we observe that

A := {Xs ̸= Xt ̸= Xr } = {Xv ∈ B},

where we let v := (s, t ,r ) and B := {
(x, y, z) ∈X(s,r,t ) : x ̸= y ̸= z

}
. Note that v ≽ u by

the assumption of the statement, so it follows from Eq. (3.16)63 that {Xs ̸= Xt ̸= Xr }
belongs to Fu .

To verify the second part of the statement, we let

f : X(s,t ,r ) →R : (x, z, y) 7→
{

1 if x ̸= y ̸= z

0 otherwise

and

g : X2 →R : (x, y) 7→
{

1 if x ̸= y

0 otherwise,

and observe that

IA = f (Xs , Xt , Xr ) = g (Xs , Xt )g (Xt , Xr ). (6.37)

Consequently,

P (A |Xu = xu ) = EP (IA |Xu = xu ) = EP ( f (Xs , Xt , Xr ) |Xu = xu ). (6.38)

We will now use this equality, the law of iterated expectations and Theorem 5.27236
to prove the inequality of the statement. To make our lives a little easier, we assume
that maxu < s; the proof for the case that maxu = s is analoguous, the only difference
being that the first and last step are not needed then.

It follows from Theorem 3.1972 that

EP ( f (Xs , Xt , Xr ) |Xu = xu ) = EP
(
EP ( f (Xs , Xt , Xr ) |Xv )

∣∣ Xu = xu
)
, (6.39)

with v := u ∪ (s). We take a closer look at the innermost conditional expectation. To
this end, we fix any yv in Xv . Then by Theorem 3.1972,

EP
(

f (Xs , Xt , Xr )
∣∣ Xv = yv

)= EP
(
EP

(
f (Xs , Xt , Xr )

∣∣ Xw
)∣∣ Xv = yv

)
, (6.40)

with w := u ∪ (s, t ).
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6.A Proof of Proposition 6.2

Again, we focus on the innermost conditional expectation. To this end, we fix any
zw in Xw . Then it follows from Corollary 3.1871, Eq. (6.37)↶ and (ES2)37 that

EP
(

f (Xs , Xt , Xr )
∣∣ Xw = zw

)= EP
(

f (zs , zt , Xr )
∣∣ Xw = zw

)
= EP

(
g (zs , zt )g (zt , Xr )

∣∣ Xw = zw
)

= g (zs , zt )EP
(
g (zt , Xr )

∣∣ Xw = zw
)

= g (zs , zt )EP
(
g (Xt , Xr )

∣∣ Xw = zw
)
.

By definition, g (Xt , Xr ) = η(t ,r ), so it follows from Theorem 5.27236 – with v = (t ,r ) –
that

EP
(

f (Xs , Xt , Xr )
∣∣ Xw = zw

)≤ g (zs , zt )(r − t )
λ

2
.

Because this inequality holds for all zw in Xw , we conclude that

EP
(

f (Xs , Xt , Xr )
∣∣ Xw

)≤ g (Xs , Xt )
1

2
(r − t )λ.

It follows from this inequality, Eq. (6.40)↶, (ES2)37 and (ES4)37 that

EP
(

f (Xs , Xt , Xr )
∣∣ Xv = yv

)≤ 1

2
(r − t )λEP

(
g (Xs , Xt )

∣∣ Xv = yv
)
.

We now apply the same trick as before, to obtain that for all yv in Xv ,

EP
(

f (Xs , Xt , Xr )
∣∣ Xv = yv

)≤ 1

4
(t − s)(r − t )λ2.

It follows from this inequality, Eq. (6.39)↶ and (ES1)37 that

EP
(

f (Xs , Xt , Xr )
∣∣ Xu = xu

)≤ 1

4
(t − s)(r − t )λ2.

Finally, it follows from the preceding inequality and Eq. (6.38)↶ that

P (Xs ̸= Xt ̸= Xr |Xu = xu ) ≤ 1

4
(t − s)(r − t )λ2,

which is the inequality of the second part of the statement.

Even with Lemma 6.53↶, our proof for Proposition 6.2275 is pretty long.

Proposition 6.2. Consider a jump process P that has uniformly bounded rate,
with rate bound λ. Fix a state history {Xu = xu} in H, time points s,r in R≥0

such that maxu ≤ s < r and a grid v = (t0, . . . , tn) over [s,r ]. Then η[s,r ] −ηv is
a non-negative Fu-over variable, and

E D
P (η[s,r ] −ηv |Xu = xu) = E D

P (η[s,r ] |Xu = xu)−EP (ηv |Xu = xu)

≤ 1

4
∆(v)(r − s)λ2.
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Proof. For every ℓ inN and k in {1, . . . ,n}, we let vℓ,k be the grid over [tk−1, tk ] that

divides this subinterval in 2ℓ subintervals of equal length. That is, for all ℓ inN and k
in {1, . . . ,n}, we let vℓ,k := (

tℓ,k,0, . . . , tℓ,k,2ℓ
)

where for all i in {0, . . . ,2ℓ},

tℓ,k,i := tk−1 + (tk − tk−1)
i

2ℓ
.

Next, for all ℓ in N, we let vℓ be the (ordered) union of vℓ,1, . . . , vℓ,n ; this way,

vℓ is a grid over [s,r ] with ∆(vℓ) = ∆(v)2−ℓ such that v ⊆ vℓ ⊆ vℓ+1. Recall from
Lemma 5.21234 that ηv and, for all ℓ inN, ηvℓ are Fu -simple variables. Therefore, it
follows immediately from Lemma 2.3936 that for all ℓ inN, (ηvℓ −ηv ) is an Fu -simple
variable. Furthermore, for all ℓ inN, it follows immediately from Lemma 5.23234 that
ηvℓ+1 ≥ ηvℓ ≥ ηv because vℓ+1 ⊇ vℓ ⊇ v by construction. Thus, we have shown that
(ηvℓ −ηv )ℓ∈N is a non-decreasing sequence of non-negative Fu -simple variables;
that this sequence converges point-wise to η[s,r ] −ηv follows immediately from The-
orem 5.26236. Hence, η[s,r ] −ηv is a non-negative Fu -over variable, and it follows
from (DE1)225, (DE3)225 and Theorem 5.10226 that

E D
P (η[s,r ] −ηv |Xu = xu ) = lim

ℓ→+∞
EP (ηvℓ −ηv |Xu = xu ). (6.41)

In order to verify the inequality of the statement, we investigate the expectations
on the right-hand side of the preceding equality. To this end, we fix any ℓ in N. It
follows from (repeated application of) Lemma 5.22234 that

ηvℓ −ηv =
n∑

k=1
ηvℓ,k −

n∑
k=1

η(tk−1,tk ) =
n∑

k=1

(
ηvℓ,k −η(tk−1,tk )

)
. (6.42)

Recall from Lemma 5.24234 that, for all k in {1, . . . ,n},

ηvℓ,k = η(tk−1,tk ) +2
2ℓ−1∑
i=1

I{
X tℓ,k,i−1

̸=X tℓ,k,i
̸=X t

ℓ,k,2ℓ

}.

We substitute the preceding equality in Eq. (6.42), to yield

ηvℓ −ηv = 2
n∑

k=1

2ℓ−1∑
i=1

I{
X tℓ,k,i−1

̸=X tℓ,k,i
̸=X t

ℓ,k,2ℓ

};

from this equality, it follows that

EP (ηvℓ −ηv |Xu = xu ) = EP

(
2

n∑
k=1

2ℓ−1∑
i=1

I{
X tℓ,k,i−1

̸=X tℓ,k,i
̸=X t

ℓ,k,2ℓ

} ∣∣∣∣∣ Xu = xu

)

= 2
n∑

k=1

2ℓ−1∑
i=1

P
(
Xtℓ,k,i−1 ̸= Xtℓ,k,i ̸= Xt

ℓ,k,2ℓ

∣∣ Xu = xu
)
,
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6.B Proof of Lemma 6.6

where for the second equality we used Eq. (2.19)36. We replace the probabilities on
the right-hand side of the equality by the upper bound in Lemma 6.53322, to yield

EP (ηvℓ −ηv |Xu = xu ) ≤ 2
n∑

k=1

2ℓ−1∑
i=1

1

4

(
tℓ,k,i − tℓ,k,i−1

)(
tℓ,k,2ℓ − tℓ,k,i

)
λ2

= 2
n∑

k=1

2ℓ−1∑
i=1

1

4

tk − tk−1

2ℓ
(tk − tk−1)(2ℓ− i )

2ℓ
λ2

= 1

2
λ2

n∑
k=1

(tk − tk−1)2 1

2ℓ

2ℓ−1∑
i=1

2ℓ− i

2ℓ
,

where the two equalities follow after some straightforward manipulations. Because

2ℓ−1∑
i=1

2ℓ− i

2ℓ
= 1

2ℓ

2ℓ−1∑
i=1

(2ℓ− i ) = 1

2ℓ

2ℓ−1∑
i=1

i = 1

2ℓ
(2ℓ−1)2ℓ

2
= 2ℓ−1

2
,

it follows from this inequality that

EP (ηvℓ −ηv |Xu = xu ) ≤ 1

2
λ2

n∑
k=1

(tk − tk−1)2 1

2ℓ
2ℓ−1

2

= 1

4
λ2 2ℓ−1

2ℓ

n∑
k=1

(tk − tk−1)2

≤ 1

4
∆(v)(r − s)λ2 2ℓ−1

2ℓ
,

where for the last inequality we used that (tk − tk−1) ≤∆(v) for all k in {1, . . . ,n} and
that

∑n
k=1(tk − tk−1) = (r − s).

It follows from the preceding inequality and Eq. (6.41)↶ that

E D
P (η[s,r ] −ηv |Xu = xu ) ≤ lim

ℓ→+∞
1

4
∆(v)(r − s)λ2 2ℓ−1

2ℓ
= 1

4
∆(v)(r − s)λ2,

establishing the inequality in the statement. Furthermore, because η[s,r ] and η[s,r ] −
ηv are non-negative Fu -over variables – see Theorem 5.26236 for the former – and
because ηv is an Fu -simple variable (and hence bounded), it follows from (DE1)225,
(DE2)225, (DE3)225 and (DE5)225 that

E D
P (η[s,r ] −ηv |Xu = xu ) = E D

P (η[s,r ] |Xu = xu )−E D
P (ηv |Xu = xu )

= E D
P (η[s,r ] |Xu = xu )−EP (ηv |Xu = xu ),

and this proves the equality in the statement.

6.B Proof of Lemma 6.6

Lemma 6.6. Consider a jump process P that has uniformly bounded rate,
with rate bound λ. Fix a state history {Xu = xu} in H, time points s,r in R≥0

such that maxu ≤ s ≤ r , a grid v over [s,r ], a limit variable f inVlim(Fu) and
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Computing lower expectations of idealised variables

an Fu-simple variable g . If there are non-negative real numbers α,β,γ such
that

| f − g | ≤α∆(v)+β(
η[s,r ] −ηv

)+γ∆(v)η[s,r ],

then∣∣E D
P ( f |Xu = xu)−EP (g |Xu = xu)

∣∣≤∆(v)

(
α+ 1

4
β(r − s)λ2 + 1

2
γ(r − s)λ

)
.

Proof. To simplify our notation, we let P xu := P (•|Xu = xu ). Note that P xu is a
countably additive probability charge on Fu because P is a countably additive jump
process. Thus,

E D
P ( f |Xu = xu )−EP (g |Xu = xu ) = E D

P xu ( f )−EP xu (g ) = E D
P xu ( f )−E D

P xu (g ),

where the second equality follows from (DE1)225 and where E D
P xu is the Daniell exten-

sion of the Dunford integral EP xu corresponding to P xu . Because g is an Fu -simple
variable by assumption, −∞< min g ≤ max g <+∞; hence, −∞< E D

P xu (g ) <+∞ due
to (DE3)225. For this reason, it follows from (DE5)225 that f − g belongs to DD

P xu and
that

E D
P ( f |Xu = xu )−EP (g |Xu = xu ) = E D

P xu ( f )−E D
P xu (g ) = E D

P xu ( f − g ). (6.43)

Next, we set out to show using (DE5)225 that

h :=α∆(v)+β(
η[s,r ] −ηv

)+γ∆(v)η[s,r ]

is D-integrable. For the first term, we recall from Lemma 2.3936 that α∆(v) belongs
toS(Fu ) and from (ES1)37 that EP xu (α∆(v)) =α∆(v); hence, it follows from (DE1)225
that α∆(v) belongs to DD

P xu , and that E D
P xu (α∆(v)) =α∆(v). For the second term, we

recall from Proposition 6.2275 that
(
η[s,r ] −ηv

)
is a non-negative Fu -over variable;

hence, it follows from (DE2)225, (DE4)225 and Proposition 6.2275 that β∆(v)
(
η[s,r ] −

ηv
)

is D-integrable, with

E D
P xu

(
β
(
η[s,r ] −ηv

))=βE D
P xu

(
η[s,r ] −ηv

)≤ 1

4
β∆(v)(r − s)λ2.

For the third term, we recall from Theorem 5.26236 – and Theorem 5.12227 – that
η[s,r ] belongs to Vlim(Fu ) ⊆DD

P xu ; consequently, it follows from (DE4)225 and Theo-
rem 5.27236 that γ∆(v)η[s,r ] is D-integrable, with

E D
P xu

(
γ∆(v)η[s,r ]

)= γ∆(v)E D(
η[s,r ]

)≤ 1

2
γ∆(v)(r − s)λ.

It follows from all this and (DE5)225 that h is D-integrable, with

E D
P xu (h) ≤∆(v)

(
α+ 1

4
β(r − s)λ2 + 1

2
γ(r − s)λ

)
. (6.44)

Furthermore, it follows from this and (DE4)225 that −h is D-integrable with

E D
P xu (−h) =−E D

P xu (h). (6.45)
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6.C Proof of Lemmas 6.43 and 6.44

As −h ≤ f − g ≤ h by assumption, it follows from (DE6)226 that

E D
P xu (−h) ≤ E D

P xu ( f − g ) ≤ E D
P xu (h);

we substitute Eqs. (6.44)↶ and (6.45)↶ in the preceding expression, to yield

∣∣E D
P xu ( f − g )

∣∣≤∆(v)

(
α+ 1

4
β(r − s)λ2 + 1

2
γ(r − s)λ

)
,

where we also used thatα,β,γ are non-negative by assumption. Finally, the inequality
in the statement follows from this inequality and Eq. (6.43)↶.

6.C Proof of Lemmas 6.43 and 6.44

In this appendix, we prove the two results in Section 6.5.1311. The first one is
Lemma 6.43311.

Lemma 6.43. Consider a lower rate operator Q and a sequence of time
points v = (t0, . . . , tn) in U̸=( ) such that ∆(v)∥Q∥op ≤ 2. Fix gambles g0, . . . , gn

and h0, . . . , hn−1 in G(X) such that 0 ≤ hk ≤ 1 for all k in {0, . . . ,n −1}. Let f0

and f̃0 be the gambles on X defined by the initial condition fn := gn =: f̃n and,
for all k in {0, . . . ,n −1}, by the recursive relations

fk := gk +hk e∆k+1Q fk+1 and f̃k := gk +hk (I +∆k+1Q) f̃k+1,

where for all k in {0, . . . ,n −1}, we let ∆k+1 := (tk+1 − tk ). Then

∥∥ f0 − f̃0
∥∥≤ 1

2
∥Q∥2

op

n∑
k=1

∆2
k∥ f̃k∥c.

Proof. Fix some k in {0, . . . ,n −1}. Then by definition of fk and f̃k ,∥∥ fk − f̃k
∥∥= ∥∥gk +hk e∆k+1Q fk+1 − gk −hk (I +∆k+1Q) f̃k+1

∥∥
= ∥∥hk e∆k+1Q fk+1 −hk (I +∆k+1Q) f̃k+1

∥∥.

Note that for all x in X,∣∣hk (x)
[
e∆k+1Q fk+1

]
(x)−hk (x)

[
(I +∆k+1Q) f̃k+1

]
(x)

∣∣
= |hk (x)|∣∣[e∆k+1Q fk+1

]
(x)− [

(I +∆k+1Q) f̃k+1
]
(x)

∣∣
≤ ∥hk∥

∥∥e∆k+1Q fk+1 − (I +∆k+1Q) f̃k+1
∥∥.

Consequently, ∥∥ fk − f̃k
∥∥≤ ∥hk∥

∥∥e∆k+1Q fk+1 − (I +∆k+1Q) f̃k+1
∥∥

≤ ∥∥e∆k+1Q fk+1 − (I +∆k+1Q) f̃k+1
∥∥,

where for the second inequality we used that ∥hk∥ ≤ 1 because 0 ≤ hk ≤ 1 by assump-
tion. As we have done many times before in Chapter 4157, we execute the classic trick
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of adding and subtracting something – here e∆k+1Q f̃k+1 – to subsequently invoke the
triangle inequality (N2)76:∥∥ fk − f̃k

∥∥≤ ∥∥e∆k+1Q fk+1 −e∆k+1Q f̃k+1
∥∥+∥∥e∆k+1Q f̃k+1 − (I +∆k+1Q) f̃k+1

∥∥. (6.46)

We can bound the two terms on the right-hand side of this inequality with the help of

some earlier results. For the first term, we recall from Proposition 3.74114 that e∆k+1Q

is a lower transition operator, so it follows from (LT8)108 that∥∥e∆k+1Q fk+1 −e∆k+1Q f̃k+1
∥∥≤ ∥∥ fk+1 − f̃k+1

∥∥.

For the second term, we observe that ∆k+1∥Q∥op ≤ 2, because ∆(v)∥Q∥op ≤ 2 by
assumption and ∆k+1 ≤∆(v). Hence, it follows from Lemma 4.19180 that

∥∥e∆k+1Q f̃k+1 − (I +∆k+1Q) f̃k+1
∥∥≤ 1

2
∥Q∥2

op∆
2
k+1∥ f̃k+1∥c.

We use the two preceding inequalities to bound the two terms on the right-hand side
of the inequality in Eq. (6.46), to yield

∥∥ fk − f̃k
∥∥≤ 1

2
∥Q∥2

op∆
2
k+1∥ f̃k+1∥c +

∥∥ fk+1 − f̃k+1
∥∥. (6.47)

To obtain the inequality in the statement, we apply Eq. (6.47) for k ranging from 0
to n −1:

∥∥ f0 − f̃0
∥∥≤ 1

2
∥Q∥2

op∆
2
1∥ f̃1∥c +

∥∥ f1 − f̃1
∥∥≤ ·· · ≤ 1

2
∥Q∥2

op

n∑
k=1

∆2
k∥ f̃k∥c.

The second result in Section 6.5.1311 is Lemma 6.44312; as we will see now,
its proof is fairly straightforward.

Lemma 6.44. Consider a non-empty set M of initial mass functions, a non-
empty and bounded set Q of rate operators that has separately specified rows
and an imprecise jump process P such that PM

M,Q ⊆ P ⊆ PM,Q. Fix some
time points s,r in R≥0 and an idealised variable f such that for all u in U

with maxu ≤ s, f belongs to Vlim(Fu). If for all ϵ in R>0, there is some grid v
over [s,r ] and some real variable g inV(Ω) with a sum-product representation
over v such that, for all {Xu = xu} in H with maxu ≤ s,∣∣E D

P( f |Xu = xu)−EP(g |Xu = xu)
∣∣≤ ϵ,

then the map fs on X defined by

fs (x) := E D
P( f |Xs = x) for all x ∈X

is a gamble on X, and for all {Xu = xu} in H with maxu ≤ s,

E D
P( f |Xu = xu) = EP

(
E D
P( f |Xs )

∣∣ Xu = xu
)= EP( fs (Xs ) |Xu = xu).
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6.C Proof of Lemmas 6.43 and 6.44

Proof. First, we prove that fs is a gamble on X. Fix any ϵ in R>0. Then by the
condition in the statement, there is some grid v over [s,r ] and some real variable g
in V(Ω) with a sum-product representation over v such that∣∣E D

P( f |Xu = xu )−EP(g |Xu = xu )
∣∣≤ ϵ (6.48)

and, for all x in X, ∣∣E D
P( f |Xs = x)−EP(g |Xs = x)

∣∣≤ ϵ. (6.49)

Because g has a sum-product representation over v , it is an F(s)-simple variable –
and therefore a bounded one – due to Lemma 4.6164. Hence, it follows from (ES1)37
that EP(g |Xs = x) is real for all x in X; due to Eq. (6.49), this implies that fs is a
gamble. The same argument shows that EP(g |Xu = xu ) is real-valued, and therefore,

due to Eq. (6.48), also E D
P

( f |Xu = xu )
Second, we fix any {Xu = xu } in H with maxu ≤ s, and set out to prove that

E D
P( f |Xu = xu ) = EP

(
E D
P( f |Xs )

∣∣ Xu = xu
)= EP( fs (Xs ) |Xu = xu ). (6.50)

Again, we fix any ϵ in R>0; then by assumption, there is some grid v over [s,r ] and
some real variable g in V(Ω) with a sum-product representation over v such that∣∣E D

P( f |Xu = xu )−EP(g |Xu = xu )
∣∣≤ 1

2
ϵ (6.51)

and

| fs (Xs )− gs (Xs )| = ∣∣E D
P( f |Xs )−EP(g |Xs )

∣∣≤ 1

2
ϵ, (6.52)

where we let gs be the gamble on X defined by gs (x) := EP(g |Xs = x). Because g has
a sum-product representation over v and because maxu ≤ s = min v by assumption,
it follows from Theorem 4.9166 that

EP(g |Xu = xu ) = EP

(
EP(g |Xs )

∣∣ Xu = xu
)= EP

(
gs (Xs )

∣∣ Xu = xu
)
. (6.53)

Recall from Eq. (6.52) that | fs (Xs )−gs (Xs )| ≤ 1
2 ϵ. Hence, for all P in P, it follows from

Lemma 2.3936, (E5)22 and (E6)22 – which we may use due to Proposition 2.4338 – that

EP
(

fs (Xs )
∣∣ Xu = xu

)− 1

2
ϵ≤ EP

(
gs (Xs )

∣∣ Xu = xu
)≤ EP

(
fs (Xs )

∣∣ Xu = xu
)+ 1

2
ϵ.

Because fs (Xs ) and gs (Xs ) are trivially Fu -simple, it follows from this inequality,
Lemma 6.1274 and (DE1)225 that∣∣EP

(
gs (Xs )

∣∣ Xu = xu
)−EP

(
fs (Xs )

∣∣ Xu = xu
)∣∣≤ 1

2
ϵ. (6.54)

Observe that – because EP( fs (Xs ) |Xu = xu ) and EP(g |Xu = xu ) are real-valued –∣∣E D
P( f |Xu = xu )−EP( fs (Xs ) |Xu = xu )

∣∣
≤ ∣∣E D

P( f |Xu = xu )−EP(g |Xu = xu )
∣∣

+ ∣∣EP(g |Xu = xu )−EP( fs (Xs ) |Xu = xu )
∣∣.

We substitute Eqs. (6.51), (6.53) and (6.54), to yield∣∣E D
P( f |Xu = xu )−EP( fs (Xs ) |Xu = xu )

∣∣≤ 1

2
ϵ+ 1

2
ϵ= ϵ.

This inequality holds for arbitrary ϵ in R>0, so this clearly implies Eq. (6.50), as re-
quired.
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6.D Proof of Theorems 6.46 to 6.50

In the last appendix to this chapter, we prove the three results in Sec-
tion 6.5.2313. First, we prove Theorem 6.46314.

Theorem 6.46. Consider a non-empty set M of initial mass functions, a
non-empty and bounded set Q of rate operators that has separately specified
rows and an imprecise jump process P such that PM

M,Q ⊆ P ⊆ PM,Q. Fix
subsets S,G of X and time points s,r in R≥0 such that s < r . For all n inN, we
let ∆n := (r−s)/n and let f̃n,0 be the gamble on X that is defined by the initial
condition f̃n,n := IG and, for all k in {0, . . .n −1}, by the recursive relation

f̃n,k := IG + IS\G
(
I +∆nQQ

)
f̃n,k+1. (6.34)

Then for all x in X and n inN such that (r − s)∥QQ∥op ≤ 2n,

∣∣P D
P

(
H S,G

[s,r ]

∣∣ Xs = x
)− f̃n,0(x)

∣∣≤ 3

8

(r − s)2

n
∥QQ∥2

op,

and therefore
P D
P

(
H S,G

[s,r ]

∣∣ Xs = x
)= lim

n→+∞ f̃n,0(x).

The same holds for P D
P

if in Eq. (6.34)314 we replace QQ by QQ.

Proof. Let Q := QQ . Because every rate operator Q in Q dominates Q, it follows
immediately from (LR7)111 that ∥Q∥op ≤ ∥Q∥op.

Fix some n in N such that (r − s)∥Q∥op ≤ 2n, and let v be the grid over [s,r ]
with n subintervals of length ∆n – that is, we let v := (s, s +∆n , . . . , s +n∆n ). Then by
Proposition 6.13283,∣∣∣P D

P

(
HS,G

[s,r ]

∣∣ Xs = x
)−EP

(
hS,G

v
∣∣ Xs = x

)∣∣∣≤ 1

8
∆(v)(r − s)∥Q∥2

op

≤ 1

8

(r − s)2

n
∥Q∥2

op, (6.55)

where for the second inequality we used that ∆(v) = (r−s)/n and that ∥Q∥op ≤ ∥Q∥op.

Recall from Lemma 6.10281 that hS,G
v has a sum-product representation over v :

hS,G
v =

n∑
k=0

gk
(
Xs+k∆n

)k−1∏
ℓ=0

hℓ
(
Xs+ℓ∆n

)
,

with gk := IG for all k in {0, . . . ,n} and hℓ := IS\G for all ℓ in {0, . . . ,n−1}. For this reason,
it follows from Theorem 4.9166 that

EP

(
hS,G

v
∣∣ Xs = x

)= fn,0(x), (6.56)

where fn,0 is the gamble on X that is defined by the initial condition fn,n := gn = IG
and, for all k in {0, . . . ,n −1}, by the recursive relation

fn,k := IG + IS\G e∆nQ fn,k+1.
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6.D Proof of Theorems 6.46 to 6.50

Furthermore, it follows from Lemma 6.43311 that

∣∣ fn,0(x)− f̃n,0(x)
∣∣≤ ∥∥ fn,0 − f̃n,0

∥∥
op ≤ 1

2
∥Q∥2

op
(r − s)2

n2

n∑
k=1

∥ f̃n,k∥c. (6.57)

We now claim that for all k in {1, . . . ,n}, min f̃n,k ≥ 0 and max f̃n,k ≤ 1, and there-

fore ∥ f̃n,k∥c ≤ 1
2 . Our proof will be one by induction. For the base case k = n,

this is obvious because f̃n,n = IG by definition. For the inductive step, we fix
some k in {1, . . . ,n −1} and assume that min f̃n,k+1 ≥ 0 and max f̃n,k+1 ≤ 1. Because
∆n∥Q∥op ≤ 2, (I +∆nQ) is a lower transition operator due to Lemma 3.72112. Hence,
it follows from the induction hypothesis and (LT4)108 that

0 ≤ min f̃n,k+1 ≤ (I +∆nQ) f̃n,k+1 ≤ max f̃n,k+1 ≤ 1.

For this reason, and because f̃n,k = IG +IS\G (I +∆nQ) f̃n,k+1 by definition, we see that

min f̃n,k ≥ 0 and max f̃n,k ≤ 1, as required.
Because ∥ f̃n,k∥c ≤ 1/2 for all k in {1, . . . ,n}, it follows from Eq. (6.57) that

∣∣ fn,0(x)− f̃n,0(x)
∣∣≤ 1

4
∥Q∥2

op
(r − s)2

n
. (6.58)

Finally, it follows from Eqs. (6.55)↶, (6.56)↶ and (6.58) and the triangle inequality
that ∣∣∣P D

P

(
HS,G

[s,r ]

∣∣ Xs = x
)− f̃n,0(xs )

∣∣∣≤ 1

8

(r − s)2

n
∥Q∥2

op + 1

4
∥Q∥2

op
(r − s)2

n

= 3

8

(r − s)2

n
∥Q∥2

op. (6.59)

Because Eq. (6.59) holds for all n in N such that (r − s)∥Q∥op ≤ 2n and because
the right-hand side of the inequality vanishes as n recedes to +∞, we have proven the
limit statement for P D

P
.

The statement for P D
P

essentially follows from conjugacy. More precisely, the
argument is almost exactly the same as the argument in the first part of this proof. We
do need a couple of extra steps though. First, we use that

EP
(
hS,G

v
∣∣ Xs = x

)=−EP

(−hS,G
v

∣∣ Xs = x
)
,

for any grid v over [s,r ]. Second, we use that −hS,G
v also has a sum-product represen-

tation over v : by Lemma 4.7165,

−hS,G
v =

n∑
k=0

[−IG ](
Xs+k∆n

)k−1∏
ℓ=0

IS\G
(
Xs+ℓ∆n

)
Third, we again use Lemmas 4.9166 and 6.43311, but this time to approximate

EP

(−hS,G
v

∣∣ Xs = x
)

instead of EP

(
hS,G

v
∣∣ Xs = x

)
. This way, we find that

∣∣EP(−hS,G
v |Xs = x)− f̌n,0(x)

∣∣≤ 1

2
∥Q∥2

op
(r − s)2

n2

n∑
k=1

∥ f̌n,k∥c,
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where f̌n,0(x) is recursively defined by the initial condition f̌n,n :=−IG and, for all k
in {0, . . . ,n −1}, by the recursive relation

f̌n,k :=−IG + IS\G
(
I +∆nQ

)
f̌n,k+1.

Obviously, f̃n,n =− f̌n,n . Furthermore, it is easy to verify that, for all k in {0, . . . ,n −1},
∥ f̌n,k∥c ≤ 1/2 and that, by conjugacy,

f̃n,k = IG + IS\G
(
I +∆nQ

)
f̃n,k =−

(
−IG + IS\G

(
I +∆nQ

)
(− f̃n,k+1)

)
=− f̌n,k .

Therefore, and because EP
(
hS,G

v
∣∣ Xs = x

)=−EP

(−hS,G
v

∣∣ Xs = x
)
,

∣∣EP(hS,G
v |Xs = x)− f̃n,0(x)

∣∣≤ 1

4
∥Q∥2

op
(r − s)2

n
.

The remainder of the proof is again similar to the first part of the proof.

Next, we prove Theorem 6.48316. Note that the proof is largely similar to
the proof of Theorem 6.46314.

Theorem 6.48. Consider a non-empty set M of initial mass functions, a
non-empty and bounded set Q of rate operators that has separately specified
rows and an imprecise jump process P such that PM

M,Q ⊆P ⊆PM,Q. Fix some
subset G of X and time points s,r in R≥0 such that s < r . For all n in N, we
let ∆n := (r−s)/n and let f̃n,0 be the gamble on X that is defined by the initial
condition f̃n,n :=∆n and, for all k in {0, . . .n −1}, by the recursive relation

f̃n,k :=
{
∆n + IGc

(
I +∆nQQ

)
f̃n,k+1 if k ≥ 1,

s + IGc
(
I +∆nQQ

)
f̃n,k+1 if k = 0.

(6.35)

Then for all x in X and all n inN such that (r − s)∥QQ∥op ≤ 2,

∣∣E D
P

(
τG

[s,r ]

∣∣ Xs = x
)− f̃n,0(x)

∣∣≤ r − s

n
+ 1

8

(r − s)3

n

2n +1

n
∥QQ∥2

op,

and therefore
E D
P

(
τG

[s,r ]

∣∣ Xs = x
)= lim

n→+∞ f̃n,0(x).

The same holds for E D
P

if in Eq. (6.35)317 we replace QQ by QQ.

Proof. Let Q := QQ . Because every rate operator Q in Q dominates Q, it follows
immediately from (LR7)111 that ∥Q∥op ≤ ∥Q∥op.

Fix some n in N such that (r − s)∥Q∥op ≤ 2n, and let v be the grid over [s,r ]
with n subintervals of length ∆n – that is, we let v := (s, s +∆n , . . . , s +n∆n ). Then by
Proposition 6.22293,∣∣∣E D

P

(
τG

[s,r ]

∣∣ Xs = x
)−EP

(
τG

v
∣∣ Xs = x

)∣∣∣≤∆(v)+ 1

8
∆(v)(r − s)2∥Q∥2

op

≤ r − s

n
+ 1

8

(r − s)3

n
∥Q∥2

op, (6.60)
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6.D Proof of Theorems 6.46 to 6.50

where for the second inequality we used that ∆(v) = (r−s)/n and that ∥Q∥op ≤ ∥Q∥op.

Recall from Lemma 6.18290 that τG
v has a sum-product representation over v :

τG
v =

n∑
k=0

gk
(
Xs+k∆

)k−1∏
ℓ=0

hℓ
(
Xs+ℓ∆

)
,

with g0 := s and, for all k in {1, . . . ,n}, gk := ∆n and hk−1 := IGc . For this reason, it
follows from Theorem 4.9166 that

EP

(
τG

v
∣∣ Xs = x

)= fn,0(x), (6.61)

where fn,0 is the gamble on X that is defined by the initial condition fn,n := gn and,
for all k in {0, . . . ,n −1}, by the recursive relation

fn,k := gk +hk−1e∆nQ fn,k+1.

Furthermore, it follows from Lemma 6.43311 that

∣∣ fn,0(x)− f̃n,0(x)
∣∣≤ ∥∥ fn,0 − f̃n,0

∥∥
op ≤ 1

2
∥Q∥2

op
(r − s)2

n2

n∑
k=1

∥ f̃n,k∥c. (6.62)

We now claim that for all k in {1, . . . ,n}, min f̃n,k ≥ 0 and max f̃n,k ≤ (n −k +1)∆n ,

and therefore ∥ f̃n,k∥c ≤ (n−k+1)∆n
2 . Our proof will be one by induction. For the base

case k = n, this is obvious because f̃n,n =∆n by definition. For the inductive step, we
fix some k in {1, . . . ,n−1} and assume that min f̃n,k+1 ≥ 0 and max f̃n,k+1 ≤ (n−k)∆n .
Because ∆n∥Q∥op ≤ 2, (I +∆nQ) is a lower transition operator due to Lemma 3.72112.
Hence, it follows from the induction hypothesis and (LT4)108 that

0 ≤ min f̃n,k+1 ≤ (I +∆nQ) f̃n,k+1 ≤ max f̃n,k+1 ≤ (n −k)∆n .

For this reason, and because f̃n,k =∆n + IGc (I +∆nQ) f̃n,k+1 by definition, we see that

min f̃n,k ≥ 0 and max f̃n,k ≤ (n −k +1)∆n , as required.

Because ∥ f̃n,k∥c ≤ (n−k+1)∆n
2 for all k in {1, . . . ,n}, it follows from Eq. (6.62) that

∣∣ fn,0(x)− f̃n,0(x)
∣∣≤ 1

4
∥Q∥2

op
(r − s)3

n3

n∑
k=1

(n −k +1)

= 1

4
∥Q∥2

op
(r − s)3

n3

n(n +1)

2

= 1

8
∥Q∥2

op
(r − s)3

n

n +1

n
, (6.63)

where for the inequality we also used that ∆n = (r−s)/n. Finally, it follows from
Eqs. (6.60)↶, (6.61) and (6.63) and the triangle inequality that

∣∣∣E D
P

(
τG

[s,r ]

∣∣ Xs = x
)− f̃n,0(x)

∣∣∣≤ r − s

n
+ 1

8

(r − s)3

n
∥Q∥2

op + 1

8

(r − s)3

n

n +1

n
∥Q∥2

op

= r − s

n
+ 1

8

(r − s)3

n

2n +1

n
∥Q∥2

op. (6.64)
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Because Eq. (6.64)↶ holds for all n inN such that (r − s)∥Q∥op ≤ 2n and because
the right-hand side of the inequality vanishes as n recedes to +∞, we have proven the
limit statement for E D

P
.

The statement for E D
P

essentially follows from conjugacy; as in the proof of Theo-
rem 6.46314, we need some obvious extra/different steps.

Finally, we prove Theorem 6.50318. The proof is similar to the proofs of
Theorems 6.46314 and 6.48316, although this time around we need to invoke
Proposition 6.38304.

Theorem 6.50. Consider a non-empty set M of initial mass functions, a non-
empty and bounded set Q of rate operators that has separately specified rows
and an imprecise jump process P such that PM

M,Q ⊆P ⊆PM,Q. Fix some time
points s,r in R≥0 such that s < r and a Lipschitz continuous family ( ft )t∈[s,r ]

of gambles on X with Lipschitz constant κ, and let

γ := sup
{
max ft : t ∈ [s,r ]

}− inf
{
min ft : t ∈ [s,r ]

}
.

For all n in N, we let ∆n := (r−s)/n and let f̃n,0 be the gamble on X that is
defined by the initial condition f̃n,n :=∆n fr and, for all k in {0, . . .n −1}, by
the recursive relation

f̃n,k :=
{
∆n fs+k∆n +

(
I +∆nQQ

)
f̃n,k+1 if k ≥ 1,(

I +∆nQQ

)
f̃n,k+1 if k = 0.

(6.36)

Then for all x in X and n inN such that (r − s)∥QQ∥op ≤ 2n,∣∣∣∣E D
P

(∫ r

s
ft (X t )dt

∣∣∣∣ Xs = x

)
− f̃n,0(x)

∣∣∣∣
≤ (r − s)2

n

(
κ+ γ

2
∥Q∥op + 1

8
(r − s)

n +1

n
∥Q∥2

op

)
,

and therefore

E D
P

(∫ r

s
ft (X t )dt

∣∣∣∣ Xs = x

)
= lim

n→+∞ f̃n,0(x).

The same holds for E D
P

if in Eq. (6.36)319 we replace QQ by QQ.

Proof. Let Q := QQ . Because every rate operator Q in Q dominates Q, it follows
immediately from (LR7)111 that ∥Q∥op ≤ ∥Q∥op.

Fix some n in N such that (r − s)∥Q∥op ≤ 2n, and let v be the grid over [s,r ]
with n subintervals of length ∆n – that is, we let v := (s, s +∆n , . . . , s +n∆n ). Then by
Proposition 6.38304,∣∣∣∣E D

P

(∫ r

s
f (Xt )dt

∣∣∣∣ Xs = x

)
−EP

(〈 f•〉v
∣∣ Xs = x

)∣∣∣∣≤∆(v)(r − s)
(
κ+ γ

2
∥Q∥op

)
≤ (r − s)2

n

(
κ+ γ

2
∥Q∥op

)
, (6.65)
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where for the second inequality we used that ∆(v) = (r−s)/n and that ∥Q∥op ≤ ∥QQ∥op.
Recall from the proof of Lemma 6.33300 that 〈 f•〉v has a sum-product representa-

tion over v :

〈 f•〉v =
n∑

k=0
gk

(
Xs+k∆

)k−1∏
ℓ=0

hℓ
(
Xs+ℓ∆

)
,

with g0 := 0 and, for all k in {1, . . . ,n}, gk := ∆n ftk and hk−1 := 1. For this reason, it
follows from Theorem 4.9166 that

EP

(〈 f•〉v
∣∣ Xs = x

)= fn,0(x), (6.66)

where fn,0 is the gamble on X that is defined by the initial condition fn,n := gn =
∆n ftn =∆n fr and, for all k in {0, . . . ,n −1}, by the recursive relation

fn,k := gk +e∆nQ fn,k+1.

Furthermore, it follows from Lemma 6.43311 that∣∣ fn,0(x)− f̃n,0(x)
∣∣≤ ∥∥ fn,0 − f̃n,0

∥∥
op ≤ 1

2
∥Q∥2

op
(r − s)2

n2

n∑
k=1

∥ f̃n,k∥c. (6.67)

Let γ+ := sup{max ft : t ∈ [s,r ]} and γ− := inf{min ft : t ∈ [s,r ]}. We now claim
that for all k in {1, . . . ,n}, min f̃n,k ≥ (n −k +1)∆nγ− and max f̃n,k ≤ (n −k +1)∆nγ

+,

and therefore ∥ f̃n,k∥c ≤ (n−k+1)∆nγ
2 . Our proof will be one by induction. For the

base case k = n, this is obvious because f̃n,n =∆n fr . For the inductive step, we fix
some k in {1, . . . ,n −1} and assume that min f̃n,k+1 ≥ (n −k)∆nγ

− and max f̃n,k+1 ≤
(n −k)∆nγ

+. Because ∆n∥Q∥op ≤ 2, (I +∆nQ) is a lower transition operator due to
Lemma 3.72112. Hence, it follows from the induction hypothesis and (LT4)108 that

(n −k)∆nγ− ≤ min f̃n,k+1 ≤ (I +∆nQ) f̃n,k+1 ≤ max f̃n,k+1 ≤ (n −k)∆nγ+.

For this reason, and because f̃n,k =∆n ftk +(I +∆nQ) f̃n,k+1 by definition, we see that

min f̃n,k ≥ (n −k +1)∆nγ− and max f̃n,k ≤ (n −k +1)∆nγ
+, as required.

Because ∥ f̃n,k∥c ≤ (n−k+1)∆nγ
2 for all k in {1, . . . ,n}, it follows from Eq. (6.67) that

∣∣ fn,0(x)− f̃n,0(x)
∣∣≤ 1

4
∥Q∥2

opγ
(r − s)3

n3

n∑
k=1

(n −k +1)

= 1

4
∥Q∥2

opγ
(r − s)3

n3

n(n +1)

2

= 1

8
∥Q∥2

opγ
(r − s)3

n

n +1

n
, (6.68)

where for the inequality we also used that ∆n = (r−s)/n. Finally, it follows from
Eqs. (6.65)↶, (6.66) and (6.68) and the triangle inequality that∣∣∣∣E D

P

(∫ r

s
f (Xt )dt

∣∣∣∣ Xs = x

)
− f̃n,0(x)

∣∣∣∣
≤ (r − s)2

n

(
κ+ γ

2
∥Q∥op

)
+ 1

8

(r − s)3

n
γ

n +1

n
∥Q∥2

op

= (r − s)2

n

(
κ+ γ

2
∥Q∥op + 1

8
(r − s)

n +1

n
∥Q∥2

op

)
. (6.69)
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Computing lower expectations of idealised variables

Because Eq. (6.69)↶ holds for all n inN such that (r − s)∥Q∥op ≤ 2n and because
the right-hand side of the inequality vanishes as n recedes to +∞, we have proven
the limit statement for E D

P
. As in the proof of Theorem 6.48316, the statement for E D

P
essentially follows from conjugacy.
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Lumping 7
State space explosion, or the polynomial or even exponential dependency
of the cardinality of the finite state space on the parameters that govern
the system’s dimensions, is a frequently encountered inconvenience when
constructing mathematical models of systems. In the setting of jump pro-
cesses, this rapidly growing number of states has as a consequence that
using the model to perform inferences about large-scale systems becomes
computationally intractable. In many cases, however, we can formalise the
inferences we would like to make in a higher-level state description, allowing
for a reduced state space with considerably fewer states. The catch is that the
low-level description and its corresponding larger state space are necessary
in order to precisely or exactly characterise the system’s dynamics. This is
where imprecise jump processes come in handy, because they provide a way
to deal with partially specified dynamics.

The procedure of going from a low-level to a higher-level state description
is called lumping. It was – to the best of our knowledge – first proposed by
Burke et al. (1958). These authors exploit the relation between the original
state space, corresponding to the low-level state description, and the lumped
state space, corresponding to the higher-level state description, to obtain a
lumped jump process from the original jump process. Rather unfortunately,
this lumped jump process need not be a (homogeneous) Markovian one. In
fact, Burke et al. (1958) provide a very stringent (necessary and) sufficient con-
dition on (the rate operator of) the original homogeneous Markovian jump
process under which the lumped jump process is homogeneous and Marko-
vian too. That this condition is not trivially satisfied is quite unfortunate,
because if the lumped jump process is not a homogeneous Markovian jump
process, then using it to make inferences about the system is not feasible in
practice.

Subsequent research on the lumping of homogeneous Markovian jump
processes centred around two separate topics. On the one hand, several
authors generalised the aforementioned (necessary and) sufficient condi-
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tions to other settings (Hachigian, 1963; Ball et al., 1993; Rubino et al., 1993;
Hartfiel, 1994) or devised algorithms to determine the smallest lumped state
space for which the lumped process is still a homogeneous Markovian jump
process (Derisavi et al., 2003; Valmari et al., 2010). Franceschinis et al. (1994)
and Buchholz (2005), on the other hand, proposed methods based on the
lumping procedure to bound limit expectations with respect to the original
homogeneous Markovian jump process. Furthermore, the lumping pro-
cedure has also been used by Katoen et al. (2012) in the context of model
checking and bisimulation.

In this chapter, we more or less follow the historical evolution of the pre-
viously mentioned research: we start with a theoretical study of the lumped
jump process and then propose methods based on the lumping procedure
to bound expectations with respect to homogeneous Markovian (imprecise)
jump processes. In Section 7.1, we propose a formal procedure to lump a
single jump process – previous studies, for instance that of Burke et al. (1958),
always ignore some technicalities in the construction of the lumped jump
process. In Section 7.2352, we look at the particular case of lumping a jump
processes P that is consistent with a set M of initial probability mass func-
tions and a set Q of rate operators. Specifically, we argue that ‘the’ lumped
jump process is consistent with a set of probability mass functions on the
lumped state space induced by M and a set of rate operators induced byQ.
More importantly, we show that we can use the homogeneous and Marko-
vian imprecise jump process that is characterised by these induced sets to
obtain bounds on expectations with respect to any original jump processes P
in PM,Q and any imprecise jump process P ⊆ PM,Q. In Section 7.3373, we
propose two lumping-based methods to approximate the limit expectation
of ergodic homogeneous Markovian jump processes.

The present chapter is largely based on (Erreygers & De Bock, 2019a),
although many of the results in Section 7.2352 are new.

7.1 Lumping a jump process

We have seen in Chapters 4157 and 5215 that computing expectations for
homogeneous Markovian (imprecise) jump processes requires numerical
methods. Quite obviously, these numerical methods are computationally
intractable when the state space becomes too large. For example, for the
model in Chapter 8403 further, the cardinality of the state space grows poly-
nomially with the parameters that describe the system’s dimensions, and
already for moderate dimensions the cardinality of the state space leads to
tractability issues. Throughout this chapter, we will use the following more
basic queueing system as an example, following Franceschinis et al. (1994)
and Buchholz (2005).

Queuing Network Example 7.1. Franceschinis et al. (1994) consider the
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7.1 Lumping a jump process

S0

S1

SK

· · ·

Figure 7.1 The closed queueing network

closed queueing network that is depicted in Fig. 7.1: it consist of a single
server S0 in series with K parallel servers S1, . . . , SK , with K a natural num-
ber. The network is populated by N customers, with N a natural number,
and these customers cycle between the server S0 and one of the parallel
servers S1, . . . , SK . Each of the servers can only service one customer at a
time, so customers are not always immediately serviced by a server.

One obvious way to describe this closed queueing network is to use
states of the form (n0,n1, . . . ,nK ), where nk is the number of customers in the
server Sk . This state description yields the state space

X :=
{

(n0,n1, . . . ,nK ) ∈ {0, . . . , N }K+1 :
K∑

k=0
nk = N

}
.

Using Feller’s (1968, Chapter II, Section 5) ‘stars and bars’ method, we see
that this state space X contains

|X| =
(

K +N

K

)
=

(
K +N

N

)
= (K +N )!

K !N !

states. Due to the standard bounds on the binomial coefficient,

(N +1)K

K !
≤ |X| ≤ (K +N )K

K !
and

(K +1)N

N !
≤ |X| ≤ (K +N )N

N !
.

In Fig. 7.2↷, we plot the cardinality of X for different values of N and K . This
plot verifies that the number of states grows polynomially with N and K , so
we have state space explosion. Even in the moderate case of K = 8 parallel
servers and N = 10 customers, the state space X contains a whopping 43758
states. £

Fortunately, the state space X is often unnecessarily detailed, at least
from the point of view of the inferences that one would like to make. Indeed,
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Figure 7.2 Number of states in the state space X as a function of the number
of parallel servers K and the number of customers N . Note that
the vertical scale is logarithmic.

many interesting inferences can usually still be unambiguously defined on a
less detailed state space X̂ that corresponds to a higher-level description of
the system.

Queuing Network Example 7.2. As a higher-level state description, Frances-
chinis et al. (1994) propose to use (n0,m0, . . . ,mN ), where n0 is again the
number of customers in the single server S0 and where mℓ is the number of
parallel servers that have ℓ customers, with ℓ a non-negative integer that is
at most N . Thus, the less detailed state space is

X̂ :=
{

(n0,m0, . . . ,mN ) ∈ {0, . . . , N }× {0, . . . ,K }N+1 :

n0 +
N∑
ℓ=1

ℓmℓ = N ,
N∑
ℓ=0

mℓ = K

}
.

Comparing Fig. 7.3↷ to Fig. 7.2, it is clear that the lumped state space is
significantly smaller than the original state space X. £

Of course, the rationale for using the detailed state space X instead of the
less detailed state space X̂ in the first place is that this allows one to model the
system. For example, in our running example, but also in Chapter 8403 further
on, the detailed state space X and ‘standard’ queueing theory assumptions
ensure that the system can be modelled by a homogeneous Markovian jump
process.

