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Abstract

The existing framework of Markovian imprecise jump processes, also known as imprecise continuous-time
Markov chains, is limited to bounded real variables that depend on the state of the system at a finite number
of (future) time points. This is an issue in many applications, because typically the variables of interest
depend on the state of the system at all time points in some — possibly unbounded— (future) interval, and
they can be unbounded or even extended real valued; examples of such variables are temporal averages, the
number of (selected) jumps in some interval and hitting times. To eliminate this shortcoming, we assume
that the sample paths are cadlag and use measure theory to extend the domain of Markovian imprecise
jump processes to extended real-valued variables that may depend on the state of the system at all (future)
time points — that is, the extended real variables that are bounded below or above and are measurable with
respect to the o-algebra generated by the cylinder events. We investigate the continuity properties of the
extended lower and upper expectations with respect to point-wise convergent sequences, and this yields
generalisations of the Monotone Convergence Theorem and Lebesgue’s Dominated Convergence Theorem.
For two particular classes of variables, we strengthen these convergence theorems and present an iterative
scheme to approximate their lower and upper expectations. The first class is the number of selected jumps in
some interval, and the second class are real variables that take the form of a Riemann integral over some
interval; this second class includes temporal averages and occupancy times.

Keywords: jump process, Markov process, monotone convergence, dominated convergence, imprecision,
algorithm

1. Introduction

Recently, several authors have independently proposed generalisations of Markovian jump processes —
also called continuous-time Markov chains or Markov processes — that provide an elegant way of dealing with
parameter uncertainty [IH3]. Whereas a (homogeneous) Markovian jump process is uniquely defined by its
rate matrix and initial probability mass function, these ‘imprecise’ generalisations allow for partially specified
parameters: they are defined through sets of rate matrices and/or sets of initial probability mass functions.

There are two frameworks that obtain similar, and to some extent even equivalent, results. The first
framework is the one advanced by Skulj [1] and Krak et al. [2], who use the theory of imprecise probabilities
[]. Skulj [1] starts from a set Q of rate matrices (one that is convex and compact and has separately
specified rows, to be exact), defines an ‘imprecise continuous-time Markov chain’ as a ‘random process’ whose
(time-dependent) ‘rate matrix’ is an unspecified function of time such that it belongs to the set Q at all times
— although he never formalises what he means with a ‘random process’ and its (time-dependent) ‘rate matrix’
— and explains how one can compute lower and upper bounds on the corresponding expectation of variables
that depend on the state of the system at a single time point. Krak et al. [2] put this work on a more
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sound theoretical footing, and significantly extend it. First, they formally define ‘continuous-time stochastic
processes’ as coherent conditional probabilities [5H7] on a specific domain, and for these ‘continuous-time
stochastic processes’ they introduce the notions of consistency with a set M of initial probability mass
functions and a (bounded) set Q of rate matrices. Second, they define ‘imprecise continuous-time Markov
chains’ as sets of ‘continuous-time stochastic processes’ that are consistent with sets M and Q. In particular,
they consider three such sets: the set of all consistent ‘homogeneous continuous-time Markov chains’, the
set of all consistent (not necessarily homogeneous) ‘continuous-time Markov chains’ and the set of all
consistent (not necessarily Markovian) ‘continuous-time stochastic processes’. Third, they provide algorithms
to determine (tight) lower and upper bounds on the corresponding expectations of variables that depend
on the state of the system at a finite number of (future) time points. Nendel’s [3] approach, on the other
hand, is situated in the theory of non-linear (or convex) expectations — see also [8]. Leaning on a type of
‘Kolmogorov Extension Theorem’ for convex expectations [0, Theorems 4.6 and 5.6], he shows that any
‘convex Q-operator’ corresponds to a ‘convex Markov chain’, which is a convex expectation on the bounded
measurable variables with respect to the product o-algebra generated by the canonical process. However,
both of these frameworks have crucial shortcomings: that of Skulj [I] and Krak et al. [2] only deals with
lower and upper expectations of variables that depend on the state of the system at a single time point or at
a finite number of time points, respectively, while that of Nendel [3] only deals with bounded variables that
are measurable with respect to the product o-algebra. For applications, this implies that for both of these
frameworks, key inferences like (lower and upper) until probabilities, expected temporal averages, expected
occupancy times, expected hitting times — also called expected first-passage times — and the expected number
of (selected) jumps are not included in the domain.

To the best of our knowledge, this shortcoming of the theory of imprecise jump processes has only been
circumvented by Troffaes et al. [I0] — although Erreygers and De Bock [I1] do something similar in the context
of lumping. Troffaes et al. [I0] use an imprecise jump process to asses the reliability of a power network, and
use the corresponding ‘limit lower/upper expectation’ to heuristically obtain conservative bounds on the —
theoretically undefined — lower /upper expectation of two classes of variables that depend on the state of
the system at more than a finite number of time points: (i) occupancy times, or variables that represent
the amount of time spent in a (set of) state(s) during some time period; and (ii) variables that represent
the number of jumps — sometimes also called visits or transitions — to a (set of) state(s) during some time
period. In contrast, we take it upon us to get rid of this shortcoming in a theoretically sound manner. More
precisely, we extend the domain of imprecise jump processes so that the lower/upper expectation of more
general variables is well defined, and we investigate the theoretical properties of this extension. Furthermore,
we provide computational methods for the two aforementioned classes of variables, and show that these
methods outperform the heuristics of Troffaes et al. [I0], at least when it comes to tightness of the bounds.