Queuing Network Example 7.3. The time that a customer is being serviced
by a server is called the service time, and we are uncertain about the length of
these service times. As is typically done in (basic) queueing theory, Frances-

340



7.1 Lumping a jump process
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Figure 7.3 Number of states in the state space X̂ as a function of the number
of parallel servers K and the number of custormers N . The vertical
scale is the same as the one in Fig. 7.2↶.

n0,n1, . . . ,nk , . . . ,nK

n0 −1,n1, . . . ,nk +1, . . . ,nK

n0 +1,n1, . . . ,nk −1, . . . ,nK

µ
K

λk

(if n0 > 0)

(if nk > 0)

Figure 7.4 State transition diagram for the rate operator Q defined by
Eq. (7.1)↷ in Queuing Network Example 7.3↶

chinis et al. (1994) assume that these service times are all ‘exponentially
distributed’ and ‘independent’; the service time for S0 has rate µ, and the
service time for the k-th parallel server Sk has rate λk , with k in {1, . . . ,K }. Fur-
thermore, Franceschinis et al. (1994) assume that after being serviced by S0,
the customer is assigned to one of the parallel servers ‘at random’ – so with
uniform probability. Franceschinis et al. (1994) are only interested in limit
expectations, so they discuss the dynamics but not the initial condition; here,
we make the assumption that our uncertainty about the initial state of the
system is accurately modelled by some initial probability mass function p0

on the detailed state space X as defined in Queuing Network Example 7.1338.
Under these assumptions, the queueing network can be modelled by a ho-
mogeneous Markovian jump process Pp0,Q on the detailed state space X.
The rate operator Q is completely defined by the rate parameters µ and λ1,
. . . , λK . For a given state (n0, . . . ,nK ), the non-zero off-diagonal components
of the matrix representation of Q are schematically depicted in Fig. 7.4. For
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the formal definition of Q, we fix some f in G(X) and x = (n0, . . . ,nK ) in X.
For all k in {1, . . . ,K }, we let x+

k
:= (n0 −1,n1, . . . ,nk +1, . . . ,nK ) if n0 > 0 and

x−
k

:= (n0 +1,n1, . . . ,nk −1, . . . ,nK ) if nk > 0. Then

[Q f ](x) =
K∑

k=1

µ

K

(
f (x+

k )− f (x)
)+ ∑

k∈Kx

λk
(

f (x−
k )− f (x)

)
, (7.1)

where the first summation is only added if n0 > 0 and where Kx is the set of
indices k in {1, . . . ,K } such that nk > 0. £

7.1.1 The lumped state space and the lumping map

Usually, the less detailed state space X̂ is obtained by lumping – sometimes
also called grouping or aggregating, see (Burke et al., 1958; Ball et al., 1993) –
states in X, so 1 ≤ |X̂| ≤ |X|. In this case, we call X̂ the lumped state space,
and we formalise this lumping through a lumping map Λ : X→ X̂ that maps
every state x in X to a lumped state Λ(x) in X̂.

Queuing Network Example 7.4. Consider a state (n0, . . . ,nK ) in the detailed
state space X as defined in Queuing Network Example 7.1338. Then for all k
in {0, . . . , N }, the number of parallel servers with k customers is

mk := ∣∣{ℓ ∈ {1, . . . ,K } : nℓ = k
}∣∣.

Hence, the state (n0, . . . ,nK ) corresponds to the lumped state (n0,m0, . . . ,mN )
in the lumped state space X̂ as defined in Queuing Network Example 7.2340.
Note that permuting the number of customers in the parallel servers yields
a state in X, and this permuted state corresponds to the same lumped
state (n0,m0, . . . ,mN ). In other words, different states in X can correspond
to the same lumped state in X̂. £

We assume that the lumping map Λ is surjective or onto, meaning that
for every lumped state x̂ in X̂ there is at least one state x in X such that
Λ(x) = x̂. We will frequently need the obvious component-wise extension of
the lumping map Λ to tuples of states, so to Xu for some u in U; because the
domain is always clear from the context, we will also denote this extension
by Λ. Furthermore, the inverse lumping map Λ−1 is the (set-valued) inverse
of Λ: the empty tuple x̂( ) = ⋄ is mapped to Λ−1(x̂( )) := x( ) = ⋄ and, for all u
in U̸=( ) and x̂u in X̂u ,

Λ−1(x̂u) := {
xu ∈Xu : Λ(xu) = x̂u

}= {
xu ∈Xu : (∀t ∈ u) Λ(xt ) = x̂t

}
. (7.2)

In order to lighten our notation taking sums over Λ−1(x̂u), we will frequently
shorten ‘xu ∈Λ−1(x̂u)’ to ‘xu ∈ x̂u ’. Finally, we adhere to the standard nota-
tional convention that, for all u in U, B ⊆Xu and B̂ ⊆ X̂u ,

Λ(B) := {
Λ(xu) : xu ∈ B

}
and Λ−1(B̂) := {

xu ∈Xu : Λ(xu) ∈ B̂
}
; (7.3)
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7.1 Lumping a jump process

note that B̂ =Λ(
Λ−1(B̂)

)
but B ⊆Λ−1

(
Λ(B)

)
, at least in general.

It is customary to let the lumped state space X̂ correspond to a natural
higher-level description of the state of the system. This is done by Frances-
chinis et al. (1994), Buchholz (2005), Ganguly et al. (2014), and Kim, Yan,
et al. (2015); following these authors, we do so in the running example in the
present chapter and in Chapter 8403 further on. That said, we would like to
emphasise that as far as our theoretical results are concerned, it does not
matter how the states are lumped.

7.1.2 A lumped jump process

The idea behind lumping is to describe the jump process P in terms of the
lumped state space X̂ instead of the original state space X. To that end, we
will ‘lump’ the original jump process P to obtain a ‘lumped jump process’ P̂
with state space X̂.

So what does it mean to ‘lump’ a jump process P with state space X?
Formally, we lump the state X t of the system at all time points t in R≥0: every
path ω in the set Ω of càdlàg paths is lumped to the path

Λ◦ω : R≥0 → X̂ : t 7→ [Λ◦ω](t ) =Λ(
ω(t )

)
.

Hence, the possibility space Ω becomes the lumped possibility space

Ω̂ := {
Λ◦ω : ω ∈Ω}

; (7.4)

this set of lumped paths Ω̂ is equal to the set ΩX̂ of càdlàg paths for the
lumped state space X̂.

Lemma 7.5. For any path ω in Ω, the corresponding lumped path ω̂ :=Λ◦ω
is càdlàg. Furthermore, Ω̂ as defined in Eq. (7.4) is equal to the set ΩX̂ of all
càdlàg paths with state space X̂.

Proof. The first part of the statement is almost trivial. By Definition 3.457, ω̂ is
càdlàg if for all t in R≥0, ω̂ is continuous from the right and, if t > 0, has a left-sided
limit. Fix any t in R≥0; then because ω is càdlàg by assumption, it follows from
Eq. (3.1)58 in Definition 3.457 that limr↘t ω(t) exists and is equal to ω(t). Conse-
quently, limr↘t ω̂(t ) = limr↘t [Λ◦ω](t ) exists and is equal to [Λ◦ω](t ) = ω̂(t ), so ω̂ is
continuous from the right. If t > 0, a similar argument but with Eq. (3.2)58 in the role
of Eq. (3.1)58 shows that ω̂ has a left-sided limit at t . Because t is an arbitrary time
point in R≥0, this proves that ω̂ is càdlàg.

The second part of the statement is almost trivial as well. To prove it, it remains to
show that for any arbitrary path ω̂ in Ω

X̂
, there is some path ω in Ω=ΩX such that

Λ◦ω= ω̂. Fix any ω̂ inΩ
X̂

. For all x̂ in X̂, we choose any xx̂ inΛ−1(x̂). Then the path

ω⋆ : R≥0 →X : t 7→ω⋆(t ) := xω̂(t ).

is càdlàg because ω̂ is càdlàg – this follows from essentially the same arguments
and considerations as before. Furthermore, it is clear that Λ ◦ω⋆ = ω̂ because, by
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construction, [Λ ◦ω⋆](t) = Λ
(
xω̂(t )

) = ω̂(t) for all t in R≥0. This proves the second
part of the statement.

We denote the projector variables corresponding to Ω̂ as defined in
Eq. (3.3)59 by (X̂ t )t∈R≥0 . In the same manner, we extend the rest of the nota-
tion regarding events as introduced in Section 3.1.258. For all v in U, x̂v in X̂v

and B̂ ⊆ X̂v , we let
{X̂v = x̂v } := {ω̂ ∈ Ω̂ : ω̂|v = x̂v }

and
{X̂v ∈ B̂} := {ω̂ ∈ Ω̂ : ω̂|v ∈ B̂} = ⋃

x̂v∈B̂

{X̂v = x̂v }. (7.5)

Then the set of lumped state histories is

Ĥ := {
{X̂u = x̂u} : u ∈U, x̂u ∈ X̂u

}
, (7.6)

and for all u in U, the corresponding set of lumped cylinder events is

F̂u := {
{X̂v ∈ B̂} : v ∈U≽u , B̂ ⊆ X̂v

}
. (7.7)

Thus, a jump process with state space X̂ should have domain

D̂ :=DX̂ = {
(Â | X̂u = x̂u) : u ∈U, x̂u ∈ X̂u , Â ∈ F̂u

}
. (7.8)

Recall from Eq. (7.4)↶ that Ω̂ is derived from Ω by means of the lumping
map Λ: for all t in R≥0, X̂ t corresponds to Λ◦X t , so the event

{X̂ t = x̂} = {
ω̂ ∈ Ω̂ : ω̂(t ) = x̂

}
naturally corresponds to the event{

Λ◦X t = x̂
}= {

ω ∈Ω : [Λ◦ω](t ) = x̂
}= {

ω ∈Ω : Λ◦ω ∈Λ−1(x̂)
}

= {
X t ∈Λ−1(x̂)

}
.

More generally, any event Â in P(Ω̂) corresponds to the event

Λ−1
Ω (Â) := {

ω ∈Ω : Λ◦ω ∈ Â
}

(7.9)

in P(Ω); note that Λ−1
Ω (Â) is the inverse image of the set Â.1 For all Â in P(Ω̂),

it follows from Eqs. (7.4)↶ and (7.9) that{
Λ◦ω : ω ∈Λ−1

Ω (Â)
}= Â. (7.10)

Furthermore, Λ−1
Ω maps cylinder events in F̂u to cylinder events in Fu .

1It would arguably make more sense to denote this inverse image by Λ−1
P(Ω)

(Â) instead of

by Λ−1
Ω

(Â), but we use the latter because it is shorter.
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Lemma 7.6. Consider a sequence of time points u in U. Then for all v in U≽u

and B̂ ⊆ X̂v ,
Λ−1
Ω

(
{X̂v ∈ B̂}

)= {
Xv ∈Λ−1(B̂)

}
. (7.11)

Consequently, for all Â in F̂u , Λ−1
Ω (Â) belongs to Fu .

Proof. To prove Eq. (7.11), we recall from Eq. (7.5)↶ that

{X̂v ∈ B̂} = {ω̂ ∈ Ω̂ : ω̂|v ∈ B̂}.

Hence, it follows from Eq. (7.9)↶ that

Λ−1
Ω

(
{X̂v ∈ B̂}

)= {
ω ∈Ω : Λ◦ω ∈ {ω̂ ∈ Ω̂ : ω̂|v ∈ B̂}

}= {
ω ∈Ω : (Λ◦ω)|v ∈ B̂

}
= {

ω ∈Ω : Λ(ω|v ) ∈ B̂
}
.

By Eq. (7.3)342, Λ−1(B̂) contains all xv in Xv such that Λ(xv ) belongs to B̂ . Conse-
quently,

Λ−1
Ω

(
{X̂v ∈ B̂}

)= {
Xv ∈Λ−1(B̂)

}
,

as required.
The second part of the statement follows immediately from the first part and

Eqs. (3.16)63 and (7.7)↶.

The correspondence between lumped cylinder events in F̂u and cylinder
events in Fu allows us to derive from a jump process P with state space X

a lumped jump process P̂ with state space X̂. First, let us consider the
unconditional probabilities. For all {X̂v ∈ B̂} in F( ), the corresponding event

Λ−1
Ω

(
X̂v ∈ B̂

)= {
Xv ∈Λ−1(B̂)

}
belongs to F( ) due to Lemma 7.6, so it makes sense to let

P̂ (X̂v ∈ B̂) = P
(
Λ−1
Ω

(
X̂v ∈ B̂

))= P
(
Xv ∈Λ−1(B̂)

)
. (7.12)

The conditional probabilities then follow from the unconditional ones and
Bayes’s rule: for all {X̂u = x̂u} in Ĥ such that u ̸= () and P̂ (X̂u = x̂u) > 0 and
all Â in Fu ,

P̂ (Â | X̂u = x̂u) = P̂
(
{X̂u = x̂u}∩ Â

)
P̂ (X̂u = x̂u)

.

There is one issue with this natural definition: it may not define P̂ on its
entire domain D̂, because we cannot invoke Bayes’s rule for lumped state
histories {X̂u = x̂u} in Ĥ with probability 0. One way to circumvent this, is
to start from a homogeneous Markovian jump process Pp0,Q with a positive
initial probability mass function p0 ⋗0 and an irreducible rate operator Q –
see Section 7.3.1374 further on for a definition. In that case, any lumped state
history {X̂u = x̂u} has non-zero probability, so the lumped jump process is
uniquely defined; we refer to (Erreygers & De Bock, 2018b, Appendix D.1) for

345



Lumping

a more detailed explanation. Here, we will deal with the issue of conditioning
on events with probability zero through coherence.

Let us try to define the conditional probabilities for the lumped jump pro-
cess P̂ directly instead of through Bayes’s rule. In Eq. (7.12)↶, we implicitly
used the notational conventions P̂ (•) = P̂ (•|Ω̂) and P (•) = P (•|Ω). Because
furthermore {X̂( ) = x̂( )} = Ω̂ and

Λ−1
Ω

(
{X̂( ) = x̂( )}

)=Λ−1
Ω (Ω̂) =Ω= {X( ) = x( )} = {X( ) ∈Λ−1(x̂( ))},

we see that Eq. (7.12)↶ actually states that for all (Â | X̂( ) = x̂( )) in D̂,

P̂ (Â | X̂( ) = x̂( )) = P
(
Λ−1
Ω (Â)

∣∣ X( ) ∈Λ−1(x̂( ))
)
. (7.13)

At first sight, it seems that we can generalise this to unconditional probabili-
ties, but this is not the case. Fix some (Â | X̂u = x̂u) in D̂. Then by Eq. (7.11)↶
in Lemma 7.6↶, the corresponding conditioning event is

Λ−1
Ω

(
{X̂u = x̂u}

)= {
Xu ∈Λ−1(x̂u)

}
.

Note that Λ−1(x̂u) need not be a singleton, and this is what causes problems:
ifΛ−1(x̂u) is not a singleton, then the conditioning event {Xu ∈Λ−1(x̂u)} does
not belong to H, so (

Λ−1
Ω (Â)

∣∣ Xu ∈Λ−1(x̂u)
)

does not belong to the domain D of P .
Fortunately, we can always extend P to a larger domain because, by

definition, P is a coherent conditional probability on D ⊆ P(Ω)×P(Ω)⊃∅.
By Theorem 2.5445, P can therefore be extended to a coherent conditional
probability P⋆ on any domain D⋆ such that D ⊆D⋆ ⊆ P(Ω)×P(Ω)⊃∅. In
the setting of lumping, we get by with the following domain:

D⋆ := {
(A |Xu ∈ B) : u ∈U, A ∈Fu ,∅ ̸= B ⊆Xu

}
, (7.14)

which is a structure of fields – see Definition 2.5746. Note that for any u in U

and any non-empty subset B of Xu , {Xu ∈ B} =⋃
xu∈B {Xu = xu}, so this event

is non-empty by Lemma 3.558. Because furthermore {Xu = xu} = {Xu ∈ {xu}}
for all {Xu = xu} in H, we see that D⊆D⋆ ⊆P(Ω)×P(Ω)⊃∅. The following
result establishes that the domain D⋆ is sufficiently large for our purposes.

Lemma 7.7. For all (Â | X̂u = x̂u) in D̂,(
Λ−1
Ω (Â)

∣∣Λ−1
Ω

(
{X̂u = x̂u}

))= (
Λ−1
Ω (Â)

∣∣ Xu ∈Λ−1(x̂u)
)

belongs to D⋆.

Proof. By definition of D̂ – see Eq. (7.8)344 – the event Â belongs to F̂u . From
Lemma 7.6↶, we know that the event Λ−1

Ω
(Â) belongs to Fu and that

Λ−1
Ω

(
{X̂u = x̂u }

)= {
Xu ∈Λ−1(x̂u )

}
.

Because
(
Λ−1
Ω

(Â)
∣∣ Xu ∈Λ−1(x̂u )

)
belongs to D⋆ by definition, this proves the state-

ment.
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7.1 Lumping a jump process

In order to lighten our notation, we will henceforth write {Xu ∈ x̂u} instead
of {Xu ∈Λ−1(x̂u)}.

Consider a jump process P with state space X and let P⋆ be a coherent
extension of P to D⋆. Then the corresponding lumped jump process P̂ is the
real-valued map on D̂ defined for all (Â | X̂u = x̂u) in D̂ by

P̂ (Â | X̂u = x̂u) := P⋆
(
Λ−1
Ω (Â)

∣∣ Xu ∈ x̂u
)
. (7.15)

In contrast to our previous ‘natural’ definition of P̂ , this is a proper definition
due to Lemma 7.7↶. Note that the lumped jump process is not necessarily
unique because the coherent extension P⋆ of the jump process P to D⋆

need not be unique; any such coherent extension does yield a jump process
though.

Theorem 7.8. Consider a jump process P with state space X and any coherent
extension P⋆ of P to D⋆. Then the corresponding real-valued map P̂ on D̂, as
defined by Eq. (7.15), is a jump process with state space X̂.

The following intermediary result comes in handy in the proof of Theo-
rem 7.8, and also in that of Lemma 7.13350 further on.

Lemma 7.9. For all Â in P(Ω̂), IÂ ◦Λ= IΛ−1(Â), in the sense that for all ω in Ω,

IÂ(Λ◦ω) = IΛ−1
Ω

(Â)(ω).

Proof. It follows immediately from Eq. (7.9)344 that

IÂ(Λ◦ω) =
{

1 if Λ◦ω ∈ Â

0 otherwise
=

{
1 if ω ∈Λ−1

Ω
(Â)

0 otherwise
= IΛ−1

Ω
(Â)(ω).

Proof of Theorem 7.8. By Definition 3.1265, we need to show that the real-valued
map P̂ on D̂=D

X̂
is a coherent conditional probability. To verify the condition in

Definition 2.5144, we fix some n in N, (Â1,Ĉ1), . . ., (Ân ,Ĉn ) in D̂ and µ1, . . ., µn in R.
We let

S :=
{

n∑
k=1

µk IĈk
(ω̂)

(
P̂ (Âk |Ĉk )− IÂk

(ω̂)
)

: ω̂ ∈
n⋃

k=1
Ĉk

}
, (7.16)

and set out to show that maxS≥ 0.
By Eq. (7.15), the definition of P̂ ,

S=
{

n∑
k=1

µk IĈk
(ω̂)

(
P⋆

(
Λ−1
Ω (Âk )

∣∣Λ−1
Ω (Ĉk )

)− IÂk
(ω̂)

)
: ω̂ ∈

n⋃
k=1

Ĉk

}
.

Recall from Eq. (7.10)344 that for all B̂ in P(Ω̂), B̂ = {
Λ◦ω : ω ∈Λ−1

Ω
(B̂)

}
. Hence,

S=
{

n∑
k=1

µk IĈk
(Λ◦ω)

(
P⋆

(
Λ−1
Ω (Âk )

∣∣Λ−1
Ω (Ĉk )

)− IÂk
(Λ◦ω)

)
: ω ∈

n⋃
k=1

Λ−1
Ω

(
Ĉk

)}
.
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Next, we recall from Lemma 7.9↶ that IB̂ (Λ◦ω) = IΛ−1
Ω

(B̂)(ω) for all B̂ in P(Ω̂) and ω

in Ω, so

S=
{

n∑
k=1

µk ICk
(ω)

(
P⋆(Ak |Ck )− IAk

(ω)
)

: ω ∈
n⋃

k=1
Ck

}
,

where for all k in {1, . . . ,n} we let Ak :=Λ−1
Ω

(Âk ) and Ck :=Λ−1
Ω

(Ĉk ). By Lemma 7.7346,
(Ak |Ck ) belongs to D⋆ for all k in {1, . . . ,n}. Because P⋆ is a coherent conditional
probability on D⋆ by assumption, it follows from the preceding equality and Defini-
tion 2.5144 that maxS≥ 0, as required.

Theorem 7.8↶ validates our use of the term ‘lumped jump process’ for
P̂ . Henceforth, we will usually not mention the coherent extension P⋆ of P
to D⋆ that is used to define a lumped jump process P̂ . Whenever we talk
about ‘a lumped jump process P̂ corresponding to a jump process P ’, we
implicitly assume that P̂ is the lumped jump process that corresponds to
some coherent extension P⋆ of P to D⋆ through Eq. (7.15)↶.

Even though there is no unique lumped jump process, every lumped
jump process P̂ that we consider agrees with the ‘natural’ definition of P̂ .

Corollary 7.10. Consider a jump process P with state space X and any corre-
sponding lumped jump process P̂ . Then for all {X̂v ∈ B̂} in F̂( ),

P̂
(
X̂v ∈ B̂

)= P
(
Xv ∈Λ−1(B̂)

)
.

Furthermore, for all {X̂u = x̂u} in Ĥ with P̂ (X̂u = x̂u) > 0 and all Â in F̂u ,

P̂ (Â | X̂u = x̂u) = P̂
(
{X̂u = x̂u}∩ Â

)
P̂ (X̂u = x̂u)

Proof. Let P⋆ be the coherent extension of P to D⋆ that defines P̂ . First, we prove
the first equality in the statement. By Eqs. (7.4)343 and (7.9)344, Λ−1

Ω
(Ω̂) =Ω. Hence,

it follows from Eq. (7.15)↶ and Lemma 7.6345 that

P̂ (X̂v ∈ B̂) = P̂ (X̂v ∈ B̂ |Ω̂) = P⋆
(
Λ−1
Ω

(
X̂v ∈ B̂

)∣∣Ω)= P⋆(Xv ∈Λ−1(B̂) |Ω).

Observe that (Xv ∈Λ−1(B̂) |Ω) belongs to the domain D of P ; because P⋆ coincides
with P on D, it follows from the preceding equality that

P̂ (X̂v ∈ B̂) = P (Xv ∈Λ−1(B̂) |Ω) = P (Xv ∈Λ−1(B̂)),

as required.
The second equality in the statement follows immediately from (CP4)41 because

P̂ is a coherent conditional probability by Theorem 7.8↶.

Thus, the only ‘degrees of freedom’ for a lumped jump process P̂ are
the probabilities conditional on events with zero probability. A lumped
jump process is a coherent conditional probability on D̂, so the coherence
condition puts a constraint on these ‘undetermined’ probabilities. Even more,
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7.1 Lumping a jump process

because any lumped jump process P̂ is derived from a coherent extension P⋆

of P to D⋆, we can relate the ‘undetermined’ probabilities to the original
jump process P : it turns out that P̂ (•| X̂u = x̂u) is some convex combination
of P (•|Xu = xu) for xu in Λ−1(x̂u).

Lemma 7.11. Consider a jump process P with state space X and any coherent
extension P⋆ of P to D⋆, and let P̂ be the corresponding lumped jump process.
Then for all u in U, x̂u in X̂u and Â in F̂u ,

P̂ (Â | X̂u = x̂u) = ∑
xu∈x̂u

P
(
Λ−1
Ω (Â)

∣∣ Xu = xu
)
P⋆

(
Xu = xu

∣∣ Xu ∈ x̂u
)
, (7.17)

where P⋆(Xu = xu |Xu ∈ x̂u) ≥ 0 for all xu in Xu and∑
xu∈x̂u .

P⋆(Xu = xu |Xu ∈ x̂u) = 1.

Proof. To ease our notation, we let A :=Λ−1
Ω

(Â). Then by Eq. (7.15)347,

P̂ (Â | X̂u = x̂u ) = P⋆(A |Xu ∈ x̂u ). (7.18)

For all xu in Λ−1(x̂u ), P⋆(Xu = xu |Xu ∈ x̂u ) is non-negative by (CP2)41. Fur-
thermore, {Xu ∈ x̂u } = ⋃

xu∈x̂u {Xu = xu }, and for all xu , yu in Λ−1(x̂u ), the events
{Xu = xu } and {Xu = yu } are disjoint whenever xu ̸= yu . Consequently,∑

xu∈x̂u

P⋆(Xu = xu |Xu ∈ x̂u ) = P⋆(Xu ∈ x̂u |Xu ∈ x̂u ) = 1 (7.19)

due to (CP3)41 and (CP1)41. Hence, it follows from (CP9)42 that

P⋆
(

A
∣∣ Xu ∈ x̂u

)= P⋆
(
{Xu ∈ x̂u }∩ A

∣∣ Xu ∈ x̂u
)
, (7.20)

and from (CP3)41 that

P⋆
(
{Xu ∈ x̂u }∩ A

∣∣ Xu ∈ x̂u
)= P⋆

(( ⋃
xu∈x̂u

{Xu = xu }

)
∩ A

∣∣∣∣∣ Xu ∈ x̂u

)

= P⋆
( ⋃

xu∈x̂u

(
{Xu = xu }∩ A

)∣∣∣∣∣ Xu ∈ x̂u

)
= ∑

xu∈x̂u

P⋆
(
{Xu = xu }∩ A

∣∣ Xu ∈ x̂u
)
. (7.21)

Let us investigate the terms in this sum. For all xu in Λ−1(x̂u ),

P⋆
(
{Xu = xu }∩ A

∣∣ Xu ∈ x̂u
)= P⋆

(
A

∣∣ {Xu = xu }∩ {Xu ∈ x̂u }
)
P⋆(Xu = xu |Xu ∈ x̂u )

due to (CP4)41; because {Xu = xu }∩ {Xu ∈ x̂u } = {Xu = xu } and because P⋆ coincides
with P on D, this implies that

P⋆
(
{Xu = xu }∩ A

∣∣ Xu ∈ x̂u
)= P (A |Xu = xu )P⋆(Xu = xu |Xu ∈ x̂u ). (7.22)

Equation (7.17) follows immediately from Eq. (7.18) and Eqs. (7.20) to (7.22).
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Corollary 7.12. Consider a jump process P with state space X and any cor-
responding lumped jump process P̂ . Then for all u in U, x̂u in X̂u and Â
in F̂u ,

min
{
P

(
Λ−1
Ω (Â)

∣∣ Xu = xu
)

: xu ∈ x̂u
}≤ P̂ (Â | X̂u = x̂u)

≤ max
{
P

(
Λ−1
Ω (Â)

∣∣ Xu = xu
)

: xu ∈ x̂u
}
.

Proof. Follows immediately from Lemma 7.11↶ because a convex combination of
terms is bounded by the minimum and the maximum of these terms.

7.1.3 Expectation corresponding to a lumped jump process

Let us now look at the expectation with respect to a lumped jump process P̂ ,
and how this is related to the expectation with respect to the original jump
process P . To do so, we relate variables on Ω̂ to variables on Ω through the
relation between Ω̂ and Ω. By Lemma 7.5343, any path ω in Ω corresponds
to a lumped path Λ◦ω in Ω̂. Hence, any extended real variable f̂ in V(Ω̂) is
related to the cylindrical extension f̂ ↑Ω of f̂ to Ω:

f̂ ↑Ω : Ω→R : ω 7→ f̂ ↑Ω(ω) := f̂ (Λ◦ω). (7.23)

This cylindrical extension generalises the inverse Λ−1
Ω : by Lemma 7.9347, the

cylindrical extension (IÂ)↑Ω of the indicator IÂ of an event Â in P(Ω̂) is equal
to the indicator IΛ−1

Ω
(Â) ofΛ−1

Ω (Â). As simple variables are linear combinations

of indicators, this essentially implies that the cylindrical extension of an F̂u-
simple variable is an Fu-simple variable.

Lemma 7.13. Consider a sequence of time points u in U. Then for any F̂u-
simple variable f̂ , the corresponding cylindrical extension f̂ ↑Ω is anFu-simple
variable.

Proof. Because f̂ is F̂u -simple by assumption, there are a natural number n, real
numbers a1, . . . , an and events A1, . . . Ân in F̂u such that

f̂ =
n∑

k=1
ak IÂk

due to Definition 2.3836. Recall from Lemma 7.9347 that for all k in {1, . . . ,n} and ω
in Ω, IÂk

(Λ◦ω) = IΛ−1
Ω

(Âk )(ω). Thus, we see that

f̂ ↑Ω =
n∑

k=1
ak IΛ−1

Ω
(Âk ).

Because Λ−1
Ω

(Âk ) belongs to Fu for all k in {1, . . . ,n} by Lemma 7.6345, this equality
shows that f is Fu -simple.
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7.1 Lumping a jump process

Combining Lemmas 7.11349 and 7.13↶, we unearth the relation between
the expectation EP̂ corresponding to a lumped jump process P̂ and the
expectation EP corresponding to the original jump process EP .

Lemma 7.14. Consider a jump process P with state space X and any corre-
sponding lumped jump process P̂ . Then for all {X̂u = x̂u} in Ĥ and f̂ inS(F̂u),

min
{
EP ( f̂ ↑Ω |Xu = xu) : xu ∈ x̂u

}≤ EP̂ ( f̂ | X̂u = x̂u)

≤ max
{
EP ( f̂ ↑Ω |Xu = xu) : xu ∈ x̂u

}
.

Proof. Let P⋆ be the coherent extension of P to D⋆ that defines P̂ . Recall from the
proof of Lemma 7.13↶ that there is a natural number n, real numbers a1, . . . , an and
events Â1, . . . , Ân in F̂u such that

f̂ =
n∑

k=1
ak IÂk

and f̂ ↑Ω =
n∑

k=1
ak IΛ−1

Ω
(Âk ),

and that A1 := Λ−1
Ω

(Â1), . . . , An := Λ−1
Ω

(Ân ) are events in Fu . Then by Eq. (2.19)36
and Eq. (7.17)349 in Lemma 7.11349,

EP̂ ( f̂ |Xu = xu ) =
n∑

k=1
ak P̂ (Âk | X̂u = x̂u )

=
n∑

k=1
ak

∑
xu∈x̂u

P (Ak |Xu = xu )P⋆(Xu = xu |Xu ∈ x̂u ). (7.24)

We change the order of the summations and use Eq. (2.19)36, to yield

EP̂ ( f̂ |Xu = xu ) = ∑
xu∈x̂u

P⋆(Xu = xu |Xu ∈ x̂u )
n∑

k=1
ak P (Ak |Xu = xu )

= ∑
xu∈x̂u

P⋆(Xu = xu |Xu ∈ x̂u )EP ( f̂ ↑Ω |Xu = xu ).

By Lemma 7.11349, the sum on the right-hand side of the last equality is a convex
combination of EP ( f̂ ↑Ω |Xu = xu ) with xu in Λ−1(x̂u ), so this implies the inequalities
in the statement.

Let us now move from F̂u-simple variables in S(F̂u) to limit variables
in Vlim(F̂u). Of course, this is only useful for a countably additive lumped
jump process P̂ . The following result establishes that given a countably addi-
tive jump process P , any corresponding lumped jump process is countably
additive. In essence, this holds because by Lemma 7.11349, any lumped jump
process P̂ corresponding to P is a ‘convex combination’ of P . Formally, we
prove this with the help of Lemma 7.14; because this result is rather intuitive,
we have relegated our formal proof to Appendix 7.A384.

Lemma 7.15. Consider a jump process P with state space X. If P is countably
additive, then any corresponding lumped jump process P̂ is countably additive
too.
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By definition, any limit variable f̂ in F̂u is the point-wise limit of a se-
quence ( f̂n)n∈N of F̂u simple variables. Due to Lemma 7.13350, for every
F̂u-simple variable f̂n in this sequence, its cylindrical extension f̂ ↑Ω

n is an
Fu-simple variable. It is not difficult to verify that this sequence of cylindrical
extensions converges to the cylindrical extension f̂ ↑Ω of f̂ , and this basically
proves that this cylindrical extension f̂ ↑Ω belongs toVlim(Fu). A formal proof
of this result can be found in Appendix 7.A384.

Lemma 7.16. Consider a sequence of time points u in U. Then for any limit
variable f̂ in Vlim(F̂u), the corresponding cylindrical extension f̂ ↑Ω belongs
to Vlim(Fu).

Finally, we generalise Lemma 7.14↶ to limit variables: we bound the
Daniell expectation E D

P̂
( f̂ | X̂u = x̂u) of a limit variable f̂ in Vlim(F̂u) with the

Daniell expectation of its cylindrical extension f̂ ↑Ω with respect to the original
jump process P . In essence, the following result follows from Lemma 7.14↶
and the definition of the Daniell expectation; the formal proof is a bit long,
so we have relegated it to Appendix 7.A384.

Lemma 7.17. Consider a countably additive jump process P with state
space X and any corresponding lumped jump process P̂ . Then for all {X̂u = x̂u}
in Ĥ and f̂ in Vlim(F̂u),

min
{
E D

P ( f̂ ↑Ω |Xu = xu) : xu ∈ x̂u
}≤ E D

P̂
( f̂ | X̂u = x̂u)

≤ max
{
E D

P ( f̂ ↑Ω |Xu = xu) : xu ∈ x̂u
}
.

7.2 Lumping and consistency

All of our results in Section 7.1.3350 put bounds on a lumped jump process P̂
in terms of the original jump process P . This is rather unfortunate, because
this is precisely the opposite of what we wanted to achieve: our intention was
to use ‘a’ jump process P̂ with state space X̂ to describe the original jump
process P and not the other way around.

Part of the reason why we have not succeeded in our goal yet is that until
now, we have considered any jump process P . This is far from the original
setting of a single homogeneous and Markovian jump process Pp0,Q that
is considered in most if not all existing research on lumping. Here, we will
assume a setting that lies in between these two extremes. Instead of consider-
ing any generic jump process or a single homogeneous and Markovian jump
process, we consider a jump process P that is consistent with a given set M
of initial probability mass functions on X and a given bounded setQ of rate
operators on G(X). Recall from Eq. (3.66)104 that if M is the singleton {p0}
andQ the singleton {Q}, then the only jump process that is consistent with M

andQ is Pp0,Q ; hence, our setting includes the particular case of a single ho-
mogeneous and Markovian jump process. In any case, as we will see, we can
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use these sets M and Q to describe any lumped jump process P̂ correspond-
ing to P , at least in terms of consistency. In Section 7.2.1, we derive from M a
subset M̂ of ΣX̂ such that any lumped jump process P̂ corresponding to P is
consistent with M̂, and we do the same in Section 7.2.2355 but for a subset Q̂
of QX̂ . In Section 7.2.3361, we detail why and how we can use lower and
upper expectations with respect to the lumped imprecise jump process PM̂,Q̂
to bound expectations with respect to the original jump process P , and we do
the same for an imprecise jump process P ⊆PM,Q in Section 7.2.4368. Finally,
in Section 7.2.5371 we return to the original setting in which lumping was first
used.

Throughout this section, we illustrate our findings by means of the fol-
lowing setting in our running example.

Queuing Network Example 7.18. Franceschinis et al. (1994) are particularly
interested in the case where the number of servers K is even, and where half
of the parallel servers have service rateλ and the other half have service rateλ.
Henceforth, we assume that K is even. For now, we assume furthermore that
for all k in {1, . . . ,K }, λk :=λ if k ≤ K/2 and λk :=λ otherwise. It is only fair
to mention that under these assumptions, the state space X as defined in
Queuing Network Example 7.1338 is too detailed. In this particular case,
we could get away with keeping track of the number of servers that have k
customers, in the spirit of the state description that lead to the lumped state
space X̂, but separately for the servers with service rate λ and those with
service rate λ; we refer to Franceschinis et al. (1994, p. 226) for additional
details. This ‘intermediate’ state description results in a significantly reduced
state space, but is only applicable to the arguably artificial case where there
are two classes of servers. £

7.2.1 The set of lumped initial probability mass functions

In order to determine the set M̂, we need to determine the initial probability
mass function of any lumped jump process P̂ corresponding to P . Of course,
the initial probability mass function of P̂ is related to that of P through
Corollary 7.10348.

Corollary 7.19. Consider a jump process P and any corresponding lumped
jump process P̂ , and denote the initial probability mass functions of P and P̂
by p0 and p̂0, respectively. Then for all x̂ in X̂,

p̂0(x̂) = P̂ (X̂0 = x̂) = ∑
x∈x̂

P (X0 = x) = ∑
x∈x̂

p0(x).

Proof. By Corollary 7.10348 with B̂ = {x̂},

P̂ (X̂0 = x̂) = P
(
X0 ∈Λ−1(x̂)

)
.

Observe that {X0 ∈Λ−1(x̂)} = ⋃
x∈x̂ {X0 = x}. Hence, the equalities of the statement

follow from the preceding equality and (JP2)69.
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By Corollary 7.19↶, the mass p̂0(x̂) of a lumped state x̂ in X̂ can be ob-
tained from the probability mass function p0 of the original jump process P
by summing the masses p0(x) of the states x in the lump Λ−1(x̂). We gener-
alise this to arbitrary probability mass functions: for any probability mass
function p on X, we let p̂p be the corresponding real-valued map on X̂

defined by

p̂p (x̂) := ∑
x∈x̂

p(x) for all x̂ ∈ X̂. (7.25)

It is clear that p̂p is a probability mass function on X̂, so we call p̂p the
lumped probability mass function corresponding to p. For any non-empty
set M of probability mass functions on X, we gather the corresponding
lumped probability mass functions in

M̂M := {
p̂p : p ∈M}

. (7.26)

In order not to burden our notation, we will simply denote M̂M by M̂ when-
ever it is clear from the context to which original set M it corresponds.

The definition of M̂M is inspired by Corollary 7.19↶, so it is obvious that
for a given jump process P that is consistent with M, any corresponding
lumped jump process P̂ is consistent with M̂M .

Lemma 7.20. Consider a non-empty subset M of ΣX , and a jump process P
that is consistent with M. Then any lumped jump process P̂ corresponding
to P is consistent with M̂.

Proof. For all x̂ in X̂, it follows from Corollary 7.19↶ that

P̂ (X̂0 = x̂) = ∑
x∈x̂

p0(x) = p̂p0 (x̂),

where p0 denotes the initial probability mass function of P . Because this equality
holds for every lumped state x̂ in X̂, we conclude that P̂ (X0 = •) = p̂p0 . Observe
that p0 belongs to M because P is consistent with M by assumption. Hence, the
lumped probability mass function p̂p0 belongs to M̂ by definition, and this proves
the statement.

In the particular case that the lumped state space X̂ corresponds to some
higher-order state description, we can often determine EM̂ directly, without

having to explicitly construct M̂ or even determine EM . In general, the lower
envelope of the set M̂ of lumped probability mass functions is related to the
lower envelope of the original set M in the following way.

Lemma 7.21. Consider a non-empty subset M of ΣX . Then for all f̂ in G(X̂),

EM̂( f̂ ) = EM( f̂ ◦Λ)
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Proof. Fix any probability mass function p in M, and let p̂ := p̂p . Then by Eq. (2.8)23
and Eq. (7.25)↶,

Ep̂ ( f̂ ) = ∑
x̂∈X̂

f̂ (x̂)p̂p (x̂) = ∑
x̂∈X̂

f̂ (x̂)
∑

x∈x̂
p(x) = ∑

x̂∈X̂

∑
x∈x̂

f̂ (x̂)p(x).

Observe that, for all x̂ in X̂ and x in Λ−1(x̂), f̂ (x̂) = f̂ (Λ(x)) = [ f̂ ◦Λ](x). Hence, it
follows from the preceding and Eq. (2.8)23 that

Ep̂ ( f̂ ) = ∑
x̂∈X̂

∑
x∈x̂

[ f̂ ◦Λ](x)p(x) = ∑
x∈X

[ f̂ ◦Λ](x)p(x) = Ep ( f̂ ◦Λ).

Due to Eq. (7.26)↶, the equality in the statement follows from the preceding equality
and Eq. (3.76)117:

E
M̂

( f̂ ) = inf
{
Ep̂p ( f̂ ) : p ∈M}= inf

{
Ep ( f̂ ◦Λ) : p ∈M}= EM( f̂ ◦Λ).

7.2.2 The set of lumped rate operators

Next, we set out to derive from Q a set Q̂ of rate operators on G(X̂) such that
any lumped jump process P̂ corresponding to P is consistent with Q̂. As con-
sistency with a set of rate operators goes through the transition probabilities
by Definition 3.5099, we should take a look at the transition probabilities for
the lumped jump process P̂ .

Corollary 7.22. Consider a jump process P with state space Xand any coher-
ent extension P⋆ of P to D⋆, and let P̂ be the corresponding lumped jump
process. Then for all {X̂u = x̂u} in Ĥ, t ,r in R≥0 such that u ≺ t < r and x̂
in X̂, there is a probability mass function p⋆ on Λ−1(x̂u)×Λ−1(x̂) such that

P̂ (X̂r = ŷ | X̂u = x̂u , X̂ t = x̂)
∑

xu∈x̂u

∑
x∈x̂

p⋆(xu , x)
∑
y∈ŷ

P (Xr = y |Xu = xu , X t = x).

Proof. Follows almost immediately from Lemmas 7.6345 and 7.11349 and (JP2)69.

So, the transition probabilities of any lumped jump process P̂ are some
convex combination of sums of transition probabilities of P . This is per-
haps more easily understood if we think about the matrix representation
of the history-dependent transition operator T̂ {X̂u=x̂u }

t ,r of the lumped jump

process P̂ . For the row T̂ {X̂u=x̂u }
t ,r (x̂,•), we essentially take some convex com-

bination of the rows T {Xu=xu }
t ,r (x,•) for x in Λ−1(x̂) and for xu in Λ−1(x̂u) of

the history-dependent transition operator, and then sum some columns.
Translating this to the set of rate operators is a bit of a mess; here, we will take
a detour via the lower envelopes, as this allows for a more elegant treatment.

For any non-empty and bounded set Q of rate operators, we define the
operator Q̂Q : G(X̂) →G(X̂) that maps a gamble f̂ inG(X̂) to the gamble Q̂Q f̂
on X̂, defined for all x̂ in X̂ by[

Q̂Q f̂
]
(x̂) := min

{[
QQ( f̂ ◦Λ)

]
(x) : x ∈ x̂

}
. (7.27)
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In order to lighten our notation, we let Q̂Q := Q̂{Q} for any rate operator Q
inQX . Due to the following result, we call the operator Q̂Q the lumped lower
rate operator corresponding to Q, and similarly for Q̂Q .

Lemma 7.23. Consider a non-empty and bounded subset Q of QX . Then the
corresponding operator Q̂Q is a lower rate operator on G(X̂).

Proof. By Definition 3.63109, we need to verify that Q̂Q satisfies (LR1)109–(LR4)109.

Before doing so, we let Q̂ := Q̂Q , and we recall from Proposition 3.65110 that Q :=QQ

is a lower rate operator.

(LR1) Fix some x̂ in X̂. Observe that I
X̂

◦Λ= IX , so by Eq. (7.27)↶,[
Q̂I

X̂

]
(x̂) = min

{[
QIX

]
(x) : x ∈ x̂

}
= 0,

where the final equality follows from (LR1)109 because Q is a lower rate opera-
tor.

(LR2) Fix some x̂, ŷ in X̂ such that x̂ ̸= ŷ . Observe that Iŷ ◦Λ = ∑
y∈ŷ Iy , so by

Eq. (7.27)↶, [
Q̂Iŷ

]
(x̂) = min

{[
Q

( ∑
y∈ŷ

Iy

)]
(x) : x ∈ x̂

}
.

For all x in Λ−1(x̂), [
Q

( ∑
y∈ŷ

Iy

)]
(x) ≥ ∑

y∈ŷ
[QIy ](x) ≥ 0,

where the inequalities follow from (LR4)109 and (LR2)109 because Q is a lower

rate operator and x ̸= y for all y in Λ−1(ŷ). From the preceding equality and
inequality, it follows immediately that [Q̂Iŷ ](x̂) ≥ 0, as required.

(LR3) Fix some x̂ in X̂, f̂ in G(X̂) and µ in R≥0. Observe that (µ f̂ )◦Λ=µ( f̂ ◦Λ), so
by Eq. (7.27)↶,[

Q̂(µ f̂ )
]
(x̂) = min

{[
Q(µ( f̂ ◦Λ))

]
(x) : x ∈ x̂

}
= min

{
µ
[
Q( f̂ ◦Λ)

]
(x) : x ∈ x̂

}
=µ[

Q̂ f̂
]
(x̂),

where for the second equality we used (LR3)109 for Q and for the third equality
we used that µ is non-negative by assumption.

(LR4) Fix some x̂ in X̂, and some f̂ , ĝ in G(X̂). Observe that ( f̂ + ĝ )◦Λ= f̂ ◦Λ+ ĝ ◦Λ,
so [

Q̂( f̂ + ĝ )
]
(x̂) = min

{[
Q( f̂ ◦Λ+ ĝ ◦Λ)

]
(x) : x ∈ x̂

}
.

Because Q satisfies (LR4)109 and the minimum operator is super-additive, it
follows from this that[

Q̂( f̂ + ĝ )
]
(x̂) ≥ min

{[
Q( f̂ ◦Λ)

]
(x)+ [

Q(ĝ ◦Λ)
]
(x) : x ∈ x̂

}
≥ min

{[
Q( f̂ ◦Λ)

]
(x) : x ∈ x̂

}
+min

{[
Q(ĝ ◦Λ)

]
(x) : x ∈ x̂

}
= [

Q̂ f̂
]
(x̂)+ [

Q̂ ĝ
]
(x̂),

as required.
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Important to mention here is that whenever the lumped state space
corresponds to some higher-order state description, the optimisation in
Eq. (7.27)355 tends to be fairly straightforward. For example, in Chapter 8403

further on, determining Q̂Q f̂ reduces to computing the minimum over a
small number of cases, and this is also the case in the setting of our running
example; see also Queuing Network Example 7.36368 further on.

Queuing Network Example 7.24. Let us determine Q̂Q as defined by
Eq. (7.27)355 for the rate operator Q defined in Queueing Network Exam-
ples 7.3340 and 7.18353. As an intermediate step, we determine [Q( f̂ ◦Λ)](x)
for any rate operator Q as defined by Eq. (7.1)342 in Queuing Network Exam-
ple 7.3340.

Fix any f̂ in G(X̂) and x̂ = (n0,m0, . . . ,mN ) in X̂. Then by Eq. (7.1)342 in
Queuing Network Example 7.3340, for all x = (x0, x1, . . . , xK ) in Λ−1(x̂),

[Q( f̂ ◦Λ)](x)

=
K∑

k=1

µ

K

(
[ f̂ ◦Λ](x+

k )− [ f̂ ◦Λ](x)
)+ ∑

k∈Kx

λk
(
[ f̂ ◦Λ](x−

k )− [ f̂ ◦Λ](x)
)

=
K∑

k=1

µ

K

(
[ f̂ ◦Λ](x+

k )− f̂ (x̂)
)+ ∑

k∈Kx

λk
(
[ f̂ ◦Λ](x−

k )− f̂ (x̂)
)
, (7.28)

where the first summation is only added if x0 > 0 and where Kx is the set of
indices k in {1, . . . ,K } such that xk > 0.

Fix any x = (x0, x1, . . . , xK ) in Λ−1(x̂). By our discussion in Queuing Net-
work Example 7.4342, x0 = n0 and for all ℓ in {1, . . . , N }, there are mℓ−1 in-
dices k in {1, . . . ,K } such that xk = ℓ−1. The first summation in Eq. (7.28) is
only added if x0 = n0 > 0. In this case, for all k in {1, . . . ,K },Λ(x+

k ) corresponds
to the lumped state (n0 −1,m0, . . . ,mℓ−1 −1,mℓ+1, . . . ,mN ) with ℓ−1 = xk .
Because there are mℓ−1 indices k in {1, . . . ,K } such that xk = ℓ−1, we see that

K∑
k=1

µ

K

(
[ f̂ ◦Λ](x+

k )− f̂ (x̂)
)= ∑

ℓ∈L+
x̂

µ

K
mℓ−1

(
f̂ (x̂+

ℓ )− f̂ (x̂)
)
, (7.29)

where L+
x̂ is the set of indices ℓ in {1, . . . , N } such that mℓ−1 > 0 and where

for all ℓ in L+
x̂ , we let x̂+

ℓ
:= (n0 −1,m0, . . . ,mℓ−1 −1,mℓ+1, . . . ,mN ).

The second summation in Eq. (7.28) is a bit more involved. There are∑N
ℓ=1 mℓ indices k in {1, . . . ,K } such that xk > 0, and for each of these indices k,

Λ(x−
k ) is the lumped state (n0+1,m0, . . . ,mℓ−1+1,mℓ−1, . . . ,mN ) with ℓ= xk .