The remainder of this contribution is structured as follows. In Section [2] we introduce jump processes in
general and Markovian jump processes in particular, and we briefly introduce imprecise jump processes in
Section [3l With these preliminaries out of the way, we set out to extend the domain of (imprecise) jump
processes in Section We start in Section with extending the domain of a single countably additive
jump process through Lebesgue integration, and show in Section that this extended domain includes two
important classes of variables: the number of (selected) jumps over a finite time period in Lemma and
integrals of a function of the state over a finite time period in Lemma[32} A crucial difference between our
approach to jump processes and the predominant (measure-theoretic) one is that ours takes the cadlag paths
as a starting point, whereas the latter usually starts from the set of all paths to end up with the set of all
cadlag paths through a so-called modification. Next, Section extends the domain of (the lower and upper
expectations corresponding to) the three types of Markovian imprecise jump processes that we consider. The
reason why we can do this is that by Theorem any jump process that is consistent with a (bounded)
set of rate matrices is countably additive. Hence, we can extend the domain of each jump process in the
Markovian imprecise jump process through the aforementioned extension method for countably additive
jump processes, and subsequently take the lower and upper envelopes of these extensions. In Section
we investigate the convergence properties of the lower and upper expectations corresponding to imprecise
jump processes. Initially, we generalise two well-known convergence theorems to the context of imprecise
jump processes: Theorem [36] generalises the Monotone Convergence Theorem — see Theorem [34] — while
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Theorem [37]is a generalisation of Lebesgue’s Dominated Convergence Theorem — see Theorem While the
limits in these convergence theorems provide conservative bounds in general, Corollaries [45] and [48] establish
that these bounds are actually tight for the two aforementioned classes of variables. We then use these
convergence properties in Section [ to propose iterative computational methods — see Theorems [65] and [66] -
to determine the lower and upper expectations of variables in the two aforementioned classes. Section
concludes this contribution.

This contribution is the significantly extended journal version of [I2], and contains many results that
are also available in the first author’s doctoral dissertation [I3]. That said, the results in Sections and
Theorem [65] in Section [6.2] are entirely new. In order not to make this contribution unnecessarily long, we
have chosen to omit our proof for some of the results that are not novel — most notably those of Theorems
and [39| - and to refer to the relevant result in [I3].

2. Jump processes

A stochastic process is a model of someone’s uncertainty about (the evolution of) the state of some system
over time. In this contribution, we consider a generic system that evolves over continuous time whose state
takes on values in a finite set; following Gikhman and Skorokhod [I4] and Le Gall [I5] — to name just a few —
we call a stochastic process for such a system a jump process. We denote the state space of the system by X’;
throughout this contribution, except in the examples, X is a fixed non-empty and finite set.

Example 1. Throughout this contribution, we turn to the (imprecise) jump process model used in [10] to
illustrate our results. Troffaes et al. [I0] construct this model to asses the reliability of a power network; they
follow up on their earlier work [16] and consider a power network that consists of two power lines, called A
and B. The reason why there are two is redundancy: the network works as long as at least one of the two
power lines is working. Thus, an independent failure of one of the two power lines is not that much of an
issue, because it does not cause a power outage as long as the other power line is in operation. If both power
lines fail due to the same cause, this does result in a power outage; whenever this occurs, we speak of a
common cause failure. Knowing this, the relevant state space is clearly X = {AB,A,B,F}, where the state F
corresponds to a failure of both power lines and where the other state labels indicate the power lines that are
working.

In the measure-theoretical tradition — see, for example, [14] 15, I7HI9] — a jump process is made up of
four ingredients: a sample space &, a o-algebra of events S over this sample space, a probability measure P
on this o-algebra and a family of S/2¥-measurable variables (X;);er.,, where 2% denotes the power set
of X. Krak et al. [2] use a slightly different structure: they use a coherent conditional probability [5-7] on
the specific domain of ‘cylinder events’ over some sufficiently rich subset of X®>0, where we denote the set of
all maps from Rxq to X by X®z0. We set out to marry both of these approaches so that we can keep the
best of both worlds, and we will get down to this in Section [ further on. In the present section, we will
briefly recapitulate Krak et al. [2] their approach to jump processes.

We start in Section 2] by introducing the set of cadlag paths, which will be our sample space. Next,
Section defines the necessary notation and terminology regarding cylinder events, which are those events
that depend on the state of the system at a (finite) number of time points. After introducing general coherent
conditional probabilities in Section we can define jump processes as coherent conditional probabilities
with a specific domain in Section [2.4] and explain in Section how a jump process corresponds to a
conditional expectation operator whose domain is the set of real-valued variables that depend on the state of
the system at a finite number of (future) time points. Finally, Section deals with the important special
case of homogeneous Markovian jump processes.

2.1. Cadlag paths
Because the system evolves in continuous time, an outcome in the sample space is a path w: R>¢g — &,
where w(t) is the state of the system at the time point ¢ in RZOE In general, a path w can display some

We denote the set of real numbers, non-negative real numbers and positive real numbers by R, R>g and R, respectively.
Furthermore, N denotes the natural numbers (or positive integers) and R := R U {—oc0, +00} the extended real numbers.
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pretty erratic behaviour; take, for example, the path w, that assumes the state we(t) := x whenever the time
point ¢ is a rational number and the state we(t) := y otherwise, with x,y in X such that x # y. In many
applications, including in the setting of Example [} this erratic behaviour is clearly infeasible. Hence, we
choose to exclude this erratic behaviour, and we do so as follows: we only include the path w in our sample
space if (i) it stays in the new state for some time directly after it changes states, and (ii) it only changes
states a finite number of times over any finite time horizon. Mathematically, this translates to requiring that
(1) the path w is continuous from the right at all time points ¢ in R>¢, and (ii) the path w has a limit from
the left at all time points ¢ in R~y — both with respect to the discrete topology on X'. Whenever the path w
satisfies these two requirements, it is called a cadlag path; see, for example, [20, Section 12] or [I5 p. 54].
We collect all cadlag paths in the set 2, which is sometimes called the Skorokhod space, and this will be our
sample space.

Krak et al. [2] do not assume cadlag paths a priori, for the simple reason that this assumption is not
relevant in their setting. Instead, they consider any set of paths Q' — that is, any (non-empty) subset of
XR>0 — guch that

(Vn € N)(Vtq, ... ty ERsp: b1 < -+ <tp)(Va1,...,2p € X)(Fw € Q) w(ts) = x1,...,w(tn) =xn. (1)

However, when extending the domain to extended real variables that depend on the state of the system at all
(future) time points, which we will do in Section [4| further on, it is absolutely essential that all paths in the
sample space are cadlag. It is almost trivial to verify that the set of cadlag paths 2 satisfies the requirement
in Eqn. [13, Lemma 3.5]; hence, our more restricted set up falls squarely in the scope of Ref. [2].

2.2. Cylinder events

Let us identify some events — that is, subsets of the sample space ) — that play an essential role in our
analysis. The most elementary events are those that depend on the state of the system at a single point in
time. For any time point ¢ in R>( and any state z in X', we denote the event that ‘the state of the system at
time t is x’ by

{Xy =z} ={weQ:w(t) ==z}

In a similar fashion, we let

{X, € B} ={weQ:w(t)eB}= U{Xt:x}

for any subset B of X; in line with this notation, we let X;: £ — X be the projector defined by
Xi(w) =w(t) forallwe .

To simplify the notation regarding events that depend on more than a single time point, we use notational
conventions similar to those introduced by Krak et al. [2], Section 2.1]. A sequence of time points is a finite
sequence of increasing time points, that is, a sequence (t1,...,t,) in R>q of arbitrary length — with n in N —
such that ¢; < --- < t,,. For the sake of brevity, we denote a generic sequence by u, v or w. We collect all
sequences of time points in Uye, and let U = Upn U {()}, where () denotes the empty sequence. We denote
the first and last time points of a non-empty sequence of time points v = (¢1,...,t,) by minu = ¢; and
max u = t,, respectively; in order to conveniently deal with the edge case that u is the empty sequence of
time points (), we let min() := 0 = max( ). For v and v in U, we write u < v whenever v only contains time
points in or succeeding u, in the sense that every time point ¢ in v belongs to u or to [maxu, +oo[; note
that () < v for all v in Y. Similarly, for all w,v in Uye, we write u < v whenever v only contains time points
succeeding those in u, in the sense that maxu < minwv; out of convenience, we let () < v for all v in Y. With
this convention, for any ¢ in R>, we let U, == {u € U: u < (t)} be the set of all sequences of time points
of which the last time point precedes t; if t = 0, then there is no such non-empty sequence, so U< = {()}.
Because a sequence of time points is an ordered set, we may use set-theoretic operations on sequences of
time points, in the understanding that the result of such an operation is again a sequence of time points; for
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example, for all u,v in U, u U v denotes the sequence of time points that is made up of the time points in «
and v. Finally, for any sequence of time points u = (¢1,...,t,) in Upe, we let X, = Xicu X be the set of all
n-tuples ©,, = (x¢,,...,2s,) of states in X, and we always index these tuples with the time points ¢4, ...,
tn. If u is the empty sequence (), then we let X, = &) denote the singleton containing the empty tuple,
denoted by z().

Fix some v = (t1,...,t,) in Upe. Then we let X,: Q@ — X, be the projector defined by

Xy (w) = (w(t1),...,w(ty)) forallwe Q.
Furthermore, for any B C X, we define the corresponding event
{X, € B} ={weQ: (w(t1),...,w(ty)) € B};

an event of this form is called a cylinder event [I7, Section 36]. In order to reduce the number of edge cases,
we also let {X() =z()} = Q= {X() € X}

For any u in U, Krak et al. [2, Section 4.2] let A,, be the set of events that consists of the cylinder events
for all sequences v with time points in or succeeding u:

A, ={{X, eB}:veld,uxv,BCX,}.

Crucially, A, is an algebra of eventsE| [13, Lemma 3.10]. In order to shorten our notation, we will leave out
the subscript 4 whenever u is the empty sequence of time points: A := A().

2.8. Coherent conditional probabilities

In order to deal with conditioning in an unambiguous manner, Krak et al. [2] resort to the framework of
coherent conditional probabilities. What follows is a brief introduction to coherent conditional probabilities;
we refer to Dubins [7] and Regazzini [0] for a more detailed exposition. Throughout this section, we let & be
a generic non-empty set.

First, let us revisit the issue of conditioning for probability charges. Given an algebra S on &, a probability
charge P on S is a non-negative real-valued function P on S that is normed and additive, in the sense that
P(6)=1and P(AUB) = P(A) + P(B) for all disjoint events A, B in S. For such a probability charge P,
conditioning is dealt with through Bayes’s rule: for any event C' such that P(C) > 0, the corresponding map

PANC)

P(e|C): S - R>p: A—~ P(A|C) = PO

is again a probability charge on the domain S of P. For any non-empty event C' in & with probability zero,
the corresponding conditional probabilities are left undefined. Measure theory has one way to mitigate
this issue with conditioning on events with probability zero, through the Radon-Nikodym Theorem [I8
Chapter 21], but the resulting conditional probabilities essentially suffer from the same issue, as they are not
uniquely defined on a set with probability zero.

We mitigate this issue of conditioning on events with probability zero in a different way, by turning to
the notion of full conditional probabilities — see [7, Section 3] or [6, Definition 2]. Henceforth, we denote
the set of all events — that is, subsets of & — by 2€ and let 25, := 2° \ {@} be the set of all events that are
non-empty.

Definition 2. Consider two algebras of events G, H C 26 such that G includes H. A full conditional
probability P on K =G x (H \ {@}) is a real-valued map on K such that, for all A, B in G and C, D in

H\ {2},

2For any generic sample space &, an algebra (of events) on & — also called a field (of events) on & — is a collection S of
subsets of & which includes the empty set @ and is closed under taking complements and unions; see [21I] Definition 1.1.1], [I7],
p. 19] or [4, Definition 1.6].



CP1. P

P

CP2. P(A|C) =1 whenever A includes C;

CP3. P(AUB|C) = P(A|C)+ P(B|C) whenever A and B are disjoint;
B

CP4. P(AND|C)=P(A|DNC)P(D|C) whenever C and D are not disjoint.