We let L−
x̂ be the set of indices ℓ in {1, . . . , N } such that mℓ > 0, and for each

ℓ in L−
x̂ , we let x̂−

ℓ
:= (n0,m0, . . . ,mℓ−1 +1,mℓ−1, . . . ,mN ) and we let Kx,ℓ be

those mℓ indices in {1, . . . ,K } such that xk = ℓ. Then

∑
k∈Kx

λk
(
[ f̂ ◦Λ](x−

k )− f̂ (x̂)
)= ∑

ℓ∈L−
x̂

( ∑
k∈Kx,ℓ

λk

)(
f̂ (x̂−

ℓ )− f̂ (x̂)
)
. (7.30)
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For all x = (x0, . . . , xK ) in Λ−1(x̂), it follows from Eqs. (7.28)↶ to (7.30)↶
that

[Q( f̂ ◦Λ)](x) = ∑
ℓ∈L+

x̂

µ

K
mℓ

(
f̂ (x̂+

ℓ )− f̂ (x̂)
)

+ ∑
ℓ∈L−

x̂

( ∑
k∈Kx,ℓ

λk

)(
f̂ (x̂−

ℓ )− f̂ (x̂)
)
. (7.31)

Finally, we return to the setting in Queuing Network Example 7.18353, so
K is even and we take λk =λ if k ≤ K/2 and λk =λ otherwise. By Eq. (7.27)355,
[Q̂Q f̂ ](x̂) is the minimum of [Q( f̂ ◦Λ)](x) for x in Λ−1(x̂). Basically, we run
over all possible configurations of customers of the K parallel servers, with
the only constraint that, for all ℓ in {1, . . . , N }, exactly mℓ servers have ℓ

customers. Hence, it follows from Eq. (7.31) and the definition of Kx,ℓ that

[Q̂Q f̂ ](x̂) = ∑
ℓ∈L+

x̂

µ

K
mℓ

(
f̂ (x̂+

ℓ )− f̂ (x̂)
)

+ ∑
ℓ∈L−

x̂

(λ⋆ℓ,1 +·· ·+λ⋆ℓ,mℓ
)
(

f̂ (x̂−
ℓ )− f̂ (x̂)

)
, (7.32)

where the λ⋆
ℓ,i ’s are equal to λ or λ and are chosen in such a way that they

minimise the expression, under the constraint that, in total, at most K/2 can
have the same value. One rather obvious way to solve this minimisation
problem is to order the values of f̂ (x̂−

ℓ
)− f̂ (x̂) for the indices ℓ in L−

x̂ , and
to subsequently assign as much λ’s as possible to the negative values and as
much λ’s as possible to positive values. £

Because Q̂Q is a lower rate operator, we know from Lemma 3.66110 that it
induces a set of dominating transition rate matrices. In the present setting of
lumping, we call

Q̂Q :=
{

Q̂ ∈QX̂ :
(∀ f̂ ∈G(X̂)

)
Q̂ f̂ ≥ Q̂Q f̂

}
(7.33)

the set of lumped rate operators. Following our notational convention for M̂,
we will often drop the subscript of Q̂Q whenever the original set Q is clear
from the context. Similarly, in line with our notational convention for Q̂Q , we

let Q̂Q := Q̂{Q} for all Q inQX .
It follows immediately from Lemmas 3.66110 and 3.69111 that the set Q̂

has the following nice properties.

Corollary 7.25. Consider a non-empty and bounded set Q of rate opera-
tors. Then the corresponding set Q̂Q of lumped rate operators is non-empty,
bounded, closed and convex and has separately specified rows, and its lower
envelope is Q̂Q.
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7.2 Lumping and consistency

Proof. Because Q̂Q is a lower rate operator by Lemma 7.23356 and the set Q̂Q is

defined in Eq. (7.33)↶ as the set of rate operators that dominate Q̂Q , the statement
follows immediately from Lemmas 3.66110 and 3.69111.

Suppose P is a jump process that is consistent with some non-empty and
bounded subsetQ ofQX . Our definition of the set of lumped rate operators Q̂
is inspired by Lemmas 7.21354 and 7.14351, and the latter implies that any
lumped jump process P̂ corresponding to P is consistent with Q̂. We would
like to invoke Proposition 3.57104 for our proof, so first we establish that P̂
has bounded rate.

Lemma 7.26. Consider a jump process P that has bounded rate. Then any
corresponding lumped jump process P̂ has bounded rate too.

Proof. By Lemma 3.54102, we need to show that for all t in R≥0, {X̂u = x̂u } in Ĥ such
that u ≺ t and x̂ in X̂,

limsup
r↘t

1

r − t

(
1− P̂ (X̂r = x̂ | X̂u = x̂u , X̂t = x̂)

)<+∞ (7.34)

and, if t > 0,

limsup
s↗t

1

t − s

(
1−P (X̂t = x̂ | X̂u = x̂u , X̂s = x̂)

)<+∞. (7.35)

Thus, we fix some t in R≥0, {X̂u = x̂u } in H such that u ≺ t and x̂ in X̂.
Here, we will only prove Eq. (7.34); the proof for Eq. (7.35) is analoguous. Fix some

r in ]t ,+∞[. Then by Corollary 7.12350 and Lemma 7.6345,

P̂ (X̂r = x̂ | X̂u = x̂u , X̂t = x̂) ≥ min
{
P (Xr ∈ x̂ |Xu = xu , Xt = x) : xu ∈ x̂u , x ∈ x̂

}
.

For all xu in Λ−1(x̂u ) and x in Λ−1(x̂), it follows from (CP8)42 that

P (Xr ∈ x̂ |Xu = xu , Xt = x) ≥ P (Xr = x |Xu = xu , Xt = x).

Hence, by the previous two inequalities,

P̂ (X̂r = x̂ | X̂u = x̂u , X̂t = x̂) ≥ min
{
P (Xr = x |Xu = xu , Xt = x) : xu ∈ x̂u , x ∈ x̂

}
,

and therefore

1

r − t

(
1− P̂ (X̂r = x̂ | X̂u = x̂u , X̂t = x̂)

)
≤ 1

r − t

(
1−min

{
P (Xr = x |Xu = xu , Xt = x) : xu ∈ x̂u , x ∈ x̂

})
= max

{
1

r − t

(
1−P (Xr = x |Xu = xu , Xt = x)

)
: xu ∈ x̂u , x ∈ x̂

}
.

Because P has bounded rate by assumption and Λ−1(x̂u )×Λ−1(x̂) is finite, Eq. (7.34)
follows from this inequality and Lemma 3.54102 for P .

Due to the preceding result and Proposition 3.57104, the result that we are
after follows from Lemma 7.14351 and the definition of Q̂Q.
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Lemma 7.27. Consider a non-empty and bounded subset Q of QX , and a
jump process P that is consistent with Q. Then any lumped jump process P̂
corresponding to P is consistent with Q̂Q.

In our proof, we need Lemma 7.14351 in the following form.

Corollary 7.28. Consider a jump process P with state space X, and let P̂ be
any corresponding lumped jump process. Then for all {X̂u = x̂u} in Ĥ, t ,r
in R≥0 such that u ≺ t ≤ r , x̂ in X̂ and f̂ in G(X̂),

min{EP
(
[ f̂ ◦Λ](Xr )

∣∣ Xu = xu , X t = x
)

: xu ∈ x̂u , x ∈ x̂}

≤ EP̂ ( f̂ (X̂r ) | X̂u = x̂u , X̂ t = x̂)

≤ max{EP
(
[ f̂ ◦Λ](Xr )

∣∣ Xu = xu , X t = x
)

: xu ∈ x̂u , x ∈ x̂}.

Proof. Observe that for all ω in Ω,[
f̂ ◦Λ](

ω(r )
)= f̂

(
Λ

(
ω(r )

))= f̂
(
[Λ◦ω](r )

)
,

so
(

f̂ (X̂r )
)↑Ω = [ f̂ ◦Λ](Xr ). For this reason, the inequalities of the statement follow

immediately from Lemma 7.14351.

Proof of Lemma 7.27. By Lemma 3.55102, P has bounded rate because by assump-
tion P is consistent with Q and Q is bounded; consequently, P̂ has bounded rate too
by Lemma 7.26↶. We adhere to the same notation as in Lemma 7.26↶: for all time
points t ,r in R≥0 and all state histories {X̂u = x̂u } in Ĥ such that u ≺ t ≤ r , we let

T̂ {X̂u=x̂u }
t ,r denote the history-dependent transition operator corresponding to P̂ as

defined by Eq. (3.35)84.
By Definition 3.5099, we need to show that for all t in R≥0 and {X̂u = x̂u } in Ĥ

such that u ≺ t , T̂ {X̂u=x̂u }
t ,t is d

Q̂
-differentiable – where we let Q̂ :=Q

X̂
– with

∂+T̂ {X̂u=x̂u }
t ,t ⊆ Q̂Q and, if t > 0, ∂−T̂ {X̂u=x̂u }

t ,t ⊆ Q̂Q .

We will only prove this for the right-sided d
Q̂

-derivative, the proof for the left-sided
one is analogous.

Fix some t in R≥0 and {X̂u = x̂u } in Ĥ such that u ≺ t . As P̂ has bounded rate, it

follows from Proposition 3.57104 that T̂ {X̂u=x̂u }
t ,t is d

Q̂
-differentiable and that

∂+T̂ {X̂u=x̂u }
t ,t =

Q̂ ∈Q
X̂

:
(∃(rn )n∈N↘ t

)
lim

n→+∞
T̂ {X̂u=x̂u }

t ,rn
− I

rn − t
= Q̂

.

We fix any Q̂ in ∂+T̂ {X̂u=x̂u }
t ,t , and let (rn )n∈N be a decreasing sequence in ]t ,+∞[ with

limn→+∞ rn = t such that

lim
n→+∞

T̂ {X̂u=x̂u }
t ,rn

− I

rn − t
= Q̂. (7.36)
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Fix some n inN, f̂ in G(X̂) and x̂ in X̂. Then by Corollary 7.28↶,[
T̂ {X̂u=x̂u }

t ,rn
f̂
]
(x̂) ≥ min

{[
T {Xu=xu }

t ,rn
( f̂ ◦Λ)

]
(x) : xu ∈ x̂u , x ∈ x̂

}
.

Recall from Proposition 3.80117 that because P is consistent with the bounded set Q
of rate operators,[

T {Xu=xu }
t ,rn

( f̂ ◦Λ)
]
(x) ≥

[
e(rn−t )QQ ( f̂ ◦Λ)

]
(x) for all xu ∈ x̂u , x ∈ x̂.

From the two preceding inequalities, we infer that[
T̂ {X̂u=x̂u }

t ,rn
f̂
]
(x̂) ≥ min

{[
e(rn−t )QQ ( f̂ ◦Λ)

]
(x) : x ∈ x̂

}
.

We subtract f̂ (x̂) from both sides of this inequality and divide both sides by rn − t , to
yield[

T̂ {X̂u=x̂u }
t ,rn

f̂
]
(x̂)− f̂ (x̂)

rn − t
≥ min

{[
e(rn−t )QQ ( f̂ ◦Λ)

]
(x)− [ f̂ ◦Λ](x)

rn − t
: x ∈ x̂

}
. (7.37)

Because limn→+∞ rn = t , it follows from Proposition 3.78115 that

lim
n→+∞

[
e(rn−t )QQ ( f̂ ◦Λ)

]
(x)− [ f̂ ◦Λ](x)

rn − t
= [

QQ( f̂ ◦Λ)
]
(x) for all x ∈ x̂,

and therefore

lim
n→+∞min

{[
e(rn−t )QQ ( f̂ ◦Λ)

]
(x)− [ f̂ ◦Λ](x)

rn − t
: x ∈ x̂

}
= min

{[
QQ( f̂ ◦Λ)

]
(x) : x ∈ x̂

}
.

Hence, it follows from Eqs. (7.36)↶ and (7.37) and the preceding equality that

[Q̂ f̂ ](x̂) ≥ min
{[

QQ( f̂ ◦Λ)
]
(x) : x ∈ x̂

}= [Q̂Q f̂ ](x̂),

where for the equality we used Eq. (7.27)355. Because x̂ and f̂ are arbitrary elements
of X̂ and G(X̂), respectively, we infer from this inequality and Eq. (7.33)358 that Q̂
belongs to Q̂Q . Seeing that Q̂ is an arbitrary element of ∂+T̂ {X̂u=x̂u }

t ,t , we can finally

conclude that ∂+T̂ {X̂u=x̂u }
t ,t ⊆ Q̂Q , which is what we needed to prove.

7.2.3 Describing a consistent jump process with the lumped impre-
icse jump process

Suppose we have a jump process P that is consistent with the set M of initial
probability mass functions on X and the non-empty and bounded set Q of
rate operators on G(X). Then any lumped jump process P̂ corresponding
to P is consistent with M̂ due to Lemma 7.20354 and consistent with Q̂ due
to Lemma 7.27↶.

Theorem 7.29. Consider a non-empty subset M of ΣX and a non-empty
and bounded subset Q of QX . Fix some jump process P in PM,Q. Then every
corresponding lumped jump process P̂ is consistent with M̂M and Q̂Q.
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Proof. Follows immediately from Lemmas 7.20354 and 7.27360

This is a nice theoretical result, but it is not entirely the result that we are
after: Theorem 7.29↶ characterises any lumped jump process P̂ correspond-
ing to P in terms of consistency, but it does not make clear how we can use
this lumped jump process P̂ to describe the original jump process P . In par-
ticular, we would like to say something about expectations of the form E D

P ( f |
Xu = xu), with {Xu = xu} in H and f in Vlim(Fu), and it is not immediately
obvious how we can do so using Theorem 7.29↶ only.

Let us start with the unconditional case, so with u = ( ) and therefore

{Xu = xu} = {X( ) = x( )} =Ω.

Note that Λ−1(Λ(x( ))) is equal to the singleton {x( )}. Consequently, it follows
from Lemma 7.17352 that the expectation with respect to any lumped jump
process P̂ corresponding to P essentially coincides with the expectation with
respect to P .

Proposition 7.30. Consider a jump process P and a corresponding lumped
jump process P̂ . Then for all f̂ in Vlim(F̂( )),

E D
P̂

( f̂ ) = E D
P ( f̂ ↑Ω).

Proof. Observe that Ω = {X( ) = x( )} and that Ω̂ = {X̂( ) = x̂( )}. Because Λ−1(x̂( )) =
{x( )}, it follows from Lemma 7.17352 that

E D
P̂

( f̂ ) = E D
P̂

( f̂ | X̂( ) = x̂( )) = E D
P ( f̂ ↑Ω |X( ) = x( )) = E D

P ( f̂ ↑Ω).

We combine this with Theorem 7.29↶ to prove the result that we are after.

Corollary 7.31. Consider a non-empty subset M of ΣX and a non-empty
and bounded subset Q of QX . Then for all P in PM,Q, f in Vlim(F( )) and ĝ , ĥ
in Vlim(F̂( )) such that ĝ ↑Ω ≤ f ≤ ĥ↑Ω,

EM̂,Q̂(ĝ ) ≤ E D
P ( f ) ≤ EM̂,Q̂(ĥ).

Proof. Let P̂ be any lumped jump process corresponding to P . Then by Proposi-
tion 7.30,

E D
P̂

(ĝ ) = E D
P (ĝ ↑Ω) and E D

P̂
(ĥ) = E D

P (ĥ↑Ω).

Because furthermore ĝ ↑Ω ≤ f ≤ ĥ↑Ω by assumption,

E D
P̂

(ĝ ) = E D
P (ĝ ↑Ω) ≤ E D

P ( f ) ≤ E D
P (ĥ↑Ω) = E D

P̂
(ĥ),

due to (DE6)226. The lumped jump process P̂ belongs to P
M̂,Q̂ by Theorem 7.29↶, so

the inequalities in the statement follow immediately from these inequalities.
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7.2 Lumping and consistency

In the conditional case, so with u ̸= ( ), things are way more complicated.
We cannot put to use the same argument as in the unconditional case, be-
cause the inequalities do not reduce to equalities. Specifically, the inequali-
ties in Lemma 7.17352 are facing the wrong way: Lemma 7.17352 gives bounds
on the expectation with respect to any lumped jump process P̂ in terms of
the original jump process P , but we want to use a – possibly imprecise –
jump process with state space X̂ to bound the expectation with respect to
the original jump process P . Nevertheless, we can extend Corollary 7.31↶ to
the conditional case, and this is made possible due to the following result;
note that in this result, unlike in Proposition 7.30↶, the jump process P̂ is
not guaranteed to be a lumped jump process corresponding to the original
jump process P . The statement of this result is straightforward, but looks can
be deceiving; the entirety of Appendix 7.B387 is devoted to its proof.

Theorem 7.32. Consider a non-empty subset M of ΣX and a non-empty
and bounded subset Q of QX . Fix any P in PM,Q, {Xu = xu} in H and f̂
in Vlim(F̂)u . Then there is a jump process P̂ in PM̂,Q̂ such that

E D
P̂

(
f̂
∣∣ X̂u =Λ(xu)

)= E D
P

(
f̂ ↑Ω ∣∣ Xu = xu

)
.

Because we have Theorem 7.32, it is child’s play to prove the result that
we are after.

Theorem 7.33. Consider a non-empty subset M of ΣX and a non-empty
and bounded subset Q of QX . Then for all P in PM,Q, {Xu = xu} in H, f
in Vlim(Fu) and ĝ , ĥ in Vlim(F̂u) such that ĝ ↑Ω ≤ f ≤ ĥ↑Ω,

EM̂,Q̂

(
ĝ

∣∣ X̂u =Λ(xu)
)≤ E D

P

(
f
∣∣ Xu = xu

)≤ EM̂,Q̂

(
ĥ

∣∣ X̂u =Λ(xu)
)
.

Proof. By Theorem 7.32, there is a jump process P̂ in P
M̂,Q̂ such that

E D
P̂

(
ĝ

∣∣ X̂u =Λ(xu )
)= E D

P

(
ĝ ↑Ω ∣∣ Xu = xu

)≤ E D
P

(
f
∣∣ Xu = xu

)
,

where for the inequality we used (DE6)226. Because E
M̂,Q̂ is the lower envelope of

the expectations with respect to the jump processes in P
M̂,Q̂ , this inequality implies

the first inequality in the statement.
The second inequality is implied by the first equality: note that −ĥ ≤− f , so

E D
P

(
f
∣∣ Xu = xu

)=−E D
P

(− f
∣∣ Xu = xu

)
≤−E

M̂,Q̂

(−ĥ
∣∣ X̂u =Λ(xu )

)= E
M̂,Q̂

(
ĥ

∣∣ X̂u =Λ(xu )
)
,

where for the first equality we used (DE4)225, for the inequality we used the first
inequality in the statement and for the second equality we used conjugacy.

At this point, it is only fair to mention that Katoen et al. (2012) obtained a
result that is – in some sense – similar to Theorem 7.33, but much less general.
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They state their results for what they call an ‘abstract continuous-time Markov
chain’ (see Katoen et al., 2012, Definition 7), but comparing their results to
Theorem 7.33↶ only makes sense for the particular case of a homogeneous
Markovian jump process Pp0,Q . Instead of lumping Pp0,Q directly, they use
the uniformisation method – also known as Jensen’s (1953) method, see
(Diener et al., 1995) or (Stewart, 2009, Section 10.7.2) – to obtain the so-called
embedded Markov chain, and subsequently lump this embedded Markov
chain. Katoen et al. (2012, Sections 4.3 and 5) show how to use this lumped
embedded Markov chain to compute the lower and upper probability of until
events – at least for subsets S,G of X such that S =X and G = Λ−1(Λ(G)).
Although they do not appear to mention this explicitly, a similar approach
can be used to determine lower and upper bounds on the expectation of
simple variables.

Lumpable variables

Theorem 7.33↶ is only relevant from a practical point of view if given an
‘interesting’ f in Vlim(Fu), we can easily find variables ĝ , ĥ in Vlim(F̂u) such
that ĝ ↑Ω ≤ f ≤ ĥ↑Ω. Whenever the lumped state space X̂ corresponds to a
higher-level state description, this is usually not a problem; as mentioned in
the introduction to this chapter, ‘in many cases, we can formalise the infer-
ences we would like to make in a higher-level state description’. Formally, a
variable f inVlim(Fu) ‘can be formalised in the higher-level state description’
if there is a variable f̂ in Vlim(F̂u) such that f̂ ↑Ω = f ; whenever this is the
case, we call the variable f lumpable. Note that f̂ then takes the role of ĝ and
ĥ. Let us investigate for some particular types of variables whether they are
lumpable or not.

We start with the Fu-simple variables. Recall from (our discussion before)
Lemma 3.1568 that anyFu-simple variable is of the form f (Xv ), with v inU≽u

and f in G(Xv ). Thus, we fix some u in U, v in U≽u and f in G(Xv ). We draw
inspiration from Franceschinis et al. (1994, p. 232) and let

f ↓min : X̂v →R : x̂v 7→ f ↓min(x̂v ) := min
{

f (xv ) : xv ∈ x̂v
}

(7.38)

and

f ↓max : X̂v →R : x̂v 7→ f ↓max(x̂v ) := max
{

f (xv ) : xv ∈ x̂v
}
. (7.39)

Note that, in general,

f ↓min(
Λ(xv )

)≤ f (xv ) ≤ f ↓max(Λ(xv )
)

for all xv ∈Xv . (7.40)

Obviously, these inequalities hold with equality if and only if f is constant
on the lumps, in the sense that f (xv ) = f (yv ) for all xv , yv in Xv such that
Λ(xv ) =Λ(yv ); in this case, we call f lumpable. It follows immediately from
Eq. (7.40) that (

f ↓min(X̂v )
)↑Ω ≤ f (Xv ) ≤ (

f ↓max(X̂v )
)↑Ω, (7.41)
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7.2 Lumping and consistency

and it is obvious that f (Xv ) is lumpable if and only if f is lumpable.

Queuing Network Example 7.34. Franceschinis et al. (1994) are interested in
the ‘population’ at S0: the number of customers that are being serviced by or
waiting to be serviced by S0. At time t in R≥0, the population at S0 is f (X t ),
with

f : X→R : (n0,n1, . . . ,nK ) 7→ n0. (7.42)

Note that f ↓min = f ↓max = f̂ with

f̂ : X̂→R : (n0,m0, . . . ,mN ) 7→ n0, (7.43)

so f (X t ) is a lumpable variable because ( f̂ (X̂ t ))↑Ω = f (X t ).
Let p0 and Q be as defined in Queueing Network Examples 7.3340 and

7.18353, and let M̂ := M̂{p0} and Q̂ := Q̂Q . For all x in X, it follows from
Theorem 7.33363 that, with x̂ :=Λ(x),

EM̂,Q̂( f̂ (X̂ t ) |X0 = x̂) ≤ Ep0,Q ( f (X t ) |X0 = x) ≤ EM̂,Q̂( f̂ (X̂ t ) |X0 = x̂).

To determine these (lower and upper) expectations, we recall from Theo-
rem 3.3787 that T0,t = e tQ , where T0,t is the transition operator from 0 to t
corresponding to Pp0,Q . Hence, it follows from Eq. (3.35)84 that

Ep0,Q ( f (X t ) |X0 = x) = [
e tQ f

]
(x).

Because the set Q̂ has separately specified rows due to Corollary 7.25358 and
has QQ̂ = Q̂Q as lower envelope, it follows from Proposition 3.81117 that

EM̂,Q̂( f̂ (X̂ t ) |X0 = x̂) = [
e tQQ̂ f̂

]
(x̂) = [

e tQ̂Q f̂
]
(x̂),

and similarly for the upper expectation due to conjugacy. We can approxi-
mate these with the methods discussed in Section 4.2173. When doing so, we
use Eq. (7.32)358 in Queuing Network Example 7.24357 to determine Q̂Q .

For a numerical example, we are interested in two ‘extreme’ initial states:
the state xe := (0, N ,0, . . . ,0) where the queue at S0 is empty and all customers
are at S1, and a state xf := (N ,0, . . . ,0) where all customers are at S0. Observe
that x̂e := Λ(xe) = (0,K −1,0, . . . ,1) and x̂f := Λ(xf) = (N ,K ,0, . . . ,0). We use
the same values for the system parameters as Franceschinis et al. (1994):
K = 4, N = 5, µ= 1, λ= 1 and λ= 1.01. We report the expected population at
time t = 10 conditional on {X0 = x}, as well as the lower and upper bounds,
in Table 7.1↷. The lower and upper bounds obtained with PM̂,Q̂ are quite
good: they only differ from the actual value from the third significant digit on.
That said, we do observe that, for these values of K and N , computing the
lower and upper bounds with PM̂,Q̂ takes longer than computing the actual
value of the expectation, which is rather unfortunate. This is a consequence
of the relatively small dimensions of the system; for larger values of K and N ,
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Table 7.1 Lower and upper bounds on the expected population at S0 for
t = 10 conditional on {X0 = x}. Parameters: K = 4, N = 5, µ = 1,
λ= 1 and λ= 1.01.

x EM̂,Q̂ Ep0,Q EM̂,Q̂

xe 3.604 3.610 3.623
xf 3.726 3.733 3.740

computing the lower and upper bounds with PM̂,Q̂ is actually (considerably)
faster than computing the actual value of the expectation. We do not com-
pare the computation times in detail here, as the observations regarding
computation times in Queuing Network Example 7.39370 further on hold in
this case too. £

Next, we investigate the lumpability of variables f inVlim(Fu) that are not
Fu-simple. Recall from Eq. (5.14)227 that such a limit variable f is defined as
the point-wise limit of a sequence ( fn)n∈N of Fu-simple variables; note that
this sequence need not be unique. Intuitively, we expect that f is lumpable
whenever there is some defining sequence ( fn)n∈N of Fu-simple variables
such that fn is lumpable for all n in N. While we could deal with this in
detail, it makes more sense to consider the three particular types of limit
variables for which we have computational methods. For these three types,
the lumpability is almost trivial to check and, perhaps more importantly, the
lumped variables are of the same type as the original variable.

Let us start with the indicator hS,G
[s,r ] of an until event, with S,G subsets

of X and s,r time points inR≥0 such that maxu ≤ s ≤ r . Intuitively, we expect
that this indicator hS,G

[s,r ] is lumpable if the sets S and G contain entire lumps.
In general, we say that a subset B of X is lumpable whenever

B =Λ−1(Λ(B)
)= {

x ∈X : Λ−1(Λ(x)
)⊆ B

}
;

obviously, this is the case if and only if

(IB )↓min = IB̂ = (IB )↓max with B̂ :=Λ(B) = {Λ(x) : x ∈ B}.

If S and G are lumpable, then clearly

(
hŜ,Ĝ

[s,r ]

)↑Ω = hS,G
[s,r ] with Ŝ :=Λ(S) and Ĝ :=Λ(G),

so the indicator hS,G
[s,r ] is lumpable. For the hitting time τG

[s,r ], we find some-
thing similar: if G is lumpable, then(

τĜ
[s,r ]

)↑Ω = τG
[s,r ] with Ĝ :=Λ(G).
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7.2 Lumping and consistency

Finally, we come to limit variables of the form
∫ r

s ft (X t )dt . Then obvi-
ously,(∫ r

s

[
f ↓min

t

]
(X̂ t )dt

)↑Ω
≤

∫ r

s
ft (X t )dt ≤

(∫ r

s

[
f ↓max

t

]
(X̂ t )dt

)↑Ω
. (7.44)

Hence, we see that if ft is lumpable for all t in [s,r ], then
∫ r

s f (X t )dt is
lumpable.

Queuing Network Example 7.35. As in Queuing Network Example 7.34365,
we are interested in the population at S0, and in particular in the temporal
average of this population over [0,r ]. That is, we seek to determine the ex-
pectation of � f �[0,r ] = 1

r

∫ r
0 f (X t )dt , with f as defined in Eq. (7.42)365. Recall

from Queuing Network Example 7.34365 that f ↓min = f̂ = f ↓max, with f̂ as
defined in Eq. (7.43)365, so

(� f̂ �[0,r ]
)↑Ω = � f �[0,r ] with � f̂ �[0,r ] = 1

r

∫ r

0
f̂ (X̂ t )dt

due to Eq. (7.44). For this reason, it follows from Theorem 7.33363 that, for all
x in X and with x̂ :=Λ(x),

EM̂,Q̂(� f̂ �[0,r ] |X0 = x̂) ≤ Ep0,Q (� f �[0,r ] |X0 = x) ≤ EM̂,Q̂(� f̂ �[0,r ] |X0 = x̂).

To compute these (lower and upper) expectations, we resort to the iterative
procedure in Theorem 6.50318, following essentially the same method as in
Power Network Example 6.51319.

We use the same parameter values as in Queuing Network Exam-
ple 7.34365: K = 4, N = 5, µ = 1, λ = 1 and λ = 1.01. To determine the ex-
pectation with respect to Pp0,Q , we determine f̃n,0 as defined by the recursive
scheme in Eq. (6.36)319, first for n = nmin := r∥Q∥op, then for n = 2nmin, and
so on until we observe ‘convergence’ up to four significant digits; we fol-
low the same strategy for the lower and upper expectations with respect
to PM̂,Q̂. In Table 7.2, we report (lower and upper bounds on) the expected
temporal average of the population at S0 over [0,10], where – as in Queuing
Network Example 7.34365 – we consider the two ‘extreme’ initial states xe and
xf. As in Queuing Network Example 7.34365, we observe that the bounds ob-

Table 7.2 Lower and upper bounds on the expected temporal average of the
population at S0 over [0,10] conditional on {X0 = x}. Parameters:
K = 4, N = 5, µ= 1, λ= 1 and λ= 1.01.

x EM̂,Q̂ Ep0,Q EM̂,Q̂

xe 2.467 2.470 2.487
xf 3.920 3.925 3.929
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tained withPM̂,Q̂ are decent, but that for these dimensions, the computations
for Pp0,Q take less time than those for PM̂,Q̂ – see also Table 7.5371 further on.
The plot of the temporal evolution of the expected temporal average and its
bounds in Fig. 7.5 confirm the accuracy of the bounds; we only plot the lower
bound for xe because this is indistinguishable from the upper bound, and
similarly for the upper bound for xf. £

0 5 10 15 20 25
0

2

4

r

E D
p0,Q

(� f �[0,r ]
∣∣ X0 = xe

)
E D

p0,Q

(� f �[0,r ]
∣∣ X0 = xf

)
E
M̂,Q̂

(� f �[0,r ]
∣∣ X̂0 = x̂e

)
E
M̂,Q̂

(� f �[0,r ]
∣∣ X̂0 = x̂f

)

Figure 7.5 Expected temporal average of the population at S0 over [0,r ] as a
function of r . Parameters: K = 4, N = 5, µ= 1, λ= 1 and λ= 1.01.

7.2.4 Describing an imprecise jump process with the lumped im-
precise jump process

In Section 7.2.3361, we looked at a single jump process P that is consistent
with M and Q. Of course, we might instead be interested in a set of such
processes, so in an imprecise jump process P ⊆PM,Q.

Queuing Network Example 7.36. In Queuing Network Example 7.18353, we
made the somewhat arbitrary assumption that half of the parallel servers have
service rate λk =λ and the other half have service rate λk =λ. Alternatively,
we can also model the system by means of an imprecise jump process model,
so that we do not need to specify the service rates in a precise or exact manner.
Henceforth, we will consider the homogeneous and Markovian imprecise
jump process PM,Q, with M and Q defined as follows.

The set M of initial probability mass functions does not play a role in our
analysis, so it can be any non-empty subset of ΣX . Here, we assume that we
have no knowledge about the initial state, so we let M :=ΣX .

368



7.2 Lumping and consistency

Instead of considering the single rate operator Q as defined in Eq. (7.1)342,
here we consider the set Q of rate operators Q ′ that are defined as by
Eq. (7.1)342 in Queuing Network Example 7.3340, but where the rates λ1,
. . . , λK are only required to belong to [λ,λ] and where this choice of rates
need not even be the same for all x in X. Note that, by construction, the
rate operator Q as defined in Queuing Network Example 7.18353 – so the one
where λk =λ if k ≤ K/2 and λk =λ otherwise – belongs to Q.

It is not difficult to verify that, by construction, Q is non-empty, bounded
and has separately specified rows, so the lower envelope QQ is well-defined.
Because we can vary the λk ’s separately, it follows immediately from
Eq. (7.1)342 that, for all f in G(X) and x = (n0, . . . ,nK ) in X,

[
QQ f

]
(x) =

K∑
k=1

µ

K

(
f (x+

k )− f (x)
)

+ ∑
k∈Kx

min
{
λk

(
f (x−

k )− f (x)
)

: λk ∈ {
λ,λ

}}
, (7.45)

where the first summation is only added if n0 > 0.
Let Q̂2 := Q̂Q. By definition – see Eq. (7.33)358 – the lower envelope of this

set is Q̂Q, as defined by Eq. (7.27)355. For all f̂ inG(X̂) and x̂ = (n0,m0, . . . ,mN )
in X̂, we find after a bit of work – and using Eq. (7.27)355 and Eq. (7.31)358 in
Queuing Network Example 7.24357 – that

[
Q̂Q f̂

]
(x̂) = ∑

ℓ∈L+
x̂

µ

K
mℓ

(
f̂ (x̂+

ℓ )− f̂ (x̂)
)

+ ∑
ℓ∈L−

x̂

min
{
mℓλℓ

(
f̂ (x̂−

ℓ )− f̂ (x̂)
)

: λℓ ∈
{
λ,λ

}}
. (7.46)

Note that this optimisation problem is easier than the one in Eq. (7.32)358

for Q̂Q . £

Even if we are interested in an imprecise jump process P ⊆PM,Q instead
of in a single jump process P in PM,Q, we can still use Theorem 7.33363 to
bound the lower and upper expectations with respect to P. The following
corollary makes clear how exactly.

Corollary 7.37. Consider a non-empty subset M of ΣX , a non-empty and
bounded subset Q of QX , and let M̂ := M̂M and Q̂ := Q̂Q. Then for any
imprecise jump process P ⊆ PM,Q, and any {Xu = xu} in H, f in Vlim(Fu)
and ĝ , ĥ in Vlim(F̂u) such that ĝ ↑Ω ≤ f ≤ ĥ↑Ω,

EM̂,Q̂

(
ĝ

∣∣ X̂u =Λ(xu)
)≤ EP

(
f
∣∣ Xu = xu

)
≤ EP

(
f
∣∣ Xu = xu

)≤ EM̂,Q̂

(
ĥ

∣∣ X̂u =Λ(xu)
)
.

Proof. Follows immediately from Theorem 7.33363.
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Table 7.3 Lower and upper bounds on the (lower and upper) expected pop-
ulation at S0 for t = 10 conditional on {X0 = x}. Parameters: K = 4,
N = 5, µ= 1, λ= 1 and λ= 1.01.

x EM̂,Q̂2
EM,Q Ep0,Q EM,Q EM̂,Q̂2

xe 3.603 3.603 3.610 3.623 3.623
xf 3.726 3.726 3.733 3.740 3.740

Let us put Corollary 7.37↶ to work in the setting of Queuing Network
Example 7.36368. First, we do so for a simple variable.

Queuing Network Example 7.38. As in Queuing Network Example 7.34365, we
determine the expected ‘population’ at S0. This time around, we model the
system with the homogeneous and Markovian imprecise jump process PM,Q,
with M and Q as defined in Queuing Network Example 7.36368.

Then for all x in X, it follows from Theorem 7.32363 that, with x̂ :=Λ(x),

EM̂,Q̂2

(
f̂ (X̂ t )

∣∣ X̂0 = x̂
)≤ EM,Q

(
f (X t )

∣∣ X0 = x
)

≤ EM,Q
(

f (X t )
∣∣ X0 = x

)≤ EM̂,Q̂2

(
f̂ (X̂ t )

∣∣ X̂0 = x̂
)
.

Because Q and Q̂2 have separately specified rows, we can use the methods
discussed in Section 4.2173 to approximate these lower and upper bounds.
When doing so, we use the expression in Eq. (7.45)↶ to determine QQ and
the expression in Eq. (7.46)↶ to determine QQ̂2

= Q̂Q.
We use the same parameters as in Queuing Network Example 7.34365, and

report the lower and upper expected population at time t = 10 conditional on
{X0 = x}, as well as the lower and upper bounds, in Table 7.3. The lower and
upper bounds obtained with PM̂,Q̂2

are good, and they are (almost) equal to
those obtained with PM̂,Q̂. However, we observe that computing the former is
(considerably) faster than computing the latter; we do not report these com-
putation times because they follow the same trends as those in Table 7.5↷
further on. £

Finally, we give an example where we use Corollary 7.37↶ for a lumpable
limit variable.

Queuing Network Example 7.39. As in Queuing Network Example 7.35367,
we seek to determine the (lower and upper) expected average population
at S0, so the lower and upper expectation of � f �[0,r ] = 1

r

∫ r
0 f (X t )dt with f as

defined in Eq. (7.42)365. By Corollary 7.37↶, for all x in X and with x̂ :=Λ(x),

EM̂,Q̂2
(� f̂ �[0,r ] |X0 = x̂) ≤ EM,Q(� f �[0,r ] |X0 = x)

≤ EM,Q(� f �[0,r ] |X0 = x) ≤ EM̂,Q̂2
(� f̂ �[0,r ] |X0 = x̂).

We follow the method in Queuing Network Example 7.35367 to determine
these lower and upper bounds, using the same parameters. In Table 7.4↷,
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Table 7.4 Lower and upper bounds on the (lower and upper) expected tem-
poral average of the population at S0 over [0,10] conditional on
{X0 = x}. Parameters: K = 4, N = 5, µ= 1, λ= 1 and λ= 1.01.

x EM̂,Q̂2
EM,Q Ep0,Q EM,Q EM̂,Q̂2

xe 2.466 2.466 2.470 2.487 2.487
xf 3.919 3.919 3.925 3.930 3.930

we report the lower and upper expected temporal averages of the population
at S0 over [0,10] for the two ‘extreme’ initial states xe and xf. As in Queuing
Network Example 7.38↶, we observe that the bounds obtained with PM̂,Q̂2
are quite good; they are also pretty close to those obtained with PM̂,Q̂.

However, there is a big difference between computation times for Pp0,Q ,
PM,Q, PM̂,Q̂ and PM̂,Q̂2

. To investigate these differences a bit more, we run
the same numerical example for different values of N and K , and report the
computation times in Table 7.5. The difference in runtime that we observe is

Table 7.5 Duration of computations (in seconds) to determine (lower and
upper bounds on) the expected temporal average of the population
at S0 over [0,10] (average over 100 runs). Parameters: µ= 1, λ= 1

and λ= 1.01.

K N |X| |X̂| Pp0,Q PM,Q PM̂,Q̂ PM̂,Q̂2

4 6 210 27 0.01308 0.1606 1.119 0.3061
6 8 3003 64 0.6983 4.192 2.008 1.096
8 10 43758 136 17.42 47.46 5.935 1.551

10 12 646646 269 793.2 1012 30.48 8.108

explained by the size of the state space: as is to be expected, the runtimes are
more or less proportional to the cardinality of (lumped) state space. Observe
also that the runtimes for PM̂,Q̂ are longer than those for PM̂,Q̂2

, even though
they both have X̂ as state space; this is in line with our observation in Queu-
ing Network Example 7.36368 that the optimisation problem for Q̂Q is harder
than that for Q̂Q. £

7.2.5 Lumpability of a homogeneous Markovian jump process

To conclude this section, we return to the original setting in which the lump-
ing procedure was first proposed: we suppose we have a homogeneous and
Markovian jump process Pp0,Q , where p0 is a probability mass function on X

and Q a rate operator on G(X).
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Burke et al. (1958, Theorem 4) were the first to investigate whether ‘the’
corresponding lumped jump process P̂ is Markovian, and they found that
the following condition is necessary and sufficient.

Definition 7.40. A rate operator Q in QX is lumpable if there is some Q̂
inQX̂ such that

(∀x̂, ŷ ∈ X̂)(∀x ∈ x̂)
∑
y∈ŷ

Q(x, y) = Q̂(x̂, ŷ). (7.47)

Let us investigate what the implications of lumpability are for our ‘alter-
native’ approach. First, we take a look at the set Q̂Q of lumped rate operators
corresponding to a lumpable rate operator Q.

Lemma 7.41. Consider a rate operator Q inQX , and let Q̂ := Q̂Q and Q̂ := Q̂Q .

Then Q is lumpable if and only if Q̂ is linear; whenever this is the case, Q̂= {Q̂}
and Q̂ = Q̂, where Q̂ is the unique rate operator that satisfies Eq. (7.47).

Proof. Recall from Eq. (7.27)355 that, for all f̂ in G(X̂) and x̂ in X̂,

[
Q̂ f̂

]
(x̂) = min

{[
Q( f̂ ◦Λ)

]
(x) : x ∈ x̂

}
= min

{ ∑
y∈X

Q(x, y)[ f̂ ◦Λ](y) : x ∈ x̂

}

= min

{ ∑
ŷ∈X

f̂ (ŷ)
∑
y∈ŷ

Q(x, y) : x ∈ x̂

}
. (7.48)

To prove the direct implication, we assume that Q is lumpable. Then it follows
immediately from Definition 7.40 and Eq. (7.48) that Q̂ = Q̂, with Q̂ the – obviously

unique – rate operator that satisfies Eq. (7.47). This proves that Q̂ is linear, and it is

easy to see that then Q̂ is the unique rate operator that dominates Q̂, so Q̂= {Q̂}.
Next, we prove the converse implication, so we assume that Q is linear. Fix some

x̂, ŷ in X̂. Then by Eq. (7.48) for f̂ = Iŷ and f̂ =−Iŷ and the linearity of Q̂,

min

{ ∑
y∈ŷ

Q(x, y) : x ∈ x̂

}
= [Q̂Iŷ ](x̂) =−[Q̂(−Iŷ )](x̂) = max

{ ∑
y∈ŷ

Q(x, y) : x ∈ x̂

}
.

Hence, Q satisfies the condition in Definition 7.40 with Q̂ = Q̂, so Q is lumpable.

Second, we have the following corollary of the preceding result and The-
orem 7.29361, which verifies the sufficiency of lumpability in (Burke et al.,
1958, Theorem 4).

Corollary 7.42. Consider a probability mass function p0 in ΣX and a rate
operator Q inQX . If Q is lumpable, then the lumped jump process P̂ corre-
sponding to Pp0,Q is uniquely defined and equal to Pp̂0,Q̂ , with p̂0 := p̂p0 and
Q̂ = Q̂Q .
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7.3 Bounding limit expectations

Proof. Let M := {p0} andQ := {Q}, and recall from Eq. (3.66)104 that

PM,Q = {
Pp0,Q

}
.

Because Q is lumpable by assumption, we know from Lemma 7.41↶ that the
corresponding set Q̂Q = Q̂{Q} = Q̂Q of lumped rate operators is the singleton {Q̂}.

Furthermore, M̂M = {p̂0} by Eq. (7.26)354. Hence, it follows from Eq. (3.66)104 that

P
M̂M ,Q̂Q

= {
Pp̂0,Q̂

}
. (7.49)

The statement follows from this equality because, by Theorem 7.29361, any lumped
jump process P̂ corresponding to Pp0,Q belongs to P

M̂M ,Q̂Q
.

Burke et al. (1958, Theorem 4) find that lumpability is also necessary for
‘the’ lumped jump process P̂ corresponding to Pp0,Q to be Markovian; to
obtain this result, they have to demand that ‘the’ lumped jump process is
a homogeneous Markovian jump process for every initial probability mass
function p0 on X such that p0 ⋗0. Given this extra assumption, this result
would hold in our framework as well.

Particularly interesting about Corollary 7.42↶ is that it implies that we
can specialise Theorem 7.33363.

Corollary 7.43. Consider an initial probability mass function p0 in ΣX and
a lumpable rate operator Q inQX , and let p̂0 := p̂p0 and Q̂ := Q̂Q . Then for

all {Xu = xu} in H, f in Vlim(Fu) and ĝ , ĥ in Vlim(F̂u) with ĝ ↑Ω ≤ f ≤ ĥ↑Ω,

E D
p̂0,Q̂

(
ĝ

∣∣ X̂u =Λ(xu)
)≤ E D

p0,Q

(
f
∣∣ Xu = xu

)
E D

p̂0,Q̂

(
ĥ

∣∣ X̂u =Λ(xu)
)
.

Proof. Follows immediately from Theorem 7.33363 and (Eq. (7.49) in the proof of)
Corollary 7.42↶.

7.3 Bounding limit expectations

In many practical applications, see for instance Chapter 8403 further on or
(Franceschinis et al., 1994; Buchholz, 2005; Ganguly et al., 2014; Troffaes
et al., 2015), the system is modelled as a homogeneous and Markovian jump
process Pp0,Q , and one is interested in the expected long-term temporal
average of f (X t ), so in the expectation of

� f �[0,r ] = 1

r

∫ r

0
f (X t )dt

for large values of r . Recall from Section 6.4.4305 that whenever the
rate operator Q is ergodic, this expected long-term temporal average is
equal to the limit expectation Elim( f ): the value of the constant func-
tion limt→+∞ e tQ f . This same limit expectation can also be used to directly
determine limt→+∞ Ep0,Q ( f (X t )) for some gamble f on X, because

lim
t→+∞Ep0,Q ( f (X t )) = lim

t→+∞Ep0 (e tQ f ) = Elim( f ).

373



Lumping

For these reasons, methods to efficiently determine the limit expectation Elim

corresponding to an ergodic rate operator Q are of tremendous practical
interest.

There are plenty of methods available to determine this limit expectation;
see for example (Stewart, 2009, Section 10) for an overview. However, it is well-
known that these methods become intractable as the size of the state space
increases (see Franceschinis et al., 1994; Buchholz, 2005). For this reason, we
set out to obtain bounds on this limit expectation using the lumped lower rate
operator Q̂Q . Our hope is that given that the lumped state space is sufficiently
small, these bounds can be tractably computed. If this is the case, then we
can bound inferences that we could not tractably compute using the precise
methods for the original model.

In Sections 7.3.1 and 7.3.2376, we will adapt two well-known methods to
determine the limit expectation precisely. More specifically, we will argue
how these methods can be made computationally tractable using the lumped
rate operator Q̂Q at the cost of imprecision, provided of course that Q̂Q f̂ can
be determined much more efficiently than Q f . First, however, we start with
some general theory concerning ergodic homogeneous Markovian jump
processes.

7.3.1 Ergodicity, irreducibility and the limit expectation

When investigating the limit expectation, it is customary to focus on er-
godic rate operators whose top class XQ is equal to the entire state space;
following Norris (1997, Sections 1.2 and 3.2), and as mentioned before in
Section 6.4.4305, we call such rate operators irreducible.

Corollary 7.44. A rate operator Q is irreducible if and only if

XQ := {
x ∈X : (∀y ∈X) y ,→ x

}=X.

Proof. This follows immediately from Proposition 4.33193.

One can get away with investigating irreducible rate operators because as
far as the limit expectation is concerned, one can ‘reduce’ the state space to
the top class XQ . The following result translates Seneta’s (1981, Theorem 4.7)
result from ergodic transition operators to ergodic rate operators.

Proposition 7.45. Let Q be an ergodic rate operator. Then the linear opera-
tor Q ′ : G(XQ ) →G(XQ ), defined by

Q ′(x, y) :=Q(x, y) for all x, y ∈XQ ,

is an irreducible rate operator. Furthermore, for all f in G(X), Elim( f ) =
E ′

lim( f ′), where E ′
lim denotes the limit expectation corresponding to Q ′ and f ′

is the restriction of f to XQ .
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7.3 Bounding limit expectations

Proof. Our proof hinges on the following claim:

Q(x, y) = 0 for all x ∈XQ , y ∈X \XQ (7.50)

To verify this claim, we fix any such x and y , and assume ex absurdo that Q(x, y) ̸= 0.
Note that Q(x, y) = [

QIy
]
(x) ≥ 0 because x ̸= y and Q is a rate operator, so this implies

that Q(x, y) > 0. Fix any arbitrary z in X. As x is a state in the top class XQ , we
know that z ,→ x, or equivalently, that there is a sequence (x0, . . . , xn ) with n in Z≥0,
x0 = z and xn = x such that Q(xk−1, xk ) > 0 for all k in {1, . . . ,n}. If we let xn+1 := y ,
then clearly Q(xk−1, xk ) > 0 for all k in {1, . . . ,n +1}, so z ,→ y . As z was an arbitrary
state, this implies that y is a state in the top class XQ , which contradicts our initial
assumption.

We use Eq. (7.50) to verify that Q ′ is an irreducible rate operator. That Q ′ is a rate
operator – that is, that it has non-negative off-diagonal elements and rows that sum
up to zero – follows almost immediately from Eq. (7.50) because Q is a rate operator.
Hence, we focus on verifying that Q ′ is irreducible: we need to show that for any
arbitrary x, y in XQ , there is a sequence x0, . . . , xn in XQ with n in Z≥0, x0 = x and
xn = y such that Q ′(xk−1, xk ) > 0 for all k in {1, . . . ,n}. Fix any arbitrary x and y in XQ .
Because y belongs to the top class XQ , there is a sequence (x0, . . . , xn ) in X with n
in Z≥0, x0 = x and xn = y such that Q(xk−1, xk ) > 0 for all k in {1, . . . ,n}. As x0 is in
the top class and Q(x0, x1) > 0, it follows from Eq. (7.50) that x1 belongs to the top
class XQ . Repeating this argument, we obtain that the entire sequence (x1, . . . , xn )
belongs to the top class XQ . Consequently, Q ′(xk−1, xk ) = Q(xk−1, xk ) > 0 for all k
in {1, . . . ,n}, as required.

Finally, we prove the second part of the statement. To this end, we fix some g
in G(X) and g ′ in G(XQ ) such that g (y) = g ′(y) for all y in XQ . Observe that, by
definition of Q ′ and due to Eq. (7.50), for all x in XQ ,

[Qg ](x) = ∑
y∈X

Q(x, y)g (y) = ∑
y∈XQ

Q(x, y)g (y) = ∑
y∈XQ

Q ′(x, y)g ′(y) = [Q ′g ′](x),

and therefore
(∀∆ ∈R≥0)

[
(I +∆Q)g

]
(x) = [

(I +∆Q ′)g ′](x). (7.51)

For all ∆ in R≥0, h := (I +∆Q)g and h′ := (I +∆Q ′)g ′ again satisfy h(x) = h′(x) for all x
in XQ , so we can again use Eq. (7.51). Repeating the same argument, we see that for
all x in XQ ,

(∀n ∈N)(∀∆ ∈R≥0)
[
(I +∆Q)g

]n (x) = [
(I +∆Q ′)g ′]n (x). (7.52)

Finally, it follows from Eq. (7.52) with g = f and g ′ = f ′ that for all for all t in R≥0
and x in XQ

[e tQ f ](x) = lim
n→+∞

[(
I + t

n
Q

)n
f

]
(x) = lim

n→+∞

[(
I + t

n
Q ′

)n
f ′

]
(x) = [e tQ ′

f ′](x),

as required.

In order to use this result, one has to explicitly determine the top class XQ ,
as defined in Proposition 4.33193. If this top class XQ can be obtained easily,
then reducing the state space to this top class makes sense because it will
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speed up all methods to determine the limit expectation Elim( f ). However,
this is not always the case, as it might occur that checking whether Q is
ergodic is straightforward,2 while explicitly determining the top class is not.
It is for this reason that we will consider general ergodic rate operators instead
of only irreducible rate operators.

7.3.2 Bounding limit expectations with a linear program

The most common or basic method to determine the limit expectation
Elim( f ) is to determine the limit expectation operator Elim corresponding
to Q explicitly. Let plim be the probability mass function on X that is in one-
to-one correspondence with the limit expectation Elim, so plim(x) = Elim(Ix )
for all x in X. Then for all f in G(X),

Elim( f ) = Eplim ( f ) = ∑
x∈X

plim(x) f (x) = 〈plim, f 〉. (7.53)

It is well-known (see Tornambè, 1995, Theorem 4.12) that whenever the
rate operator Q is ergodic, this probability mass function plim is the unique
probability mass function on X that satisfies the equilibrium condition

(∀y ∈X)
∑

x∈X
plim(x)Q(x, y) = 0. (7.54)

As explained by (Stewart, 2009, Section 10.2), we can determine plim by
solving the linear system of |X| equations in Eq. (7.54), but this is compu-
tationally infeasible for large state spaces. For this reason, we combine the
equilibrium conditions for all states x in the same lump Λ−1(x̂); additional
manipulation of the resulting expressions yields the following result.

Proposition 7.46. Consider an ergodic rate operator Q inQX , and fix some f
inG(X). Then for any ĝ , ĥ inG(X̂) such that ĝ ◦Λ≤ f ≤ ĥ◦Λ and any subset G
of G(X̂),

inf
{〈p̂, ĝ 〉 : p̂ ∈ Σ̂G

}≤ Elim( f ) ≤ sup
{〈p̂, ĥ〉 : p̂ ∈ Σ̂G

}
,

where we let
Σ̂G := {

p̂ ∈ΣX̂ : (∀ f̂ ∈G)
〈

p̂,Q̂Q f̂
〉≤ 0

}
.

Proof. Let Q̂ := Q̂Q . By Corollary 2.1723, Elim = Eplim is a coherent expectation

on G(X), Note that (−ĥ)◦Λ≤− f because f ≤ f̂ ◦Λ by assumption. For this reason,
and because Elim is linear due to (E2)22 and (E3)22, the second inequality in the
statement follows from the first one with ĝ =−ĥ and f replaced by − f , so we only
need to prove the first inequality.

2If a rate operator Q satisfies the first condition in Proposition 4.33193, then the second
condition in Proposition 4.33193 is trivially satisfied – this is almost trivial, but we leave a formal
proof as an exercise to the reader. Hence, it suffices to check whether XQ is non-empty.
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7.3 Bounding limit expectations

By assumption, ĝ ◦Λ ≤ f ; because the limit expectation Elim is monotone by
(E6)22, this implies that

Elim(ĝ ◦Λ) ≤ Elim( f ).

Let plim be the unique probability mass function on X that corresponds to Elim, so
plim(x) = Elim(Ix ) for all x in X. Then by Eq. (7.53)↶,

Elim(ĝ ◦Λ) = 〈plim, ĝ ◦Λ〉 = ∑
x∈X

plim(x)ĝ (Λ(x))

= ∑
x̂∈X̂

ĝ (x̂)
∑

x∈x̂
plim(x) = ∑

x̂∈X̂
ĝ (x̂)p̂ lim(x̂)

= 〈p̂ lim, ĝ 〉,

where we let p̂ lim := p̂plim . We substitute this equality in the previously obtained
inequality, to yield

〈p̂ lim, ĝ 〉 ≤ Elim( f ).

Hence, to prove the first inequality in the statement, it suffices to verify that p̂ lim
belongs to Σ̂G.

By definition, the probability mass function p̂ lim belongs to Σ̂G if for all f̂ inG,
〈p̂ lim,Q̂Q f̂ 〉 ≤ 0. Thus, we fix some f̂ inG. By Eq. (7.54)↶,∑

x∈X
plim(x)

[
Q( f̂ ◦Λ)

]
(x) = ∑

x∈X
plim(x)

∑
y∈X

Q(x, y)[ f̂ ◦Λ](y)

= ∑
y∈X

[ f̂ ◦Λ](y)
∑

x∈X
plim(x)Q(x, y) = 0.

Because Q( f̂ ◦Λ) ≥ (Q̂ f̂ )◦Λ by Eq. (7.27)355 and plim ≥ 0 by (MF1)23, it follows from
the preceding equality that

0 ≥ ∑
x∈X

plim(x)
[
(Q̂ f̂ )◦Λ]

(x) = ∑
x̂∈X̂

[Q̂ f̂ ](x̂)
∑

x∈x̂
plim(x) = ∑

x̂∈X̂
p̂ lim(x̂)[Q̂ f̂ ](x̂)

= 〈p̂ lim,Q̂ f̂ 〉.

Because f̂ was an arbitrary gamble in G, this proves that p̂ lim belongs to Σ̂G, as
required.

It might not be immediately obvious, but the optimisations in Propo-
sition 7.46↶ can be solved through linear programming (see, for example,
Bertsimas et al., 1997), at least in case G is a finite subset of G(X̂). In this
linear programming problem, the decision variables are the components
of p̂, the objective function is 〈p̂, ĝ 〉 or 〈p̂, ĥ〉 and the feasible region is Σ̂G.
As p̂ is a probability mass function on X̂, there are |X̂| decision variables
and already |X̂|+2 inequality constraints: p̂(x̂) ≥ 0 for all x̂ in X̂, and two in-
equality constraints include the equality

∑
x̂∈X̂ p̂(x̂) = 1. Some |G| additional

constraints are induced by the requirement that p̂ is an element of Σ̂G: for all
f̂ inG, 〈p̂,Q̂ f̂ 〉 ≤ 0, where we let Q̂ := Q̂Q .

An obvious issue when applying the method in Proposition 7.46↶ is how
to choose the subset G of G(X̂). One idea is to consider the indicators IÂ
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of subsets Â of the lumped state space X̂. Observe that, because Q̂ is a
lower rate operator by Lemma 7.23356, Q̂I∅ = 0 and Q̂IX̂ = 0, so the condition
〈p̂,Q̂IÂ〉 ≤ 0 is always satisfied whenever Â is equal to ∅ or X̂. Knowing this,
one obvious choice forG is

G= {
IÂ : Â ∈P(X̂) \ {∅,X̂}

}
,

which leads to a linear program with |X̂|+2|X̂| inequality constraints. As the
number of constraints scales exponentially with the number of lumps, this is
computationally intractable for large lumped state spaces X̂. An alternative
choice for G that is not exponential in the number of lumps is to consider
the indicators of all singletons:

G= {Ix̂ : x̂ ∈ X̂}.

This choice results in 2|X̂|+2 inequality constraints for the linear program-
ming problem, which is certainly tractable. Depending on the way this
method is implemented, it can make sense to also add the indicators of the
complements of the singletons toG: if the function – or array – Ix̂ is explic-
itly generated, then it is trivial to generate −Ix̂ at the same time, and this is
relevant because by (LR6)111,

Q̂IX\{x̂} = Q̂(1− Ix̂ ) = Q̂(−Ix̂ ).

If we add not only the indicators of the singletons but also the indicators
of their complements, then the linear programming problem in Proposi-
tion 7.46376 has 3|X̂|+2 inequality constraints. Of course, there is a trade-off
between tractability and tightness: the obtained bound will be tighter for
a more constrained feasible set; we leave a thorough assessment of this
trade-off for future research.

Queuing Network Example 7.47. Franceschinis et al. (1994) compute bounds
on the limit expectation of the population at S0, so on Elim( f ) with f as
defined in Eq. (7.42)365, for K = 4 parallel servers and N = 5 customers. These
parameters yield a state space X with 126 states and a lumped state space X̂
with 18 states. For the service time distributions, they use the parameters
µ = 1, λ = 1 and λ = 1.01. In Table 7.6↷, we report the bounds on this
limit expectation that we obtain with Proposition 7.46376, taking ĝ = f̂ = ĥ
– with f̂ as defined in Eq. (7.43)365 – and two of the previously mentioned
choices forG: the setG1 of the indicators of the singletons and the setG2 of
the indicators of the singletons and their complements; we do not use the
indicators of the power set because we believe that using |X̂|+2|X̂| = 262162
inequality constraints for 18 variables is a bit excessive For all cases, our
bounds are tighter than those of Franceschinis et al. (1994),3 and the bounds
are noticeably tighter if we add the complements of the singletons. £

3Franceschinis et al. (1994) report the limit expectation of N −n0 instead of n0, but we have
transformed their bounds to correspond to our setting.
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Table 7.6 Comparison of the bounds on the limit expectation of the popula-
tion at S0 obtained by Franceschinis et al. (1994, Table 2) to those
obtained with Propositions 7.46376 and 7.51382. Model parameters:
K = 4, N = 5, µ= 1, λ= 1, λ= 1.01. Computation parameters: G1

consists of the indicators of all the singletons andG2 consists of the
indicators of the singletons and their complements.

Proposition 7.46376 Proposition 7.51382

G1 G2 ∆= 1.8/∥Q∥op ∆= 0.9/∥Q∥op

Exact Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

3.727 3.614 3.749 3.616 3.749 3.711 3.741 3.720 3.734 3.720 3.734

7.3.3 Bounding limit expectations iteratively

Next, we look at a method to determine the limit expectation Elim( f ) that
is based on a well-known link between homogeneous Markovian jump pro-
cesses and homogeneous Markov chains. Crucial to this method is that for
all ∆ in R>0 such that ∆∥Q∥op < 2, (I +∆Q) is a transition operator due to
Lemma 3.2982 and (I +∆Q) is ergodic if Q is ergodic due to Theorems 4.28191

and 4.36194. Interestingly, in this case, the limit expectation Elim correspond-
ing to the rate operator Q is equal to the ‘limit expectation’ corresponding
to the transition operator (I +∆Q) (see Stewart, 2009, Sections 10.1.1 and
10.3.1); the following result establishes this link in the form that we will need
it.

Lemma 7.48. Consider an ergodic rate operator Q. Then for all f in G(X), ∆
in R>0 such that ∆∥Q∥op < 2 and n inN,

min(I +∆Q)n f ≤ Elim( f ) ≤ max(I +∆Q)n f .

Furthermore, the lower and upper bounds in this expression become
monotonously tighter with increasing n, and they converge to Elim( f ) as n
recedes to +∞.

Proof. Let T := (I +∆Q). Because ∆∥Q∥op < 2 by assumption, T is a transition
operator due to Lemma 3.2982. Hence, by (LT4)108,

min g ≤ minT g ≤ maxT g ≤ max g for all g ∈G(X),

and in particular

minT n f ≤ minT n+1 f ≤ maxT n+1 f ≤ T n f .

This confirms that the bounds in the statement become monotonously tighter for
increasing n.

Next, we observe that due to Theorems 4.28191 and 4.36194, the transition op-
erator T is ergodic, so limn→+∞ T n f converges to a constant function. By (Tor-
nambè, 1995, Definition 4.7 and Theorem 4.5), the value of this constant function is
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Ep ( f ) = 〈p, f 〉, where p is the unique probability mass function on X that satisfies
the equilibrium condition

(∀y ∈X) p(y) = ∑
x∈X

p(x)T (x, y).

Thus, by definition of T ,

(∀y ∈X) p(y) = ∑
x∈X

p(x)
(
I (x, y)+∆Q(x, y)

)= p(y)+∆ ∑
x∈X

p(x)Q(x, y).

Clearly, the probability mass function p satisfies Eq. (7.54)376, so it must be equal
to the limit probability mass function plim corresponding to Elim. Consequently,
Elim( f ) = Ep ( f ), so the sequence (T n f )n∈N converges to a constant function with
value Elim( f ), and this proves the inequalities in the statement.

The step size ∆ in Lemma 7.48↶ can be any positive real number such
that ∆∥Q∥op < 2. Empirically, we observe that the convergence of the bounds
is faster – in the sense that we need smaller n – for larger values of ∆. This
method is also computationally intractable for large state spaces X: to keep
track of the approximation (I +∆Q)n f , we need to store an |X|-dimensional
array of floating point numbers. One way to make the computations tractable
is to ‘replace’ the rate operator Q with the lumped lower rate operator Q̂Q .
This follows almost immediately from the following more general result.

Proposition 7.49. Consider a non-empty and bounded set Q of ergodic rate
operators on G(X), and fix some f in G(X). Then for all ĝ , ĥ in G(X̂) such
that ĝ ◦Λ≤ f ≤ ĥ ◦Λ, ∆ in R>0 such that ∆

∥∥QQ

∥∥
op ≤ 2 and n inN,

min
(
I +∆Q̂Q

)n ĝ ≤ inf
{
EQ

lim( f ) : Q ∈Q}
≤ sup

{
EQ

lim( f ) : Q ∈Q}≤−min
(
I +∆Q̂Q

)n(−ĥ),

where for every Q in Q, we let EQ
lim denote the corresponding limit expecta-

tion. Moreover, for fixed ∆, these bounds become monotonously tighter with
increasing n.

In our proof for this result, we use the following intermediary result.

Lemma 7.50. For any non-empty and bounded subset Q of QX ,∥∥Q̂Q

∥∥
op ≤ ∥∥QQ

∥∥
op.

Proof. Let Q̂ := Q̂Q and Q :=QQ . By (LR7)111 and Eq. (7.27)355,

∥Q̂∥op = 2max
{−[Q̂Ix̂ ](x̂) : x̂ ∈ X̂}= 2max

{
−min

{
[Q(Ix̂ ◦Λ)](x) : x ∈ x̂

}
: x̂ ∈ X̂

}
= 2max

{
max

{−[Q(Ix̂ ◦Λ)](x) : x ∈ x̂
}

: x̂ ∈ X̂
}

.
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7.3 Bounding limit expectations

For all x̂ in X̂, Ix̂ ◦Λ=∑
y∈x̂ Iy , so for all x in Λ−1(x̂),

−[Q(Ix̂ ◦Λ)](x) ≤− ∑
y∈x̂

[QIy ](x) ≤−[QIx ](x) ≤ 1

2
∥Q∥op,

where we used (LR4)109, (LR2)109 and (LR7)111. We infer from the preceding that

∥Q̂∥op ≤ 2max

{
max

{
1

2
∥Q∥op : x ∈ x̂

}
: x̂ ∈ X̂

}
= ∥Q∥op,

as required.

Proof of Proposition 7.49↶. Let Q̂ := Q̂Q . Fix some Q in Q. Because ĝ ◦Λ ≤ f by
assumption and the limit expectation Elim is monotonous by (LE6)30,

EQ
lim( f ) ≥ EQ

lim(ĝ ◦Λ) ≥ min(I +∆Q)n (ĝ ◦Λ), (7.55)

where for the second inequality we used Lemma 7.48379.
To prove the first inequality in the statement, we observe that for all f̂ in G(X̂),

Q( f̂ ◦Λ) ≥ (Q̂ f̂ )◦Λ due to Eq. (7.27)355, and therefore

(I +∆Q)( f̂ ◦Λ) = f̂ ◦Λ+∆Q( f̂ ◦Λ) ≥ f̂ ◦Λ+∆(Q̂ f̂ )◦Λ= (
(I +∆Q̂) f̂

)◦Λ. (7.56)

Because ∆∥QQ∥op ≤ 2 by assumption and ∥Q∥op ≤ ∥QQ∥op by (LR7)111, (I +∆Q) is a

transition operator due to Lemma 3.2982. Hence, it follows from Eq. (7.56) with f̂ = ĝ ,
(LT11)108 and (LT6)108 that

(I +∆Q)n (ĝ ◦Λ) = (I +∆Q)n−1(I +∆Q)(ĝ ◦Λ) ≥ (I +∆Q)n−1
((

(I +∆Q̂)ĝ
)◦Λ)

.

We apply the same trick (n −1)-times more, to yield

(I +∆Q)n (ĝ ◦Λ) ≥ (
(I +∆Q̂)n ĝ

)◦Λ,

so clearly

min(I +∆Q)n (ĝ ◦Λ) ≥ min(I +∆Q̂)n ĝ .

Together with Eq. (7.55), this inequality proves the inequality in the statement.
In order to verify the second part of the statement, we set out to show that the

sequence (min(I +∆Q̂)m ĝ )m∈N is non-decreasing. Recall from Lemma 7.50↶ that

∥Q̂∥op ≤ ∥Q∥op; because ∆∥Q∥op ≤ 2 by assumption, this implies that ∆∥Q̂∥op ≤ 2.

For this reason, it follows from Lemmas 3.72112 and 7.23356 that (I +∆Q̂) is a lower
transition operator. Consequently, it follows immediately from (repeated application
of) (LT4)108 that, for all m inN,

min(I +∆Q̂)m ĝ ≤ min(I +∆Q̂)(I +∆Q̂)m ĝ = min(I +∆Q̂)m+1 ĝ .

Thus, the sequence (min(I +∆Q̂)m ĝ )m∈N is non-decreasing.
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Proposition 7.51. Consider an ergodic rate operator Q inQX , and fix some f
in G(X). Then for all ĝ , ĥ in G(X̂) such that ĝ ◦Λ ≤ f ≤ ĥ ◦Λ, ∆ in R>0

with ∆∥Q∥op ≤ 2 and n inN,

min
(
I +∆Q̂Q

)n ĝ ≤ Elim( f ) ≤−min
(
I +∆Q̂Q

)n(−ĥ).

Moreover, for fixed ∆, the lower and upper bounds in this expression become
monotonously tighter with increasing n.

Proof. Follows immediately from Proposition 7.49380.

Empirically, we observe that larger step sizes ∆ in Proposition 7.51 result
in faster convergence, in the sense that fewer iterations are required before
convergence. The influence of the step size ∆ on the tightness of the bounds
is something that we have not yet properly investigated. Our limited experi-
ments suggest that a smaller step size ∆ results in tighter bounds, although
after some threshold – that depends on the specific model being used and
that can be rather large – the tightness no longer seems to change any more.

Queuing Network Example 7.52. Let us return to the setting in Queuing
Network Example 7.47378. In Table 7.6379, we report the bounds on the limit
expectation of the population at S0 that we compute with Proposition 7.51,
taking ĝ = f̂ = ĥ – with f̂ as defined in Eq. (7.43)365 – and∆ equal to 1.8/∥Q∥op

and 0.9/∥Q∥op. Our bounds are tighter than those of Franceschinis et al.
(1994), and also tighter than the bounds that we computed with the linear
programming method in Proposition 7.46376. Observe that the bounds are
the same – at least up to the reported precision – for both choices of step
sizes; in this case, halving the step size results in a doubling of the number of
iterations required to reach empirical convergence. £

7.3.4 Numerical assessment

Buchholz (2005) improved on the method of Franceschinis et al. (1994), so it
is only fair that we should compare our two methods to his. He considers a
slightly changed version of the system that we have been studying: instead of
assuming that the service time of S0 is exponentially distributed, he assumes
an Erlang-2 distribution with mean service time 1/µ. We can still model this
system as a homogeneous Markovian jump process: it is as if we replace S0

with two servers S0,1 and S0,2 in series (see Stewart, 2009, Section 12.1). Given
that the second server S0,2 is empty, a customer in the first server S0,1 can
transition to the second one with rate 2µ; if the second server S0,2 contains
a customer, then there are no transitions from S0,1 to S0,2, and there is a
transition from S0,2 to Sk with rate 2µ/K . Clearly, this requires us to replace
the component n0 by two components in both state descriptions. We will not
go into details here, but it suffices to understand that the rate operator Q is
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7.3 Bounding limit expectations

similar to the one in Eq. (7.1)342, and that the corresponding lumped lower
rate operator Q̂Q is similar to the one in Eq. (7.32)358.

Buchholz (2005, Figure 3) considers several combinations of the number
of parallel servers K and the number of customers N . For the service time
distributions, he uses the parameters µ= 5, λ= 1 and λ=λ+ϵ, with ϵ equal
to 0.1 or 0.01. He reports bounds on the limit expectation of two inferences:
the population at S0 and the ‘throughput’, which assumes the value µ if there
are customers at S0 and 0 otherwise. The limit expectation of the population
that we obtain does not lie in the intervals reported by Buchholz (2005, Fig. 3),
and we have not managed to clarify whether or not this is due to an error on
our part;4 interestingly, we have observed that for all but one value, the limit
expectation of ‘half of the population’ lies in the reported bounds. Since this
prevents a proper comparison, we have chosen not to report any bounds on
the population.

In Table 7.6379, we report the bounds on the limit expectation of the
throughput that we have computed with the methods in Propositions 7.46376

and 7.51↶, and we compare these with Buchholz’s (2005). First and foremost,

Table 7.7 Bounds on the limit expectation of the throughput. Computation
parameters: G1 consists of the indicators of the singletons andG2

consists of the indicators of the singletons and their complements.

Proposition 7.46376 Proposition 7.51↶

(Buchholz, 2005) G1 G2 ∆= 1.8/∥Q∥op ∆= 0.9/∥Q∥op

K N |X| |X̂| Exact Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

ϵ= 0.1

4 6 336 45 2.611 2.509 2.73 1.928 3.181 2.401 2.82 2.522 2.714 2.522 2.713
4 8 825 91 2.892 2.784 3.028 1.982 3.633 2.582 3.171 2.799 3.004 2.800 3.004
4 10 1716 165 3.090 2.973 3.239 2.002 3.961 2.67 3.435 2.995 3.208 2.995 3.208
6 8 4719 108 3.486 3.365 3.624 2.068 4.188 3.069 3.846 3.372 3.614 3.372 3.613
6 10 13013 215 3.802 3.675 3.984 2.083 4.515 3.191 4.244 3.689 3.931 3.689 3.931
8 10 68068 232 4.202 4.087 4.327 2.111 4.736 3.542 4.595 4.093 4.320 4.093 4.320

ϵ= 0.01

4 6 336 45 2.520 2.509 2.532 2.428 2.591 2.500 2.541 2.511 2.530 2.511 2.530
4 8 825 91 2.793 2.780 2.806 2.655 2.894 2.764 2.821 2.783 2.803 2.783 2.803
4 10 1716 165 2.984 2.971 2.998 2.802 3.116 2.948 3.020 2.974 2.996 2.974 2.996
6 8 4719 108 3.378 3.365 3.392 3.121 3.488 3.340 3.416 3.366 3.391 3.366 3.391
6 10 13013 215 3.689 3.675 3.704 3.336 3.821 3.639 3.738 3.677 3.702 3.677 3.702
8 10 68068 232 4.100 4.087 4.113 3.609 4.213 4.047 4.151 4.088 4.113 4.088 4.113

we observe that the bounds obtained with the iterative method in Proposi-
tion 7.51↶ are tighter than Buchholz’s (2005), which in turn are tighter than
those obtained with the linear programming method in Proposition 7.46376;
hence, as was also the case in Queuing Network Example 7.52↶, our iterative
method outperforms the linear programming method. Second, we observe
that halving the step size∆ in the iterative method does increase the tightness
of the bounds, be it only marginally. Adding the complements to the collec-

4Buchholz was so kind to point out some errors in my earlier implementation of his model,
but he never responded to my inquiry about the throughput.
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tionG in the linear programming method clearly results in tighter bounds,
as was also the case in Queuing Network Example 7.47378.

Buchholz (2005, Section 5.3) mentions that he assumes ‘service rates
between λ and λ+ ϵ’, but it is unclear to us if he additionally assumes that
half of the servers have rate λ and the other half of the servers have rate λ+ϵ.
If he does not make this additional assumption, his bounds hold for the more
general setting that we considered in Queuing Network Example 7.36368 – so
the setting where we do not require that half of the rates should be equal to λ

and the other half should be equal to λ. Note that we can deal with this case
too using Proposition 7.49380, but we will not pursue this here.

We have chosen to limit the scenarios for our numerical experiments in
this chapter to those scenarios that were also considered by Franceschinis
et al. (1994) and Buchholz (2005). Our reason for this is two-fold. First, this
allow us to compare our bounds with those obtained by Franceschinis et al.
(1994) and Buchholz (2005) without needing to implement their methods
ourselves. Second, the state space X for these scenarios is not too large, so
this allows us to compare our bounds with the exact result. However, because
the limit expectations in our numerical experiments can all be computed in
a tractable manner, these scenarios do not correspond to the intended range
of applications. Fear not, a more realistic test of our methods is just around
the corner in Chapter 8403!

7.A Daniell expectation with respect to a lumped jump pro-
cess

In this appendix, we gather the proofs for those results in Section 7.1.3350

regarding the countable additivity of P̂ and the Daniell expectation with
respect to P̂ . First, we prove Lemma 7.15351.

Lemma 7.15. Consider a jump process P with state space X. If P is countably
additive, then any corresponding lumped jump process P̂ is countably additive
too.

In our proof, we use the following intermediary result. This result will
also come in handy in our proof for Lemma 7.16352 further on, hence the
separate statement.

Lemma 7.53. Consider a sequence of time points u in U, and a se-
quence ( f̂n)n∈N of F̂u simple variables that converges point-wise to the
limit f̂ := p-w limn→+∞ f̂n . Then ( f̂ ↑Ω

n )n∈N is a sequence of Fu simple vari-
ables that converges point-wise to f̂ ↑Ω. Furthermore, if ( f̂n)n∈N is non-
decreasing, non-increasing, uniformly bounded above and/or uniformly
bounded below, then so is ( f̂ ↑Ω

n )n∈N.
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7.A Daniell expectation with respect to a lumped jump process

Proof. For all n inN, f̂n is F̂u -simple by assumption; hence, f̂ ↑Ωn isFu -simple due to

Lemma 7.13350. This proves that ( f̂ ↑Ωn )n∈N is a sequence of Fu simple variables. Next,
we prove that this sequence converges point-wise to f̂ ↑Ω. Recall from Eq. (7.23)350
that for all ω in Ω and n inN,

f̂ ↑Ω(ω) = f̂ (Λ◦ω) and f̂ ↑Ωn (ω) = f̂n (Λ◦ω).

Because Λ◦ω belongs to Ω̂ for all ω in Ω by Lemma 7.5343 and because ( f̂n )n∈N con-

verges point-wise to f̂ by assumption, we infer from this that the sequence ( f̂ ↑Ωn )n∈N
converges point-wise to f̂ ↑Ω. Finally, it also follows from these equalities that the non-
decreasing, non-increasing, uniformly bounded below and/or uniformly bounded
above nature of ( f̂n )n∈N carries over to the corresponding sequence of cylindrical
extensions.

Proof of Lemma 7.15351. By Definition 5.15229, we need to show that, for all {X̂u =
x̂u } in Ĥ, the probability charge P̂ (•| X̂u = x̂u ) on F̂u is countably additive. To this
end, we fix some {X̂u = x̂u } in Ĥ. We show that the probability charge P̂ (•| X̂u = x̂u )
is countably additive by verifying that it satisfies Definition 5.4221 (iii). To this end, we
fix any non-increasing sequence ( f̂n )n∈N of F̂u -simple variables that converges point-

wise to 0. Then by Lemma 7.53↶, ( f̂ ↑Ωn )n∈N is a sequence of Fu -simple variables that
converges point-wise to 0. For all xu in Λ−1(x̂u ), P (•|Xu = xu ) is countably additive
by assumption, so it follows from Definition 5.4221 (iii) for P (•|Xu = xu ) that

lim
n→+∞EP ( f̂ ↑Ωn |Xu = xu ) = 0. (7.57)

Recall from Lemma 7.14351 that, for all n inN,

min
{
EP ( f̂ ↑Ωn |Xu = x̂u )xu ∈ x̂u

}≤ EP̂ ( f̂n | X̂u = x̂u )

≤ max
{
EP ( f̂ ↑Ωn |Xu = x̂u )xu ∈ x̂u

}
. (7.58)

Because Λ−1(x̂x ) is finite, the limit of the minimum (maximum) is the minimum
(maximum) of the limits limn→+∞ EP ( f̂ ↑Ωn |Xu = xu ), so it follows from Eqs. (7.57)
and (7.58) that

lim
n→+∞EP̂ ( f̂n | X̂u = x̂u ) = 0.

This equality holds for any non-increasing sequence ( f̂n )n∈N that converges point-
wise to 0, so EP̂ (•| X̂u = x̂u ) is countably additive due to Definition 5.4221 (iii).

Next, we prove Lemma 7.16352 with the help of Lemma 7.53↶.

Lemma 7.16. Consider a sequence of time points u in U. Then for any limit
variable f̂ in Vlim(F̂u), the corresponding cylindrical extension f̂ ↑Ω belongs
to Vlim(Fu).

Proof. By definition ofVlim(F̂u ), there is a sequence ( f̂n )n∈N of F̂u -simple variables
that is uniformly bounded below (or uniformly bounded above) and that converges
point-wise to f̂ . Due to Lemma 7.53↶, the corresponding sequence ( f̂ ↑Ωn )n∈N of
cylindrical extensions is a sequence of Fu -simple variables that is uniformly bounded
below (or uniformly bounded above) and converges point-wise to f̂ ↑Ω. Consequently,
f̂ ↑Ω belongs to Vlim(Fu ).
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Finally, we prove Lemma 7.17352.

Lemma 7.17. Consider a countably additive jump process P with state
space X and any corresponding lumped jump process P̂ . Then for all {X̂u = x̂u}
in Ĥ and f̂ in Vlim(F̂u),

min
{
E D

P ( f̂ ↑Ω |Xu = xu) : xu ∈ x̂u
}≤ E D

P̂
( f̂ | X̂u = x̂u)

≤ max
{
E D

P ( f̂ ↑Ω |Xu = xu) : xu ∈ x̂u
}
.

In our proof, and also in that for Theorem 7.32363 further on, we need the
following obvious intermediary result.

Lemma 7.54. Consider a sequence of time points u in U. Then for any F̂u-
over variable f̂ , its cylindrical extension f̂ ↑Ω is an Fu-over variable; similarly,
for any F̂u-under variable f̂ , its cylindrical extension f̂ ↑Ω is an Fu-under
variable. Hence,{

f̂ ↑Ω : f̂ ∈Vo(F̂u)
}⊆Vo(Fu) and

{
f̂ ↑Ω : f̂ ∈Vu(F̂u)

}⊆Vu(Fu). (7.59)

Proof. Fix any F̂u -over variable f̂ . Then by definition, there is a non-decreasing
sequence ( f̂n )n∈N of F̂u -simple variables that converges point-wise to f̂ . By

Lemma 7.53384, ( f̂ ↑Ωn )n∈N is a non-decreasing sequence of Fu -simple variables that
converges point-wise to f̂ ↑Ω, so f̂ ↑Ω is an Fu -over variable, as required.

The statement for the F̂u -under variable f̂ follows from the preceding because
− f̂ is then an F̂u -over variable and − f̂ ↑Ω an Fu -over variable. Clearly, Eq. (7.59)
follows immediately from the first part of the statement.

Proof of Lemma 7.17352. For all xu inXu , we let E mc
xu

denote the extension of EP (•|
Xu = xu ) to Vo

u(Fu ) as defined by Eq. (5.6)223: for all g in Vo
u(Fu ),

E mc
xu

(g ) = lim
n→+∞EP (gn |Xu = xu ), (7.60)

where (gn )n∈N is any monotone sequence of Fu simple variables that converges
point-wise to g . Similarly, Ê mc denotes the extension of EP̂ (•| X̂u = x̂u ) to Vo

u(F̂u ):

for all ĝ in Vo
u(F̂u ),

Ê mc(ĝ ) = lim
n→+∞EP̂ (ĝn | X̂u = x̂u ), (7.61)

where (ĝn )n∈N is any monotone sequence of F̂u simple variables that converges
point-wise to ĝ .

Due to Lemmas 7.14351 and 7.53384, these extensions are related. Fix any ĝ
in Vo

u(Fu ). Then by definition of Vo
u(Fu ), there is a monotone sequence (ĝn )n∈N

of F̂u simple variables that converges point-wise to ĝ . Furthermore, (ĝ ↑Ω
n )n∈N is

a monotone sequence of Fu -simple variables that converges point-wise to ĝ ↑Ω by
Lemma 7.53384, and ĝ ↑Ω belongs to Vo

u(Fu ) by Lemma 7.54. By Lemma 7.14351, for
all n inN,

min
{
EP (ĝ ↑Ω

n |Xu = xu ) : xu ∈ x̂u
}≤ EP̂ (ĝn | X̂u = x̂u )

≤ max
{
EP (ĝ ↑Ω

n |Xu = xu ) : xu ∈ x̂u
}
.
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We take the limit for n going to +∞ and use Eqs. (7.60)↶ and (7.61)↶, to yield

min
{
E mc

xu
(ĝ ↑Ω) : xu ∈ x̂u

}≤ Ê mc(ĝ ) ≤ max
{
E mc

xu
(ĝ ↑Ω) : xu ∈ x̂u

}
. (7.62)

We are almost done. By definition of E D
P , for all xu in Xu ,

E D
P ( f̂ ↑Ω |Xu = xu ) = sup

{
E mc

xu
(g ) : g ∈Vu(Fu ), g ≤ f̂ ↑Ω

}
(7.63)

= inf
{
E mc

xu
(g ) : g ∈Vo(Fu ), g ≥ f̂ ↑Ω

}
; (7.64)

similarly, by definition of E D
P̂

,

E D
P̂

( f̂ | X̂u = x̂u ) = sup
{
Ê mc(ĝ ) : ĝ ∈Vu(F̂u ), ĝ ≤ f̂

}
(7.65)

= inf
{
Ê mc(ĝ ) : ĝ ∈Vo(F̂u ), ĝ ≥ f̂

}
. (7.66)

By Eqs. (7.65) and (7.62),

E D
P̂

( f̂ | X̂u = x̂u ) = sup
{
Ê mc(ĝ ) : ĝ ∈Vu(F̂u ), ĝ ≤ f̂

}
≤ sup

{
max

{
E mc

xu
(ĝ ↑Ω) : xu ∈ x̂u

}
: ĝ ∈Vu(F̂u ), ĝ ≤ f̂

}
= max

{
sup

{
E mc

xu
(ĝ ↑Ω) : ĝ ∈Vu(F̂u ), ĝ ≤ f̂

}
: xu ∈ x̂u

}
= max

{
sup

{
E mc

xu
(ĝ ↑Ω) : ĝ ∈Vu(F̂u ), ĝ ↑Ω ≤ f̂ ↑Ω

}
: xu ∈ x̂u

}
,

where for the last equality we used that ĝ ≤ f̂ if and only if ĝ ↑Ω ≤ f̂ ↑Ω. By
Lemma 7.54↶, {ĝ ↑Ω : ĝ ∈Vu(F̂u )} ⊆Vu(Fu ); consequently,

E D
P̂

( f̂ | X̂u = x̂u ) ≤ max
{

sup
{
E mc

xu
(g ) : g ∈Vu(Fu ), g ≤ f̂ ↑Ω

}
: xu ∈ x̂u

}
= max

{
E D

P ( f̂ ↑Ω |Xu = xu ) : xu ∈ x̂u
}
,

where for the final equality we used Eq. (7.63). Similarly, it follows from Eqs. (7.66)
and (7.62), Lemma 7.54↶ and Eq. (7.64) that

E D
P̂

( f̂ | X̂u = x̂u ) ≥ min
{
E D

P ( f̂ ↑Ω |Xu = xu ) : xu ∈ x̂u
}
.

7.B Proof of Theorem 7.32

Our proof for Theorem 7.32363 is rather long. What makes it so lengthy is
the construction of the jump process P̂ : we obtain this jump process not by
lumping P directly, but by lumping a jump process P ′ that is derived from P .
By construction, this derived jump process P ′ need not be consistent with
M and Q. However, we do construct it in such a way that it is consistent
with M⋆ andQ⋆, where M⋆ is a superset of M such that M̂M = M̂ = M̂M⋆

and Q⋆ is a superset of Q such that Q̂Q = Q̂ = Q̂Q⋆ . We determine these
supersets in Appendices 7.B.1↷ and 7.B.2389, and then get around to proving
Theorem 7.32363 in Appendix 7.B.3395.
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7.B.1 The set M⋆ of permuted probability mass functions

First, we determine a superset M⋆ of M such that M̂M = M̂M⋆ . Our starting
point is the following observation: for any probability mass function p in M,
we can redistribute the mass of any lump Λ−1(x̂) over the states in this lump,
and the resulting probability mass function will still lump to p̂p . To facilitate
this redistribution of the masses, we use permutations of the states. More
precisely, we will permute the states in the state space X lump per lump;
formally, we use bijective maps π from X to X that map every state x in X

to a state π(x) in the lump Λ−1(Λ(x)).

Definition 7.55. A permutation π : X→X is a bijective map, and it is called
lump-preserving wheneverΛ=Λ◦π. We denote the set of all lump-preserving
permutations by ΠX .

Consider a lump-preserving permutation π inΠX . Following De Cooman
et al. (2012, Section 4.1), we lift this permutation π to a permutation πt

on G(X): for all f in G(X), we let πt f := f ◦π. We also extend the domain of π
in the same way as we did for the lumping map Λ: for all u in U, xu in Xu

and B ⊆Xu , π(xu) := (π(xt ))t∈u and π(B) := {π(zu) : zu ∈ B}. The following
obvious properties of lump-preserving permutations will come in handy in
the remainder.

Lemma 7.56. For all π in ΠX , x̂ in X̂ and y in X,

(i) the identity map id: X→X : x 7→ x is a lump-preserving permutation;

(ii) π−1 is a lump-preserving permutation;

(iii) {π(x) : x ∈ x̂} =Λ−1(x̂);

(iv) {π−1(y) : π ∈ΠX} =Λ−1(Λ(y));

(v) {π(x) : x ∈X} =X;

(vi) {πt f : f ∈G(X),∥ f ∥ = 1} = { f ∈G(X) : ∥ f ∥ = 1};

(vii) πtIy = Iπ−1(y).

Proof. Trivial.

Permuting the masses of a probability mass function p on X over the
states in a lump corresponds to assigning to each state x in X the mass of
the state π(x), with π(x) a state in the lump Λ−1(Λ(x)). That is, the ‘per-
muted’ probability mass function is πtp = p ◦π, with π a lump-preserving
permutation on X.

Lemma 7.57. For any probability mass function p on X and any lump-
preserving permutation π on X, πtp is a probability mass function on X.
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Proof. Observe that πtp is a real-valued function on X. By Definition 2.1623, we
need to show that πtp satisfies (MF1)23 and (MF2)23. For all x in X, it follows from
(MF1)23 for p that

[πtp](x) = [p ◦π](x) = p
(
π(x)

)≥ 0,

so πtp satisfies (MF1)23. Furthermore, because π is a permutation on X by assump-
tion, it follows from (MF2)23 for p and Lemma 7.56↶ (iii) that∑

x∈X
[πtp](x) = ∑

x∈X
[p ◦π](x) = ∑

x∈X
p

(
π(x)

)= ∑
x∈X

p(x) = 1,

so πtp satisfies (MF2)23.

Furthermore, it is easy to see that the permuted probability mass func-
tion πtp corresponds to the same lumped probability mass function as the
original probability mass function p.

Lemma 7.58. For any probability mass function p on X and any lump-
preserving permutation π on X, p̂p = p̂πtp .

Proof. Fix some x̂ in X̂. Then because π is a lump-preserving permutation by as-
sumption, ∑

x∈x̂
p(x) = ∑

x∈x̂
p

(
π(x)

)= ∑
x∈x̂

[p ◦π](x) = ∑
x∈x̂

[πtp](x),

where the first equality holds due to Lemma 7.56↶ (iii). The equality in the statement
follows immediately from the preceding equality and Eq. (7.25)354.

For any set M of probability mass functions on X, we denote the corre-
sponding set of permuted probability mass functions by

M⋆ := {
πtp : p ∈M,π ∈ΠX

}
. (7.67)

It follows immediately from Lemma 7.56↶ (i) that M⋆ is a superset of M,
and from Lemma 7.58 that M̂M = M̂M⋆ .

Lemma 7.59. Consider any non-empty subset M of ΣX . Then M ⊆ M⋆

and M̂M = M̂M⋆ , with M⋆ as defined by Eq. (7.67).

Proof. Follows immediately from Lemma 7.56↶ (i) and Lemma 7.58.

7.B.2 Enlarging the setQ of rate operators

Next, we determine a superset Q⋆ of Q such that Q̂Q = Q̂Q⋆ . More exactly,
we set out to determine such a supersetQ⋆ that has ‘all the nice properties’:
one that is bounded and convex and that has separately specified rows; the
reason for this will become clear in Proposition 7.69395. We go about this by
first ‘closing’ the set Q of rate operators under taking lump-preserving per-
mutations, then taking the lower envelope of this set and finally considering
the set of all rate operators that dominate this lower envelope.
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First, let us define what we mean by permuting a rate operator with a
lump-preserving permutation. Fix some lump-preserving permutation π in
ΠX . Then we lift the permutation π to the setQX of rate operators on G(X)
as follows: for any rate operator Q inQX , we let πQ be the operator on G(X)
that maps any f in G(X) to the gamble (πQ) f on X defined by[

(πQ) f
]
(x) := [

Q(πt f )
](
π−1(x)

)= [
Q( f ◦π)

](
π−1(x)

)
for all x ∈X. (7.68)

The definition above does not immediately provide much intuition about
what is going on. As the permuted rate operator πQ is a linear operator – see
Lemma 7.60 further on – it helps to look at the components of πQ: for all x, y
in X,

[πQ](x, y) = [(πQ)Iy ](x) = [
Q(Iy ◦π)

](
π−1(x)

)= [
QIπ−1(y)

](
π−1(x)

)
=Q

(
π−1(x),π−1(y)

)
,

where for the penultimate equality we used Lemma 7.56388 (vii). Thus, we
can think of πQ as permuting the rows and the columns of the matrix repre-
sentation of Q. The diagonal components remain diagonal components and
the row sums are left unchanged, so πQ is again a rate operator.

Lemma 7.60. For any rate operator Q inQX and any lump-preserving per-
mutation π in ΠX , the corresponding operator πQ as defined by Eq. (7.68) is a
rate operator.

Proof. By Definition 3.2781, we need to verify that πQ satisfies (R1)81–(R4)81. To
check (R1)81, we fix any x in X. Observe that IX ◦π= IX , so[

(πQ)IX
]
(x) = [

Q
(
IX ◦π)](

π−1(x)
)= [

QIX
](
π−1(x)

)= 0,

where the final equality follows from (R1)81 for Q.
Next, we check (R2)81. Fix any x, y in X such that x ̸= y . By Lemma 7.56388 (vii),

Iy ◦π= Iπ−1(y) and therefore[
(πQ)Iy

]
(x) = [

Q
(
Iy ◦π

)](
π−1(x)

)= [
QIπ−1(y)

](
π−1(x)

)= 0,

where the last equality follows from (R4)81 for Q because π is a permutation and
therefore π−1(x) ̸=π−1(y).

To check (R3)81, we fix any x in X, f inG(X) and µ inR≥0. Observe that (µ f )◦π=
µ( f ◦π), so[

(πQ)(µ f )
]
(x) = [

Q
(
(µ f )◦π)](

π−1(x)
)= [

Q
(
µ( f ◦π)

)](
π−1(x)

)
=µ[

Q( f ◦π)
](
π−1(x)

)
=µ[

(πQ) f
]
(x),

where the third equality holds due to (R3)81 for Q because µ is non-negative by
assumption.
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Finally, we verify that πQ satisfies (R4)81. To this end, we fix any x in X and f , g
in G(X). Observe that ( f + g )◦π= f ◦π+ g ◦π, so[

(πQ)( f + g )
]
(x) = [

Q
(
( f + g )◦π)](

π−1(x)
)= [

Q( f ◦π+ g ◦π)
](
π−1(x)

)
= [

Q( f ◦π)
](
π−1(x)

)+ [
Q(g ◦π)

](
π−1(x)

)
= [

(πQ) f
]
(x)+ [

(πQ)g
]
(x),

where for the third equality we used (R4)81 for Q.

As can be expected, permuting the permuted rate operator πQ with the
inverse permutation π−1 yields the original rate operator Q.

Lemma 7.61. For all Q inQX and π in ΠX , π−1(πQ) =Q.

Proof. Let Q ′ :=πQ. Then by Eq. (7.68)↶, for all f in G(X) and x in X,[
Q ′ f

]
(x)

[
(πQ) f

]
(x) = [

Q( f ◦π)
](
π−1(x)

)
. (7.69)

In particular, because Q ′ is a rate operator – so a linear operator – due to
Lemma 7.60↶, we find that for all x, y in X,

Q ′(x, y) = [
Q ′Iy

]
(x) = [

Q(Iy ◦π)
](
π−1(x)

)
, = [

QIπ−1(y)
](
π−1(x)

)
=Q

(
π−1(x),π−1(y)

)
. (7.70)

Fix any f in G(X) and x in X. Then by Eq. (7.68)↶,[
π−1(πQ) f

]
(x) = [

π−1Q ′ f
]
(x) = [

Q ′( f ◦π−1)
](
π(x)

)
,

where we used that (π−1)−1 = π. Again, π−1Q ′ is a rate operator by Lemma 7.60↶,
and therefore[

π−1(πQ) f
]
(x) = ∑

y∈X
Q ′(π(x), y)[ f ◦π−1](y) = ∑

y∈X
Q ′(π(x), y) f

(
π−1(y)

)
.

We substitute Eq. (7.70), to yield

[
π−1(πQ) f

]
(x) = ∑

y∈X
Q

(
π
(
π−1(

π(x)
))

,π−1(y)
)

f
(
π−1(y)

)
= ∑

y∈X
Q

(
x,π−1(y)

)
f
(
π−1(y)

)
= ∑

y∈X
Q

(
x, y

)
f
(
y
)

= [
Q f

]
(y),

where for the second equality we used that π−1 ◦π = id and for the third equality
we used Lemma 7.56388 (v). Because this equality holds for arbitrary x in X and f
in G(X), we conclude that π−1(πQ) =Q.
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For any set Q of rate operators on G(X), we denote its closure under
lump-preserving permutations5 by

pm(Q) := {
πQ : Q ∈Q,π ∈ΠX

}
. (7.71)

This ‘closure’ pm(Q) is a set of rate operators due to Lemma 7.60390, and it
trivially includes the original setQ.

Lemma 7.62. Consider a subset Q of QX . Then the corresponding set pm(Q)
as defined by Eq. (7.71) is a subset of QX that includes Q.

Proof. That pm(Q) is a subset ofQX follows immediately fro Lemma 7.60390. Be-
cause the identity permutation id belongs to ΠX due to Lemma 7.56388 (i), it follows
immediately from Eq. (7.71) that pm(Q) includes Q.

Another important property of the closure pm(Q) of Q under lump-
preserving permutations is that this closure pm(Q) is bounded whenever
Q is bounded.

Lemma 7.63. Consider a non-empty subset Q of QX . Then

∥Q∥op = ∥pm(Q)∥op,

so pm(Q) is bounded if and only if Q is bounded.

The statement in Lemma 7.63 follows immediately from the following
intermediary results; we also need these result in the proof of Lemma 7.70395

further on, so we provide separate statements.

Lemma 7.64. For all Q1,Q2 inQX and π in ΠX ,

∥πQ1 −πQ2∥op = ∥Q1 −Q2∥op.

Proof. Let G1 := { f ∈G : ∥ f ∥ = 1}. Then by definition of ∥•∥op, ∥•∥, πQ1 and πQ2,

∥πQ1 −πQ2∥op

= sup
{∥(πQ1) f − (πQ2) f ∥ : f ∈G1

}
= sup

{
max

{∣∣[(πQ1) f
]
(x)− [

(πQ2) f
]
(x)

∣∣ : x ∈X}
: f ∈G1

}
= sup

{
max

{∣∣[Q1( f ◦π)
](
π−1(x)

)− [
Q2( f ◦π)

](
π−1(x)

)∣∣ : x ∈X}
: f ∈G1

}
.

5Our usage of the term closure is justified because for all Q in pm(Q) and σ in ΠX , σQ
belongs to pm(Q). This is true because for all Q in Q and π,σ in ΠX , σ◦π is a lump-preserving
permutation and σ(πQ) = (σ◦π)Q. Because we do not need this property in the remainder, we
do not provide a formal proof.
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Recall from Lemma 7.56388 that { f ◦π : f ∈G1} =G1 and {π−1(x) : x ∈X} =X. Conse-
quently,

∥πQ1 −πQ2∥op = sup
{
max

{∣∣[Q1 f
](
π−1(x)

)− [
Q2 f

](
π−1(x)

)∣∣ : x ∈X}
: f ∈G1

}
= sup

{
max

{∣∣[Q1 f
]
(x)− [

Q2 f
]
(x)

∣∣ : x ∈X}
: f ∈G1

}
= sup

{∥Q1 f −Q2 f ∥ : f ∈G1
}

= ∥Q1 −Q2∥op,

where last two equalities follow from the definition of ∥•∥ and ∥•∥op, respectively.