It should be clear that the notion of a full conditional probability generalises the notion of a probability
charge in such a way that conditioning on events with probability zero is dealt with in a unique manner.
Indeed, properties [[CP1)H{(CP3)| ensure that P(e|C) is a probability charge on G for every conditioning
event C' in ‘H \ {@}, while property |[(CP4)|is a multiplicative version of Bayes’s rule.

Next, we deal with conditional probabilities whose domain does not have the structure as in Definition
and we do so through the so-called coherence condition. Regazzini [6, Definition 1] gives several equivalent
forms of this condition, but we repeat the simpler form of Krak et al. [2| Definition 4.2]. In it, we let
I4: & — R denote the indicator of an event A in 2€, which is the real map that takes on the value 1 on A
and 0 elsewhere.

Definition 3. Consider a non-empty subset K of 2% x 2. A coherent conditional probability P on K is a
real-valued map on K such that for all n in N, (41,C4), ..., (4,,Cy) in K and py, ..., gy, in R,

max{zn: wele, (s) (]IAk (s) — P(Ayg | Ck)) 15 € LnJ Ck} > 0.

k=1 k=1

This coherence condition might seem daunting at first, but it has an intuitive betting interpretation:
we can think of P(A|C) as the ‘called-off fair price’ for the uncertain reward I4 contingent on C, and the
coherence condition in Definition [3[ then ensures that these called-off fair prices do not permit a ‘Dutch
book’, that is, do not lead to a partial — or sure — loss. For a more thorough explanation of this betting
interpretation, we refer the interested reader to [13, Section 2.4.1] — and also to Williams’s [22], 23] more
general work or the more recent treatment by Troffaes and De Cooman [4, Chapter 13]. De Finetti [24]
Section 2.3.2] cautions that this betting interpretation arguably only makes sense whenever for all (4, C)
in IC, the events A and C are ‘well-determined’; in the sense that they ‘should be specified in such a way
that a possible bet based upon [them] can be decided without question’. For this reason, it is only in this
specific case that we will impose the coherence condition of Definition

A second — and perhaps more important — argument for using the coherence condition is that it ensures
that the conditional probability P on K has desirable properties: Regazzini [6, Section 2] states that P is
a non-negative real-valued function that satisfies [(CP1)| on its domain K. Note that the converse
does not hold in general: demanding that [(CP1)H(CP4)| hold on the domain K is not sufficient to guarantee
that a real-valued function P on K is a coherent conditional probability — Krak et al. [2, Example 4.1] give a
concise counterexample. However, Regazzini [6, Theorem 3] shows that [(CP1)H(CP4)| suffice for coherence
whenever the domain K has the structure required in Definition

Theorem 4. Consider two algebras of events G, H C 2 such that G includes H, and let K == G x (H\ {2}).
Then a real-valued map P on K is a full conditional probability on K if and only if it is a coherent conditional
probability on K.

Another strong argument for using coherent conditional probabilities is that they can always be coherently
extended to a larger domain [see [6l Theorem 4].

Theorem 5. Consider a coherent conditional probabilz'ty P on a non-empty domain K C 2% x 28 . Then for
any larger domain K* such that K C K* C 2% x 25 | there is a coherent conditional probabzlzty P* on K*
that extends P, or equivalently, that coincides with P on K.

Together with Theorem [4] this result implies that coherent conditional probabilities are simply restrictions
of full conditional probabilities to domains that are not of the form in Definition [2}
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2.4. Jump processes as coherent conditional probabilities

Krak et al. [2 Definition 4.3] define a jump process as a coherent conditional probability with domain
D:={(A|X,=w,): uel,z, € X, A€ A,}, 2)
where we write (A | X,, = z,,) instead of (A, {X, = z,}).

Definition 6. A jump process P is a coherent conditional probability on D. We let P be the set of all jump
processes.

Note that the domain D is not of the form in Definition [2} but Theorems [4 and [f] ensure that there is
a (coherent) conditional probability on A x (A \ {@}) that extends P. For every (A|X, = z,) in D, the
conditioning event {X, = x,} and the finitary event A in the algebra A, depend on the state of the system
at a finite number of time points, so a bet on these events can be decided without question — at least if we
agree to the idealisation that for any given time point, we can observe the state of the system at precisely
that time point, or alternatively, that we can measure time with arbitrary precision. Because the pairs of
events in the domain D are ‘well-determined’, it arguably makes sense to impose coherence.

2.5. Ezpectation corresponding to a jump process

Every jump process P in P induces a (conditional) expectation operator Ep. To define Ep, we fix some
conditioning event {X, = x,}, with v in &/ and z,, in X,,. Recall from right before Theorem 4| that, because
P is a coherent conditional probability on D, P(e| X, = z,) satisfies (CP3)|on A, meaning that
P(e| X, = x,) is a probability charge. This probability charge P(e | X, = z,) corresponds to an expectation
operator Ep(e| X, = z,) that is defined on the set of A,-simple variables in the usual way: through the
Dunford integral [4, Definition 8.13], or equivalently, through natural extension [4, Theorem 8.15]. Let us
define this (conditional) expectation operator formally.

For the sake of generality — we also need the following concepts in Section further on — we consider
a generic sample space & and an algebra S over this sample space. A variable is a map on &, and we
call a variable (extended) real if it takes values in the (extended) reals. For example, for any event A
in 2 its indicator I4: & — R is a (real) variable. A (real) variable f: & — R is called S-simple if it has
a representation of the form f = Y _, agla, for some nin N, a1, ..., a, in R and 4y, ..., A, in S [4
Definition 1.16]. It is relatively easy to check that the set of S-simple variables, which we will denote by
S(S), constitutes a real vector space that includes all constant maps from & to R.