Corollary 7.65. For all Q inQX and π in ΠX , ∥πQ∥op = ∥Q∥op.

Proof. The zero operator 0: G(X) → G(X) : f 7→ 0 is a rate operator. Obviously,
π0 = 0, ∥Q∥op = ∥Q −0∥op and ∥πQ∥op = ∥πQ −π0∥op. Hence, the statement follows
immediately from Lemma 7.64↶ with Q1 =Q and Q2 = 0.

Proof of Lemma 7.63↶. It follows immediately from Eq. (3.63)100, Eq. (7.71)↶,
Corollary 7.65 and again Eq. (3.63)100 that

∥pm(Q)∥op = sup
{∥πQ∥op : Q ∈Q,π ∈ΠX

}= sup
{∥Q∥op : Q ∈Q}= ∥Q∥op.

Fix a non-empty and bounded set Q of rate operators on G(X). Because
the set pm(Q) is bounded by Lemma 7.63↶, its lower envelope as defined by
Eq. (3.71)109 is a lower rate operator due to Proposition 3.65110. We denote
this lower envelope by Q⋆

Q
: for all f in G(X) and x in X,[

Q⋆
Q f

]
(x) := [

Qpm(Q) f
]
(x) = inf

{[
(πQ) f

]
(x) : Q ∈Q,π ∈ΠX

}
. (7.72)

Corollary 7.66. For any non-empty and bounded subset Q of QX , the corre-
sponding operator Q⋆

Q
is a lower rate operator.

Proof. Due to Lemma 7.63↶, this follows immediately from Proposition 3.65110.

Finally, we are ready to determine our superset Q⋆ of the non-empty and
bounded subsetQ ofQX : because Q⋆

Q
is a lower rate operator, the set

Q⋆ :=QQ⋆
Q
= {

Q ∈QX :
(∀ f ∈G(X)

)
Q f ≥Q⋆

Q f
}

(7.73)

of dominating rate operators is well-defined.

Corollary 7.67. For any non-empty and bounded subset Q of QX , the corre-
sponding set Q⋆ as defined by Eq. (7.73) is non-empty, bounded and convex
and has separately specified rows, and its lower envelope is Q⋆

Q
. Further-

more, Q⋆ includes pm(Q).
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Proof. Due to Corollary 7.66↶, it follows immediately from Lemma 3.66110 that
Q⋆ is non-empty and bounded and that this set has lower envelope Q⋆

Q
, and from

Lemma 3.69111 that this setQ⋆ is convex and has separately specified rows. The setQ⋆

trivially includes pm(Q) because Q⋆
Q

is defined as the lower envelope of pm(Q).

So, Q⋆ is a superset of Q that has ‘all the nice properties’, but we have not
yet verified thatQ andQ⋆ lump to the same set of rate operators, in the sense
that Q̂Q = Q̂Q⋆ . We better get to it.

Lemma 7.68. Consider a non-empty and bounded subset Q of QX . Then Q̂Q =
Q̂Q⋆ .

Proof. By Eq. (7.33)358, it suffices to prove that Q̂Q = Q̂Q⋆ . To this end, we fix any

f̂ in G(X̂) and x̂ in X̂. Then by definition of Q̂Q⋆ and Q⋆
Q

– so Eqs. (7.27)355 and
(7.72)↶ – and Eq. (7.68)390,

[
Q̂Q⋆ f̂

]
(x̂) = min

{[
QQ⋆ ( f̂ ◦Λ)

]
(x) : x ∈Λ−1(x̂)

}
= min

{[
Q⋆
Q( f̂ ◦Λ)

]
(x) : x ∈Λ−1(x̂)

}
= min

{
inf

{[
(πQ)( f̂ ◦Λ)

]
(x) : Q ∈Q,π ∈ΠX

}
: x ∈Λ−1(x̂)

}
= min

{
inf

{[
Q

(
( f̂ ◦Λ)◦π)](

π−1(x)
)

: Q ∈Q,π ∈ΠX

}
: x ∈Λ−1(x̂)

}
.

For any π in ΠX , Λ◦π=Λ, and therefore

( f̂ ◦Λ)◦π= f̂ ◦Λ◦π= f̂ ◦Λ.

We substitute this equality in the preceding one, to yield

[
Q̂Q⋆ f̂

]
(x̂) = min

{
inf

{[
Q( f̂ ◦Λ)

](
π−1(x)

)
: Q ∈Q,π ∈ΠX

}
: x ∈Λ−1(x̂)

}
.

Recall from Lemma 7.56388 (iv) that, for all x in Λ−1(x̂), {π−1(x) : π ∈ΠX} =Λ−1(x̂).
Hence, it follows immediately from the preceding equality and Eq. (7.27)355 for Q̂Q

that

[
Q̂Q⋆ f̂

]
(x̂) = min

{
inf

{[
Q( f̂ ◦Λ)

](
y
)

: Q ∈Q, y ∈Λ−1(x̂)
}

: x ∈Λ−1(x̂)
}

= inf
{[

Q( f̂ ◦Λ)
](

y
)

: Q ∈Q, y ∈Λ−1(x̂)
}

= min
{
inf

{[
Q( f̂ ◦Λ)

](
x
)

: Q ∈Q}
: x ∈Λ−1(x̂)

}
= min

{[
QQ( f̂ ◦Λ)

]
(x) : x ∈Λ−1(x̂)

}
= [

Q̂Q f̂
]
(x̂).

Because this equality holds for arbitrary x̂ in X̂ and f̂ in G(X̂), we have shown that
Q̂Q = Q̂Q⋆ , as required.
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7.B.3 Putting our proof together

Finally, we set out to prove Theorem 7.32363.

Theorem 7.32. Consider a non-empty subset M of ΣX and a non-empty
and bounded subset Q of QX . Fix any P in PM,Q, {Xu = xu} in H and f̂
in Vlim(F̂)u . Then there is a jump process P̂ in PM̂,Q̂ such that

E D
P̂

(
f̂
∣∣ X̂u =Λ(xu)

)= E D
P

(
f̂ ↑Ω ∣∣ Xu = xu

)
.

Most of the heavy lifting in our proof occurs in the following ‘intermediary’
result.

Proposition 7.69. Consider a non-empty subset M of ΣX and a non-empty
and bounded subset Q of QX , and let M⋆ be as defined by Eq. (7.67)389 andQ⋆

be as defined by Eq. (7.73)393. Fix any P in PM,Q and {Xu = xu} in H. Then
there is a jump process P ′ in PM⋆,Q⋆ such that for any yu in Xu with Λ(yu) =
Λ(xu) and any Â in F̂u ,

P ′(Λ−1
Ω (Â)

∣∣ Xu = yu
)= P

(
Λ−1
Ω (Â)

∣∣ Xu = xu
)
.

Our proof for Proposition 7.69 is rather long. To make it more easily
digestible, we establish the following intermediary result first. It is for this
result that we closed M and Q under lump-preserving permutations.

Lemma 7.70. Consider a non-empty subset M of ΣX and a non-empty and
bounded subset Q of QX , and let M⋆ be as defined by Eq. (7.67)389 and Q⋆

be as defined by Eq. (7.73)393. Fix any P in PM,Q and π in ΠX . Then there
is a jump process Pπ in PM⋆,Q⋆ such that for any {Xu = xu} in H, v in U≽u

and B̂ ⊆ X̂v ,

Pπ
(
Xv ∈Λ−1(B̂)

∣∣ Xu = xu
)= P

(
Xv ∈Λ−1(B̂)

∣∣ Xu =π(xu)
)
.

Proof. Our proof consists of three parts: (i) we define a jump process Pπ that satisfies
the equality in the statement; (ii) we show that Pπ is consistent with M⋆; and (iii) we
show that Pπ is consistent with Q⋆.

First, we define the jump process Pπ. Let σ := π−1; because π is a lump-
preserving permutation by assumption, σ is a lump-preserving permutation due to
Lemma 7.56388 (ii); hence, σ−1 =π. We interpret the lump-preserving permutation σ
as a lumping map from X to the ‘lumped’ state space X. Thus, we fix any coherent
extension P⋆ of P to D⋆, and let Pπ be the ‘lumped’ jump process corresponding to
P⋆ as defined by Eq. (7.15)347: for all (A |Xu = xu ) in D,

Pπ(A |Xu = xu ) :=P⋆
(
σ−1
Ω (A)

∣∣ Xu ∈σ−1(xu )
)= P⋆

(
σ−1
Ω (A)

∣∣ Xu =π(xu )
)

=P
(
σ−1
Ω (A)

∣∣ Xu =π(xu )
)
, (7.74)

where for the second equality we used that σ−1(xu ) =π(xu ) is a ‘singleton’ – it is an
element of Xu , to be exact – and for the third equality we used that P⋆ coincides
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with P on D and that (σ−1
Ω

(A) |Xu =π(xu )) belongs to D. By Theorem 7.8347, Pπ is a
jump process.

Next, we prove that this jump process Pπ satisfies the equality in the statement.
To this end, we fix some {Xu = xu } in H, v in U≽u and B̂ ⊆ X̂v . Let B :=Λ−1(B̂). By
Lemma 7.6345 for the lumping map σ,

σ−1
Ω

(
{Xv ∈ B}

)= {
Xv ∈σ−1(B)

}
. (7.75)

Recall from Eq. (7.3)342 that, by definition, B =Λ−1(B̂) contains those yv in Xv such
that Λ(yv ) belongs to B̂ . Furthermore, because Λ ◦π = Λ by assumption – π is a
lump-preserving permutation – Λ(yv ) =Λ(

π(yv )
)

for all yv in Xv . Hence, yv belongs
to B if and only if π(yv ) belongs to B , and therefore

σ−1(B) =π(B) = {
π(yv ) : yv ∈ B

}= B.

We substitute this equality in Eq. (7.75), to yield

σ−1
Ω

({
Xv ∈Λ−1(B̂)

})=σ−1
Ω

(
{Xv ∈ B}

)= {
Xv ∈ B

}= {
Xv ∈Λ−1(B̂)

}
.

It follows from this and Eq. (7.74)↶ that

Pπ
(
Xv ∈Λ−1(B̂)

∣∣ Xu = xu
)= P

(
Xv ∈Λ−1(B̂)

∣∣ Xu =π(xu )
)
,

and this proves that the jump process Pπ satisfies the equality in the statement.
In the second part of this proof, we show that Pπ is consistent with M⋆. Denote

the initial probability mass function of P by p and that of Pπ by pπ: for all x in X,

p(x) = P (X0 = x |X( ) = x( )) and pπ(x) = Pπ(X0 = x |X( ) = x( )).

For all x in X, it follows from Lemma 7.6345 for the lumping map σ – and with v = (0)
and B̂ = {x} – that

σ−1
Ω

(
{X0 = x}

)= {
X0 =σ−1(x)

}= {
X0 =π(x)

}
;

Because furthermore π(x( )) = x( ), it follows from the preceding and Eq. (7.74)↶ that

pπ(x) = Pπ(X0 = x |X( ) = x( )) = P (X0 =π(x) |X( ) = x( )) = p
(
π(x)

)
.

This equality holds for arbitrary x in X, so we conclude from this that pπ = p◦π=πtp.
The jump process P is consistent with M by assumption, so its initial probability mass
function p belongs to M. By definition of M⋆, this implies that pπ = πtp belongs
to M⋆, so Pπ is consistent with M⋆, as required.

In the third and final part of this proof, we show that Pπ is consistent withQ⋆. For
all {Xw = yw } in H and t ,r in R≥0 such that w ≺ t < r , we denote the corresponding

history-dependent transition operator of P as defined by Eq. (3.35)84 by T
{Xw=yw }
t ,r ,

and that of Pπ by S
{Xw=yw }
t ,r ; furthermore, we let

Q
{Xw=yw }
t ,r :=

T
{Xw=yw }
t ,r − I

r − t
and R

{Xw=yw }
t ,r :=

S
{Xw=yw }
t ,r − I

r − t
.

396



7.B Proof of Theorem 7.32

Because of how we defined Pπ, we expect that these rate operators are connected
through π. To establish this connection, we fix some {Xw = yw } in H, t ,r in R≥0 such
that w ≺ t < r , f in G(X) and x in X. By Eq. (3.35)84 and Eq. (2.19)36,[

S
{Xw=yw }
t ,r f

]
(x) = EPπ ( f (Xr ) |Xw = yw , Xt = x)

= ∑
y∈X

f (y)Pπ(Xr = y |Xw = yw , Xt = x).

It follows from Lemma 7.6345 for the lumping map σ – and with v = (r ) and B̂ = {y} –
that σ−1

Ω

(
{Xr = y}

)= {Xr =π(y)}. Hence, by Eq. (7.74)395,

[
S

{Xw=yw }
t ,r f

]
(x) = ∑

y∈X
f (y)P

(
Xr =π(y)

∣∣ Xw =π(yw ), Xt =π(x)
)

= ∑
y∈X

f (y)P
(
Xr =σ−1(y)

∣∣ Xw = zw , Xt =σ−1(x)
)
,

where for the second equality we used that π = σ−1 and we let zw := π(yw ). We
execute some straightforward manipulations, to find that

[
S

{Xw=yw }
t ,r f

]
(x) = ∑

y∈X
f
(
σ

(
σ−1(y)

))
P

(
Xr =σ−1(y)

∣∣ Xw = zw , Xt =σ−1(x)
)

= ∑
y∈X

[ f ◦σ]
(
σ−1(y)

)
P

(
Xr =σ−1(y)

∣∣ Xw = zw , Xt =σ−1(x)
)

= ∑
y∈X

[ f ◦σ](y)P
(
Xr = y

∣∣ Xw = zw , Xt =σ−1(x)
)

= [
T {Xw=zw }

t ,r ( f ◦σ)
](
σ−1(x)

)
,

where for the first equality we used that σ◦σ−1 = id and for the third equality we used
that {σ−1(y) : y ∈X} =X – see Lemma 7.56388 (v). Because f (x) = [ f ◦σ]

(
σ−1(x)

)
, it

follows from the preceding equality that

[
R

{Xw=yw }
t ,r f

]
(x) =

[
S

{Xw=yw }
t ,r f

]
(x)− f (x)

r − t

=
[
T {Xw=zw }

t ,r ( f ◦σ)
](
σ−1(x)

)− [ f ◦σ]
(
σ−1(x)

)
r − t

= [
Q{Xw=zw }

t ,r ( f ◦σ)
](
σ−1(x)

)
.

This equality holds for arbitrary x in X and f in G(X), so we conclude that

R
{Xw=yw }
t ,r =σQ{Xw=zw }

t ,r , (7.76)

where σQ{Xw=zw }
t ,r is the permuted rate operator as defined by Eq. (7.68)390. Because

σ=π−1, it follows from Eq. (7.76) and Lemma 7.61391 that

πR
{Xw=yw }
t ,r =Q{Xw=zw }

t ,r . (7.77)
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As an intermediary step towards proving that Pπ is consistent with Q⋆, we estab-
lish that Pπ has bounded rate. By Definition 3.53101, we need to show that for all t
in R≥0 and {Xw = yw } in H such that w ≺ t ,

limsup
r↘t

∥∥R
{Xw=yw }
t ,r

∥∥
op <+∞ and, if t > 0, limsup

s↗t

∥∥R
{Xw=yw }
s,t

∥∥
op <+∞. (7.78)

Thus, we fix any such t in R≥0 and {Xw = yw } in H, and let zw :=π(yw ). Then for all
r in ]t ,+∞[ and s in [0, t [, it follows from Eq. (7.76)↶ and Corollary 7.65393 that∥∥R

{Xw=yw }
t ,r

∥∥
op = ∥∥σQ{Xw=zw }

t ,r

∥∥
op = ∥∥Q{Xw=zw }

t ,r

∥∥
op

and, if t > 0 ∥∥R
{Xw=yw }
s,t

∥∥
op = ∥∥σQ{Xw=zw }

s,t

∥∥
op = ∥∥Q{Xw=zw }

s,t

∥∥
op.

By assumption, P is consistent with Q and this set is bounded, so P has bounded rate
by Lemma 3.55102. Hence, it follows from Definition 3.53101 for P and the preceding
equalities that Eq. (7.78) is satisfied, as required.

Finally, we prove that Pπ is consistent withQ⋆. In order to verify the condition in
Definition 3.5099, we fix some t in R≥0 and {Xw = yw } in H such that w ≺ t . We need

to show that S
{Xw=yw }
t ,t is dQ-differentiable, and that

∂+S
{Xw=yw }
t ,t ⊆Q⋆ and, if t > 0, ∂−S

{Xw=yw }
t ,t ⊆Q⋆.

Because Pπ has bounded rate, S
{Xw=yw }
t ,t is dQ-differentiable due to Proposi-

tion 3.57104. Moreover, we can use this result to determine ∂+S
{Xw=yw }
t ,t and, if t > 0,

∂−S
{Xw=yw }
t ,t . Fix any rate operator Q, and let (rn )n∈N be any sequence in ]t ,+∞[ such

that t < rn+1 < rn for all n in N and limn→+∞ rn = t . Then by Lemma 7.64392 and
Eq. (7.76)↶,

(∀n ∈N)
∥∥Q{Xw=zw }

t ,r −Q
∥∥

op = ∥∥σQ{Xw=zw }
t ,r −σQ

∥∥
op = ∥∥R

{Xw=yw }
t ,r −σQ

∥∥
op,

where we let zw :=π(yw ); similarly, by Lemma 7.64392 and Eq. (7.77)↶,

(∀n ∈N)
∥∥R

{Xw=yw }
t ,r −Q

∥∥
op = ∥∥πR

{Xw=yw }
t ,r −πQ

∥∥
op = ∥∥Q{Xw=zw }

t ,r −πQ
∥∥

op.

Hence, it follows from Proposition 3.57104 that

∂+S
{Xw=yw }
t ,t ⊇

{
σQ : Q ∈ ∂+T {Xw=zw }

t ,t

}
and ∂+T {Xw=zw }

t ,t ⊇
{
πQ : Q ∈ ∂+S

{Xw=yw }
t ,t

}
.

Due to Lemma 7.61391, this implies that

∂+S
{Xw=yw }
t ,t =

{
σQ : Q ∈ ∂+T {Xw=zw }

t ,t

}
.

If t > 0, then a similar argument shows that

∂−S
{Xw=yw }
t ,t =

{
σQ : Q ∈ ∂−T {Xw=zw }

t ,t

}
.
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7.B Proof of Theorem 7.32

Because P is consistent with Q, Q includes ∂+T {Xw=zw }
t ,t and, if t > 0, ∂−T {Xw=zw }

t ,t .
For this reason, and because σ is a lump-preserving permutation, it follows from the
preceding two equalities and Corollary 7.67393 that

∂+S
{Xw=yw }
t ,t ⊆ pm(Q) ⊆Q⋆ and, if t > 0, ∂−S

{Xw=yw }
t ,t ⊆ pm(Q) ⊆Q⋆,

as required.

Proof of Proposition 7.69395. Before we start with our proper proof, we recall from
Lemma 7.59389 that M⋆ includes M, and from Lemma 7.62392 and Corollary 7.67393
thatQ⋆ is a non-empty, bounded and convex set of rate operators that has separately
specified rows and that includesQ. The statement is trivially true for P ′ := P whenever
u = ( ), so we may assume without loss of generality that u ̸= ( ).

Let t := maxu, x := xt , x̂ :=Λ(x) and x̂u :=Λ(xu ). For all z in Λ−1(x̂) \ {x}, we fix
some lump-preserving permutation πz in ΠX such that π−1

z (x) = z – for example, the
permutation that maps z to x and x to z, and that maps every other y in X \ {x, z}
to itself. For all z in Λ−1(x̂) \ {x}, Lemma 7.70395 guarantees that there is a jump
process Pπz in PM⋆,Q⋆ such that for all v in U≽u and B̂ ⊆ X̂v ,

Pπz

(
Xv ∈Λ−1(B̂)

∣∣ Xu =π−1
z (xu )

)= P
(
Xv ∈Λ−1(B̂)

∣∣ Xu =πz
(
π−1

z (xu )
))

= P
(
Xv ∈Λ−1(B̂)

∣∣ Xu = xu
)
. (7.79)

For all zu in Λ−1(x̂u ) such that zt ̸= x = xt , we let Pzu := Pπzt
and y zu

u :=π−1
zt

(xu );

then by construction, y zu
t =π−1

zt
(x) = zt . For all zu in Λ−1(x̂u ) such that zt = x = xt ,

we let Pzu := P and y zu
u := xu ; here too, y zu

t = xt = zt by construction. Finally, for all

zu in Xu \Λ−1(x̂u ), we let Pzu := P and y zu
u := zu such that y zu

t = zt .
Let P0 := P . Because M ⊆M⋆ and Q ⊆Q⋆, PM,Q ⊆ PM⋆,Q⋆ . Hence, P belongs

to PM⋆,Q⋆ , and therefore so do P0 and, for all zu in Xu , Pzu . Because Q⋆ is non-
empty, bounded and convex and has separately specified rows, it follows from Theo-
rem 3.103139 that there is jump process P ′ in PM⋆,Q⋆ such that for all zu in Λ−1(x̂u ),
v in U≻u and B ⊆Xv ,

P ′(Xv ∈ B
∣∣ Xu = zu

)= Pzu

(
Xv ∈ B

∣∣ y zu
u

)
;

note that, by construction,

P ′(Xv ∈ B
∣∣ Xu = zu

)={
Pπzt

(Xv ∈ B |Xu =π−1
zt

(xu )) if zt ̸= x,

P (Xv ∈ B |Xu = xu ) if zt = x.
(7.80)

Our definition of P ′ is perhaps a bit unorthodox, but it ensures the following
quintessential property: for all zu in Λ−1(x̂u ), v in U≻u and B̂ ⊆ X̂v , it follows from
Eqs. (7.80) and (7.79) that

P ′(Xv ∈Λ−1(B̂)
∣∣ Xu = zu

)= P
(
Xv ∈Λ−1(B̂)

∣∣ Xu = xu
)
. (7.81)

It still remains for us to prove that P ′ satisfies the equality in the statement. To
this end, we fix any yu in Xu such that Λ(yu ) = Λ(xu ) = x̂u – note that yu belongs
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to Λ−1(x̂u ) – and any Â in F̂u . By definition of F̂u , there is some v in U≽u and some

subset B̂ of X̂v such that Â = {X̂v ∈ B̂}. Hence, by Eq. (7.11)345 in Lemma 7.6345,

Λ−1
Ω

(
Â

)=Λ−1
Ω

(
{X̂v ∈ B̂}

)= {
Xv ∈Λ−1(B̂)

}
. (7.82)

If v ≻ u, then the equality in the statement follows immediately from the preceding
equality and Eq. (7.81)↶. To prove the equality in the statement in the other case, we
resort to (JP1)69. Let w := v \ u, and let

Byu := {
yw ∈Xw :

(∃zv ∈Λ−1(B̂)
)

zu∩v = yu∩v , zw = yw
}
,

Bxu := {
xw ∈Xw :

(∃zv ∈Λ−1(B̂)
)

zu∩v = xu∩v , zw = xw
}

and

Ĉ := {
x̂w ∈ X̂w :

(∃ẑv ∈ B̂
)

ẑu∩v = x̂u∩v , ẑw = x̂w
}
.

By definition,Λ−1(B̂) contains those zv in Xv such thatΛ(zv ) belongs to B̂ . Thus, any
yw in Xw belongs to Byu if and only if Λ(yu∩v , yw ) belongs to B̂ , and similarly, any
xw in Xw belongs to Bxu if and only if Λ(xu∩v , xw ) belongs to B̂ . Because Λ(yu∩v ) =
Λ(xu∩v ) = x̂u∩v , we infer from this that Bxu = Byu = Λ−1(Ĉ ). For this reason, it
follows from Eq. (7.82) and (JP1)69 that

P ′(Λ−1
Ω (Â)

∣∣ Xu = yu
)= P ′(Xv ∈Λ−1(B̂)

∣∣ Xu = yu
)= P ′(Xw ∈ Byu

∣∣ Xu = yu
)

= P ′(Xw ∈Λ−1(Ĉ )
∣∣ Xu = yu

)
, (7.83)

and similarly,

P
(
Λ−1
Ω (Â)

∣∣ Xu = xu
)= P

(
Xw ∈Λ−1(Ĉ )

∣∣ Xu = xu
)
. (7.84)

If w = (), then {Xw ∈Λ−1(Ĉ )} =Ω, so the equality in the statement follows immedi-
ately from Eqs. (7.83) and (7.84) and (CP1)41. If w ̸= ( ), then w ≻ u, so the equality in
the statement follows immediately from Eqs. (7.83) and (7.84) and Eq. (7.81)↶.

Finally, we can get around to proving Theorem 7.32363. Most of the work
is done by Proposition 7.69395, but we still need an argument similar to the
one in our proof for Lemma 7.17352.

Proof of Theorem 7.32363. Let M⋆ and Q⋆ be as defined by Eqs. (7.67)389 and
(7.73)393, respectively. To ease our notation, we let x̂u := Λ(xu ). By Proposi-
tion 7.69395, there is a jump process P ′ in PM⋆,Q⋆ such that for all yu in Λ−1(x̂u )

and Â in F̂u ,
P ′(Λ−1

Ω (Â)
∣∣ Xu = yu

)= P
(
Λ−1
Ω (Â)

∣∣ Xu = xu
)
. (7.85)

Fix any coherent extension P⋆ of P ′ to D⋆, and let P̂ be the corresponding lumped
jump process. Recall from Lemma 7.59389 that M̂M⋆ = M̂ and from Lemma 7.68394
that Q̂Q⋆ = Q̂. Hence, because P ′ belongs to PM⋆,Q⋆ , the lumped jump process P̂
belongs to P

M̂,Q̂ due to Theorem 7.29361.

Let us verify that P̂ satisfies the equality in the statement. Crucial to this is that
we have constructed the lumped jump process P̂ in such a way that P̂ (•| X̂u = x̂u ) is
uniquely defined: for all Â in F̂u , it follows from Corollary 7.12350 and Eq. (7.85) that

P̂ (Â | X̂u = x̂u ) = P
(
Λ−1
Ω (Â)

∣∣ Xu = xu
)
. (7.86)
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7.B Proof of Theorem 7.32

Fix any F̂u -simple variable ĝ . As in the proof of Lemma 7.14351, we recall from
the proof of Lemma 7.13350 that there is a natural number n, real numbers a1, . . . , an
and events Â1, . . . , Ân in F̂u such that

ĝ =
n∑

k=1
ak IÂk

and ĝ ↑Ω =
n∑

k=1
ak IΛ−1

Ω
(Âk ).

Then by Eq. (2.19)36, Eq. (7.86)↶ and again Eq. (2.19)36,

EP̂ (ĝ | X̂u = x̂u ) =
n∑

k=1
ak P̂ (Âk | X̂u = x̂u ) =

n∑
k=1

ak P
(
Λ−1
Ω (Âk )

∣∣ Xu = xu
)

= EP (ĝ ↑Ω |Xu = xu ). (7.87)

Next, alter the argument in our proof for Lemma 7.17352. We let E mc denote the
extension of EP (•|Xu = xu ) to Vo

u(Fu ) as defined by Eq. (5.6)223: for all g in Vo
u(Fu ),

E mc(g ) = lim
n→+∞EP (gn |Xu = xu ), (7.88)

where (gn )n∈N is any monotone sequence of Fu simple variables that converges
point-wise to g . Similarly, Ê mc denotes the extension of EP̂ (•| X̂u = x̂u ) to Vo

u(F̂u ):

for all ĝ in Vo
u(F̂u ),

Ê mc(ĝ ) = lim
n→+∞EP̂ (ĝn | X̂u = x̂u ), (7.89)

where (ĝn )n∈N is any monotone sequence of F̂u simple variables that converges
point-wise to ĝ .

The extension E mc ‘coincides’ with Ê mc on a large part of its domain. To prove
this, we fix any ĝ in Vo

u(F̂u ). Then by definition of Vo
u(F̂u ), there is a monotone se-

quence (ĝn )n∈N of F̂u simple variables that converges point-wise to ĝ . Furthermore,

(ĝ ↑Ω
n )n∈N is a monotone sequence of Fu -simple variables that converges point-wise

to ĝ ↑Ω by Lemma 7.53384, and ĝ ↑Ω belongs toVo
u(Fu ) by Lemma 7.54386. Hence, it

follows from Eqs. (7.89), (7.87) and (7.88) that

Ê mc(ĝ ) = lim
n→+∞EP̂ (ĝn | X̂u = x̂u ) = lim

n→+∞EP (ĝ ↑Ω
n |Xu = xu ) = E mc(ĝ ↑Ω) (7.90)

We are almost done. By definition of E D
P ,

E D
P ( f̂ ↑Ω |Xu = xu ) = sup

{
E mc(g ) : g ∈Vu(Fu ), g ≤ f̂ ↑Ω

}
(7.91)

= inf
{
E mc(g ) : g ∈Vo(Fu ), g ≥ f̂ ↑Ω

}
; (7.92)

similarly, by definition of E D
P̂

,

E D
P̂

( f̂ | X̂u = x̂u ) = sup
{
Ê mc(ĝ ) : ĝ ∈Vu(F̂u ), ĝ ≤ f̂

}
(7.93)

= inf
{
Ê mc(ĝ ) : ĝ ∈Vo(F̂u ), ĝ ≥ f̂

}
. (7.94)

By Eqs. (7.93) and (7.90),

E D
P̂

( f̂ | X̂u = x̂u ) = sup
{
Ê mc(ĝ ) : ĝ ∈Vu(F̂u ), ĝ ≤ f̂

}
= sup

{
E mc(ĝ ↑Ω) : ĝ ∈Vu(F̂u ), ĝ ≤ f̂

}
= sup

{
E mc(ĝ ↑Ω) : ĝ ∈Vu(F̂u ), ĝ ↑Ω ≤ f̂ ↑Ω

}
,
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where for the last equality we used that ĝ ≤ f̂ if and only if ĝ ↑Ω ≤ f̂ ↑Ω. Because
{ĝ ↑Ω : ĝ ∈Vu(F̂u )} ⊆Vu(Fu ) by Eq. (7.59)386 in Lemma 7.54386,

E D
P̂

( f̂ | X̂u = x̂u ) ≤ sup
{
E mc(g ) : g ∈Vu(Fu ), g ≤ f̂ ↑Ω

}= E D
P ( f̂ ↑Ω |Xu = xu ),

where for the equality we used Eq. (7.91)↶. Similarly, it follows from Eqs. (7.94)↶
and (7.90)↶, Lemma 7.54386 and Eq. (7.92)↶ that

E D
P̂

( f̂ | X̂u = x̂u ) ≥ E D
P ( f̂ ↑Ω |Xu = xu ).

Finally, it follows from the preceding two inequalities that

E D
P̂

( f̂ | X̂u = x̂u ) = E D
P ( f̂ ↑Ω |Xu = xu ).
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Spectrum allocation
in an optical link 8

In this penultimate chapter, we put Markovian imprecise jump processes –
and in particular our lumping-inspired methods of the preceding chapter – to
the test, and we do so with a ‘real-world’ example from telecommunications
engineering. In Section 8.1↷, we look at a single optical link in an optical
network, and we provide some background on the problem of spectrum
allocation. Under some standard assumptions, we can model (the spectrum
of) a single optical link with some allocation policy by means of an exact
homogeneous and Markovian jump process; we construct such a model
in Section 8.2407, and we subsequently use this model to determine perfor-
mance indicators for the system: the expected number of blocked requests
and blocking ratios. We also consider a policy-independent Markovian impre-
cise jump process model, and use this model to compute policy-independent
lower and upper bounds on the performance indicators. These models
suffer from state space explosion, so determining the (lower and upper)
expected number of blocked requests and the (lower and upper) blocking
ratio becomes infeasible for large systems; of course, this is why lumping
comes into play in Section 8.3421. After having introduced the lumped state
space in Section 8.3.1422, we introduce and extend the approximate policy-
dependent model of Kim, Yan, et al. (2015). As we will see in Section 8.3.2426,
these models are homogeneous and Markovian jump processes, so we can
tractably compute an approximation for the performance indicators with
these approximate models; however, the accuracy of these approximations is
not guaranteed. Our beloved lumping-based methods, on the other hand,
give policy-dependent and policy-independent guaranteed lower and upper
bounds on the performance indicators, as we will see in Sections 8.3.4431 and
8.3.5433.

The present chapter is largely based on (Rottondi et al., 2017; Erreygers,
Rottondi, et al., 2018b), but the material in Sections 8.2.3412 and 8.3.4431 is
new.
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8.1 Flexi-grid optical networks

Over the last couple of years – and especially over the last year – our use
of the internet has changed significantly: the lengthy e-mail chains of yore
have made way for group video meetings, short audio and/or video clips
are becoming more popular than lengthy news articles, and so on. This has
led to a significant increase in internet traffic, so internet service providers
need to add new capacity or, even better, make more efficient use of their
existing capacity. One way to achieve the latter is by means of flexi-grid
optical networks.

At its core, the internet is essentially a large network of optical fibres,
which are known as optical links. Sending information from point A to point
B is as ‘simple’ as sending light through these optical links, a bit like one
would use a flashlight to signal Morse code. Putting these optical links in
place is very costly, so a bunch of clever engineers have found multiple ways
to increase the capacity of existing optical links, including Dense Wavelength
Division Multiplexing (DWDM). In our Morse code analogy, DWDM corre-
sponds to sending multiple messages at the same time – or in parallel, if you
will – by using flashlights with different colours. Of course, we can only do
this if we can sufficiently distinguish between the different colours of the
flashlights, and this is no different with DWDM in optical links: the avail-
able (frequency) spectrum – so the range of possible ‘colours’ – is divided in
spectrum slots, typically of width 50 GHz, as depicted in Fig. 8.1(a).

(a) Fixed grid

(b) Flexible grid

(c) Semi-flexible grid

Figure 8.1 Example of grids. The width of the traffic flows indicates their
bitrate, after (Gerstel et al., 2012, Figure 1).
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8.1 Flexi-grid optical networks

8.1.1 Flexible spectrum allocation

Each of the slots in Fig. 8.1(a)↶ can carry a traffic flow with a certain bitrate,
and this bitrate has a maximum due to the fixed nature of the slots. In an
elastic or flexi-grid optical network (see Gerstel et al., 2012), the width of
the slots and their location along the spectrum need not be fixed; as can be
seen in Fig. 8.1(b)↶, the idea is to change the slots according to the bitrate
requirements of the traffic flows. More precisely, spectral resources are di-
vided in small slots – the width of these slots can be 12.5 GHz, 25 GHz, 50 GHz
or 100 GHz, according to the standard by the ITU-T (2020) – and groups of
contiguous slots are adaptively grouped into so-called superchannels and
assigned to different traffic flows according to many factors, including the
bitrate that is required by the traffic flow. As can be seen in Fig. 8.1(b)↶, flexi-
grid networks use less of the spectrum with respect to traditional MWDM
systems – up to 30 % less in practice (Jinno et al., 2009) – but this comes at
the cost of more advanced and costly optical devices (Feuer et al., 2012). For
a survey of past work on flexi-grid optical networks, we refer to (Azodolmolky
et al., 2009; Tomkos et al., 2012; Zhang et al., 2013).

The flexible spectrum allocation techniques enabled by flexi-grid net-
works typically induce spectrum fragmentation: often, groups of contiguous
slots are formed that cannot be assigned to incoming traffic flows because
the superchannel they would form is too narrow. Whenever an incoming
traffic flow cannot be allocated, we say that it is blocked; the blocking ratio
or blocking probability is the proportion of incoming traffic flows that are
blocked, and this is an important performance indicator: the lower the block-
ing ratio the better. The issues of spectrum fragmentation becomes even
more important for networks of optical links, because a traffic flow should
get the same spectrum portion along all the optical links that it traverses.

In order to alleviate the spectrum fragmentation issue and limit the costs
of equipment installation without renouncing the benefits of flexi-grid net-
works in terms of spectrum usage, alternative semi-flexible approaches have
been proposed. One approach is to make part of the spectrum a fixed grid for
high bitrate signals only (Shen, Hasegawa & Sato, 2014), or to use a dedicated
fixed grid for each type of signal (Shen, Hasegawa, Sato, et al., 2014). Alterna-
tively, as depicted in Fig. 8.1(c)↶, one can define a set of superchannels with
predefined widths, and allocate traffic flows to the smallest superchannel
they fit in, at the price of leaving some spectrum slots unused (Comellas et al.,
2015). This second approach allows for more scalable ‘analytical’ models:
Kim, Yan, et al. (2015) and Kim et al. (2016) use an approximate homogeneous
and Markovian jump process to determine blocking ratios in a semi-flexible
optical link with a random spectrum allocation policy under the assumption
that traffic demands are categorised in two types according to their bitrate –
high or low, respectively.

Several authors have investigated the blocking ratios in semi-flexible op-
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tical networks. For example, Yin et al. (2013) have identified fragmentation-
aware spectrum allocation policies and assessed their performance by deter-
mining the blocking ratios for traffic flows with different bitrate requirements,
and Yu et al. (2013) have proposed homogeneous and Markovian jump pro-
cesses to model this. For realistic scenarios, these models need a very large
number of states to correctly capture the degrees of freedom offered by the
flexible grid, thus introducing scalability limitations. To overcome these scal-
ability issues, Kim, Yan, et al. (2015) use an approximate homogeneous and
Markovian jump process to approximate blocking ratios of two types of traf-
fic requests along a single optical link, assuming that spectrum allocation is
performed at random. The model in (Kim, Yan, et al., 2015) has been refined
by Wang et al. (2014), Kim, Wang, et al. (2015), and Kim et al. (2016) to include
the case where part of the spectrum is exclusively reserved for each of the
two types of traffic flows.

8.1.2 A single optical link with a flexible grid

Following Kim, Yan, et al. (2015), we consider a single optical link whose
spectrum is partitioned in slots of equal width, for a total number of m1 slots.
The optical link is used to transmit traffic flows with varying bitrate demands;
here, we limit ourselves to flows of two types for the sake of clarity, but our
approach is applicable to optical links with more than two types of flows as
well. Flows of type 1 require 1 slot, whereas flows of type 2 require n2 > 1 slots.
Type 1 and type 2 flows arrive according to Poisson processes with arrival
rates λ1 and λ2, respectively; if assigned to some free slot(s) in the spectrum,
they cease after a holding time that is exponentially distributed with average
service time 1/µ1 or 1/µ2, respectively. We are not interested in edge cases, so
throughout this chapter we assume that λ1, λ2, µ1 and µ2 are all positive real
numbers. The spectrum is divided into two overlapping grids of different

Figure 8.2 A semi-flexible optical link with m1 = 18 slots and fixed superchan-
nels that consist of n2 = 3 slots.

granularity, as depicted Fig. 8.2: the first grid consists of the m1 frequency
slots, and the second grid consists of a sequence of adjacent superchannels
of n2 slots. Thus, there are m2 := m1/n2 superchannels, where, for the sake of
convenience, we assume that m1 is an integer multiple of n2.

An incoming type 1 traffic flow, in the remainder referred to as a type 1
request, must be assigned to a free slot, whereas an incoming type 2 traffic
flow, in the remainder referred to as a type 2 request, must be allocated to
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8.2 Exact models

a free superchannel that consists of n2 slots. If there is only a single free
(super)channel, we always allocate the request to this free (super)channel. If
there are multiple free (super)channels, we allocate the request to one of the
free (super)channels according to some spectrum allocation policy. For type 2
requests, it will become evident in the remainder that the allocation policy
is of no importance to our analysis. For type 1 requests, we only consider
allocation policies that depend on the number of type 1 flows currently
occupying each superchannel, but not on the order of the superchannels
along the grid nor on the order of the flows in a superchannel.

In particular, we consider three such allocation policies. The Random
Allocation (RA) policy assigns a type 1 request to a randomly selected free slot
if possible, where every free slot has the same probability of being selected
(Kim, Yan, et al., 2015; Kim et al., 2016). Alternatively, we can assign the
type 1 request to one of the free slots in a partially occupied – that is, non-
empty and non-full – superchannel that contains either the lowest number
of type 1 flows or the highest number of type 1 flows; the former is called the
Least-Filled (LF) policy, while the latter is called the Most-Filled (MF) policy.
For both of these policies, if all superchannels are empty or full, the type 1
request is assigned to one of the slots in an empty superchannel – provided
they are not all full of course. Throughout the remainder, we use AP to denote
a generic Allocation Policy.

If no (super)channel of the required size is available, the incoming traffic
request is blocked. For each of the traffic flows, we are interested in the
number of traffic requests that are blocked, and in the (long-term) proportion
of the traffic requests that are blocked. Determining these key performance
indicators is our main objective in this chapter.

8.2 Exact models

Kim, Yan, et al. (2015) construct an exact model for the random allocation
policy, and we extend their model to the least-filled and most-filled policies:
we introduce the exact state description in Section 8.2.1, and define a homo-
geneous and Markovian jump process model of the optical link for each of
the allocation policies in Section 8.2.2↷. In Sections 8.2.3412 and 8.2.4417, we
explain how we can use these models to compute the (limit) blocking ratios.

8.2.1 Exact state space

The state description should allow us to (i) determine whether or not an
incoming flow is blocked or allowed into the system, and (ii) accurately model
the allocation of the flows and the completion of their holding times. Due to
the memorylessness of the exponential distribution, and because the three
particular allocation policies that we consider only use the number of type 1
flows in each superchannel – and not the order of the superchannels along the
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grid or the order of the flows in a superchannel – a sufficiently detailed state
description is (a0, a1, . . . , an2 ), where ak counts the number of superchannels
occupied with k type 1 flows and no type 2 flows. Observe that the number
of superchannels that are occupied by a type 2 flow is b := m2 −∑n2

k=0 ak .
Because there are m2 superchannels in total, the state (a0, a1, . . . , an2 ) should
satisfy

∑n2
k=0 ak ≤ m2, so the detailed state description yields the state space

X :=
{

(a0, . . . , an2 ) ∈Zn2+1
≥0 :

n2∑
k=0

ak ≤ m2

}
.

The total number of states exhibits an O(mn2
2 ) =O((m1/n2))n2 ) dependency

on the total number of slots m1 and on the number of slots contained in a
superchannel n2, so the detailed state description suffers from state space
explosion. To verify this, we plot the number |X| of states in X as a function
of m1 and n2 in Fig. 8.3.

40 80 120 160 200 240

103

105

107

109

1011

Number of slots m1

|X|, n2 = 2 |X̂|, n2 = 2

|X|, n2 = 4 |X̂|, n2 = 4

|X|, n2 = 8 |X̂|, n2 = 8

|X|, n2 = 10 |X̂|, n2 = 10

Figure 8.3 The number of states in the detailed state spaceX and the reduced
state space X̂ as a function of m1 and n2.

8.2.2 Exact models

Because we assume Poisson arrival processes and exponentially distributed
service times, and also because the allocation policies that we consider only
use the number of allocated slots per superchannel, we can accurately model
the optical link with a homogeneous and Markovian jump process (see Norris,
1997, Section 2.6). To determine the defining rate operator QAP, we suppose
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that the system is in the state x := (a0, . . . , an2 ) in X. The state of the system
can change for four reasons: (i) an arrival of a traffic flow of type 1; (ii) a
departure of a traffic flow of type 1; (iii) an arrival of a traffic flow of type 2;
(vi) a departure of a traffic flow of type 2. Due to our assumptions regarding
the arrival processes and the service times, the probability that these occur
at the same time is zero, so we can focus on each of these separately.

Arrival of a type 1 traffic flow If all slots are occupied, so if ak = 0 for all
k in {0, . . . ,n2 − 1}, then the request is blocked. Alternatively, the request
is allocated to one of the free slots according to the allocation policy. The
random allocation policy allocates the request at random to one of the free
slots, so the state after this allocation is

xk
1,+ := (a0, . . . , ak −1, ak+1 +1, . . . , an2 ),

where k is one of the indices in K+
x := {k ∈ {0, . . . ,n2 −1} : ak > 0}. The slots

are chosen at random and with uniform probability, so it follows from the
properties of the Poisson process that each of these possible transitions
occurs with rate

λk
RA :=λ1

ak (n2 −k)∑n2−1
ℓ=0 aℓ(n2 −ℓ)

.

Under the least-filled and most-filled allocation policies, the new state is xkAP
1,+ ,

where the index kAP in K+
x is fixed but depends on the policy AP . If all the

superchannels are either completely free or completely occupied, so if ak = 0
for all k in {1, . . . ,n2 −1}, then both policies assign the request to an empty
superchannel: kLF := 0 =: kMF; if at least one of the superchannels is partially
occupied, then the policies allocate the request in the superchannel that is
the least filled or most-filled, so

kLF := min
{
k ∈ {1, . . . ,n2 −1} : ak > 0

}
and

kMF := max
{
k ∈ {1, . . . ,n2 −1} : ak > 0

}
.

Hence, with AP equal to LF or MF, for all k in K+
x , we let

λk
AP :=

{
λ1 if k = kAP.

0 otherwise.

Note that in case n2 = 2, kLF = kMF.

Departure of a type 1 traffic flow The holding time of each of the allocated
type 1 traffic flows can expire, so the state x can change to

xk
1,− := (a0, . . . , ak−1 +1, ak −1, . . . , an2 ),
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where k is an index in K−
x := {k ∈ {1, . . . ,n2} : ak > 0}. There are k allocated

flows in each of the ak superchannels, and the holding time of each of these
flows is (independently) distributed with rate µ1, so it follows from the prop-
erties of the exponential distribution that the transition to xk

1,− occurs with
rate kakµ1.

Arrival of a type 2 request If all superchannels are (partially) occupied, so
if a0 = 0, then the incoming request is blocked. Alternatively, the request is
allocated to one of the free superchannels, so the state x changes to

x2,+ := (a0 −1, a1, . . . , an2 ).

As type 2 flows arrive according to a Poisson process with rate λ2, this transi-
tion occurs with the same rate.

Departure of a type 2 traffic flow There are bx := m2 −∑n2
k=0 ak allocated

type 2 flows, and the holding time of each of the allocated type 2 traffic lows
can expire. Hence, if bx > 0, the state x can change to

x2,− := (a0 +1, a1, . . . , an2 );

the holding time of each of these flows is (independently) exponentially
distributed with rate µ2, so it follows from the properties of the exponential
distribution that the transition to x2,− occurs with rate bxµ2.

Policy-dependent homogeneous and Markovian jump process models

For each of the three allocation policies RA, LF and MF, we have enumerated
the non-zero off-diagonal components of the (matrix representation of) the
rate operator QAP; see also the schematic depiction in Fig. 8.4↷. Thus, we
have fully defined the rate operator QAP: for all f in G(X) and x = (a0, . . . , an2 )
in X,[

QAP f
]
(x) =λ2

(
f (x2,+)− f (x)

)+bxµ2
(

f (x2,−)− f (x)
)

+ ∑
k∈K+

x

λk
AP

(
f (xk

1,+)− f (x)
)+ ∑

k∈K−
x

akµ1
(

f (xk
1,−)− f (x)

)
, (8.1)

where the first term is only added if a0 > 0 and the second term is only added
if bx = m2 −∑n2

k=1 ak > 0. The sum of the λk
AP’s is always λ1, so the diagonal

components QAP(x, x) are equal for every allocation policy; due to (R5)81, this
implies that ∥QAP∥op is the same for every allocation policy.

To end up with a homogeneous and Markovian jump process model, we
should also specify an initial probability mass function p0 on X. The initial
probability mass function does not play a role in our analysis further on, so we
can fix any arbitrary p0 inΣX . Thus, we have defined three homogeneous and
Markovian jump process models: PRA := Pp0,QRA , PLF := Pp0,QLF and PMF :=
Pp0,QMF .
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x = (a0, . . . , ak , . . . , an2 )

x2,− = (a0 +1, . . . , ak , . . . , an2 )

x2,+ = (a0 −1, . . . , ak , . . . , an2 )

xk
1,+ = (a0, . . . , ak −1, ak+1 +1, . . . , an2 )

xk
1,− = (a0, . . . , ak−1 +1, ak −1, . . . , an2 )

bxµ2

kakµ1

λk
AP

λ2

(if bx = m2 −
∑n2

k=0
ak > 0) (if ak > 0)

(if a0 > 0)(if ak > 0)

Figure 8.4 State transition diagram for the rate operator QAP corresponding
to an allocation policy AP.

A policy-independent homogeneous and Markovian imprecise jump pro-
cess model

While this is already nice, we can go even further. Henceforth, we letQ be the
set of rate operators QAP inQX that are of the form in Eq. (8.1)↶, where the
rates λk

AP are non-negative and sum to λ1 but may differ for different states x.
Note that Q is bounded and convex and has separately specified rows. Here
too, our uncertainty regarding the initial state does not influence our analysis
further on; hence, we let M :=ΣX .

For each of the three allocation policies RA, LF and MF, the rate oper-
ator QAP obviously belongs to Q, so the homogeneous and Markovian im-
precise jump process PM,Q contains the corresponding homogeneous and
Markovian jump process model PAP. Furthermore,Q includes a rate opera-
tor QAP for any allocation policy AP that depends on the number of type 1
flows per superchannel but not on the order of the superchannels along the
grid, so PM,Q contains a jump process model for any such allocation policy.
Even more, PM,Q includes a – possibly lumped – jump process model for
every allocation policy AP that allocates incoming traffic whenever there is a
free slot or superchannel in the grid, including time-dependent policies or
policies that depend on the order of the allocated flows along the grid!