A probability charge P on S corresponds to an expectation operator Ep: S(S) — R through Dunford
integration: for all f in S(S),

n
Ep(f) = arP(Ay), (3)
k=1
where ZZ=1 arly, is any representation of f of the aforementioned type; this representation of the S-simple
variable f need not be unique, but Troffaes and De Cooman [4, Definition 1.16] show that this expectation

does not depend on the specific representation used. This expectation has some convenient properties [4]
Lemma 8.14 and Corollary 4.14]:

El. min f < Ep(f) < max f for all f in S(S);

E2. Ep(uf) = pEp(f) for all f in S(S) and p in R;
E3. Ep
Ed. Ep(f) < Ep(g) for all £,g in S(S) such that f < g;
E5. Ep(f +p) = Ep(f) + p for all £ in S(S) and p in R.



In the particular setting of jump processes, this specialises as follows. For any sequence of time points u
in U, we denote the set of A,-simple variables by S, := S(A,). Fix any jump process P. Then for any u
in U and z, in X,, we denote the expectation on S, corresponding to the probability charge P(e|X, = x,)
on A, by Ep(e| X, = x,) = Ep(e|x,=z,)- This way, we have defined the expectation Ep on

JS = {(f|Xu:xu):uEU,xUGXuyfeSu}v

where — as in Eqn. (2) — we favour writing (f | X, = z,,) instead of (f, {X, = z,}).

Because every event in A, depends on the state of the system at a finite number of time points in or
succeeding wu, it is rather obvious that the same holds for every A,-simple variable. For this reason, these
variables have a convenient representation, for which we introduce some additional notation. For any v in U
and any real-valued function g on X, we let

g(Xv) =g o X, = Z g(y'U)H{X'u:y’u}
Yv EXy

denote the function composition of g after X,,. It is obvious that g(X,) is a real variable, which is A,-simple
whenever v = u; in this case Eqn. specializes to

Ep(g(Xy) | Xu = 24) = Z (o) P(Xy = yp | Xu = z4). (4)

Yo EXy

Conversely, it is not difficult to verify that every A,-simple variable f is of the form ¢(X,) with v > u [13]
Lemma 3.15].

Lemma 7. Consider some u in U and some real variable f: Q — R. Then f is Ay,-simple if and only if
there is some v in Uye with u < v and a real-valued function g on X, such that f = g(X,).

2.6. Markovianity and homogeneity

In general, specifying a jump process is a non-trivial task: one has to specify all probabilities of the
form P(A| X, = x,) with A in A, in such a way that the resulting real-valued map P on D is a coherent
conditional probability — that is, satisfies the non-trivial coherence condition in Definition [3] For this reason,
it is customary to assume the following two simplifying properties. As we will presently see, these two
properties — as well as a mild continuity property — ensure that a jump process is completely and uniquely
determined by two parameters: its initial probability mass function and its rate matrix. The first property is
the all-important Markov property, which simplifies the so-called transition probabilities: given the present
state, the probability of a future state does not depend on (a finite specification of) the past states.

Definition 8. A jump process P is Markovian — or, alternatively, has the Markov property — if for all ¢, A
in R>p, z,y in X, u in U~ and =z, in A,

P(Xiin=y|Xe =2, Xy, =2,) = P(Xtya =y | Xt = ).
We denote the set of all Markovian jump processes by PM,

The second property simplifies the transition probabilities of Markovian jump processes even more: it
demands that the probability of going from the present state to some future state only depends on the
duration of the time period and not on the present time point.

Definition 9. A Markovian jump process P is homogeneous if for all ¢, A in R>o and z,y in X,
P(Xiyn=y|Xi =2) = P(Xa =y| X0 =x).

We denote the set of all homogeneous Markovian jump processes by PHM,
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To appreciate just how much these two properties simplify the jump process P, we need to introduce
some additional mathematical machinery. The set of real-valued functions on X', which we will denote
by R¥, is a real vector space. One important subset of RY are the probability mass functions: those
real-valued functions p on X which are non-negative and normalised, meaning that p(x) > 0 for all z in X
and >° cyp(y) = 1.

We will repeatedly use transformations on R* — or maps from R¥ to RY — which we will simply call
operators. One example of an operator is the identity operator I, which maps any f in RY to itself: If = f.
An operator M is non-negatively homogeneous if M(\f) = AM f for all X in R>q and f in RY. Furthermore,
we call an operator M superadditive if M(f 4+ g) > M f + Mg for all f, g in R*, and additive if this relation
holds with equality instead of inequality. An operator M that is non-negatively homogeneous and additive
is called linear, and in that case M is homogeneous, in the sense that M(uf) = uM f for all p in R and f
in R¥. Although it is technically incorrect, we will usually refer to a linear operator M as a matriz, because
a linear operator M is completely determined by its ‘components’: for all z,y in X, the (z, y)-component
of M is M(x,y) == [MI,](x), where I, is the real-valued function on X that takes the value 1 in y and 0
elsewhere. Then for all f in RY and z in X,

(Mfl(z) = | M| fWl, || (@)=Y IML)(2)f(y) = Y M(z,y)f). (5)

YyeX yeX YyeX

Clearly, the identity operator I is linear. For homogeneous Markovian jump processes, an important class of
matrices are the rate matrices.

Definition 10. A rate matriz @ is an operator Q: RY — R¥ such that

R1. Q(uf) = uQf for all y in R and f in RY; [homogeneity]
R2. Q(f +9) = Qf + Qg for all f,gin RY; [additivity]
R3. [QL,](xz) > 0 for all z,y in X’ such that x # y; [non-negative off-diagonal components|
R4. Qu = 0 for any constant real-valued function p on X. [zero on constant functions|

We denote the set of all rate matrices by Q.

It might not be immediately clear that our definition of a rate matrix coincides with the usual one, for
example that of Norris [25, Section 2.1]. To see that this is the case, it suffices to realise that (i) |(R1)| and

(R2)[ ensure that @ is a matrix; and (ii) due to Eqn. , (R4)|is equivalent to requiring that the matrix @
has zero row sums, in the sense that > 3 Q(z,y) =0 for all z in X.

We equip the real vector space RY with the maximum norm ||e|| [26, Section 23.3], defined by
If|l = max{|f(z)|: z € X} forall f€R".

The maximum norm |le|| on R? induces an operator norm on the real vector space of non-negatively
homogeneous operators [2, Eqn. (1)], which we will also denote by ||e||: for any non-negatively homogeneous
operator M on RY,

1M = sup{ | M f[: f € R[]l = 1};

this is a straightforward generalisation of the induced operator norm for matrices [see 26, Section 23.1] to
non-negatively homogeneous operators. It is well-known [see 26, Section 23.3] that for any matrix M,

M| = maxq Y [M(z,y)|: z€ X 5,
yeX

and — see for example [I1, Eqn. (5)] or [I3 (R5) on p. 81] — that for any rate matrix @,

Q| = 2max{—Q(z,x): x € X}. (6)
9



With this machinery in place, let us now get back to homogeneous Markovian jump processes. Fix a
probability mass function p: X — [0, 1] and a rate matrix Q: RY — R¥. Then it is essentially well-known —
see for example [I3] Theorem 3.37] or [2, Corollary 5.3] — that there is a unique jump process such that its
so-called initial probabilities are given by p, in the sense that

P(Xg=z)=p(z) forallze X, (7)
and its so-called transition probabilities are given by the matrix exponentiaﬂ of @, in the sense that
PXpyn =yl Xy =2y, Xy =2) = [eAQ]Iy] (x) forall t,A € Rso,u € Uy, xy € Xy, y € X. (8)

Clearly, this unique jump process P is Markovian and homogeneous Because it is fully characterised by p
and @, we denote it by P, . It follows from Eqns. and . ) that for all ¢, A in R>¢, v in U<y, x4
in X, xin X and f in ]RX

Ep, o (f(Xi+a) | Xu = 2y, X = 7) Z FW)Ppo(Xign =y Xy =24, Xy = 2) = [®9f](z).  (9)
yeX

It is now natural to wonder whether the converse is true as well: is there, for every homogeneous Markov
jump process P, a probability mass function p and rate matrix () such that P = P, o7 The answer is yes,
provided that we focus on homogeneous Markovian jump process that are continuous in zero, in the sense
that

lim P(X; =z |Xo=2)=1forall z € X;

t\0
see for example [I3] Theorem 3.35]. Since this condition is extremely mild — it basically requires that the
probability of jumping instantaneously is zero — we see that, in practice, homogeneous Markovian jump
process can be thought of as being of the form P, q.

Suppose now that P is a general — not necessarily homogeneous nor Markovian — jump process. It is then
again natural to wonder whether there is an initial probability mass function p and a rate matrix @ such
that P = P, . As far as the initial probability mass function p is concerned, it is clear from Eqn. that
the only possibility is the initial probability mass function pp: X — [0, 1] corresponding to P, defined by

pp(z) =P(Xo=2) forallxelX.

For the transition probabilities, things are a bit more intricate. Due to the properties of the matrix exponential
— see, for example, [13, Corollary 3.31] — it suffices to look at the dynamics of the transition probabilities,
or more exactly, the right-sided derivative of P(X, = y| X, = x,, Xy = 2) in t and, if £ > 0, the left-sided
derivative of P(X; = y| X, = zy,Xe = ) in t. To elegantly deal with these derivatives, we introduce
some additional notation. For all t,r in R>o such that ¢ < r, u in U, and z, in &, the corresponding
history-dependent rate matriz Qt T =tul RY 5 R¥ is defined by

PX,=y|Xe=2,Xy=u,) — P Xt =y|Xe =2, X, =x,)
r—t

X (1) =

t,r

for all x,y € X.
We are now interested in the right-sided limit of Q{X w=rud gp t, and if ¢ > 0, in the left-sided limit
of Q{X“ SCEI general, these limits need not exist, but whenever they do and are all equal, say to the

matrix Qp: RX — R, the transition probabilities of the jump process P are given by the matrix exponential
of Qp, as in Eqn. @[); the following result, taken from [I3| Proposition 3.42], formalises this.

3For any matrix M and real number ju, the matrix exponential e#M of M is

Z\ kMR
MM~ fim <I+HM)n: lim i
n

n—-+oo n——+oo =
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Table 1: Lower and upper bounds for the rates of Example@
@ @ @ ot T

lower bound 0.32 0.32 0.19 730 730
upper bound 0.37 0.37 0.24 1460 1460

Proposition 11. Consider a rate matrix Q. Then a jump process P is a homogeneous Markovian jump
process with rate matriz QQ — in the sense that P = P, o with p == pp = P(Xo = e) — if and only if for all t
in R>o, u in Uy and x, in X,

. {Xu=zu} . . {Xu=zu}
1]:1\22 Qt,r - Q and; Zf t> 0: ngl;% Qs,t - Q

Example 12. Troffaes et al. [10, Section 2.3] explain that the power network could be modelled by a
homogeneous Markovian jump process Pp g with rate matriz

Q(AB,AB) (Q(AB,A) Q(AB,B) (Q(AB,F) o a @ @

o_ | @wm) Qun Qar QwE | _[n o 0 g+e
Q(Ba AB) Q(Bv A) Q(B’ B) Q(B7 F) Ta 0 <& q}l3 + q2 ’
Q(Fa AB) Q(F7 A) Q(F’ B) Q(Fv F) 0 7y 78 ¢

where the non-negative real numbers ¢t and ¢§ are the rates of an independent failure of A and B, the
non-negative real numbers ™ and r® are the repair rates of A and B, the non-negative real number gy is the
rate of a common cause failure of both A and B, and the diagonal elements are such that the rows sum to
zero. The initial probability mass function p plays no role in their analysis, so we can just take it to be any
arbitrary probability mass function on X.

3. Imprecise jump processes

One is not always able to or willing to specify precise values for the characterising parameters p and @ of
a homogeneous Markovian jump process. One application where this is the case is the power network of our
running example.