In the remainder, we will compute lower and upper expectations corre-
sponding to PM,Q, so we need the lower envelope Q :=QQ ofQ as defined by
Eq. (8.2). It follows immediately from our definition ofQ and Eq. (8.1)↶ that,
for all f in G(X) and x = (a0, . . . , an2 ) in X,[

Q f
]
(x) = inf

{[
QAP f

]
(x) : QAP ∈Q}

=λ2
(

f (x2,+)− f (x)
)+bxµ2

(
f (x2,−)− f (x)

)
+min

{
λ1

(
f (xk

1,+)− f (x)
)

: k ∈K+
x

}
+ ∑

k∈K−
x

akµ1
(

f (xk
1,−)− f (x)

)
, (8.2)

where the first term is only added if a0 > 0 and the second term is only
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added if bx = m2 −∑n2
k=1 ak > 0. Note that [QIx ](x) =QAP(x, x) for any x in X

and any allocation policy AP; hence, it follows from (R5)81 and (LR7)111 that
∥Q∥op = ∥QAP∥op, with AP equal to RA, LF or MF.

8.2.3 The expected number of blocked requests

Recall from Section 8.1.2406 that an important key performance indicator for
the allocation policies is the number of blocked requests. This number is
uncertain, of course, so it corresponds to a variable on Ω. Let us formally
define this variable so that we can determine the expected number of blocked
requests.

It is imperative for our formal definition that we have assumed Poisson
arrival processes. The reason for this is the incredible and well-known prop-
erty of (measure-theoretic) jump processes that Poisson Arrivals See Time
Averages (PASTA) (Wolff, 1982). Fix a jump process P inPM,Q, an initial state x
in X, a subset B of X, a time point r in R>0 and a type k in {1,2}. Wolff (1982,
Eqn. (3)) proves that the expected number of type k requests that arrive to
the system during the time period [0,r ] when its state is in B is

λk E D
P

(∫ r

0
IB (X t )dt

∣∣∣∣ X0 = x

)
=λk r E D

P

(
1

r

∫ r

0
IB (X t )dt

∣∣∣∣ X0 = x

)
.

Note that, again due to the assumption of Poisson arrival processes, λk r is
the expected number of type k requests over the time period [0,r ].

A type k request is blocked if it arrives when the system’s state is in Bk ,
where we denote the set of all states that have no free slot by

B1 := {
(a0, . . . , an2 ) ∈X :

(∀k ∈ {0, . . . ,n2 −1}
)

ak = 0
}

and the set of all states that have no free superchannel by

B2 := {
(a0, . . . , an2 ) ∈X : a0 = 0

}
.

Hence, the expected number of type k requests that are blocked over [0,r ]
conditional on {X0 = x} is

λk r E D
P

(
1

r

∫ r

0
IBk (X t )dt

∣∣∣∣ X0 = x

)
=λk r E D

P

(�IBk �[0,r ]
∣∣ X0 = x

)
.

In particular, we are interested in the expected number of blocked re-
quests for the random, least-filled and most-filled allocation policies. That
is, for all x in X and r in R>0 and with AP equal to RA, LF or MF and k equal
to 1 or 2, we can determine

βk,AP
[0,r ] (x) :=λk r E D

PAP

(�IBk �[0,r ]
∣∣ X0 = x

)
. (8.3)

More generally, we can determine policy-independent bounds on the ex-
pected number of blocked requests, or more exactly, bounds on the expected
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number of blocked requests that hold for any allocation policy: for all x in X,
r inR>0 and k in {1,2}, the bounds on the expected number of type k requests
that are blocked over [0,r ] conditional on {X0 = x} are

βk
[0,r ](x) :=λk r EM,Q

(�IBk �[0,r ]
∣∣ X0 = x

)
and

βk
[0,r ](x) :=λk r EM,Q

(�IBk �[0,r ]
∣∣ X0 = x

)
.

Computing the expected number of blocked requests

To determine the expected number of blocked requests, we essentially use
the iterative method in Theorem 6.50318. In contrast to what we did in
Power Network Example 6.51319 and Queueing Network Examples 7.35367

and 7.39370, we will not double the number of computations n until we ob-
serve convergence. Instead, to compute the expected number of blocked
requests βk,AP

[0,r ] (x), we simply use 25 = 32 times the minimal number of itera-
tions

nmin =
⌈

r∥QAP∥op

2

⌉
,

and similarly for the lower and upper expected number of blocked re-
quests βk

[0,r ](x) and βk
[0,r ](x) – now with ∥Q∥op instead of ∥QAP∥op, but since

these coincide, that makes no difference. This appears to suffice for conver-
gence for any initial state x in X in most of the scenarios that we consider.

Numerical experiments

We use the aforementioned method to compute the (lower and upper) ex-
pected number of blocked requests for a set of scenarios. First, we select
four distinct systems by specifying m1 and setting n2 = 4. Each combination
of m1 and n2 results in a state space X, the size of which is reported in Ta-
ble 8.1↷. For every system defined this way, we let µ1 = 1, µ2 = 1, λ1 = ρµ1

and λ2 = ρµ2, where the positive real number ρ is the so-called traffic load.
The performance of the aforementioned method – and of all the other com-
putational methods that we will introduce further on – varies with the traffic
load ρ, which is why for every system we consider a low, medium and high
traffic load, as listed in Table 8.1↷. Note that the traffic loads are propor-
tional to the number of slots m1 to account for the extra capacity in the larger
systems. Whenever we need an initial state, we will use one of the follow-
ing three ‘extreme’ options: the state xe := (m2,0,0,0,0) that corresponds to
a completely empty grid, the state xf,1 := (0,0,0,0,m2) that corresponds to
a grid where all superchannels are fully occupied by type 1 flows and the
state xf,2 := (0,0,0,0,0) that corresponds to a grid where all superchannels are
occupied by type 2 flows.

In a first experiment, we determine the expected number of blocked
requests for both types of traffic flows over the time period [0,r ] with r =
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Table 8.1 Parameters used in the numerical experiments.

m1 n2 |X| |X̂| ρlow ρmed ρhi

40 4 3003 726 2 10 50
80 4 53130 4851 4 20 100

120 4 324632 15376 6 30 150
160 4 1221759 35301 8 40 200

101 102
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102

β1
[0,r ](xe)
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[0,r ] (xe)

β1
[0,r ](xe)

101 102
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β
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β2
[0,r ](xe)

101 102

10−2
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β2
[0,r ](xf,2)

β
2,RA
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β2
[0,r ](xf,2)

Figure 8.5 Expected number of blocked requests for m1 = 80 and n2 = 4 for
the random allocation policy, and policy-independent lower and
upper bounds.

100/ρ; this value for r is chosen such that for both types of traffic flows the
expected number of requests during this period is 100. Let us take the system
with m1 = 80 and the random allocation policy as an example. In Fig. 8.5, we
plotβk,RA

[0,r ] (x),βk
[0,r ](x) andβk

[0,r ](x) as a function of ρ over the range [ρlow,ρhi];
for type 1 requests we consider the initial states xe and xf,1, and for type 2
requests we consider the initial states xe and xf,2. From these plots, we
learn that the initial state heavily influences the expected number of blocked
requests, and that for large traffic loads and type 2 traffic flows, the expected
number of blocked requests is close to the expected total number of requests.
We could do the same for the least-filled and most-filled allocation policies or
for different numbers m1 of slots in the grid, but we choose not do this here;
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the reason for this is simple: our aim is not to analyse the system in great
detail, but rather to show the modelling power of Markovian imprecise jump
processes, and in particular to illustrate that our lumping-based methods are
useful when studying large-scale models.

For a follow-up experiment, we investigate the time required for the com-
putations. We implement the aforementioned computation method in Julia,
a high-performance programming language similar to Python or MatLab
that is specifically suited to technical computing (Bezanson et al., 2012) –
we do the same for all but one of the other computational methods that
we will investigate further on. That is, for every system in Table 8.1↶, we
measure the execution time of the computations that are required to deter-
mine the expected number of blocked type 1 and type 2 requests over [0,r ]
with r = 100/ρ: we fix a value for m1 and a traffic load ρ, and time how long
it takes to determine the expected number of blocked requests for all three
allocations policies, and we do the same for the upper expected number
of blocked requests for the policy-independent model PM,Q. We report the
median of the execution time over five consequent runs in Table 8.2; in order
to facilitate comparing these execution times to those for the methods and
models further on, we actually report the median execution time divided
by the number of distinct models (here equal to 3). For larger systems, the

Table 8.2 Median execution time (in seconds) to determine (an upper bound
on) the expected number of blocked requests.

PAP PM,Q

m1 ρlow ρmed ρhi ρlow ρmed ρhi

40 5.56 1.51 0.78 66.98 19.78 10.12
80 147.24 39.60 14.95 / / 196.68

120 / / 108.62 / / /
160 / / / / / /

execution time is rather large; whenever the ‘average’ (median) execution
time is longer than 200 seconds, we say that the computations have timed
out and denote this with a forward slash. For all the models, the execution
time decreases for increasing traffic load, and they are (approximately) pro-
portional to the number of states |X|. Note that the median execution time
for the policy-dependent models is significantly lower than the execution
time for the policy-independent model. Since ∥QAP∥op = ∥Q∥op, the only
explanation for this is that determining Q f̃n,k takes longer than determining
QAP f̃n,k due to the optimisation.

For a final experiment, we recall from Eq. (8.3)412 that the expected num-
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ber of blocked type k requests in [0,r ] is

βk,AP
[0,r ] (x) =λk r E D

PAP

(�IBk �[0,r ]
∣∣ X0 = x

)
,

where E D
PAP

(�IBk �[0,r ]
∣∣ X0 = x

)
is the expected temporal average of IBk (X t )

over [0,r ]. We have seen before that expected temporal averages have the
tendency to converge, and the present setting forms no exception. As before,
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Figure 8.6 Expectation of �IBk �[0,r ] for m1 = 80, n2 = 4 and ρ = ρmed = 20
conditional on {X0 = x} for the random allocation policy. Dotted
lines indicate the lower expectation corresponding to PM,Q, and
dashed lines the upper expectation.

we consider the system with m1 = 80 and the random allocation policy as an
example. In Fig. 8.6, we plot the expected temporal average

E D
PRA

(�IBk �[0,r ]
∣∣ X0 = x

)
for k equal to 1 or 2 and x equal to one of the three ‘extreme’ initial states,
and we also plot the lower and upper expectation of the same variable for
the policy-independent model PM,Q. As expected, the (lower and upper)
expected temporal average converges, and the limit value does not depend
on the initial state x. However, the rate of convergence varies in all four
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plots. Generally speaking, the convergence for type 2 flows is (considerably)
faster than that for type 1 flows – one possible explanation for this is that
the expected temporal average is much larger in the former case – and the
convergence is faster for the initial state xf,k that corresponds to a fully-
occupied grid than the initial state xe that corresponds to an empty grid.

8.2.4 Blocking ratios

Why is it relevant that the expected temporal average of IBk (X t ) converges?
The answer to this question is the Point-Wise Ergodic Theorem (Norris, 1997,
Theorem 3.8.1). In Section 6.4.4305, we saw that this theorem implies that
if the rate operator QAP is ergodic, then the long-term expected temporal
average of IBk (X t ) converges to the limit expectation EQAP

lim (IBk ) corresponding
to QAP:

lim
r→+∞E D

PAP

(�IBk �[0,r ]
∣∣ X0 = x

)= EQAP
lim (IBk ) for all x ∈X.

This means that if the rate operator QAP is ergodic, then we can approximate
the expected number of blocked type k requests over [0,r ] for sufficiently
large r by

βk,AP
[0,r ] (x) ≈λk r EQAP

lim (IBk ) for all x ∈X. (8.4)

As we have seen in Power Network Example 6.51319, this is similar to the
heuristic that Troffaes et al. (2015) use to determine the expected downtime.

Of course, this is only useful if we can easily determine the corresponding
limit expectation EQAP

lim (IBk ). As is to be expected from Fig. 8.6↶, the rate
operator QRA is irreducible – that is, ergodic with top class XQRA =X – and
the same holds for the rate operators QLF and QMF. Proving this is not
difficult, but it is very laborious. Most ‘applied’ researchers do not bother to
(explicitly) check this, and we follow their example here; we refer the reader
who is interested in a formal proof to (Erreygers, Rottondi, et al., 2018a,
Appendix A). In fact, using a similar argument, one can show that every rate
operator Q in Q is irreducible.

But there is more! As explained previously in Section 6.4.4305, the Point-
Wise Ergodic Theorem (Norris, 1997, Theorem 3.8.1) actually states that if QAP

is irreducible (or even ergodic), then the event{
ω ∈Ω : liminf

r→+∞
1

r

∫ r

0
IBk

(
ω(t )

)
dt = limsup

r→+∞
1

r

∫ r

0
IBk

(
ω(t )

)
dt = EQAP

lim (IBk )

}
has probability one – for a suitable extension of PAP. For this reason, it follows
from (Wolff, 1982, Theorem 1) that for k equal to 1 or 2, the (long-term) ratio1

1That is, as r recedes to +∞, the ratio of the number of blocked type k requests that arrive
over [0,r ] and the total number of type k requests that arrive over [0,r ].
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of type k requests that is blocked is almost surely – or with probability one –
equal to EQAP

lim (IBk ). Hence, for AP equal to RA, LF or MF, we call

β1,AP
lim

:= EQAP
lim (IB1 ) and β2,AP

lim
:= EQAP

lim (IB2 ) (8.5)

the blocking ratios.

Computing limit expectations

All of this is only relevant because we know how to compute limit expecta-
tions. Recall that in Section 7.3373, we discussed two ways to compute limit
expectations. Here, we look at these two ways from a more practical point of
view.

Solving the equilibrium condition Recall from Section 7.3.2376 that for any
f in G(X), Elim( f ) = 〈plim, f 〉 with plim the unique probability mass function
that corresponds to the limit expectation Elim. There, we explained that we
can determine plim by solving a system of |X| linear equations corresponding
to the equilibrium condition in Eq. (7.54)376. Stewart (2009, Section 10.2)
discusses several methods to solve this system of equations; for large state
spaces with sparse rate matrices, he recommends iterative solvers. In our
implementation, we solve this system of equations using one of the itera-
tive methods that are implemented in the IterativeSolvers.jl2 package
for Julia and that are applicable to our setting: GMRES (Saad et al., 1986),
BiCGStab(ℓ) (Sleijpen et al., 1993) and IDR(s) (Sonneveld et al., 2009); the last
of these three gives the best results in our application, so we will only use this
one.

Iteratively determining the limit expectation As an alternative to solving
the equilibrium condition, we use the iterative method in Algorithm 8.1↷,
which is inspired by Lemma 7.48379. This method iteratively determines the
limit expectation Elim( f ) up to some relative toleranceφ; that is, it determines
lower and upper bounds on the limit expectation that are ‘sufficiently tight’,
in the sense that the relative ‘error’

max gn −min gn
1
2 |max gn +min gn |

= 2
max gn −min gn

|max gn +min gn |
= 2

∥gn∥v

|max gn +min gn |
of the approximation is smaller than the tolerance φ. Our implementation of
Algorithm 8.1↷ in Julia uses a data format that is specifically suited for sparse
matrices, which speeds up the computations significantly. For the parameters
in Algorithm 8.1↷, we use∆= 1.9/∥Q∥op,3 φ= 1 ·10−3 and nmax = 1 ·106, unless
stated otherwise.

2https://github.com/JuliaLinearAlgebra/IterativeSolvers.jl
3Recall from (R5)81 that the norm ∥Q∥op of a rate operator Q is equal to 2 times the maxi-

mum of the absolute value of the diagonal components.
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8.2 Exact models

Algorithm 8.1: Iteratively compute the limit expectation Elim( f )

Input: An ergodic rate operator Q, a gamble f on X, a time step ∆
in R>0 such that ∆∥Q∥op < 2, a relative tolerance φ in R>0 and
a maximum number of iterations nmax inN.

Output: Lower and upper bounds on Elim( f )
1 n := 0
2 g0 := f
3 ϵrel := 2∥g0∥v/|max g0 +min g0|
4 while ϵrel >φ and n < nmax do
5 n := n +1
6 gn := gn−1 +∆Qgn−1

7 ϵrel := 2∥gn∥v/|max gn +min gn |
8 return min gn ,max gn

Generating a sample path For large systems, it can be more efficient to
determine an estimate for the blocking ratios through simulation – and the
same could be said for the expected number of blocked requests. That is, it
might be more interesting to ‘generate’ (part of) a sample path ω until some
sufficiently large time point r , and then approximate the blocking ratios as

βk,AP
lim ≈ 1

r

∫ r

0
IBk

(
ω(t )

)
dt .

Note that the convergence of the estimate is only almost surely and that
the quality of the estimate is contingent on the quality of the used random
number generator. Here, we generate a sample path using the well-known
Stochastic Simulation Algorithm (SSA) (Gillespie, 1977), and assess the accu-
racy of the approximation by means of the batch mean estimation method
(Pawlikowski, 1990). By the PASTA property, we only have to observe the
system at the arrival epochs of a Poisson process instead of keeping track of
all the times in between jumps, so we can simulate the system by generating
a sample path of the embedded jump chain (Norris, 1997, Section 2.2). When-
ever the selected transition in this chain corresponds to the arrival of a type 1
or type 2 flow, we observe whether one of the two request types would be
blocked at that instant. In our C implementation of the combination of the
Gillespie algorithm and the batch mean estimation method, we use batches
of 4 ·107 arrivals and Rule 1 in (Pawlikowski, 1990) as a rule to determine
the end of the burn-in period. After that, we simulate at least 5 and at most
50 batches, where a batch is complete after 4 · 107 incoming requests. If
the number of batches is in between the minimum and maximum number
of batches, we pre-emptively stop the simulation if the relative (estimated)
error – taken to be the width of the 95%-confidence interval divided by the
mean, as proposed by Pawlikowski (1990, Eq. (12)) – is smaller than the tol-
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Table 8.3 Blocking ratios for the random allocation policy.

Algorithm 8.1↶ IDR(s) SSA

m1 ρlow ρmed ρhi ρlow ρmed ρhi ρlow ρmed ρhi

Type 1

40 5.64 ·10−6 2.16 ·10−3 2.53 ·10−1 5.64 ·10−6 2.16 ·10−3 2.53 ·10−1 5.75 ·10−6 2.17 ·10−3 2.53 ·10−1

80 2.29 ·10−10 9.40 ·10−5 2.30 ·10−1 2.29 ·10−10 9.41 ·10−5 2.30 ·10−1 0.0 9.44 ·10−5 2.30 ·10−1

120 1.18 ·10−14 7.74 ·10−6 2.22 ·10−1 1.18 ·10−14 7.75 ·10−6 2.22 ·10−1 0.0 7.54 ·10−6 2.22 ·10−1

160 3.62 ·10−23 9.01 ·10−7 2.17 ·10−1 7.16 ·10−19 9.02 ·10−7 2.17 ·10−1 0.0 8.96 ·10−7 2.17 ·10−1

Type 2

40 2.03 ·10−3 5.63 ·10−1 9.98 ·10−1 2.03 ·10−3 5.63 ·10−1 9.99 ·10−1 2.03 ·10−3 5.63 ·10−1 9.99 ·10−1

80 1.63 ·10−5 5.12 ·10−1 9.99 ·10−1 1.63 ·10−5 5.12 ·10−1 1.00 1.63 ·10−5 5.12 ·10−1 1.00
120 1.49 ·10−7 4.85 ·10−1 9.99 ·10−1 1.49 ·10−7 4.85 ·10−1 1.00 1.48 ·10−7 4.85 ·10−1 1.00
160 1.44 ·10−9 4.68 ·10−1 9.99 ·10−1 1.44 ·10−9 4.68 ·10−1 1.00 0.0 4.68 ·10−1 1.00

erance φ= 1 ·10−3. Note that because we use batches of 4 ·107 arrivals, this
method will not give good estimates whenever the blocking ratio is smaller
than 1 ·10−7.

Numerical experiments

Let us use the scenarios in Table 8.1414 to assess the performance of these
three computational methods. First, we use these methods to determine
the blocking ratios for the random allocation policy and report the obtained
values in Table 8.3. We obtain similar values with all three methods for
the medium and high traffic loads, but not for the low traffic load. As we
have predicted, the SSA method fails whenever the blocking ratio is small.
Furthermore, for the largest two systems and for type 1 requests, the values
obtained with Algorithm 8.1↶ do not agree with those obtained with the
IDR(s) solver; we suspect this has to do with numerical instabilities and/or
round-off errors.

Next, we measure the execution time of the computations that are re-
quired to determine the blocking ratios for the scenarios in Table 8.1414: we
fix a numerical method, a value for m1 and a traffic load ρ, and time how
long it takes to determine the blocking ratios for all three allocations policies
and the three traffic loads. We report the median of the execution time over
five consequent runs in Table 8.4↷ where, as before, we report the median
execution time divided by the number of distinct models (here equal to 3).
Here too, we say that the computations have timed out whenever the ‘average’
(median) execution time for the other methods is longer than 200 seconds,
and we denote this in Table 8.4↷ with a forward slash. We observe that for
Algorithm 8.1↶, the execution time is roughly proportional with the number
of states; this is as expected: because QAP is sparse, one step for the iterative
scheme is linear in the number of states. The execution times for the IDR(s)
method are also proportional to the number of states, but the exact values
should be taken with a large grain of salt. For some reason that is not entirely
clear to me, the IDR(s) implementation uses all of the available cores auto-
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8.3 Lumping the exact models

Table 8.4 Median execution time (in seconds) to determine exact blocking
ratios.

Algorithm 8.1419 IDR(s) SSA

m1 ρlow ρmed ρhi ρlow ρmed ρhi ρlow ρmed ρhi

40 0.04 0.06 0.30 0.01 0.01 0.01 176.91 151.13 24.35
80 2.07 3.14 15.09 0.19 0.43 0.79 179.43 165.39 39.97

120 19.65 40.35 170.01 1.54 4.05 8.58 78.89 185.46 54.70
160 64.05 / / 7.22 20.84 50.87 23.16 165.97 40.21

matically. Given that we run the computations on a CPU with 8 cores, and
that – in our implementation – the other methods all use a single thread (or
CPU core), it would make sense to multiply the median execution times for
the IDR(s) method by 8; doing so would result in execution times that have
the same order of magnitude as those for Algorithm 8.1419. The execution
times for the two iterative methods (Algorithm 8.1419 and IDR(s)) increase
with increasing traffic load, while the execution time for the SSA method is
larger for low traffic loads than for high traffic loads. For the two largest sys-
tems and the low traffic load, the execution times for the SSA method do not
follow this pattern; the cause for this is that the method stops pre-emptively
because (almost) none of the 4 ·107 simulated requests in a batch are blocked.
Compared to the SSA method, the two iterative methods are considerably
faster for small values of m1, but the SSA method has an execution time that
does not change significantly with the model size, making it more suited for
larger systems. However, the SSA method has two clear drawbacks. First and
foremost, one has to choose the number of requests in a batch large enough
such that blocking can occur, but this requires at least an estimate of the
blocking ratio. Second, the resulting values for the blocking ratios are always
an estimate, and the accuracy of this estimate can only be quantified with a
confidence interval.

8.3 Lumping the exact models

The main point that we take away from Section 8.2407 is that for large num-
bers of slots m1, determining the expected number of blocked requests or the
blocking ratio becomes infeasible because the state space X explodes. The
sole exception to this is the SSA method, because this does scale for large traf-
fic loads; however, that method only yields estimates, and no exact values. As
we know from Chapter 7337, one way to counteract state space explosion is to
lump the states, or equivalently, to adopt a higher-level – or less informative
– state description. This is precisely what Kim, Yan, et al. (2015) did for the
homogeneous Markovian jump process model for the random allocation pol-
icy, although they never mention explicitly that they use a lumping strategy.
We have studied lumping in great detail in Chapter 7337, and the methods
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that we introduced there will allow us to formalise and adapt their intuitive
approach. In Section 8.3.1, we introduce the lumped state space. Next, we
explain how Kim, Yan, et al. (2015) obtain an ‘approximate’ lumped jump
process in Section 8.3.2↷; there, we also extend their approach to the least
filled and most filled allocation policies, and observe how this approximate
lumped jump process reduces the computation time at the cost of accuracy.
To mitigate the inaccuracy of the approximate models, we turn to lumped
imprecise jump processes to describe the exact models in Section 8.3.3428.
We use these models to compute policy-dependent and policy-independent
bounds on the expected number of blocked requests in Section 8.3.4431, and
we do the same for blocking ratios in Section 8.3.5433.

8.3.1 The lumped state space

A higher-level or coarser state space description that still allows us to de-
termine whether or not a request is blocked, is the triplet (a,b,c). In this
triplet, a and b count the number of type 1 and type 2 flows that are currently
allocated, and c counts the number of unoccupied superchannels. Thus,
a, b and c should be non-negative integers such that m2 ≤ a + b + c and
a +n2(b + c) ≤ m1. Note that the first inequality is not mentioned by Kim,
Yan, et al. (2015, Section III. A.), but is nevertheless required to ensure that all
superchannels are accounted for. This way, we obtain the lumped state space

X̂ := {
(a,b,c) ∈Z3

≥0 : m2 ≤ a +b + c, a +n2(b + c) ≤ m1
}
.

The number of lumps has a O(m1m2
2) =O(m1(m1/n2)2) dependency on the

number of slots m1 and the number of slots that form a superchannel n2, so
while |X| increases with n2, |X̂| actually decreases with n2! We can confirm
this by looking at Fig. 8.3408: the number of states |X| grows rapidly with
increasing m1, whereas the number of lumped states |X̂| is at least an order of
magnitude smaller whenever n2 > 2. Moreover, the cardinality of the lumped
state space X̂ grows at a lower rate than the cardinality of the detailed state
space X for n2 > 2. Finally, we observe that in case n2 = 2, the number of
states in X is equal to the number of lumped states in X̂; to be more exact,
there is a bijection from X to X̂: the state x = (a0, a1, a2) in X corresponds
to the lumped state (a1 +2a2,m2 − a0 − a1 − a2, a0) in x̂, and conversely, a
lumped state x̂ = (a,b,c) in X̂ corresponds to the state (c,2(m2 −b − c)−
a, a +b + c −m2) in X.

Recall from Section 7.1.1342 that the lumping map Λ : X → X̂ relates
the detailed state description to the higher-level state description. For any
state (a0, . . . , an2 ) inX, ak counts the number of superchannels that contain k
type 1 flows and no type 2 flows. Hence, the lumping map Λ maps the
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state (a0, . . . , an2 ) in X to the lumped state

Λ(a0, . . . , an2 ) :=
(

n2∑
k=1

kak ,m2 −
n2∑

k=0
ak , a0

)

in X̂. As observed above, the lumping map Λ is invertible whenever n2 = 2:
in that case

Λ−1(a,b,c) = {(
c,2(m2 −b − c)−a, a +b + c −m2

)}
for all (a,b,c) ∈ X̂.

8.3.2 Approximate models

In general, the coarser state description in the lumped state space X̂ is not
sufficiently detailed to model the system as a homogeneous and Marko-
vian jump process with state space X̂ – the case n2 = 2 is the sole excep-
tion. Nonetheless, for the random allocation policy, Kim, Yan, et al. (2015)
construct an approximate model with state space X̂. We repeat their con-
struction here, and extend it to the least-filled and most-filled allocation
policies.

To determine the defining rate operator Q̃AP, we focus on an arbitrary
lumped state x̂ := (a,b,c) in X̂. As in Section 8.2.2408, we investigate what
happens for the four possible changes in the system.

Arrival of a type 1 traffic flow If all slots are occupied, so if a +n2b = m1,
then the request is blocked. Alternatively, the request is allocated to one of
the free slots according to the allocation policy. Note that a type 1 request can
be assigned to a slot in either a non-full superchannel that already contains
some type 1 flows or in a completely free superchannel, so the lumped state
can change to

x̂=
1,+ := (a +1,b,c) or x̂−

1,+ := (a +1,b,c −1).

For this reason, we need to distinguish three subcases. If there is no empty
superchannel, so if c = 0, then regardless of the spectrum allocation policy,
the type 1 request is assigned to a free slot in a non-empty superchannel. This
corresponds to a transition to x̂=

1,+, which in this case has rate λ=
AP =λ1; note

that in this case x̂−
1,+ does not belong to X̂. Conversely, if every superchannel

that is neither empty nor occupied by a type 2 flow is completely occupied by
type 1 flows, so if a +n2(b +c) = m1, then a type 1 request is always assigned
to an empty superchannel. This corresponds to a transition to x̂−

1,+, which in
this case has rate λ−

AP =λ1; note that in this case, x̂=
1,+ does not belong to X̂.

Finally, we have the remaining case that c > 0 and a +n2(b + c) < m1. The
two lumped states x̂=

1,+ and x̂−
1,+ are then both feasible, and the rates λ=

AP and
λ−

AP of the transitions to these states depend on the used allocation policy.
Regardless of the policy, however, both of these rates should be non-negative
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and their sum should equal λ1; for this reason, we can focus on determining
λ−

AP because λ=
AP = λ1 −λ−

AP. The random allocation policy allocates the
request at random to one of the m1−a−n2b free slots with equal probability,
so

λ−
RA :=λ1

n2c

m1 −a −n2b
;

see also (Kim, Yan, et al., 2015). The least-filled and most-filled policies
only assign a type 1 request to an empty superchannel if all non-empty
superchannels containing type 1 requests are completely occupied; this is
not the case here, so λ−

LF := 0 =:λ−
MF.

Departure of a type 1 traffic flow If a > 0, then the holding time of each
of the allocated type 1 traffic flows can expire. This might might free up a
superchannel or not, depending on whether or not it was the sole type 1 flow
in its superchannel; that is, x̂ can change to

x̂=
1,− := (a −1,b,c) or x̂+

1,− := (a −1,b,c +1).

Again, we need to distinguish three subcases. If every superchannel that is
neither empty nor occupied by a type 2 flow only contains a single type 1
flow, so if a +b + c = m2, then the departure of a type 1 flow always frees a
superchannel. This corresponds to a transition to x̂+

1,−, which in this case
has rate µ+ := aµ1; note that in this case x̂=

1,− is not a feasible lumped state.
Conversely, if every superchannel that is neither empty nor occupied by a
type 2 flow contains at least two type 1 flows, so if a ≥ n2(m2 −b − c −1)+2,
then the departure of a type 1 flow will never free a superchannel. This
corresponds to a transition to x̂=

1,−, which in this case has rate µ= := aµ1; note
that in this case x̂+

1,− is not a feasible lumped state. Unfortunately, in the
remaining case that m2 −b − c < a < n2(m2 −b −c −1)+2, the coarser state
description is not sufficiently informative to capture the distribution of the
allocated type 1 flows across the superchannels, at least not in general. For
this reason, we cannot determine the rate µ= of the transition to x̂=

1,− and the
rate µ+ of the transition to x̂+

1,−. In Section 8.3.3428 further on, we deal with
this indeterminacy through lumping. For now, we stick to the solution put
forward by Kim, Yan, et al. (2015): they use an estimate µ̃+ for the rate µ+,
which is based on the assumption – or, more precisely, on the approximation
– that all the possible distributions of the a type 1 flows over the m2 −b − c
non-empty superchannels that contain type 1 flows are ‘equally probable’.
After some combinatorics, they find that

µ̃+ :=µ1n2(m2 −b −e)
C (m2 −b − c −1, a −1)

C (m2 −b − c, a)
,

where, for all natural numbers n,k such that n ≤ k ≤ n2n,

C (n,k) :=
n−⌈k/n2⌉∑

i=0
(−1)i

(
n

i

)(
(n − i )n2

k

)
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is the number of n-tuples (a1, . . . , an) of natural numbers such that a j ≤ n2

for all j in {1, . . . ,n} and
∑n

j=1 a j = k. The corresponding estimate for µ= is

aµ1 − µ̃+.

Arrival of a type 2 request If all superchannels are (partially) occupied, so
if c = 0, then the incoming request is blocked. Alternatively, the request is
allocated to one of the free superchannels, so the state x̂ changes to

x̂2,+ := (a,b +1,c −1),

and this transition occurs with rate λ2.

Departure of a type 2 traffic flow If b > 0, then the expiration of the holding
time of an allocated type 2 flow corresponds to a transition to

x̂2,− := (a,b −1,c +1),

and this transition occurs with rate bµ2.

Policy-dependent approximate homogeneous and Markovian jump pro-
cess models

We schematically depict the non-zero off-diagonal components (of the matrix
representation) of the rate operator Q̃AP in Fig. 8.7. These components fully

x̂ = (a,b,c)x̂+
1,− = (a −1,b,c +1)

x̂2,− = (a,b −1,c +1) x̂=
1,+ = (a +1,b,c)

x̂−
1,+ = (a +1,b,c −1)

x̂2,+ = (a,b +1,c −1)x̂=
1,= = (a −1,b,c)

µ̃+
bµ2

λ=
AP

λ−
AP

λ2

aµ1 − µ̃+

(if b > 0) (if a +n2b < m1)

(if a +n2b < m1)

(if c > 0)(if a > 0)

(if a > 0)

Figure 8.7 State transition diagram for the approximate rate operator Q̃AP

define the rate operator Q̃AP: for any f̂ in G(X̂) and x̂ in X,

[
Q̃AP f̂

]
(x̂) =λ2

(
f (x̂2,+)− f̂ (x̂)

)+bµ2
(

f̂ (x̂2,−)− f̂ (x̂)
)

+λ−
AP

(
f̂ (x̂−

1,+)− f̂ (x)
)+λ=

AP

(
f̂ (x̂=

1,+)− f̂ (x)
)

+ µ̃+(
f̂ (x̂+

1,−)− f̂ (x)
)+ (aµ1 − µ̃+)

(
f̂ (x̂=

1,−)− f̂ (x)
)
, (8.6)
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where each of the terms in this expression is only added if the relevant lump
belongs to X̂. Note that λ−

LF =λ−
MF, and therefore Q̃LF = Q̃MF =: Q̃LM.

The initial probability mass function plays no role in our analysis further
on, so we could fix any probability mass function p̃ on X̂. However, we have
already ‘fixed’ a probability mass function p0 on X before, so we may as
well use the corresponding lumped probability mass function p̂ := p̂p0 . This
way, we have defined an approximate homogeneous and Markovian jump
process model for each of the three allocation policies; to ease our notation,
we denote these models by P̃RA := Pp̂,Q̃RA

and P̃LM := Pp̂,Q̃LM
.

The idea is to use these approximate models to, well, approximate the
expected number of blocked requests and the blocking ratios; because the
lumped state space X̂ is at least an order of magnitude smaller than the
detailed state space X, we expect that computing these approximations will
be tractable for large values of m1. To make this a bit more concrete, we
observe that

B̂1 :=Λ(B1) = {
(a,b,c) ∈ X̂ : a +n2b = m1

}
and

B̂2 :=Λ(B2) = {
(a,b,c) ∈ X̂ : c = 0

}
.

The hope is now that because P̃AP approximates ‘the’ lumped jump process
corresponding to P , we can approximate the expected number of blocked
type k requests by

λk r E D
P̃AP

(�IB̂k
�[0,r ]

∣∣ X̂0 =Λ(x)
)≈βk,AP

[0,r ] for all x ∈X.

Similarly, and under the assumption that Q̃AP is irreducible, the hope is that
we can approximate the blocking ratio for type k requests by

EQ̃AP
lim (IB̂k

) ≈βk,AP
lim .

As we will now see, this approximation is pretty good for the random alloca-
tion policy, but less so for the least-filled and most-filled allocation policies.
For the sake of brevity, we will only investigate the accuracy of the approxi-
mate blocking ratios.

Approximate blocking ratios

Both approximate rate operators Q̃RA and Q̃LM are irreducible. As before, we
will not prove this in any formal manner – one way to prove this is to start
from the irreducibility of QRA and QLF, see (Erreygers, Rottondi, et al., 2018a,
Appendix A.C) for more details. With AP equal to RA or LM, we denote the
corresponding approximate blocking ratios by

β̃1,AP
lim

:= EQ̃AP
lim (IB̂1

) and β̃2,AP
lim

:= EQ̃AP
lim (IB̂2

)
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In order to assess the accuracy of these approximations, we run the same
computations as in Section 8.2.4417, but now using the approximating rate
operators Q̃RA and Q̃LM instead of the exact rate operators QRA, QLF and QMF:
for every combination of m1 and ρ in Table 8.1414, we report in Table 8.5
the median of the execution time over five consecutive runs divided by the
number of models, in this case 2. By comparing the results in Table 8.5 to

Table 8.5 Median execution time (in seconds) to determine approximate
blocking ratios.

Algorithm 8.1419 IDR(s)

m1 ρlow ρmed ρhi ρlow ρmed ρhi

40 0.012 0.012 0.065 0.001 0.001 0.002
80 0.138 0.176 0.959 0.009 0.015 0.027

120 0.671 0.917 4.901 0.063 0.121 0.227
160 1.649 3.003 15.530 0.208 0.405 0.816

those in Table 8.4421, we observe that the decrease in the number of states
– see Table 8.1414 – indeed results in a substantial decrease of the required
computational time: as expected, the reduction in execution time is more or
less proportional to the reduction in the number of states. For the rest, the
execution times in Table 8.5 follow the same trends as those in Table 8.4421.

So computing the approximating blocking ratios is much faster, but are
these approximations any good? To answer this question, we compare the
approximating blocking ratios to the actual ones for a small system with m1 =
80 and n2 = 4 for traffic loads ρ in [ρlow,ρhi]. Looking at the plots in Fig. 8.8↷,
we would be inclined to conclude that for the random allocation policy, the
blocking ratios obtained with the approximate rate operator Q̃RA are in good
accordance with those obtained with the exact rate operator QRA. This is
precisely what Kim, Yan, et al. (2015) have done, although they compare the
approximate blocking ratios to those obtained through simulation; they not
only compare these values graphically, but also through the logarithm of
the ratio of these values (see also Yan et al., 2014, Eqn. (19)). For the least-
filled and most-filled allocation policies, the approximation is less good. One
reason for this is that these two policies lead to different blocking ratios, while
the approximate model yields identical approximations for the two policies.
From the plot in Fig. 8.8↷, we deduce that the approximate blocking ratio
for type 2 flows is in good accordance with the actual value, and that there is
a range of traffic loads for which the approximation for the blocking ratio of
type 1 flows is not very good.

To better assess the accuracy of the approximations, we take a closer look
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Figure 8.8 Blocking ratios for m1 = 80 and n2 = 4. Note that both axes are
logarithmic.

at the absolute error |βk,AP
lim − β̃k,AP

lim | and at the relative error

|βk,AP
lim − β̃k,AP

lim |
βk,AP

lim

.

To this end, we use Algorithm 8.1419 with φ= 1 ·10−5, and plot the absolute
and relative error for different values of the traffic load ρ and for the three
allocation policies in Fig. 8.9↷. While these errors are acceptable for the
random allocation policy, they are less acceptable for the least-filled and
most-filled allocation policies.

8.3.3 Lumping to imprecise jump process models

Fortunately, we already know how to deal with the indeterminacy that arises
due to lumping. To conclude this chapter, we apply the material in Chap-
ter 7337 to the present setting. In particular, we will use Theorem 7.33363
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and the iterative method in Theorem 6.50318 to determine policy-dependent
and policy-independent lower and upper bounds on the expected number
of blocked requests, and the iterative methods in Propositions 7.49380 and
7.51382 to determine policy-dependent and policy-independent lower and
upper bounds on the blocking ratios.

For each of the three allocation policies AP, we let Q̂AP := Q̂QAP be the
corresponding lumped lower rate operator, as defined by Eq. (7.27)355; simi-
larly, we denote the corresponding set of lumped rate operators, as defined
by Eq. (7.33)358, by Q̂AP := Q̂QAP . Furthermore, we also let Q̂ := Q̂Q, Q̂ := Q̂Q

and M̂ := M̂M .

Due to Theorem 7.33363, we can use the policy-dependent lumped jump
process PM̂,Q̂AP

and the policy-independent lumped jump process PM̂,Q̂ to
determine lower and upper bounds on the expected number of blocked
requests, and we will do so in Section 8.3.4431 further on. Similarly, in Sec-
tion 8.3.5433 we will determine lower and upper bounds on blocking ratios
with Propositions 7.49380 and 7.51382; we do so for the three allocation poli-
cies, but also for any allocation policy that depends on the number of type 1
flows per superchannel but not on the order of the superchannels along the
grid – more exactly, we determine lower and upper bounds on the blocking
ratios for all homogeneous and Markovian jump processes in PHM

M,Q.

First, however, we determine an expression for Q̂AP f̂ and Q̂ f̂ with
Eqs. (8.1)410 and (7.27)355. For n2 = 2 this is trivial due to the one-to-one
correspondence between the detailed state description and the higher-level
state description: the lower rate operator Q̂AP is then linear and equal to the
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approximate rate operator Q̃AP – this is intuitive and is pretty easy to verify
formally. For n2 > 2, however, using Eqs. (8.1)410 and (7.27)355 becomes a bit
tedious, so we will not give the formal derivation here; instead, we will use an
intuitive argument akin to our earlier discussion in Section 8.3.2423.

In Section 8.3.2423, we argued that the indeterminacy arises because we
cannot precisely determine the rates of the transitions that correspond to a
departure of a type 1 flow. Assume that the current lumped state x̂ = (a,b,c) is
such that a > 0 and m2−b−c < a < n2(m2−b−c−1)+2. Then the departure
of a type 1 flow can free up a superchannel or not, so both x̂+

1,− and x̂=
1,− are

feasible lumped states. The rates corresponding to these transitions cannot
be determined precisely, but that is not to say that we are completely in the
dark, quite the contrary: we are sure that these rates are non-negative and
that their sum is equal to aµ1. Furthermore, as we are about to explain, there
are at least amin := max{0,2(m2 −b − c)− a} allocated type 1 flows that are
alone in their superchannel, and at most

amax :=
⌊

n2(m2 −b − c)−a

n2 −1

⌋

such type 1 flows, and these bounds are reached. Hence, the rate µ+ to x̂+
1,− is

at least aminµ1 := aminµ1 and at most amaxµ1 := amaxµ1 – and these bounds
are reached.

Let us see why the states in Λ−1(x̂) satisfy these bounds and reach them
both. Note that the only freedom we have in Λ−1(x̂) is to distribute a type 1
flows over m2 −b − c < a superchannels, ensuring that each of these super-
channels contains at least 1 type 1 flow and at most n2. Thus, we are only free
to distribute the a − (m2 −b −c) remaining type 1 flows. First, we do so such
as to minimise the number of allocated type 1 flows that are alone in their
superchannel. Note that if the number a − (m2 −b − c) of type 1 flows that
we are free to distribute is larger than or equal to the number m2 −b − c of
superchannels that we need to populate – so if 2(m2 −b−c)−a ≤ 0 – then we
can do this in such a way that every superchannel contains at least 2 type 1
flows; in this case, the rate µ+ to x̂+

1,− is 0 = aminµ1. If on the other hand
2(m2 −b − c)−a > 0, then we can populate a − (m2 −b − c) superchannels
with 2 type 1 flows, leaving us with at most 2(m2 −b − c)− a = amin type 1
flows that are alone in their superchannel; thus, in this case µ+ = aminµ1 too.
Next, we maximise the number of allocated type 1 flows that are alone in
their superchannel. Clearly, we can use the a − (m2 −b − c) remaining type 1
flows to completely fill up one super channel, then the next, and so on. This
way, we put more than 1 type 1 flow in ⌈(a−(m2−b−c))/(n2−1)⌉ superchannels,
and this leaves amax superchannels with a single type 1 flow; hence, the rate
to x̂+

1,− is µ+ = amaxµ1.
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For this reason, we see that for all f̂ in G(X̂) and x̂ in X̂,[
Q̂AP f̂

]
(x̂) =λ2

(
f (x̂2,+)− f̂ (x̂)

)+bµ2
(

f̂ (x̂2,−)− f̂ (x̂)
)−aµ1 f̂ (x̂)

+λ−
AP

(
f̂ (x̂−

1,+)− f̂ (x)
)+λ=

AP

(
f̂ (x̂=

1,+)− f̂ (x)
)

+min
{
µ+ f̂ (x̂+

1,−)+ (aµ1 −µ+) f̂ (x̂=
1,−) : µ+ ∈ {aminµ1, amaxµ1}

}
,

where each of the terms in this expression is only added if the relevant lumped
state belongs to X̂. Recall from Section 8.3.2423 thatλ−

LF =λ−
MF andλ=

LF =λ=
MF,

so Q̂LF = Q̂MF =: Q̂LM. Determining Q̂AP f̂ is linear in the number of lumped

states: for all x̂ in X̂, we only need to optimise a single term. Furthermore,
Q̃AP dominates Q̂AP by construction, so Q̃AP belongs to QAP.

In a similar manner, we can determine an expression for Q̂. In this case,
we can also freely choose the rates λ−

AP and λ−
AP whenever c > 0 and a+n2(b+

c) < m1 – this corresponds to the case that there is an empty superchannel
and at least one superchannel that is neither empty nor fully occupied. Hence,
for all f̂ in G(X̂) and x̂ in X̂,[

Q̂ f̂
]
(x̂) =λ2

(
f (x̂2,+)− f̂ (x̂)

)+bµ2
(

f̂ (x̂2,−)− f̂ (x̂)
)−aµ1 f̂ (x̂)

+min
{
λ− f̂ (x̂−

1,+)+ (λ1 −λ−) f̂ (x̂=
1,+)−λ1 f̂ (x̂) : λ− ∈ {0,λ1}

}
+min

{
µ+ f̂ (x̂+

1,−)+ (aµ1 −µ+) f̂ (x̂=
1,−) : µ+ ∈ {aminµ1, amaxµ1}

}
,

where each of the terms in this expression is only added if the relevant lumped
state belongs to X̂ – the minimisation for λ− is only necessary if c > 0 and
a +n2(b +c) < m1 as the value of λ− is uniquely determined otherwise, and
the minimisation forµ+ is only necessary if a > 0 and m2−b−c < a < n2(m2−
b − c −1)+2 as the value of µ+ is uniquely determined otherwise.

8.3.4 Bounding the expected number of blocked requests

Finally, we can put the induced lumped imprecise models to the test. To
this end, we observe that the set B1 and B2 are lumpable, in the sense that
B1 =Λ−1(B̂1) and B2 =Λ−1(B̂2). Hence, IB1 = IB̂1

◦Λ and IB2 = IB̂2
◦Λ, and this

implies that the corresponding temporal averages are lumpable too: for all k
in {1,2} and r in R>0, it follows from Eq. (7.44)367 that(�IB̂k

�[0,r ]
)↑Ω =

(
1

r

∫ r

0
IB̂k

(X̂ t )dt

)↑Ω
= 1

r

∫ r

0
IBk (X t )dt = �IBk �[0,r ].

Consequently, it follows from Theorem 7.33363 that, for all k in {1,2}, r in R>0

and x in X, and with AP equal to RA, LF or MF,

λk r EM̂,Q̂AP

(�IB̂k
�[0,r ]

∣∣ X̂0 =Λ(x)
)≤βk,AP

[0,r ] ≤λk r EM̂,Q̂AP
[
]
(�IB̂k

�[0,r ] | X̂0 =Λ(x)),

and similarly for βk
[0,r ] and βk

[0,r ] but with PM̂,Q̂ instead of PM̂,Q̂AP
. To com-

pute these lower and upper bounds, we use the recursive method in Theo-
rem 6.50318 in the same way as in Section 8.2.3412.
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Numerical experiments

Let us repeat the three experiments in Section 8.2.3412 to asses whether or
not lumping results in more tractable computations. First, we consider the
system with m1 = 80 and the random allocation policy. In Fig. 8.10, we
depict the lower and upper bounds on the expected number of blocked
requests over [0,r ] with r = 100/ρ, so we basically add some information to
the plots in Fig. 8.5414. We observe that the bounds obtained with the policy-
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Figure 8.10 Lower and upper bounds on the expected number of blocked
requests for m1 = 80 and n2 = 4 for the random allocation pol-
icy. The dashed lines correspond to the policy-independent
model PM,Q, the dotted lines with darker shading to the policy-
dependent lumped model PM̂,Q̂RA

and the dotted lines with the
lighter shading to the policy-independent lumped model PM̂,Q̂.

dependent lumped modelPM̂,Q̂AP
are fairly tight, and that those obtained with

the policy-independent lumped model PM̂,Q̂ are almost indistinguishable
from those obtained with PM,Q.

Next, we compare the time required to computeβk,AP
[0,r ] to the time required

to compute the lower and upper bounds. We run the same experiment as
for Table 8.2415, only this time around we compute the upper bound on the
expected number of blocked requests for the policy-dependent lumped mod-
els PM̂,Q̂RA

and PM̂,Q̂LM
and for the policy-independent lumped model PM̂,Q̂;

here too, we report the median execution time for the two policy-dependent
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models divided by the number of models. Note that computing the upper

Table 8.6 Median execution time (in seconds) to determine an upper bound
on the expected number of blocked requests.

PM̂,Q̂AP
PM̂,Q̂

m1 ρlow ρmed ρhi ρlow ρmed ρhi

40 1.25 0.34 0.17 1.32 0.35 0.18
80 8.20 2.30 1.08 8.74 2.41 1.17

120 33.03 9.62 4.22 35.32 9.80 4.56
160 100.72 27.56 13.10 103.48 28.21 13.44

bounds with the lumped models is much faster than computing the exact
values with the exact models. For the rest, we observe more or less the same
trends as in Table 8.2415: the execution time decreases as the traffic load in-
creases and is roughly proportional to the number of lumped states, and the
execution times for the lumped policy-independent model are slightly longer
because determining Q̂ f̂ is slightly more expensive than determining Q̂AP f̂ .