Example 13. Troffaes et al. [10, Section 3.1] argue that in the setting of Ezample estimating the rates
exactly is difficult due to a lack of data and because these rates may not be constant over time, for example
due to seasonal effects. Their estimation method for the rates gives the following lower and upper bounds for
the rates listed in Table[1 To take this into account, they do mot consider a single rate matriz, but consider
the set Q of rate matrices of the form given in Example where for every row separately, the rates should
be in the bounds of Table[ll In other words [see[10, Eqn. (58)], they consider the set Q of rate matrices
specified through lower and upper bounds on the off-diagonal components of the rate matrices:

Q:={QeQ: (Vo,y € X,z #y) Qu(z,y) <Qz,y) < Qu(z,y)},

where the matrices

o 032 032 0.19 o 037 037 0.24

[0 o 0 051 1460 o 0 0.61

Qui=lzg9 0 o os1| ™ Qui=|i60 o o 061
0 730 730 o 0 1460 1460 o

collect the bounds on the off-diagonal components. Because every rate matriz has rows that sum to zero, the
constraints on the diagonal elements of Q are implied by the others.
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While they talk at great length about rate matrices, Troffaes et al. [10] do not mention anything about the
initial probability mass function p. The reason for this is simple: the initial probability mass function does
not play a role in their analysis. Here too, however, if p cannot be accurately estimated, this can be dealt
with by considering a set M of probability mass functions instead of a single such function. For example, if
we want to make it explicit that no information is given about p, we can let M be the set of all probability
mass functions on X.

To deal with these kinds of situations, Krak et al. [2] allow that instead of a single probability mass
function p and rate matrix ), we have a non-empty set M of probability mass functions and a non-empty
and bounded set Q of rate matrices, where a set Q of rate operators is bounded if

IQll = sup{]|QIl: @ € Q} < +oc.

Example 14. [t is easy to verify with Eqn. @ that for the set of rate matrices Q defined in E:wmple
|19 = 2(1460 + 1460) = 5840,
so this set is bounded.

Naturally, it makes sense to consider the set
HMQ = {PpﬁQZ peEM,QE Q}

of homogeneous Markovian jump processes that are characterised by an initial probability mass function p
in M and a rate matrix @) in Q. This is a first example of an imprecise jump process, with which we generally
mean a non-empty set P C P of jump processes.

There is an alternative way to look at the definition of IP’EMQ though, and that is through the notion of
‘consistency’ with M and Q. The notion of consistency with M is inspired by Eqn. : a jump process P in
P is consistent with M, denoted by P ~ M, if there is a probability mass function p in M such that

P(Xg=2z)=p(z) forallze X.

The notion of consistency with Q is motivated by Proposition [I1] from which we know that the rate
matrix @ of a homogeneous Markovian jump process P uniquely characterises the dynamics of the transition
probabilities of P. So how do we extend this ‘characterising the dynamics’ from a single rate matrix @ to a set
of rate matrices Q7 The first idea that springs to mind is to say that a Jump process P is consistent with Q
if for all ¢ in R>q, v in U~; and z,, 1n Xu, the right-sided limit lim,~ Qt T“ =ou} belongs to Q and, if t > 0,
so does the left-sided limit lim »¢ QS "~ . However, these limits are not guaranteed to exist, so this naive
definition would rule out a lot of jump processes In fact, Qir “=%«J can have more than one accumulation
point as r decreases to t, and similarly for QS t“ T4t as s increases to t. Intuitively, the idea behind the
actual definition of consistency with Q is that if for a jump process P all these accumulation points belong
to Q, then this jump process P is consistent with Q. Formally — see Krak et al. [2 Definition 6.1] and
Erreygers [I3], Definition 3. 50]E| a jump process P is consistent with Q, and we denote this by P ~ Q, if for

all t in R>g, w in U<y and z,, in X, the set 8T\tT{X“ x“}l of ‘right-sided accumulation points of Q{X“ =zubs

belongs to Q and, if t > 0, so does the set 05/‘th{7§( w=2ud o Geft-sided accumulation points of Q{X 7“}’
the formal definition of these sets of accumulations points does not really matter for the remalnder, but
the interested reader is invited to consult [2 Definition 4.8 and Definition 6.1] or [I3] Definition 3.46 and

4Because the set of rate operators Q is bounded, these two notions of consistency with Q are in fact equivalent; for a proof,
see Lemma 3.55 and Proposition 3.57 in [I3].

5We do not use ‘standard’ notation here: Krak et al. [2] Definition 4.8] use 047}
[os T{X“_%“}7 and similarly for the set of left-sided accumulation points.
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Definition 3.50]. One thing that is important for the remainder though, and which clearly follows from this
definition of consistency, is that if a jump process P is consistent with Q, then it is also consistent with any
larger bounded set R D Q of rate matrices.

Our reason for introducing the notions of consistency with M and Q was to rewrite the definition of IF’/\IleQ
With the help of Proposition it is not all too difficult to show — see Erreygers [13, Proposition 3.56] for a
formal proof — that this is indeed possible:

P ={PeP™: P~ M, P~ Q}. (10)

At this point, it is important to reiterate that one usually makes the Markovianity and homogeneity
assumptions out of convenience — that is, because they make specifying the jump process a matter of
specifying the initial probability mass function p and rate matrix () — and not because one is absolutely
convinced that these are justified; for example, this is the case in our running example [see [10, Section 3.1].
It is for this reason that Krak et al. [2] Definition 6.4] consider two additional imprecise jump processes
characterised by M and Q by relaxing the homogeneity and Markovianity assumptions in Eqn. :

Pro={PeP":P~M,P~Q} and PByog={P€EP:P~M,P~Q}

Note that, by construction,
PUe S BY o CPuo. (11)

Example 15. From their — somewhat informal — exposition in [10, Section 3.2, it is clear that|Troffaes et al.
model the power network with the imprecise jump process Bu o, with M and Q as defined in Example .