Finally, we look at how the expected temporal average of IBk (X t ) evolves
over time. While we looked at a system with m1 = 80 slots in Section 8.3.4431,
we now consider a system with m1 = 160 slots, and we take the random alloca-
tion policy as an example. In Fig. 8.11↷, we plot lower and upper bounds on
the expected temporal average obtained with the policy-dependent lumped
model PM̂,Q̂RA

for the random allocation policy and the policy-independent
lumped model PM̂,Q̂. These plots are similar to those in Fig. 8.6416, so our
observations regarding Fig. 8.6416 hold here too. Note that we do not plot the
exact values because computing them takes too long.

8.3.5 Bounding blocking ratios

Finally, we use Propositions 7.49380 and 7.51382 to determine lower and upper
bounds on the blocking ratios with Q̂RA, Q̂LM and Q̂. Note that we could also
use Proposition 7.46376 for this, but we will not do this here.

We compute lower and upper bounds on the blocking ratio with the
obvious counterpart(s) of Algorithm 8.1419: Algorithm 8.2435 computes a
guaranteed upper bound, and to compute a lower bound we change the first
line in Algorithm 8.2435 to ĝ0 := f̂ and the last line to min ĝn .

In general, the step size ∆ in Algorithm 8.2435 influences the tightness of
the bound in two ways: directly because −min(I +∆Q̂)n(− f̂ ) can converge to
a different value, and indirectly because a smaller step size typically results in
more iterations to reach convergence. To determine bounds on the blocking
ratios, we always use the step size ∆= 1.9/∥Q̂Q∥op; in our scenarios, using the
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Figure 8.11 Bounds on the expectation of �IBk �[0,r ] for m1 = 160, n2 = 4 and
ρ = ρmed = 40 conditional on {X0 = x} for the random allocation
policy. Dotted lines indicate bounds corresponding to PM̂,Q̂RA

,
and dashed lines the bounds corresponding to PM̂,Q̂.

smaller step size ∆ = 1/2∥Q̂Q∥op only changes some of the bounds from the
third significant digit on.

We run the same experiment as in Section 8.2.4417, although we use
Algorithm 8.2↷ to determine upper bounds on the blocking ratios using Q̂RA,
Q̂LM, and Q̂ with parameters φ= 10−3 and nmax = 106. We report the median
execution time in Table 8.7↷; for the two policy-dependent imprecise models,
we report the median execution time over five consecutive runs divided by
the number of models (so 2 in this case), whereas for the policy-independent
model, we simply report the median execution time over five consecutive
runs.

Note that computing an upper bound on the blocking ratios using the
lumped models is considerably faster than computing the blocking ratios
using the exact models. In line with what we have seen before, the execution
times are roughly proportional to the number of lumped states, and they
increase as the traffic load increases. For the low traffic load, computing the
policy-dependent bounds is (marginally) faster than computing the policy-
independent bounds; the obvious explanation for this is that determining Q̂ f̂
requires more optimisations that determining Q̂AP f̂ . For the medium and
high traffic load, this is the other way around. The reason for this is that
the number of iterations until convergence is similar for Q̂R A and Q̂ but
much larger for Q̂LM; unfortunately, we have no intuitive explanation for this
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Algorithm 8.2: Iteratively compute an upper bound on the limit
expectation EQ

lim( f ) of a lumpable f in G(X) that holds for every rate
operator Q in a setQ of ergodic rate operators

Input: A non-empty setQ of ergodic rate operators on G(X), a
gamble f in G(X) such that f ↓min = f ↓max =: f̂ , a time step ∆
in R>0 such that ∆∥Q̂Q∥op < 2, a relative tolerance φ in R>0 and
a maximum number of iterations nmax inN.

Output: An upper bound on EQ
lim( f ) that holds for all Q in Q

1 n := 0

2 ĝ0 :=− f̂
3 ϵrel := 2∥ĝ0∥v/|max ĝ0 +min ĝ0|
4 while ϵrel >φ and n < nmax do
5 n := n +1

6 ĝn := ĝn−1 +∆Q̂Q ĝn−1

7 ϵrel := 2∥ĝn∥v/|max ĝn +min ĝn |
8 return −min ĝn

Table 8.7 Median execution time (in seconds) to determine upper bounds on
the blocking ratios with Algorithm 8.2.

Q̂AP Q̂

m1 ρlow ρmed ρhi ρlow ρmed ρhi

40 0.02 0.02 0.10 0.02 0.02 0.09
80 0.28 0.41 1.49 0.28 0.31 1.46

120 1.79 3.46 9.40 1.83 1.90 9.03
160 4.72 15.50 25.31 5.14 6.06 19.84

behaviour.

To conclude our investigation, we compare the actual values of the block-
ing ratios to the lower and upper bounds. In Fig. 8.12↷, we depict the block-
ing ratios and the lower and upper bounds on the blocking ratios for each
traffic type for a system with m1 = 80, n2 = 4, µ1 = 1 = µ2 and λ1 = ρ = λ2.
Note that these graphs all have a double logarithmic scale, so our discus-
sion of the graphs – and our use of terms such as tight, wide, close to or in
the middle – should be interpreted in a logarithmic sense. For type 2 flows,
the bounds calculated with the policy-dependent model are very tight and
show that evaluating the performance with the lumped model yields accu-
rate results for all the considered parameters and traffic loads. However, the
calculated policy-dependent lower and upper bounds for type 1 flows are
relatively wide, especially for intermediate loads.
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Figure 8.12 Blocking ratios for m1 = 80 and n2 = 4. The lower and upper
bounds for the policy-dependent lumped models are displayed
as dotted lines, those for the policy-independent lumped model
are displayed as dashed lines.

The policy-dependent and policy-independent lower and upper blocking
ratios allow us to asses the performance of the allocation policies. For this
analysis, we also take the graphs in Fig. 8.13↷ into account, where we plot the
lower and upper blocking ratios for a system with m1 = 160 slots and n2 = 4
slots per superchannel; computing the exact blocking ratios over the whole
range of traffic loads is infeasible for this system, so we plot the approximate
blocking ratios that we obtain with the approximate rate operators Q̃RA and
Q̃LM. In Figs. 8.12 and 8.13↷, we can see that the least-filled and most-filled
allocation policies yield a blocking ratio very close to the policy-independent
lower bound for type 2 flows and very close to the policy-independent up-
per bound for type 1 flows. This demonstrates that these policies favour
type 2 flows. On the other hand, the lower and upper blocking ratios for the
random allocation policy are situated more or less in the middle of the policy-
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Figure 8.13 Blocking ratios for m1 = 160 and n2 = 4. The lower and upper
bounds for for the policy-dependent lumped models are dis-
played as dotted lines, those for the policy-independent lumped
model are displayed as dashed lines.

independent bounds, and this for both connection types, so this policy shows
no preference for one type of flow over the other.
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Conclusions 9
The main conclusion of this dissertation is that Markovian imprecise jump
processes generalise ‘standard’ Markovian jump processes in two ways: they
allow for partially specified parameters, and they do not require homogeneity
or even Markovianity. Moreover, they do so in such a way that many things
that are possible in the precise case, are possible in the imprecise case as well.
Let us elaborate this a bit.

From Chapters 353 and 4157, we take away that the law of iterated lower
expectations allows us to compute the lower and upper expectations of any
simple variable, and that the weaker sum-product law of iterated lower expec-
tations suffices for simple variables that have a sum-product representation.
Furthermore, despite the added generality of Markovian imprecise jump
processes, the resulting computational methods do not add a large computa-
tional burden compared to homogeneous Markovian jump processes.

The main conclusion from Chapter 5215 is that we can extend the domain
of Markovian imprecise jump processes from simple variables to idealised
variables, so from variables that depend on the state of the system at a finite
number of time points to variables that depend on the state of the system
at all time points in an (unbounded) time interval. A second important con-
clusion is that the resulting extended lower and upper expectations satisfy
generalisations of the Monotone Convergence Theorem and Lebesgue’s Dom-
inated Convergence Theorem, but that the limit lower and upper bounds in
these theorems need not be tight. On a more didactic note, our approach
in Chapter 5215 shows that the conventional route followed in the theory
of measure-theoretic jump processes is a bit convoluted. While it has be-
come a tradition to start off with the set of all paths and to subsequently
modify the projector variables in such a way that they have càdlag sample
paths, we simply consider the set of càdlàg paths from the very beginning –
to be fair, we use the measure-theoretical ‘modification trick’ in one of our
proofs. This is also a good time to mention that Nendel (2020, 2021) has
generalised (measure-theoretical) homogeneous Markovian jump processes
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to the setting of convex expectations (Peng, 2005), hence also obtaining –
what could be considered – an imprecise Markovian jump process as a spe-
cial case. In particular, he uses a Kolmogorov-type extension theorem by
Denk et al. (2018) to obtain a convex expectation on the set of all bounded
variables that are measurable with respect to the sigma algebra generated
by the cylinder events. However, he does not modify the projector variables
in such a way that they have càdlàg sample paths, and this means that in
his framework, most non-trivial idealised variables – including the three
types that we consider – are not measurable with respect to the generated
sigma algebra, as explained in Appendix 5.B.2247. We consider this to be an
important advantage of our approach.

From Chapter 6273, we conclude that the limit lower and upper bounds in
the aforementioned theorems are actually tight for several types of idealised
variables, and even more, that we can compute their lower and upper expec-
tations up to arbitrary precision. More importantly, the work in Chapters 5215

and 6273 gives rise to many new research topics in the theory of Markovian
imprecise jump process, simply because the domain has been increased from
simple variables to idealised ones. We will come back to this further on.

Chapter 7337 shows that Markovian imprecise jump processes are elegant
tools for dealing with the parameter indeterminacy that arises when lumping
a homogenenous Markovian (imprecise) jump process. Specifically, they
allow us to compute bounds on inferences that we could not have determined
otherwise – at least not within a reasonable time span. Chapter 8403 illustrates
this nicely, and this chapter also demonstrates the general modelling power
and practical feasibility of our approach.

Following an honourable tradition, we conclude this dissertation with
a brief discussion of possible avenues for future research. In Chapter 6273,
we already put forward three such avenues. The first avenue is to deter-
mine efficient methods to compute the lower and upper expected number of
jumps efficiently; we mentioned this in Footnote 1276, where we referred to
the method that we present (without proof) in (Erreygers & De Bock, 2021,
Section 5.2). The two other avenues were put forward at the end of Sec-
tions 6.2.3287 and 6.3.1290, respectively: (i) investigate whether lower and
upper hitting probabilities and/or expected hitting times can be computed
in a similar manner as for homogeneous Markovian jump processes; and (ii)
investigate the limit behaviour of the lower and upper expected temporal
average, and specifically the link with ergodicity. The discrete-time counter-
parts of these investigations have led to positive results, but the arguments
there do not necessarily translate immediately to our continuous-time set-
ting. One reason for this is that many of the arguments for imprecise Markov
chains use the game-theoretic framework put forward by Shafer et al. (2001,
2019). To the best of our knowledge, (imprecise) jump processes have yet
to be studied in this framework, so this is an interesting – but challenging –
avenue for further research. Another ambitious research project could be to
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develop a theory of imprecise jump processes for countable – or, why not, un-
countable – state spaces. Some guidance might be found in my preliminary
work on Poisson processes (Erreygers & De Bock, 2019b). This work uses the
framework of sets of coherent conditional probabilities, but I suspect that
the game-theoretic approach is actually more straightforward for Poisson
processes, or even for counting processes in general; hence, as far as the
game-theoretic framework is concerned, it might be a good idea to start with
Poisson processes instead of jump processes. Finally, while we are on the
topic of Poisson processes, a generalisation of the PASTA property – Poisson
Arrivals See Temporal-Averages – to (Markovian) imprecise jump processes
would be of tremendous practical interest. No shortage of ideas then, so let’s
get on with it!
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CompactnessA
In this appendix, we establish some compactness properties of sets of opera-
tors. More precisely, we explain that the set of coherent lower expectations on
a finite possibility space is compact in Appendix A.1. In Appendix A.2446, we
subsequently establish that the set of lower transition operators is compact.
Finally, we argue that this implies that a bounded set of lower rate operators
is compact in Appendix A.3448.

A.1 Compactness of the set of coherent lower expectations

Let EX denote the set of all coherent lower expectations on G(X), and let
G1(X) := { f ∈G(X) : 0 ≤ f ≤ 1}. As shown by Škulj et al. (2013),

d : EX×EX →R≥0 : (E ,E ′) 7→ max
{|E( f )−E ′( f )| : f ∈G1(X)

}
(A.1)

is a metric on EX . We will need the following convenient property of this
metric in the proof of Proposition 4.38197, so it makes sense to state it here.
Our proof is essentially based on (Škulj et al., 2013, Eqn. (11)).

Lemma A.1. Let E 1 and E 2 be two coherent lower expectations on G(X). Then

d(E 1,E 2) ≤ max
{
E 1(IA)−E 2(IA) : A ∈P(X),∅ ̸= A ̸=X

}
.

Proof. Recall from (LE4)30 that for all k in {1,2} and f in G1(X), 0 ≤ E k ( f ) ≤ E k ( f ) ≤
1. From this, it follows immediately that for any f in G1(X),

E 1( f )−E 2( f ) ≤ E 1( f )−E 2( f ) and E 1( f )−E 2( f ) ≤ E 1( f )−E 2( f ). (A.2)

Let f ⋆ be any gamble in G1(X) such that

d(E 1,E 2) = ∣∣E 1( f ⋆)−E 2( f ⋆)
∣∣.

Note that either |E 1( f ⋆)−E 2( f ⋆)| = E 1( f ⋆)−E 2( f ⋆) or |E 1( f ⋆)−E 2( f ⋆)| = E 2( f ⋆)−
E 1( f ⋆). In the first case,

d(E 1,E 2) = ∣∣E 1( f ⋆)−E 2( f ⋆)
∣∣= E 1( f ⋆)−E 2( f ⋆) ≤ E 1( f ⋆)−E 2( f ⋆), (A.3)
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where the inequality follows from Eq. (A.2)↶. In the second case,

d(E 1,E 2) = ∣∣E 1( f ⋆)−E 2( f ⋆)
∣∣= E 2( f ⋆)−E 1( f ⋆).

Note that

E 2( f ⋆)−E 1( f ⋆) =−E 2(− f ⋆)+E 1(− f ⋆) =−E 2(1− f ⋆)+E 1(1− f ⋆).

where the first equality holds due to conjugacy and the second equality holds due to
(LT5)108. Observe that 1− f ⋆ belongs to G1(X) because f ⋆ does. Consequently, it
follows from the preceding equalities and Eq. (A.2)↶ that

d(E 1,E 2) = E 1(1− f ⋆)−E 2(1− f ⋆) ≤ E 1(1− f ⋆)−E 2(1− f ⋆). (A.4)

Observe that G1(X) = {1 − f : f ∈ G1(X)}. For this reason, it follows from
Eqs. (A.3)↶ and (A.4) that

d(E 1,E 2) ≤ sup
{
E 1( f )−E 2( f ) : f ∈G1(X)

}
. (A.5)

Fix any f in G(X). Recall from Theorem 2.2830 that for any k in {1,2}, E k ( f ) =
min{Ek ( f ) : Ek ∈Mk }, whereMk :=ME k

is the set of coherent expectations on G(X)
that dominate E k . Consequently,

E 1( f )−E 2( f ) = max
{
E1( f ) : E1 ∈M1

}−min
{
E2( f ) : E2 ∈M2

}
= max

{
max

{
E1( f )−E2( f ) : E2 ∈M2

}
: E1 ∈M1

}
.

We use the previous equality to rewrite the right-hand side of Eq. (A.5):

sup
{
E 1( f )−E 2( f ) : f ∈G1(X)

}
= sup

{
max

{
max

{
E1( f )−E2( f ) : E2 ∈M2

}
: E1 ∈M1

}
: f ∈G1(X)

}
= max

{
max

{
sup

{
E1( f )−E2( f ) : f ∈G1(X)

}
: E2 ∈M2

}
: E1 ∈M1

}
. (A.6)

Škulj et al. (2013, Proposition 1)1 prove that for any two coherent expectations E1
and E2 on G(X),

sup
{|E1( f )−E2( f )| : f ∈G1(X)

}= max
{|E1(IA)−E2(IA)| : A ∈P(X),∅ ̸= A ̸=X

}
.

Because
E1( f )−E2( f ) =−(

E1(1− f )−E2(1− f )
)

for all f ∈G1(X),

and in particular,

E1(IA)−E2(IA) =−(
E1(IAc )−E2(IAc )

)
for all A ∈P(X),∅ ̸= A ̸=X,

1Technically, they prove this for expectations corresponding to probability mass functions,
but this is not an issue because by Corollary 2.1723 and Proposition 2.1823 in Section 2.2.219,
there is a one-to-one correspondence between coherent expectations E on G(X) and probability
mass functions on X.
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this implies that

sup
{
E1( f )−E2( f ) : f ∈G1(X)

}= max
{
E1(IA)−E2(IA) : A ∈P(X),∅ ̸= A ̸=X

}
.

Substituting the preceding equality in Eq. (A.6)↶, we obtain that

sup
{
E 1( f )−E 2( f ) : f ∈G1(X)

}
= max

{
max

{
max

{
E1(IA)−E2(IA) : A ∈P(X),∅ ̸= A ̸=X

}
: E2 ∈M2

}
: E1 ∈M1

}
= max

{
max

{
max

{
E1(IA)−E2(IA) : E2 ∈M2

}
: E1 ∈M1

}
: A ∈P(X),∅ ̸= A ̸=X

}
= max

{
E 1(IA)−E 2(IA) : A ∈P(X),∅ ̸= A ̸=X

}
.

The inequality of the statement now follows immediately from the previous equality
and Eq. (A.5)↶.

Importantly, De Bock et al. (2015, Appendix A) prove that EX is compact
with respect to the metric d because the state space X is finite.

Lemma A.2. The metric space (EX ,d) is compact.

We need to take one more step in order to be able to use the preceding
result. Recall that in the definition of the operator norm, we consider all
gambles f on X with ∥ f ∥ = 1 instead of 0 ≤ f ≤ 1. However, we now establish
that this makes no real difference.

Lemma A.3. For any two coherent lower previsions E and E ′ on G(X),

d(E ,E ′) = 1

2
sup

{|E( f )−E ′( f )| : f ∈G(X),∥ f ∥ = 1
}
.

Proof. The statement holds trivially in case E = E ′. Thus, from here on we assume
that E ̸= E ′, whence d(E ,E ′) > 0. Note that for any gamble f on X, 0 ≤ f ≤ 1 if and
only if −1 ≤ 2 f −1 ≤ 1 or, equivalently, ∥2 f −1∥ ≤ 1. For this reason,

d(E ,E ′) = max
{|E( f )−E ′( f )| : f ∈G(X),0 ≤ f ≤ 1

}
= max

{|E( f )−E ′( f )| : f ∈G(X),∥2 f −1∥}
= max

{∣∣∣∣ 1

2
E(2 f −1)− 1

2
E ′(2 f −1)

∣∣∣∣ : f ∈G(X),∥2 f −1∥
}

= 1

2
max

{|E(2 f −1)−E ′(2 f −1)| : f ∈G(X),∥2 f −1∥ ≤ 1
}

= 1

2
max

{|E( f )−E ′( f )| : f ∈G(X),∥ f ∥ ≤ 1
}
,

where for the third equality we have used (LE2)30 and (LE5)30. To verify that this
agrees with the equality of the statement, we assume ex absurdo that the maximum
in the last equality is not reached for some f in G(X) with ∥ f ∥ = 1. This implies that
there is some f in G(X) such that ∥ f ∥ < 1 and

0 < d(E ,E ′) = 1

2
|E( f )−E ′( f )|.
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Note that ∥ f ∥ > 0 because

|E(0)−E ′(0)| = |0−0| = 0 < 2d(E ,E ′) = |E( f )−E ′( f )|,

where the first equality follows from (LE2)30.
Let f̃ := f /∥ f ∥ such that ∥ f̃ ∥ = 1, and observe that

2d(E ,E ′) = |E( f )−E ′( f )| =
∣∣∣∣∥ f ∥E

(
f

∥ f ∥
)
−∥ f ∥E ′

(
f

∥ f ∥
)∣∣∣∣= ∥ f ∥|E( f̃ )−E( f̃ )|

< |E( f̃ )−E( f̃ )|,

where for the second equality we have used (LE2)30. However, because ∥ f̃ ∥ ≤ 1,

|E( f̃ )−E( f̃ )| ≤ 2d(E ,E ′).

This inequality clearly contradict the previous inequality, and this proves the state-
ment.

Corollary A.4. The function

d ′ : EX×EX →R≥0 : (E ,E ′) 7→ sup
{|E( f )−E ′( f )| : f ∈G(X),∥ f ∥ = 1

}
is a metric, and (EX ,d ′) is a compact metric space.

Proof. That d ′ is a metric follows immediately from Lemma A.3↶. Even more,
it is clear from Lemma A.3↶ that the metrics d and d ′ generate the same topol-
ogy. Because (EX ,d) is compact due to Lemma A.2↶, we conclude that the metric
space (EX ,d ′) is compact as well.

A.2 Compactness of the set of lower transition operators

Because the set of coherent lower expectations is compact, so is the set of
lower transition operators.

Proposition A.5. The space T of lower transition operators with the metric
induced by the operator norm ∥•∥op is (sequentially) compact.

Proof. Recall that a metric space is sequentially compact if and only if every sequence
has a convergent subsequence (see Schechter, 1997, Section 17.26(c)), and that a
metric space is compact if and only if it is sequentially compact (see Schechter,
1997, Theorem 17.33). To prove that T is (sequentially) compact, we fix an arbitrary
sequence (T n )n∈N in T, and show that this sequence has a convergent subsequence.
To that end, we recall from Corollary 3.61107 that for every natural number n and
every state x in X, [T n•](x) is a coherent lower expectation on G(X). Because the
state space X is finite, we can fix an ordering x1, . . . , xk of X, with k := |X|.

By Corollary A.4, the metric space (EX ,d ′) is compact. Hence, the se-
quence ([T n•](x1))n∈N has a convergent subsequence. More precisely, there is a
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subsequence
([

T n1,ℓ
•](x1)

)
ℓ∈N – with (n1,ℓ)ℓ∈N an increasing sequence of natural

numbers – and a coherent lower expectation E x1
on G(X) such that

lim
ℓ→+∞

d ′([T n1,ℓ
•](x1),E x1

)
= 0.

With the same argument, we obtain a convergent subsequence
([

T n2,ℓ
•](x2)

)
ℓ∈N of([

T n1,ℓ
•](x2)

)
ℓ∈N – with (n2,ℓ)ℓ∈N an increasing subsequence of (n1,ℓ)ℓ∈N – and a

coherent lower expectation E x2
on G(X) such that

lim
ℓ→+∞

d ′([T n2,ℓ
•](x2),E x2

)
= 0.

Note that, because (n2,ℓ)ℓ∈N is an increasing subsequence of (n1,ℓ)ℓ∈N,

lim
ℓ→+∞

d ′([T n2,ℓ
•](x1),E x1

)
= 0.

It is clear that we can use the same argument for the remaining states x3, . . . , xk .
Eventually, we obtain the coherent lower expectations E x1

, . . . , E xk
and an increasing

sequence (nk,ℓ)ℓ∈N of natural numbers such that

lim
ℓ→+∞

d ′([T nk,ℓ
•](x),E x

)
= 0 for all x ∈X.

We take the maximum over all x in X and change the order of the maximum and
the limit – which is allowed because we take the maximum of a finite number of
real-valued limits – to yield

lim
ℓ→+∞

max
{

d ′([T nk,ℓ
•](x),E x

)
: x ∈X

}
= 0. (A.7)

Let T be the operator on G(X) defined by

[T f ](x) := E x ( f ) for all f ∈G(X) and x ∈X.

It is a matter of straightforward verification that T is a lower transition operator. We
now set out to verify that (T nk,ℓ

)ℓ∈N converges to T . To this end, we fix any natural

number ℓ and observe that

∥T nk,ℓ
−T ∥op = sup

{
max

{∣∣∣[T nk,ℓ
f
]
(x)− [T f ](x)

∣∣∣ : x ∈X
}

: f ∈G(X),∥ f ∥ = 1
}

= max
{

sup
{∣∣∣[T nk,ℓ

f
]
(x)− [T f ](x)

∣∣∣ : f ∈G(X),∥ f ∥ = 1
}

: x ∈X
}

= max
{

sup
{∣∣∣[T nk,ℓ

f
]
(x)−E x ( f )

∣∣∣ : f ∈G(X),∥ f ∥ = 1
}

: x ∈X
}

= max
{

d ′([T nk,ℓ
•](x),E x

)
: x ∈X

}
.

From this and Eq. (A.7), we infer that

lim
ℓ→+∞

∥T nk,ℓ
−T ∥op = 0,

so the subsequence
(
T nk,ℓ

)
ℓ∈N converges to the lower transition operator T , as we

set out to verify.
To summarise, we have shown that the sequence (T n )n∈N has a convergent

subsequence. Because the sequence (T n )n∈N was arbitrary, we conclude that the
space T is (sequentially) compact, as we set out to prove.
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A.3 Compactness of a bounded set of lower rate operators

Finally, we are ready to establish that for a given upper bound β in R≥0, the
set of all lower rate operators with norm not greater than the bound β is
compact.

Proposition A.6. Consider any non-negative real number β. The space

Q
β := {Q ∈Q : ∥Q∥op ≤β}

with the metric induced by the operator norm ∥•∥op is (sequentially) compact.

Proof. Again, becauseQβ is a metric space, it suffices to show thatQβ is sequentially
compact. To that end, we fix any sequence (Qn )n∈N inQβ and any ∆ in R>0 such that
∆β≤ 2. Observe that, for all n inN, ∆∥Qn∥ ≤∆β≤ 2, so

T n := I +∆Qn

is a lower transition operator due to Lemma 3.72112. Because T is a (sequentially)
compact metric space due to Proposition A.5446, the sequence (T n )n∈N has a conver-
gent subsequence. More precisely, there is an increasing sequence (nk )k∈N of natural
numbers and a lower transition operator T such that (T nk

)k∈N converges to T , in the
sense that limk→+∞∥T nk

−T ∥ = 0.
Set Q := (T − I )/∆. Recall from Lemma 3.73113 that Q is a lower rate operator.

Observe that, for any natural number n,

∥Qn −Q∥op = 1

∆
∥∆Qn −∆Q∥op = 1

∆
∥(I +∆Qn )− (I +∆Q)∥op = 1

∆
∥T n −T ∥op.

Therefore,

lim
k→+∞

∥Qnk −Q∥op = lim
k→+∞

1

∆
∥T nk

−T ∥op = 0,

so (Qnk )k∈N converges to the lower rate operator Q. It remains for us to show that Q

belongs toQβ, that is, that ∥Q∥op ≤β. To that end, we fix a positive real number ϵ. By
definition of the operator norm, there is a gamble f on X such that ∥ f ∥ = 1 and

∥Q f ∥ > ∥Q∥op − ϵ

2
,

and, since limk→+∞∥Qnk −Q∥ = 0, a natural number k such that

∥Qnk −Q∥op < ϵ

2
.

Observe also that

∥Q f ∥ = ∥Q f −Qnk f +Qnk f ∥ ≤ ∥Qnk f ∥+∥Qnk f −Q f ∥ ≤ ∥Qnk ∥op +∥Qnk −Q∥op,

where for the last inequality we have used that ∥ f ∥ = 1. Combining the three preceding
inequalities, we see that

∥Q∥op < ∥Q f ∥+ ϵ

2
≤ ∥Qnk ∥op +∥Qnk −Q∥op + ϵ

2
< B + ϵ

2
+ ϵ

2
= B +ϵ.

Because ϵ was an arbitrary positive real number, we infer from this that ∥Q∥op ≤ β,
which completes our proof.
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As a more or less immediate corollary, we also obtain that the similar set
of rate operators whose norm is not greater than a given upper bound β, is
(sequentially) compact.

Corollary A.7. Consider any non-negative real number β. The space

Q
β := {Q ∈Q : ∥Q∥op ≤β}

with the metric induced by the operator norm ∥•∥op is (sequentially) compact.

Proof. Because every rate operator is a lower rate operator, it is clear thatQβ is a
subset of Qβ. Thus, it follows from Proposition A.6↶ that any sequence (Qn )n∈N
inQβ has a subsequence that converges to some lower rate operator inQβ. However,
because the properties (R1)81–(R4)81 of a rate operator are preserved when taking
limits, it is clear that the limit of any convergent subsequence of (Qn )n∈N is a rate
operator, and therefore belongs toQβ. This proves thatQβ is (sequentially) compact.
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Daniell integrationB
In this appendix, we prove those results of Section 5.1216 that were stated
without proof. More specifically, we focus on the Daniell extension in Ap-
pendix B.1 and on the link with coherence in Appendix B.2458.

B.1 Daniell extension

First, we establish that the expectation EP with respect to a countably additive
probability charge P is a so-called ‘elementary integral’ in Appendix B.1.1.
Next, we take a look at some general properties of the Daniell extension E D

P
in Appendix B.1.2453, and at the two convergence theorems in particular in
Appendix B.1.3458.

B.1.1 Elementary integrals

In order to use the machinery of the Daniell extension, the expectation EP on
S(F ) should satisfy two crucial requirements. First, its domain S(F ) should
be a vector lattice, meaning that it is a real vector space that is closed under
taking point-wise minima and maxima. Second, and most importantly, EP

should be an elementary integral, meaning that it is an additive, homoge-
neous and monotone functional that is continuous at zero (see Taylor, 1985,
Section 6-1).

Definition B.1. Consider a possibility spaceX. Let E be a real-valued func-
tional on a non-empty subset G of V(X). Then G is a called a vector lattice
if

LL1. µ f ∈G for all µ ∈R and f ∈G,

LL2. f + g ∈G for all f , g ∈G,

LL3. f ∧ g ∈G for all f , g ∈G,

LL4. f ∨ g ∈G for all f , g ∈G.

Whenever this is the case, E is called an elementary integral if furthermore
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EI1. E(µ f ) =µE( f ) for all µ ∈R and f ∈G,

EI2. E( f + g ) = E( f )+E(g ) for all f , g ∈G,

EI3. E( f ) ≤ E(g ) for all f , g ∈G such that f ≤ g ,

EI4. limn→+∞ E( fn) = 0 for any sequence ( fn)n∈N↘ 0 in G.

To verify that EP is an elementary integral, we need to check whether its
domain S(F ) is a vector lattice. Recall from Lemma 2.3936 that the set S(F )
of F -simple variables is a vector space – that is, satisfies (LL1)↶ and (LL2)↶.
Hence, it remains for us to verify that S(F ) is closed under taking point-wise
minima and maxima – that is, satisfies (LL3)↶ and (LL4)↶. This result is
essentially well-known; see, for example, D. Williams’s (1991, Section 5.1)
work.

Lemma B.2. Consider a field of events F over a possibility space X. Then for
all F -simple variables f and g in S(F ), f ∧ g and f ∨ g are also F -simple
variables.

Next, we verify that EP is an elementary integral. To that end, we recall
from Proposition 2.4237 that EP always satisfies (EI1)–(EI3). Second, we recall
from Definition 5.4221 that, by definition, EP furthermore satisfies (EI4) if and
only if EP is countably additive. Here, we prove that the three conditions in
Definition 5.4221 are equivalent.

Definition 5.4. Consider a probability charge P on a field of events F over
some possibility space X. Then the following three conditions are equiva-
lent. Whenever P satisfies one (and hence all) of them, we call P countably
additive.

(i) For any F -simple variable f and any sequence ( fn)n∈N of F -simple
variables such that ( fn)n∈N↗ f , EP ( f ) = limn→+∞ EP ( fn).

(ii) For any F -simple variable f and any sequence ( fn)n∈N of F -simple
variables such that( fn)n∈N↘ f , EP ( f ) = limn→+∞ EP ( fn).

(iii) For any sequence ( fn)n∈N of F -simple variables such that ( fn)n∈N↘ 0,
limn→+∞ EP ( fn) = 0.

Proof. First, we prove that (i)221 is equivalent to (ii)222. To that end, we observe that
( fn )n∈N↘ f if and only if (− fn )n∈N↗− f . Thus the equivalence of (i)221 and (ii)222
follows immediately from Lemma 2.3936 and (ES2)37.

Next, since EP (0) = 0 because of (ES1)37, it is clear that (ii)222 implies (iii)222.
Thus, it remains for us to prove that (iii)222 implies either (i)221 or (ii)222; we will
prove the former implication. To that end, we fix some f in S(F ) and let ( fn )n∈N
be a sequence in S(F ) such that ( fn )n∈N ↗ f . For any natural number n, we let
f ′n := f − fn . Observe that f ′n is an F -simple variable due to Lemma 2.3936, and that
by construction

f ′n = f − fn ≥ f − fn+1 = f ′n+1 for all n ∈N
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and limn→+∞ f ′n (x) = limn→+∞ f (x)− f ′n (x) = 0 for all x inX. Consequently, ( f ′n )n∈N
is a non-increasing sequence of F -simple variables that converges point-wise to 0.
Therefore, it follows from (iii)222 that limn→+∞ EP ( f ′n ) = 0. Furthermore,

EP ( fn ) = EP ( f − f ′n ) = EP ( f )−EP ( f ′n ) for all n ∈N,

where the last equality follows from (ES3)37 and (ES2)37. Because all of the terms in
these equalities are real-valued due to (ES1)37, we infer from this all that

lim
n→+∞EP ( fn ) = lim

n→+∞
(
EP ( f )−EP ( f ′n )

)= EP ( f )− lim
n→+∞EP ( f ′n ) = EP ( f ),

as required.

Combining the foregoing results, we see that the expectation EP with
respect to a countably additive probability charge is an elementary integral.
The following result formally establishes that our setting falls squarely within
the scope of Taylor’s (1985) discussion, and it is for this reason that we may
(implicitly) use his results.

Corollary B.3. Consider a countably additive probability charge P on a field
of events F over some possibility spaceX. ThenS(F ) is a vector lattice and EP

is an elementary integral on S(F ).

Proof. That S(F ) is a vector lattice follows immediately from Lemmas 2.3936 and
B.2↶; that EP is an elementary integral on S(F ) follows immediately from Proposi-
tion 2.4237 and Definition 5.4221.

B.1.2 Properties of the (inner and outer) Daniell integral

In Eq. (5.5)222, we claimed thatVu(F ) =−Vo(F ). The following result estab-
lishes this equality, as well as some other convenient properties of F -over
and F -under variables; for a proof, we refer to (Taylor, 1985, Section 6-2).

Lemma B.4. Consider a field F of events over some possibility space X. Then
for all F -over variables f and g in Vo(F ),

(i) − f ∈Vu(F );

(ii) λ f ∈Vo(F ) for all λ ∈R≥0;

(iii) f + g in Vo(F ).

Similar properties hold for the F -under variables.

Next, we prove that the limit in the definition of E mc
P does not depend on

the defining sequence ( fn)n∈N.

Lemma 5.6. Consider a countably additive probability charge P on a field
of events F over some possibility space X, and some f in Vo

u(F ). If ( fn)n∈N
and (gn)n∈N are monotone sequences of F -simple variables that both con-
verge point-wise to f , then

lim
n→+∞EP ( fn) = lim

n→+∞EP (gn).
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Proof. For the case that ( fn )n∈N and (gn )n∈N are non-decreasing, the equality of the
statement is proven by Taylor (1985, Lemma 6-2 II). For the case that ( fn )n∈N and
(gn )n∈N are non-increasing, the equality of the statement follows from the previous.
More precisely, in this case (− fn )n∈N and (−gn )n∈N are non-decreasing sequences
of F -simple variables that converge to the F -over variable − f . Because EP ( fn ) =
−EP (− fn ) and EP (gn ) =−EP (−gn ) due to (ES2)37, it now follows from the previous
that

lim
n→+∞EP ( fn ) =− lim

n→+∞EP (− fn ) =− lim
n→+∞EP (−gn ) = lim

n→+∞EP (gn ),

as required.
What remains is the case that ( fn )n∈N and (gn )n∈N are not both non-decreasing

or non-increasing; without loss of generality, we assume that ( fn )n∈N is non-
decreasing and that (gn )n∈N is non-increasing. Observe that fn ≤ fn+1 ≤ f ≤
gn+1 ≤ gn for all n inN. Consequently, it follows from (ES1)37 that limn→+∞ EP ( fn )
and limn→+∞ EP (gn ) are real-valued. Furthermore, from these inequalities and
Lemma 2.3936, we infer that (gn − fn )n∈N is a non-increasing sequence of non-
negative F -simple variables. Observe that limn→+∞(gn − fn ) = 0 because ( fn )n∈N
and (gn )n∈N converge to the same limit f . For this reason, it follows from Defini-
tion 5.4221 (iii) that

lim
n→+∞EP (gn − fn ) = 0.

Observe now that by (ES3)37 and (ES2)37,

EP (gn − fn ) = EP (gn )−EP ( fn ) for all n ∈N.

Taking the limit for n going to +∞ on both sides of the equality, we see that

0 = lim
n→+∞

(
EP (gn )−EP ( fn )

)= lim
n→+∞EP (gn )− lim

n→+∞EP ( fn ),

where the second equality holds because the limits of the right-hand side are real-
valued. From this equality, we infer that

lim
n→+∞EP ( fn ) = lim

n→+∞EP (gn ),

which is the equality we were after.

We continue with a list of convenient properties of the expectation E mc
P

defined on the set Vo
u(F ) of all F -over and F -under variables (see Taylor,

1985, Section 6-2).

Lemma B.5. Consider a countably additive probability charge P on a field F
of events over some possibility space X. Then for all f and g in Vo

u(F ) and λ
in R≥0,

(i) E mc
P ( f ) = EP ( f ) whenever f is F -simple;

(ii) E mc
P ( f ) =−E mc

P (− f );

(iii) E mc
P (λ f ) =λE mc

P ( f );

(iv) E mc
P ( f + g ) = E mc

P ( f )+E mc
P (g ) if either f , g ∈Vo(F ) or f , g ∈Vu(F );
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(v) E mc
P ( f ) ≤ E mc

P (g ) if f ≤ g and either f , g ∈Vo(F ) or f , g ∈Vu(F );

(vi) E mc
P ( f ) ≤ E mc

P (g ) whenever f ≤ g , f ∈Vu(F ) and g ∈Vo(F ).

The inner and outer Daniell extensions satisfy some convenient proper-
ties. The observant reader will notice that they are similar to the properties
of coherent lower expectations, but this should not come as a surprise seeing
that the inner Daniell extension is defined as a supremum and the outer
Daniell extension as an infimum. Taylor (1985, Section 6-3) proves many of
these properties in some shape or form, but we nevertheless provide a proof
for the sake of completeness.

Lemma B.6. Consider a countably additive probability charge P on a field of
events F over some possibility spaceX. Then for any extended real variables f
and g in V(X) and any non-negative real number λ,

(i) E i
P ( f ) = E o

P ( f ) = E mc
P ( f ) if f ∈Vo

u(F );

(ii) E i
P ( f ) = E o

P ( f ) = E mc
P ( f ) = EP ( f ) if f ∈S(F );

(iii) inf f ≤ E i
P ( f ) ≤ E o

P ( f ) ≤ sup f ;

(iv) E o
P ( f ) =−E i

P (− f );

(v) E i
P (λ f ) =λE i

P ( f ) and E o
P (λ f ) =λE o

P ( f );

(vi) E i
P ( f ) ≤ E i

P (g ) and E o
P ( f ) ≤ E o

P (g ) whenever f ≤ g .

Proof. For a proof of (i), we refer to (Taylor, 1985, Theorem 6-3 I). Property (ii) follows
immediately from (i) and Lemma B.5↶ (i).

Note that in his definition of the outer Daniell integral E o
P ( f ) of the extended real

variable f , Taylor (1985) requires that there should be an F -over variable h such that
f ≤ h; similarly, for the inner Daniell integral E i

P ( f ) he demands that there should
be an F -under variable g such that f ≥ g . In our setting, these two conditions are
always satisfied because S(F ) contains all constant gambles. To see why exactly, we
recall from Lemma 2.3936 that µ is an F -simple variable for all µ in R. Let (µn )n∈N
be a non-decreasing sequence of real numbers such that limn→+∞µn =+∞. Then
h := p-w limn→+∞µn is an F -over variable, and h ≥ f . Similarly, g := limn→+∞−µn
is an F -under variable such that g ≤ f .

Similar reasoning can be used to verify the outer inequalities in (iii). First, we deal
with the case that inf f < +∞. Then we let (µn )n∈N be a non-increasing sequence
of real numbers with limn→+∞µn = inf f , so h := p-w limn→+∞µn is a F -under
variable such that

h = p-w lim
n→+∞

µn = inf f ≤ f .

Because EP (µn ) =µn due to (ES1)37, we see that

E mc
P (h) = lim

n→+∞EP (µn ) = lim
n→+∞µn = inf f

For this reason, E i
P ( f ) ≥ inf f . Second, we deal with the case that inf f =+∞. Then

for all a in R, a ≤ f and therefore

E i
P ( f ) ≥ E mc

P (a) = EP (a) = a,
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where the equalities follow from (ii)↶ and (ES1)37, respectively. Clearly, this implies
that E i

P ( f ) =+∞= inf f , and therefore inf f ≤ E i
P ( f ). An analoguous argument proves

that E o
P ( f ) ≤ sup f . The inner inequality of (iii)↶ follows almost immediately from

Lemma B.5454 (vi), because it follows from the latter that for any g in Vu(F ) and h
in Vo(F ) such that g ≤ f ≤ h,

E mc
P (g ) ≤ E mc

P (h).

To verify (iv)↶, we observe that

E o
P ( f ) = inf

{
E mc

P (h) : h ∈Vo(F ),h ≥ f
}= inf

{−E mc
P (−h) : h ∈Vo(F ),h ≥ f

}
=−sup

{
E mc

P (−h) : h ∈Vo(F ),h ≥ f
}=−sup

{
E mc

P (h) : h ∈Vu(F ),h ≤− f
}

=−E i
P (− f ),

where the second equality follows from Lemma B.5454 (ii) and the fourth inequality
holds because Vo(F ) =−Vu(F ) – see Lemma B.4453 (i).

Note that we only need to prove (v)↶ and (vi)↶ for the inner Daniel expec-
tation E i

P , as the statement for the outer Daniel expectation E o
P then follows from

(iv)↶.
Property (v)↶ for λ= 0 follows immediately from (iii)↶. For λ> 0, this property

follows almost immediately from Eq. (5.8)224 because by Lemma B.5454 (iii),

E mc
P (h) =λE mc

P

(
h

λ

)
for any F -under variable h such that h ≤λ f .

Finally, (vi)↶ follows immediately from Eq. (5.8)224 because for any F -under
variable h such that h ≤ f , h ≤ g as well.

We need these properties of the inner and outer extension to establish
the following properties of the Daniell extension E D

P on DD
P .

Theorem 5.9. Consider a countably additive probability charge P on a field
of events F over some possibility space X. Then

DE1. S(F ) ⊆DD
P and E D

P ( f ) = EP ( f ) for all f in S(F );

DE2. S(F ) ⊆Vo
u(F ) ⊆DD

P and E D
P ( f ) = E mc

P ( f ) for all f in Vo
u(F ).

Furthermore, for all D-integrable extended real variables f and g in DD
P and

all real numbers µ in R,

DE3. inf f ≤ E D
P ( f ) ≤ sup f ;

DE4. µ f is D-integrable and E D
P (µ f ) =µE D

P ( f );

DE5. f + g is D-integrable and E D
P ( f + g ) = E D

P ( f )+E D
P (g ) whenever f + g

and E D
P ( f )+E D

P (g ) are well-defined;

DE6. E D
P ( f ) ≤ E D

P (g ) whenever f ≤ g .

Finally, for all D-integrable real variables f and g in D̃D
P ,

DE7. f ∨ g and f ∧ g also belong to D̃D
P .
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Proof. Properties (DE1)225 and (DE2)225 follow immediately from (ii) and (i)
of Lemma B.6455, respectively. Similarly, (DE3)225 follows immediately from
Lemma B.6455 (iii), and (DE6)226 follows immediately from Lemma B.6455 (vi).

Next, we verify (DE4)225, and we will distinguish two cases based on the sign of µ.
In case µ≥ 0, it follows from Lemma B.6455 (v) that

E i
P (µ f ) =µE i

P ( f ) =µE D
P ( f ),

where for the last equality we have used that f is D-integrable. Similarly E o
P (µ f ) =

µE o
P ( f ) = µE D

P ( f ). Because E i
P (µ f ) = E o

P (µ f ) = µE D
P ( f ), µ f is D-integrable and

E D
P (µ f ) = µE D

P ( f ). In case µ < 0, then it follows from properties (iv) and (v) of
Lemma B.6455 that

E i
P (µ f ) =−E o

P (−µ f ) =µE o
P ( f ) =µE D

P ( f ),

where for the last equality we have used that f is D-integrable. Similarly, we find that
E o

P (µ f ) =µE D
P ( f ). Consequently, µ f is D-integrable and E D

P (µ f ) =µE D
P ( f ).

Taylor (1985, Theorem 6–3 II) proves (DE5)225 in case that f and g belong to D̃D
P –

that is, in case their Daniell integrals are real-valued. For this reason, we only need
to prove this property in case E D

P ( f ) (and/or E D
P (g )) is not real-valued. We will only

consider the case E D
P ( f ) =+∞, the proof for E D

P ( f ) =−∞ is analoguous.

Because E D
P ( f )+E D

P (g ) is well-defined and E D
P ( f ) = +∞, E D

P (g ) is either real-

valued or equal to +∞. We will only consider the case that E D
P (g ) is real-valued, the

proof for the case that E D
P (g ) =+∞ is similar. To prove that f + g is D-integrable, we

take a closer look at the inner Daniell expectation E i
P ( f + g ).

Fix any arbitrary natural number N . Because E i
P ( f ) = E D

P ( f ) = +∞, it follows
from Eqs. (5.6)223 and (5.8)224 that there is a non-increasing sequence ( fn )n∈N of
F -simple variables that converges point-wise to some F -under variable h f with
h f ≤ f and

lim
n→+∞EP ( fn ) = E mc

P (h f ) ≥ N + 1

N
. (B.1)

Similarly, because E i
P (g ) = E D

P (g ) is finite, there is a non-increasing sequence (gn )n∈N
of F -simple variables that converges point-wise to some F -under variable hg with
hg ≤ g and

E D
P (g )− 1

N
≤ lim

n→+∞EP (gn ) = E mc
P (hg ) ≤ E D

P (g ). (B.2)

Observe that ( fn + gn )n∈N is a non-increasing sequence of F -simple variables
that converges point-wise to the F -under variable h f +hg . Therefore, it follows from
Lemma B.5454 (iv) that

E mc
P (h f +hg ) = E mc

P (h f )+E mc
P (hg ) ≥ N + 1

N
+E D

P (g )− 1

N
= N +E D

P (g ), (B.3)

where the first inequality follows from Eqs. (B.1) and (B.2). Observe furthermore
that because h f ≤ f and hg ≤ g , h f +hg ≤ f + g . It follows from this, Eq. (B.3) and
Eq. (5.8)224 that

E i
P ( f + g ) ≥ E mc

P (h f +hg ) ≥ N +E D
P (g ).
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Because N is an arbitrary natural number, we conclude that E i
P ( f + g ) = +∞. By

Lemma B.6455 (iii), this implies that E o
P ( f + g ) =+∞ as well, so f + g is D-integrable

and E D
P ( f + g ) =+∞.

Finally, Taylor (1985, Theorem 6-3 II (c)) proves (DE7)226.

B.1.3 Limit properties of the Daniell integral

Next, we examine the limit properties of the Daniell expectation. First up is
the Monotone Convergence Theorem.

Theorem 5.10. Consider a countably additive probability charge P on a field
of events F over some possibility space X. Let ( fn)n∈N be a non-decreasing
sequence of D-integrable variables with E D

P ( f1) > −∞. Then the point-wise
limit of ( fn)n∈N is D-integrable, and

E D
P

(
p-w lim

n→+∞
fn

)
= lim

n→+∞E D
P ( fn).

The same holds in case ( fn)n∈N is non-increasing and E D
P ( f1) <+∞.

Proof. Taylor (1985, Theorem 6-3 III) proves this for the case that E D
P ( fn ) is real-

valued for every natural number n and limn→+∞ E D
P ( fn ) is real-valued as well. In

case limn→+∞ E D
P ( fn ) is not real-valued, the statement follows almost immediately

from Lemma B.6455 (vi).

Second, we have Lebesgue’s Dominated Convergence Theorem.

Theorem 5.11. Consider a countably additive probability charge P on a
field of events F over some possibility space X. Let ( fn)n∈N be a sequence
of D-integrable variables that converges point-wise. If there is a D-integrable
variable g with E D

P (g ) <+∞ such that | fn | ≤ g for all n inN, then the point-
wise limit of ( fn)n∈N is D-integrable, and

E D
P

(
p-w lim

n→+∞
fn

)
= lim

n→+∞E D
P ( fn).

Proof. This is a special case of (Taylor, 1985, Theorem 6-3 IV (c)).

B.2 Daniell’s extension and coherence

In this section, we explore the connection between Daniell’s extension and
the natural extension. First, we establish that the inner (and outer) Daniell
extension is less conservative than the natural extension.

Proposition 5.13. Consider a countably additive probability charge P on
a field of events F over some possibility space X. Then for any gamble g
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in G(X), EP (g ) ≤ E i
P (g ) and EP (g ) ≥ E o

P (g ). Consequently, DC
P is included

in DD
P , and

E C
P (g ) = E D

P (g ) for all g ∈DC
P .

Proof. We start with the first part of the statement. Observe that EP (g ) =−EP (−g )

by definition, and that E o
P (g ) =−E i

P (−g ) by Lemma B.6455 (iv). Therefore, it clearly

suffices for us to prove that EP (g ) ≤ E i
P (g ).

To this end, we fix some gamble g in G(X) and some positive real number ϵ.
Recall from Section 2.2.324 that EP is real valued. By Eq. (5.2)217, there is an F -simple
variable hϵ such that hϵ ≤ g and EP (g ) ≤ EP (hϵ)+ ϵ. It furthermore follows from

Lemma B.6455 (ii) & (vi) that EP (hϵ) = E i
P (hϵ) ≤ E i

P (g ). Combining the two obtained

inequalities, we see that EP (g ) ≤ E i
P (g )+ϵ. Because ϵ was an arbitrary positive real

number, we infer from this inequality that EP (g ) ≤ E i
P (g ), which is what we needed

to prove.
To prove the second part of the statement, we recall that the gamble g belongs

to DC
P if and only EP (g ) = EP (g ), and that E i

P (g ) ≤ E o
P (g ) due to (iii) in Lemma B.6455.

From this and the first part, it follows that E i
P (g ) = E o

P (g ), so g belongs to DD
P , as

required.

Next, we establish that the restriction of the Daniell expectation E D
P to

gambles is a coherent expectation.

Proposition 5.14. Consider a countably additive probability charge P on a
field of events F over some possibility space X. Then the restriction of the
Daniell extension E D

P to G(X)∩DD
P is a coherent expectation.

Proof. We intend to invoke Proposition 2.1522, so we need to show that G :=G(X)∩
DD

P is a linear subspace of G(X) and that the restriction of E D
P to G satisfies (E1)22 and

(E3)22.
First, let us verify that G is a linear subspace of G(X). To this end, we recall from

(DE4)225 that for all λ in R and g in G, λg again belongs to G. Thus, what remains for
is to show that for any two gambles g and h in G, g +h belongs to G as well. Observe
that g +h is well-defined and a gamble. Because E D

P (g )+E D
P (h) is clearly well-defined

due to (DE3)225, it follows from (DE5)225 that the gamble g +h belongs to G.
Next, we verify that E D

P satisfies (E1)22 and (E3)22. The former follows immediately
from (DE3)225, and the latter from (DE5)225. Thus, it follows from Proposition 2.1522
that the restriction of E D

P to G =G(X)∩DD
P is a coherent expectation.
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Measure-theoretic
probability theoryC

In Sections 5.1.2219 and 5.1.3224, we extended the Dunford integral EP from
F -simple variables to more general variables by means of Daniell’s extension,
but this is not the most conventional way to go about this. It is much more
common to follow the measure-theoretic framework for probability theory,
as popularised by Kolmogorov (1933, 1950) – see (Feller, 1968; D. Williams,
1991; Billingsley, 1995; Fristedt et al., 1997; Shiryaev, 2016) for more recent
introductions. Central to this framework are two important tools from mea-
sure theory: Lebesgue’s extension of the Dunford integral EP , and to a lesser
extent also Carathéodory’s extension of a probability charge to a probability
measure.

In this appendix, we only introduce those parts of the ubiquitous measure-
theoretic approach that we need in this dissertation, and more specifi-
cally in the proof of Theorem 5.19230. Like most treatments of measure-
theoretic probability, we start with probability charges and measures in Ap-
pendix C.1↷. Next, we take a look at expectations with respect to probability
measures in Appendix C.2466. Finally, we investigate the similarity of this
framework with the Daniell extension in Appendix C.3470.

Before we get going, we list some properties of probability charges. These
properties are well known (see Shiryaev, 2016, Section 1.2), and are nothing
more than specialisations of the properties of full conditional probabilities
listed in Proposition 2.4942.

Lemma C.1. Consider a probability charge P on a field of events F over some
possibility space X. Then for all events A and B in F ,

PM4. P (∅) = 0;

PM5. P (A) ≤ 1;

PM6. P (Ac) = 1−P (A);

PM7. P (A) ≤ P (B) whenever A ⊆ B;

PM8. P (B) = P (A∩B) whenever P (A) = 1.
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Furthermore, we also establish that the following specific representation
of an F -simple variable always exists. At the same time, this result also
establishes the equivalence of our definition of F -simple variables to more
strictly formulated definitions, for example that of Bhaskara Rao et al. (1983,
Definition 4.12.2).

Lemma C.2. Consider a field of eventsF on some possibility spaceX. Then the
real variable f is F -simple if and only if there are pairwise disjoint events A1,
. . . , An in F with

⋃n
k=1 Ak =X and real numbers a1, . . . , an such that

f =
n∑

k=1
ak IAk .

Proof. The direct implication is immediate by Definition 2.3836, so we only need
to prove the converse one. To this end, we let f be an F -simple variable. By Def-
inition 2.3836, there are events A1, . . . , An in F and real numbers a1, . . . , an such
that

f =
n∑

k=1
ak IAk

. (C.1)

We enumerate the constituents in{
n⋂

k=1
A′

k : A′
k ∈ {Ak , Ac

k }

}

as B1, . . . , Bm . Observe that 2 ≤ m ≤ 2n by construction, that these constituents all
belong to F and that they form a partition ofX – meaning that Bℓ∩Bi =∅ for all ℓ
and i in {1, . . . ,m} with ℓ ̸= i and that

⋃m
ℓ=1 Bℓ =X. For this reason,

∑m
ℓ=1 IBℓ = 1, and

therefore

f =
n∑

k=1
ak IAk

m∑
ℓ=1

IBℓ =
n∑

k=1

m∑
ℓ=1

ak IAk
IBℓ =

n∑
k=1

m∑
ℓ=1

ak IAk∩Bℓ =
m∑
ℓ=1

n∑
k=1

ak IAk∩Bℓ .

By construction, Ak ∩Bℓ is equal to Bℓ or ∅. For all ℓ in {1, . . . ,m}, we let

Kℓ := {
k ∈ {1, . . . ,n} : Ak ∩Bℓ ̸=∅

}
and bℓ := ∑

k∈Kℓ
ak ,

where we adhere to the convention that the empty sum is equal to 0. This way,

f =
m∑
ℓ=1

bℓIBℓ ,

which is a representation of f in the required form.

C.1 Countable additivity and probability measures

Our definition of the notion of countable additivity in Definition 5.4221 is
somewhat atypical. Most authors prefer to focus on the probability charge P
and not on the corresponding expectation EP . For this reason, they define the
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notion of countable additivity as the countable extension of the (finite) addi-
tivity axiom (P3)34, thus explaining the name. More formally, they impose
one of the following equivalent conditions.

Lemma C.3. Consider a field F over some possibility space X. A probability
charge P on the field F is countably additive if and only if one (and then all)
of the following equivalent conditions holds.

CA1. for any event A in F and any sequence (An)n∈N of pairwise disjoint
events in F such that A =⋃

n∈N An , P (A) =∑
n∈NP (An).

CA2. For any event A in F and any non-decreasing sequence (An)n∈N of
events in F such that A =⋃

n∈N An , P (A) = limn→+∞ P (An).

CA3. For any event A in F and any non-increasing sequence (An)n∈N of
events in F such that A =⋂

n∈N An , P (A) = limn→+∞ P (An).

CA4. For any non-increasing sequence (An)n∈N of non-empty events in F
such that

⋂
n∈N An =∅, limn→+∞ P (An) = 0.

In the proof, we use the following intermediary technical lemma.

Lemma C.4. Consider a field of events F on some possibility space X. Then
for any F -simple variable f and any real number α, the level set { f ⋗α} – as
defined in Eq. (2.4)14 – belongs to F .

Proof. Let f =∑n
k=1 ak IAk

be a representation as in Lemma C.2↶. Then clearly, the
level set { f ⋗α} is the union of those Ak ’s such that ak >α. Because this is either the
empty set or a finite union of events in the field F , we infer from this that { f ⋗α}
belongs to F as well.

Proof of Lemma C.3. For a proof that these conditions are equivalent, we refer to
(Billingsley, 1995, Example 2.10) and (Shiryaev, 2016, Chapter 2, Section 1.2). Here
we only verify that (CA1)–(CA4) are equivalent to the conditions of Definition 5.4221.
More specifically, it suffices to prove that Definition 5.4221 (iii) is equivalent to (CA4).

First, we prove that Definition 5.4221 (iii) implies (CA4). Let (An )n∈N be any non-
increasing sequence of events in F such that

⋂
n∈N An =∅. Then clearly, (IAn )n∈N

is a non-increasing sequence of F -simple variables that converges point-wise to 0.
Thus, it follows from Definition 5.4221 (iii) that

lim
n→+∞P (An ) = lim

n→+∞EP (IAn ) = 0,

as required.
Next, we prove that (CA4) implies Definition 5.4221 (iii). To that end, we let

( fn )n∈N be any non-increasing sequence of F -simple variables that converges point-
wise to 0. Fix any positive real number ϵ. It follows from Lemma C.4 that for any
natural number n, the level set An := { fn ⋗ϵ} belongs to F . Let M := max f1 and, for
any natural number n, set

f ′n := ϵIX +M I{ fn⋗ϵ} = ϵIX +M IAn .
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Observe that by construction and due to Lemma 2.3936, f ′n is an F -simple function
such that fn ≤ f ′n . Hence, it follows from (ES1)37, (ES4)37 and Eq. (2.19)36 that

0 ≤ EP ( fn ) ≤ EP ( f ′n ) = ϵ+MP (An ), (C.2)

where for the first inequality we have used that fn ≥ 0 and for the last equality we
have used (P1)34.

Next, we observe that due to the monotonicity of ( fn )n∈N, the se-
quence (An )n∈N = ({ fn ⋗ ϵ})n∈N in F is non-increasing. Because ( fn )n∈N fur-
thermore converges point-wise to 0, it is clear that

⋂
n∈N An = ⋂

n∈N{ fn ⋗ ϵ} = ∅.
If all of the events in (An )n∈N are non-empty, then it follows from (CA1)↶ that
limn→+∞ P (An ) = 0. If on the other hand An =∅ for some n in N, then P (Ak ) = 0
for all k ≥ n because (An )n∈N is non-increasing and P (∅) = 0 due to (PM4)461;
consequently, limn→+∞ P (An ) = 0. Because limn→+∞ P (An ) = 0 in both cases, we
conclude that

lim
n→+∞

(
ϵ+MP (An )

)= ϵ+M lim
n→+∞P (An ) = ϵ.

From this and Eq. (C.2), it now follows that

0 ≤ liminf
n→+∞EP ( fn ) ≤ limsup

n→+∞
EP ( fn ) ≤ ϵ,

because inequalities are preserved when taking limits. Since ϵ was an arbitrary pos-
itive real number, we infer from these inequalities that limn→+∞ EP ( fn ) = 0, as re-
quired.

C.1.1 σ-fields of events

While the structure of a field is nice, it does not necessarily consist of all the
events that we are interested in. Our running example illustrates this nicely.

Bruno’s Example C.5. In Bruno’s Example 5.3218, we defined the event Hlim

that the machine always tosses heads as

Hlim = ⋂
n∈N

{Xn = H} = ⋂
n∈N

Hn , (C.3)

where {Xn = H} and Hn are as defined in Bruno’s Example 2.3332. There, we
also argued that while Hlim is a countable intersection of events that belong
to the field F , it does not belong to F itself. Observe that because (Hn)n∈N is
a non-increasing sequence of events, we can interpret Hlim as the ‘monotone
limit’ of this sequence. í

This example shows that in some cases – especially when dealing with
idealisations – it makes sense to consider ‘limits’ of events; in this particular
example, a countable intersection of events. We usually get away with only
requiring the following limit property.

Definition C.6. A σ-field of events F ⊆P(X) is a field of events overX such
that

F4.
⋃

n∈N An ∈F for any sequence (An)n∈N of events in F .
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Property (F4)↶ is just the countable version of (F3)32. Similarly to our
discussion right after Definition 2.3232, it follows from (F2)32, (F4)↶ and (the
countable version of) De Morgan’s laws that for any sequence (An)n∈N of
events in the σ-field of events F ,

⋂
n∈N An also belongs to F . In fact, there

are two more equivalent ‘limit’ conditions (see, for example, Shiryaev, 2016,
Section 2.1, Lemma 2).

Lemma C.7. Consider a field of events F over some possibility space X. Then
the following four statements are equivalent.

(i) F is a σ-field.

(ii) For any sequence (An)n∈N of events in F ,
⋂

n∈N An ∈F .

(iii) For any non-decreasing sequence (An)n∈N of events in F ,
⋃

n∈N An ∈F .

(iv) For any non-increasing sequence (An)n∈N of events in F ,
⋂

n∈N An ∈F .

Note that the trivial examples of fields of events that we gave right after
Definition 2.3232 are also σ-fields.

Just like we can enlarge any set of events F to a field, we can enlarge it
to a σ-field of events; again, the set of all events P(X) is the trivial example.
Recall from Lemma 2.3433 that any set F of events generates the smallest
field 〈F 〉 that includes it. A similar result holds for σ-fields; for a proof, see
(Billingsley, 1995, Section 2, p. 21).

Lemma C.8. Consider any family of events F over some possibility space X.
If we let Σ(F ) be the collection of σ-fields over X that include F , then

σ(F ) := ⋂
F ′∈Σ(F )

F ′

is the smallest σ-field that includes F .

Because σ(F ) is the smallest σ-field that includes F , we call σ(F ) the σ-
field generated by F . Observe that the definition of σ(F ) is not constructive,
in contrast to that of 〈F 〉. One inconvenient consequence of this is that,
even in case every event in the family F has a nice ‘closed form’ expression,
there usually is no such ‘closed form’ expression for a generic event A in the
generated σ-field σ(F ).

C.1.2 Probability measures

Probability measures are, as suggested by the name, the work horses of the
measure-theoretic approach to modelling uncertainty.

Definition C.9. Consider a σ-field F over some possibility spaceX. A proba-
bility measure P on F is a probability charge on F that is countably additive.
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While providing the definition of a probability measure is easy, actually
defining one is – in general – pretty hard. One reason is that, as mentioned pre-
viously, there is no ‘closed form’ expression for a generic event in the σ-field.
Fortunately, the following result allows us to construct a probability measure
starting from a probability charge; see (Billingsley, 1995, Theorem 3.1) or
(D. Williams, 1991, Theorem 1.7) for a proof and some more background.

Theorem C.10 (Carathéodory’s Extension Theorem). Consider a probability
charge P on a field of events F over some possibility spaceX. If P is countably
additive, then there is a unique probability measure Pσ onσ(F ) that extends P,
in the sense that

Pσ(A) = P (A) for all A ∈F .

Bruno’s Example C.11. Recall from Bruno’s Example 5.5222 that Billingsley
(1995, Theorem 2.3) shows that the probability charge P that we have defined
in Eq. (2.17)35 is countably additive. Consequently, Theorem C.10 guarantees
that there is a unique probability measure Pσ on σ(F ) that extends P .

Recall from Bruno’s Example C.5464 that

Hlim = ⋂
n∈N

Hn .

Because (Hn)n∈N is a non-increasing sequence of events in F , it follows from
Lemma C.7↶ (iv) that Alim belongs to the σ-field σ(F ) generated by the field
F . Because Pσ is a probability measure on the σ-field σ(F ), we can invoke
Lemma C.3463 (CA3), to yield

Pσ(Hlim) = lim
n→+∞Pσ(Hn) = lim

n→+∞P (Hn),

where the second equality holds because Pσ is equal to P on F . Because
Hn = (X1:n = (H, . . . ,H)), it follows from the previous equality and Eq. (2.16)35

that

Pσ(Hlim) = lim
n→+∞P (Hn) = lim

n→+∞
n∏

k=1
p(H) = lim

n→+∞qn =
{

1 if q = 1,

0 otherwise.
í

C.2 Lebesgue extension

Classically, expectation in the measure-theoretic framework is defined
through Lebesgue integration instead of Daniell integration, and these two
approaches are seemingly different. More concretely, the Lebesgue extension
is defined starting from a probability measure P on a σ-field F of events,
subsequently extended to ‘measurable’ non-negative extended real variables,
and then finally to all ‘measurable’ extended real variables. However, as we
will see in Appendix C.3470, the Lebesgue and Daniell extensions are essen-
tially identical. For a more detailed treatment of the standard approach,
we refer to (D. Williams, 1991, Chapter 5), (Billingsley, 1995, Chapter 15),
(Fristedt et al., 1997, Chapter 8) or (Shiryaev, 2016, Section 6)
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C.2.1 Measurable variables

First, we need to properly introduce measurability. We limit ourselves to
measurability of extended real variables with respect to a σ-field; our reasons
for this are pragmatic: it has a simple definition and it is the only type of mea-
surability that we will need. For measurability of arbitrary – not necessarily
extended real valued – variables, see (Halmos, 1974, Section 18), (D. Williams,
1991, Section 3) or (Billingsley, 1995, Section 13).

Definition C.12. Consider a σ-field of events F over a possibility spaceX.
An extended real variable f is F -measurable if it satisfies one (and then all)
of the following four equivalent conditions.

(i) { f ⋗α} = {x ∈X : f (x) >α} ∈F for all α ∈R.

(ii) { f ≥α} := {x ∈X : f (x) ≥α} ∈F for all α ∈R.

(iii) { f ≤α} := {x ∈X : f (x) ≤α} ∈F for all α ∈R.

(iv) { f ⋖α} := {x ∈X : f (x) <α} ∈F for all α ∈R.

We denote the family of all F -measurable (extended real) variables by
M(F ), and we use M(F )≥0 to denote the non-negative F -measurable (ex-
tended real) variables. Important to note is that due to Lemma C.4463, any
F -simple variable is F -measurable, so S(F ) ⊆M(F ).

For an overview of the properties of F -measurable variables, we refer
to (Halmos, 1974, Section 20), (D. Williams, 1991, Sections 3.1 to 3.5) or
(Shiryaev, 2016, Section 4.3 and 4.4). In our setting, we will make do with the
following two quintessential properties.

Lemma C.13. Consider a σ-field of events F over a possibility space X, and a
sequence ( fn)n∈N of F -measurable variables. If ( fn)n∈N converges point-wise,
then this point-wise limit is F -measurable.

It is customary to split up any extended real variable f in its non-negative
part f + := f ∨0 and its non-positive part f − := | f ∧0| = (− f )∨0. Observe that
both the non-negative part f + and the non-positive part f − are non-negative
extended real variables, and that f = f +− f −. Even more, the measurability
of f and its non-negative and non-positive parts are intertwined.

Corollary C.14. Consider a σ-field of events F on a possibility space X. Then
the extended real variable f is F -measurable if and only if its non-negative
part f + and its non-positive part f − are F -measurable.

Proof. Follows almost immediately from Definition C.12.
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C.2.2 Lebesgue integration

From Corollary C.14↶, we know that any F -measurable extended real vari-
able can be decomposed into two F -measurable non-negative extended real
variables. It is precisely for this reason that we will focus on F -measurable
non-negative extended real variables first.

Expectation of non-negative measurable variables

Consider a probability measure P on a σ-field F over some possibility
space X. We obtain the Lebesgue expectation E L

P ( f ) of an F -measurable
non-negative extended real variable f by approximating it from below with
F -simple variables. Formally – see for example (D. Williams, 1991, Sec-
tion 5.2), (Fristedt et al., 1997, Section 8.1) or (Shiryaev, 2016, Section 6.2) –
the extended real-valued operator E L

P onM(F )≥0 is defined by

E L
P ( f ) := sup

{
EP (g ) : g ∈S(F ), g ≤ f

}
for all f ∈M(F )≥0. (C.4)

Note that this is similar to how we determined E C
P in Eqs. (5.2)217 and (5.3)217,

but we now approximate from below only.
It is well-known – see (Denneberg, 1994, Chapter 5) or (König, 1997, The-

orem 12.11) – that an alternative expression for the Lebesgue extension E L
P ( f )

is the Choquet integral

E L
P ( f ) =

∫ +∞

0
P ({ f ⋗α})dα= lim

B→+∞

∫ B

0
P ({ f ⋗α})dα, (C.5)

where the integrals are (improper) Riemann integrals.

Expectation of general measurable variables

Recall from Corollary C.14↶ that the extended real variable f is F -
measurable if and only if its non-negative and non-positive parts f + and f −
areF -measurable non-negative extended real variables, and that f = f +− f −.
With this in mind, we call any F -measurable variable f L-integrable when-
ever E L

P ( f +) and E L
P ( f −) are not both infinite, and then define its Lebesgue

expectation E L
P ( f ) as

E L
P ( f ) := E L

P ( f +)−E L
P ( f −); (C.6)

see for example (Fristedt et al., 1997, Section 8.1) or (Shiryaev, 2016, Sec-
tion 6.2). Note that this is a proper definition because E L

P ( f +) and E L
P ( f −) are

always non-negative and not both infinite by assumption, so the expression
on the right-hand side is well-defined – that is, cannot lead to +∞− (+∞).
This way, the domain of the Lebesgue extension E L

P is the class of L-integrable
variables

DL
P := {

f ∈M(F ) : min
{
E L

P ( f +),E L
P ( f −)

}<+∞}
.
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If both E L
P ( f +) and E L

P ( f −) are finite, then E L
P ( f ) is finite as well; in this case,

we say that the expectation is absolutely convergent. We denote the absolutely
convergent part of the domain by

D̃L
P :={

f ∈M(F ) : max
{
E L

P ( f +),E L
P ( f −)

}<+∞}
={

f ∈DL
P : E L

P (| f |) <+∞}
,

where the second equality follows from (LI4) further on.
The definition of the Lebesgue extension E L

P in Eq. (C.6)↶ is reminiscent
of (DE5)225, the additivity property of the Daniell extension E D

P . Even stronger,
it turns out that the Lebesgue extension E L

P has (almost) precisely the same
properties as the Daniell extension E D

P . For example, L-integrable variables
have the following properties that mirror those of Theorem 5.9225; even
though they can be found in virtually any treatise on measure-theoretic
probability theory, including (Fristedt et al., 1997, Chapter 8) and (Shiryaev,
2016, Section 6), we mention them here for the sake of completeness.

Theorem C.15. Consider a countably additive probability charge P on a
σ-field of events F over some possibility space X. Then

LI1. S(F ) ⊆DL
P and E L

P ( f ) = EP ( f ) for all f in S(F ).

Furthermore, for all L-integrable extended real variables f and g in DL
P and

all real numbers µ in R,

LI2. inf f ≤ E L
P ( f ) ≤ sup f ;

LI3. µ f is D-integrable and E L
P (µ f ) =µE L

P ( f );

LI4. f + g is L-integrable and E L
P ( f + g ) = E L

P ( f ) + E L
P (g ) whenever f + g

and E L
P ( f )+E L

P (g ) are well-defined;

LI5. E L
P ( f ) ≤ E L

P (g ) whenever f ≤ g ;

LI6. | f | is L-integrable and |E L
P ( f )| ≤ E L

P (| f |).

Note that it follows immediately from the definition of DL
P and (LI2) that

any F -measurable variable f that is bounded below or bounded above is
L-integrable.

Lemma C.16. Consider a countably additive probability charge P on a σ-field
of events F over some possibility spaceX. Then any F -measurable variable f
that is bounded below or bounded above belongs to DL

P .

Proof. Recall from (just before) Corollary C.14467 that f + and f − are non-negative
F -measurable variables such that f = f +− f −. Because f is bounded below or above
by assumption, either f + or f − is bounded (or both). Hence, it follows from (LI2) that
E L

P ( f +) <+∞ or E L
P ( f −) <+∞ (or both), and this implies that f is L-integrable.

The Lebesgue extension E L
P also satisfies two familiar limit properties.

First, we have the Monotone Convergence Theorem, so the counterpart of
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Theorem 5.10226 – see (Fristedt et al., 1997, Theorem 11) or (Shiryaev, 2016,
Section 6) for a proof.

Theorem C.17. Consider a probability measure P on a σ-field F of events
over some possibility spaceX. Let ( fn)n∈N be a non-decreasing sequence of F -
measurable variables in DL

P such that E L
P ( f1) >−∞. Then the point-wise limit

of ( fn)n∈N is an F -measurable variable in DL
P , and

E L
P

(
p-w lim

n→+∞
fn

)
= lim

n→+∞E L
P ( fn).

A similar result holds for any non-increasing sequence ( fn)n∈N of F -
measurable variables in DL

P .

Second, we have Lebesgue’s Dominated Convergence Theorem, so the
counterpart of Theorem 5.11226 (see Shiryaev, 2016, Section 6).

Theorem C.18. Consider a probability measure P on a σ-field F of events
over some possibility space X. Let ( fn)n∈N be a sequence of F -measurable
variables in DL

P and g an F -measurable variable in DL
P with E L

P (g ) < +∞
such that | fn | ≤ g for all n in N. If ( fn)n∈N converges point-wise, then this
point-wise limit is an F -measurable variable in DL

P , and

E L
P

(
p-w lim

n→+∞
fn

)
= lim

n→+∞E L
P ( fn).

C.3 Carathéodory & Lebesgue versus Daniell

We end our treatment of measure-theoretical expectation with a compar-
ison of the two approaches to extending the expectation operator. Recall
from Appendix C.1.2465 that it is customary to construct a probability mea-
sure Pσ from a countably additive probability charge P on a field through
Carathéodory’s Extension Theorem. This extension Pσ then leads to the
Lebesgue extension E L

Pσ
. More concretely, the classical approach can be

summarised in three steps:

(i) Construct a countably additive probability charge P on a field F .

(ii) Use Carathéodory’s Theorem to extend P to the unique probability
measure Pσ on σ(F ) that coincides with P on F .

(iii) Define the Lebesgue extension E L
Pσ

as follows:

a) start from the expectation EPσ defined on S(σ(F ));

b) extend EPσ to E L
Pσ

onM≥0(σ(F ));

c) and finally extend E L
Pσ

to all L-integrable variables.

However, if we immediately go for the Daniell extension, then we do not have
to invoke Caratheodory’s Theorem. More precisely, we can use the following
less standard approach:
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1. Construct a countably additive probability charge P on a field F .

2. Define the Daniell extension E D
P as follows:

a) start from the expectation EP on the F -simple variables;

b) extend EP to E mc
P on Vo

u(F );

c) and finally extend E D
P to all D-integrable variables.

These two approaches turn out to be essentially equivalent.

Theorem C.19. Consider a countably additive probability charge P on a field
of events F over some possibility space X. Let Pσ be the unique probability
measure on σ(F ) that coincides with P on F . Then DL

Pσ
⊆DD

P and

E L
Pσ

( f ) = E D
P ( f ) for all f ∈DL

Pσ
.

Because our proof for this result is rather long, we start with proving
the following intermediary results. First and foremost, we will need the well-
known fact that any F -measurable non-negative extended real variable is the
point-wise limit of a non-decreasing sequence of F -simple (non-negative)
variables (see Billingsley, 1995, Theorem 13.4 and 13.5).

Lemma C.20. Consider a σ-field of events F over a possibility space X and
a non-negative extended real variable f . Then f is F -measurable if and
only if there is a non-decreasing sequence ( fn)n∈N of F -simple variables that
converges point-wise to f .

Proof. For a proof of the direct implication, we refer to (Billingsley, 1995, Theo-
rem 13.5). To prove the converse implication, we observe that fn is F -measurable
due to Lemma C.4463. The statement now follows from this and the well-known result
– see for example (Billingsley, 1995, Theorem 13.4 (i)) – that the point-wise limit f of a
non-decreasing sequence ( fn )n∈N of F -measurable (real) variables is F -measurable
as well.

Next, we make the crucial observation that the restriction of the Daniell
extension E D

P to indicators gives a probability measure; our statement and
proof are inspired by those of Taylor (1985, Theorems 6-5 II and III)

Proposition C.21. Consider a countably additive probability charge P on a
field of events F over some possibility space X. Then the set of events

AP := {
A ∈P(X) : IA ∈DD

P

}
includes F and is a σ-field. Furthermore,

πP : AP →R : A 7→πP (A) := E D
P (IA)

is a probability measure onAP that coincides with P on F .
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Proof. Recall that for any event A in F , IA is an F -simple variable. By
Lemma B.6455 (ii), IA is D-integrable and

πP (A) = E D
P (IA) = EP (A) = P (A).

Consequently,AP clearly includes F and πP coincides with P on F .
To complete the proof, we verify thatAP is a σ-field – that is, thatAP satisfies

(F1)32–(F4)464 – at the same time verifying that πP is a probability measure – that is,
that πP satisfies (P1)34–(P3)34 and (CA4)463.

First, we observe that IX is an F -simple variable, so it follows from (DE1)225 that
X belongs toAP – that is, IX is D-integrable – and

πP (X) = E D
P (IX) = EP (IX) = P (X) = 1,

where the final equality follows from (P1)34. This settles (F1)32 and (P1)34.
Next, we take any A in AP . Observe that IAc = 1 − IA . Recall that 1 = IX is

D-integrable. Because IA is D-integrable, it follows from (DE4)225 that −IA is D-
integrable and from (DE3)225 that −1 ≤ E D

P (−IA) ≤ 0. Therefore, it follows from
(DE5)225 that IAc = 1− IA is D-integrable, so Ac belongs toAP . This settles (F2)32.

Property (P2)34 follows immediately from (DE3)225, because

πP (A) = E D
P (IA) ≥ 0 for all A ∈AP .

To verify (F3)32 and (P3)34, we fix any two events A and B inAP . Observe that if
A∩B =∅, then it follows immediately from (DE3)225 and (DE5)225 that A∪B belongs
toAP because IA∪B = IA + IB is D-integrable, and

πP (A∪B) = E D
P (IA∪B ) = E D

P (IA + IB ) = E D
P (IA)+E D

P (IB ) =πP (A)+πP (B).

This settles (P3)34, and (F3)32 in case A ∩B =∅. In case A ∩B ̸=∅, (F3)32 follows
immediately from (DE3)225 and (DE7)226 because IA∪B = IA ∨ IB .

Thus far, we have verified thatAP is a field of events and that πP is a probability
charge on AP . To complete our proof, we now show that AP is a σ-field and P a
probability measure.

To verify (F4)464, we let (An )n∈N be a sequence of events inAP . For any n inN,
we let Bn := ⋃n

k=1 Ak . Observe that due to the previous, Bn belongs toAP and IBn

is D-integrable for all n in N. Because furthermore (IBn )n∈N is non-decreasing due

to (DE6)226 and 0 ≤ E D
P (IB1 ) due to (DE3)225, it follows from Theorem 5.10226 that

p-w limn→+∞ IBn is D-integrable. Because p-w limn→+∞ IBn = I⋃
n∈N An , we have

shown that
⋃

n∈N An belongs toAP , as required.
Finally, we verify (CA4)463. To this end, we let (An )n∈N be a non-increasing

sequence of non-empty events inAP such that
⋂

n∈N An =∅. Then it is clear that
(IAn )n∈N is a non-increasing sequence of variables in DD

P with p-w limn→+∞ IAn =
I∅. Observe that E D

P (IA1 ) ≤ 1 < +∞ due to (DE3)225, that I∅ belongs to DD
P due to

(F1)32 and (F2)32, and that E D
P (I∅) = 0 due to (DE3)225. Therefore, it follows from

Theorem 5.10226 that

lim
n→+∞πP (An ) = lim

n→+∞E D
P

(
IAn

)= E D
P (I∅) = 0

as required.
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Using the foregoing result, we more or less immediately obtain the fol-
lowing two corollaries.

Corollary C.22. Consider a countably additive probability charge P on a field
of events F over some possibility space X. Let Pσ be the unique probability
measure on σ(F ) that extends P. Then any event A in σ(F ) is D-measurable,
and

Pσ(A) = E D
P (IA).

Proof. Let πP be the probability measure as defined in Proposition C.21471. Because
its domainAP is a σ-field that includes F , it also includes the smallest σ-field σ(F )
that is generated by F . It now follows from Proposition C.21471 that the restriction of
πP to σ(F ) is a probability measure that coincides with P on F . Because Pσ is the
unique probability measure on σ(F ) that coincides with P on F by Theorem C.10466,
Pσ has to coincide with πP on σ(F ). The statement now follows immediately.

Corollary C.23. Consider a countably additive probability charge P on a field
of events F over some possibility space X. Then any σ(F )-simple variable f
is D-integrable, and

EPσ ( f ) = E D
P ( f ),

where Pσ is the unique probability measure on σ(F ) that extends P.

Proof. Follows almost immediately from Eq. (2.19)36, Corollary C.22, (DE3)225,
(DE4)225 and (DE5)225.

With the help of the foregoing corollary, we can establish that any non-
negative σ(F )-measurable variable is both L-integrable and D-integrable.

Lemma C.24. Consider a countably additive probability charge P on a field
of events F over some possibility space X. Then any non-negative σ(F )-
measurable variable f belongs to DL

Pσ
and DD

P , and

E L
Pσ

( f ) = E D
P ( f ).

Proof. By Lemma C.20471, there is a non-decreasing sequence ( fn )n∈N of σ(F )-
simple variables that converges point-wise to f . Observe that min f1 >−∞ because
f1 is σ(F )-simple.

First, we establish that f belongs to DD
P . To this end, we recall from Corollary C.23

that, for all n inN, fn is D-integrable and EPσ ( fn ) = E D
P ( fn ). Furthermore, we observe

that it follows from (DE3)225 that E D
P ( f1) >−∞ because min f1 >−∞. Therefore, it

follows from Theorem 5.10226 that f belongs to DD
P and

E D
P ( f ) = lim

n→+∞E D
P ( fn ) = lim

n→+∞EPσ ( fn ).

Second, we establish that f belongs to DL
Pσ

. To this end, we fix some n in N. By

Lemma C.4463, fn is σ(F )-measurable because fn is σ(F )-simple. It furthermore
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follows from (LI1)469 that fn is L-integrable with E L
Pσ

( fn ) = EPσ ( fn ) because fn is

σ(F )-simple, and from (LI2)469 that E L
Pσ

( f1) >−∞ because min f1 >−∞. Therefore,

it follows from Theorem C.17470 that f belongs to DL
Pσ

and

E L
Pσ

( f ) = lim
n→+∞E L

Pσ
( fn ) = lim

n→+∞EPσ ( fn ).

This settles that f belongs to DL
Pσ

and DD
P . Because E L

Pσ
( f ) and E D

P ( f ) are both

equal to limn→+∞ EPσ ( fn ) due to the previous, we conclude that E L
Pσ

( f ) = E D
P ( f ).

The result that we are after follows more or less immediately from
Eq. (C.6)468 and Lemma C.24↶.

Proof of Theorem C.19471. Take any extended real variable f in DL
Pσ

. Then f is

σ(F )-measurable by assumption, and both f + and f − are non-negative and σ(F )-
measurable due to Corollary C.14467. Thus, it follows from Lemma C.24↶ that

E L
Pσ

( f +) = E D
P ( f +) and E L

Pσ
( f −) = E D

P ( f −).

Furthermore, because at least one of E L
Pσ

( f +) and E L
Pσ

( f −) is real valued, it follows
from Eq. (C.6)468, (DE4)225 and (DE5)225 that

E L
Pσ

( f ) = E L
Pσ

( f +)−E L
Pσ

( f −) = E D
P ( f +)−E D

P ( f −) = E D
P ( f +)+E D

P (− f −) = E D
P ( f ).

This proves that DL
Pσ

⊆DD
P , as well as the equality of the statement.

It follows immediately from Theorem C.19471 and Lemma C.16469 that
any σ(F )-measurable variable that is bounded below or bounded above
belongs to DD

P .

Corollary C.25. Consider a countably additive probability charge P on a
field of events F over some possibility space X. Then any σ(F )-measurable
variable f that is bounded below or bounded above belongs to DD

P .

Proof. Follows immediately from Theorem C.19471 and Lemma C.16469.

A more important consequence of Theorem C.19471 is the following ut-
terly important theorem; in our proof, we also rely on Lemma C.13467 and
Corollary C.25.

Theorem 5.12. Consider a field of events F over some possibility space X.
Then for any countably additive probability charge P on F ,

S(F ) ⊆Vo
u(F ) ⊆Vlim(F ) ⊆DD

P .
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C.3 Carathéodory & Lebesgue versus Daniell

Proof. Recall from Lemma B.5454 (i) that S(F ) ⊆Vo
u(F ). Because every variable f

in Vo
u(F ) is the monotone limit of a sequence ( fn )n∈N of F -simple variables, it also

belongs to Vlim(F ); hence, Vo
u(F ) ⊆ Vlim(F ). Thus, it remains for us to show the

third inclusion in the statement.
Fix some f in Vlim(F ). Then by definition, there is a sequence ( fn )n∈N of F -

simple variables that converges point-wise to f , and that is either uniformly bounded
below or uniformly bounded above. For all n inN, fn is trivially σ(F )-simple because
it is F -simple, and therefore also trivially σ(F )-measurable by (LI1)469. Hence,
it follows from Lemma C.13467 that f is σ(F )-measurable. Note that f is either
bounded above or bounded below because ( fn )n∈N is either uniformly bounded
above or uniformly bounded below, so it follows from Corollary C.25↶ that f belongs
to DD

P . Since f was an arbitrary variable in Vlim(F ), this proves that Vlim(F ) ⊆DD
P ,

as required.
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List of symbols ❁
Sets and sequences

Number sets

N the set of natural numbers · Section 1.58

Z≥0 the set of non-negative integers · Section 1.58

Z the set of integers · Section 1.58

R,R≥0,R>0 the set of (non-negative/positive) reals · Section 1.58

R the set of extended reals · Section 1.58

Sequences of time points

s, t ,r time points in R≥0

u, v, w ordered sequences of time points · p. 60

() the empty sequence of time points · p. 60

U,U̸=( ) the set of (non-empty) sequences of time points · Eqs. (3.5)60

and (3.6)60

minu first time point in the sequence of time points u · p. 61

maxu last time point in the sequence of time points u · p. 61

u ≼ v v only contains time points that are also in u or that succeed
the last time point of u · Eq. (3.7)61

U≽u the set of sequences of time points v such that v ≽ u · p. 61

u ≺ v the last time point of u preceeds the first time point of v ·
Eq. (3.8)61

U≻u the set of non-empty sequences of time points v such that v ≻ u
· p. 61

u ∪ v ordered union of the time points in u and v · p. 61

u ∩ v ordered intersection of the time points in u and v · p. 61

u \ v sequence of time points in u that are not in v · p. 61
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Grids of time points

U[s,r ] the set of grids over [s,r ] – that is, sequences of time points
v = (t0, . . . , tn) with t0 = s and tn = r · Eq. (5.19)233

∆(v) width of the largest subinterval of the grid v · Eq. (5.20)233

Modelling uncertainty

X uncertain outcome of an experiment · Section 2.1.112

X possibility space · Section 2.1.112

x, y, z outcomes inX · Section 2.1.112

P(X) the set of events – that is, the set of all subsets of X · Sec-
tion 2.1.213

P(X)⊃∅ the set of non-empty events · Section 2.1.213

Variables

V(X) the set of extended real variables onX · Section 2.1.313

V(X) the set of real variables onX · Section 2.1.313

G(X) the set of gambles – that is, bounded real variables – on X ·
Section 2.1.313

f ∧ g point-wise minimum of f and g · Eq. (2.1)14

f ∨ g point-wise maximum of f and g · Eq. (2.2)14

f = g f (x) = g (x) for all x inX · Section 2.1.313

f ≤ g f (x) ≤ g (x) for all x inX · Section 2.1.313

f ⋖ g f (x) < g (x) for all x inX · Section 2.1.313

f < g f ≤ g and f ̸= g · Section 2.1.313

IA indicator of the event A in P(X) · Eq. (2.3)14

{ f ⋗α} level set · Eq. (2.4)14

p-w limn→+∞ fn

point-wise limit of the sequence ( fn)n∈N in V(X) · Eq. (5.4)221

( fn)n∈N↗ f
( fn)n∈N is non-decreasing and converges point-wise to f · Sec-
tion 5.1.2221

( fn)n∈N↘ f
( fn)n∈N is non-increasing and converges point-wise to f · Sec-
tion 5.1.2221

Probability charges

F field of events · Definition 2.3232

P probability charge on a field F · Definition 2.3634
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S(F ) the set of F -simple variables · Definition 2.3836

EP expectation on S(F ) corresponding to the probability charge P
on F · Eq. (2.19)36

Coherent conditional probabilities

P coherent conditional probability onD ⊆P(X)×P(X)⊃∅ · Defi-
nition 2.5144

CS(D) set of couples of simple variables and conditioning events corre-
sponding to the structure of fieldsD · Eq. (2.27)47

EP (conditional) expectation on CS(D) corresponding to the co-
herent conditional probability P on the structure of fieldsD ·
Eq. (2.26)47

Daniell integration

Vo(F ),Vu(F )
the set of F -over/under variables · p. 222

Vo
u(F ) the set of F -over and under variables · Eq. (5.5)222

E mc
P extension of EP from S(F ) to Vo

u(F ) · Eq. (5.6)223

E i
P inner Daniell extension of EP from S(F ) to V(X) · Eq. (5.8)224

E o
P outer Daniell extension of EP from S(F ) to V(X) · Eq. (5.9)224

DD
P the set of D-integrable variables for P · Eq. (5.12)225

E D
P Daniell extension of EP from S(F ) to DD

P · p. 225

Vlim(F ) the set of extended real variables that are the point-wise limit
of a uniformly bounded below or above sequence of F -simple
variables · Eq. (5.14)227

Jump processes in general

X state space · Section 3.1.155

x, y, z states in X · Section 3.1.155

xu tuple of states indexed by the time points in u · p. 61

Xu the set of tuples of states indexed by the time points in u · p. 61

x( ) empty tuple of states · p. 61

ω path – that is, a map from R≥0 to X · Section 3.1.155

ω|u restriction of the path ω to the time points in u · Eq. (3.9)61

Ω̃X ,Ω̃ the set of paths with state space X · Section 3.1.155

ΩX ,Ω the set of càdlàg paths with state space X · Definition 3.457

Finitary events

X t projector variable · Eq. (3.3)59
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Xu tuple of projector variables indexed by the time points in u ·
Eq. (3.10)62

{Xv ∈ B} cylinder/finitary event · Eq. (3.12)62

H the set of conditioning events of the form {Xu = xu} ·
Eq. (3.14)62

Fu the field of finitary events of the form {Xv ∈ B} with v ≽ u ·
Eq. (3.16)63

Idealised events and variables

J[s,r ] jump times over [s,r ] · Eq. (5.16)231

η[s,r ] number of jumps over [s,r ] · Eq. (5.18)232

ηv number of jumps over the grid v · Eq. (5.21)233

H S,G
R

until event – that is, the event of hitting the set G of goal states
while passing through the safe states in S over the time points
in R · Eq. (6.3)281

hS,G
R

indicator of the until event H S,G
R

· Section 6.2281

HG
R

event of hitting the set G of goal states over the time points in R

· Section 6.2.3287

τG
[s,+∞[ hitting time of the set G of goal states after s · Eq. (6.12)289

τG
[s,r ] truncated hitting time corresponding to τG

[s,+∞[ · Eq. (6.13)290

τG
v approximating hitting time corresponding to τG

[min v,max v] ·
Eq. (6.14)290∫ r

s ft (X t )dt Riemann integral of ft (X t ) over [s,r ] · Eq. (6.26)299

〈 f•〉v approximating Riemann sum for the piece-wise continuous fam-
ily ( ft )t∈[s,r ] corresponding to the grid v over [s,r ] · Eq. (6.27)300

� f �[s,r ] temporal average of f (X t ) over [s,r ] · Section 6.4.4305

� f �v approximating Riemann sum over the grid v for the temporal
average of f (X t ) over [min v,max v] · Section 6.4.4305

Norms and operators on G(X)

〈•,•〉 inner product on G(X) · p. 75

∥•∥∞,∥•∥ supremum norm on G(X) · Eq. (3.26)75

∥•∥v variation semi-norm on G(X) · Eq. (4.5)179

∥•∥c centred semi-norm on G(X) · Eq. (4.6)179

∥•∥op operator norm induced by the supremum norm ∥•∥ ·
Eq. (3.27)77

M(x, y) (x, y)-component of the linear operator M · p. 76

I identity operator · p. 76
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(e tG )t∈R≥0 semi-group generated by the linear operator G · Eq. (3.29)79

Precise jump processes

DX ,D domain of a jump process with state space X · Eq. (3.17)65

P jump process · Definition 3.1265

JS domain of the (conditional) expectation EP corresponding to
the jump process P · Eq. (3.24)68

JD domain of the extended (conditional) expectation E D
P cor-

responding to the countably additive jump process P ·
Eq. (5.15)229

Pp0,Q homogeneous Markovian jump process characterised by p0 and
Q · Section 3.2.487

Ep0,Q (conditional) expectation corresponding to Pp0,Q · Sec-
tion 3.2.487

Operators

T transition operator · Definition 3.2580

Q rate operator · Definition 3.2781

QX ,Q the set of rate operators on G(X) · Definition 3.2781

Tt ,r ,T {Xu=xu }
t ,r

(history-dependent) transition operator corresponding to the
jump process P · Eqs. (3.33)84 and (3.35)84

Q{Xu=xu }
t ,r history-dependent ‘rate’ operator corresponding to the jump

process P · Eq. (3.52)94

∂+T {Xu=xu }
t ,t the set of right-sided accumulation points of Q{Xu=xu }

t ,• ·
Eq. (3.55)95

∂−T {Xu=xu }
t ,t the set of left-sided accumulation points of Q{Xu=xu }

•,t ·
Eq. (3.56)95

Imprecise jump processes

P imprecise jump process · Definition 3.3988

PP,PP lower/upper (conditional) probability corresponding to P ·
Eqs. (3.42)88 and (3.43)88

EP,EP lower/upper (conditional) expectation corresponding to P ·
Eqs. (3.44)89 and (3.45)89

M set of initial probability mass functions · p. 90

Q set of rate operators · p. 90
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PHM
M,Q the set of homogeneous Markovian jump processes that are

consistent with M and Q · Eq. (3.46)90

PM
M,Q the set of Markovian jump processes that are consistent with M

and Q · Eq. (3.46)90

PM,Q the set of jump processes that are consistent with M and Q ·
Eq. (3.46)90

Operators

dQ(Q,Q) distance between the rate operator Q and the set of rate opera-
torsQ · Eq. (3.54)94

∥Q∥op supremum of ∥Q∥op for Q in Q · Eq. (3.63)100

T ,T lower and its conjugate upper transition operator · Defini-
tion 3.60107

Q,Q lower and its conjugate upper rate operator · Definition 3.63109

QQ lower envelope of the set of rate operators Q · Eq. (3.71)109

QQ the set of rate operators that dominate the lower rate operator Q
· Eq. (3.72)110

(e tQ )t∈R≥0 (non-linear) semi-group generated by the lower rate operator Q
· Proposition 3.74114

EM lower envelope of {Ep : p ∈M} · Eq. (3.76)117

Ergodicity

ρ(T ) coefficient of ergodicity of the lower transition operator T ·
Eq. (4.19)190

• ,→• upper reachability relation corresponding to the lower rate op-
erator Q · Definition 4.31192

• ←- • lower reachability relation corresponding to the lower rate oper-
ator Q · Definition 4.31192

XQ top class of the ergodic lower rate operator Q · Proposi-
tion 4.33193

Elim limit expectation of the ergodic rate operator Q · Sec-
tion 6.4.4307

plim unique probability mass function such that Eplim = Elim · Sec-
tion 7.3.2376

Lumping

X̂ lumped state space · Section 7.1.1342

Λ lumping map from X to X̂ · Section 7.1.1342
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Λ−1 inverse of the lumping map Λ · Eq. (7.2)342

Ω̂,ΩX̂ the set of lumped paths · Eq. (7.4)343

X̂ t projector variable for Ω̂ · p. 344

{X̂v ∈ B} cylinder/finitary event for Ω̂ · Eq. (7.5)344

Ĥ the set of conditioning events for Ω̂ · Eq. (7.6)344

F̂u the field of finitary events of the form {X̂v ∈ B} with v ≽ u ·
Eq. (7.6)344

D̂,DX̂ domain of a lumped jump process · Eq. (7.8)344

D⋆ structure of fields that includes D · Eq. (7.14)346

P⋆ extension of the jump process P to D⋆ · p. 347

Λ−1
Ω inverse on P(Ω̂) of the lumping map Λ · Eq. (7.9)344

P̂ lumped jump process · Eq. (7.15)347

f̂ ↑Ω cylindrical extension of the extended real variable f̂ on Ω̂ to an
extended real variable on Ω · Eq. (7.23)350

p̂p lumped probability mass function on X̂ induced by the proba-
bility mass function p on X · Eq. (7.25)354

M̂M set of lumped probability mass functions induced by those in
the set M · Eq. (7.26)354

Q̂Q lumped lower rate operator corresponding to the set Q of rate
operators · Eq. (7.27)355

Q̂Q set of lumped rate operators that dominate Q̂Q · Eq. (7.33)358

f ↓min, f ↓max

transformation of the gamble f on Xv to one on X̂v ·
Eqs. (7.38)364 and (7.39)364
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