The three imprecise jump processes IP’AI}I’VIQ, P/%\,[/IVQ and Py, o all generalise the ‘classical’ notion of the
homogeneous Markovian jump process P, o characterised by a single probability mass function p and a single
rate matrix Q: Erreygers [I3, Eqn. (3.66)] shows that

HM  _ mM . .
Bty = Boy@) = Borior = (P}

As we will see in Section further on, they also generalise the notion of a homogeneous Markovian jump
process in a different way, in the sense that they are ‘Markovian’ and ‘homogeneous’. This becomes clear
when looking at their corresponding lower and upper expectations.

3.1. Lower and upper expectations

Consider some imprecise jump process P C P. Every jump process P in P corresponds to an expectation
operator Ep with domain JS. This means that for any (f | X,, = x,) in this shared domain JS, there is not a
single value for the expectation of f conditional on {X, = z,} but a range {Ep(f| X, = z,): P € P}. We
could set out to determine this range, but it often suffices to determine its lower and upper bounds — for
example if we are interested in the worst-case and/or best-case scenario. For this reason, we consider the
lower expectation Ep: JS — R, defined by

Ep(f| Xy =2,) =if{Ep(f| Xy =2z,): PP} forall (f|X,=ux,)inJS,
and the upper expectation Ep: JS — R, defined by
Ep(f| Xy =2,) =sup{Ep(f| Xy =m,): PP} forall (f|X,=x,)in JS.

Note that Ep and Ep are real valued due to and that they are conjugate, in the sense that for all (f |
Xy = xy) in JS,

Ep(f| Xy =2,) =sup{Ep(f| Xy =m,): PEP}
=sup{—Ep(—f| Xy =z4): P € P}
— inf{—Ep(f| Xy = 2.): PE€P) = ~Ep(—f| Xy = 2.),
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where we used [(E2)| for the second equality. Due to this conjugacy, it suffices to study one of the two; we
will focus on the lower envelope E. Furthermore, the lower expectation £ also captures lower and upper
probabilities: for all (A | X, = z,) in D,

Ep(Ia| Xy =2,) =inf{Ep(Ia| Xy =z,): P € P} =inf{P(A| X, =z,): P € P},

and similarly for the upper probability but with —Ep(—I4 | Xy, = z4).
It follows more or less immediately from and the definition of the lower and upper expectation
— see also [4], Proposition 4.20 and Theorem 4.13] — that, for all u in U/ and z,, in X,

LD1. min f < Ep(f| Xy =z4) < Ep(f| Xy = x,) <max f for all fin S,;

LD2. Ep(uf| Xy =2u) = pEp(f| Xy =x,) for all fin S, and g in R>q;

Ep(
LD3. Ep(f+9|Xu=2u) > Ep(f|Xu=24) + Ep(g| Xy =z,) for all f,gin S,;
Ep(

LD4. Ep(f| Xy =24) < Ep(g| Xy =x,) for all f,g in S, such that f < g;

LD5. Ep(f+p| Xy =2y) = Ep(f| Xy =2,)+pnforal fin S, and p in R.

To somewhat shorten our notation, we follow Krak et al. [2l Definition 6.5] in denoting the lower
expectations corresponding to the imprecise jump processes Pﬂlfllf/lg, IP%[,Q and By o by EE\I,II\{IQ, EB\/IA,Q and
E o, respectively, and similarly for their conjugate upper expectations; due to Eqn. ,

Eyo(e]e) < E%{,Q(. |o) < EEAR?Q(' |e),

and conversely for the conjugate upper expectations.

In general, determining these tight lower and upper bounds on the expectations corresponding to the
imprecise jump processes By, P o and Py o is intractable if not impossible, as one would have to explicitly
construct these sets in order to optimise over them. However, as we will see in Section [6.1] further on, there
are particular cases in which tight lower and upper bounds can be determined by repeatedly solving a more
straightforward optimisation problem.

3.2. Markovianity and homogeneity

The three imprecise jump processes Pﬂ%, ]PAI\,/[{Q and Py o all generalise the ‘classical’ notion of the
homogeneous Markovian jump process, in the sense that they are characterised by a set M of initial
probability mass functions and a set Q of rate matrices instead of a single probability mass function p and
a single rate matrix ). This raises the question whether these imprecise jump processes also have similar
properties, so whether they are Markovian and homogeneous. For this, we need to generalise these two
properties from jump processes to imprecise jump processes.

While we could generalise Definitions [§ and [9 directly, it makes more sense to generalise their equivalent
‘expectation-centred’ statements. With the help of Eqn. , it is easy to verify that for the degenerate
imprecise jump process P = {P}, the following two definitions reduce to Definitions [§f and @

Definition 16. An imprecise jump process P is Markovian — or alternatively, has the Markov property — if
for all t, Ain R>g, z in X, f in RY, w in Uy and z, in X,

Ep(f(Xepa) | Xi = 2, Xy = 2u) = Ep(f(Xi4a) [ Xi = 2).

Definition 17. A Markovian imprecise jump process P is homogeneous if for all ¢, A in R>g, z in X, and f
in RY,
Ep(f(Xepa) [ X = 2) = Ep(f(Xa) [ Xo = 2).
It is easy to show that PAIEIMQ is a homogeneous Markovian jump process, and that PAR//{Q is a Markovian —
but not necessarily homogeneousﬁ — jump process.

6 Actually, we conjecture that IF/’M o Is homogeneous too, but providing a formal proof would lead us to far astray.
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Proposition 18. Any imprecise jump process P C PM is Markovian, and any (Markovian) imprecise jump

process P C PIM s homogeneous. Consequently, IP’AIEIMQ is a homogeneous Markovian imprecise jump process,

and PAI\QI o 8 a Markovian jump process.

Proof. First, we assume that P is a subset of PM. To verify that P satisfies the condition in Definition
we fix some ¢, A in R>g, z in &, f in RY, u in U~ and z, in X,. Observe that for any jump process P
in P C PM,

Ep(f(Xera) | Xi = 2, Xu = 20) = Y fO)P(Xeya | Xe = 2, Xy = 2
yeX

=Y fW)P(Xrsal Xy =) = Ep(f(Xeya) | Xi = 2),
yeX

where for the first and last equality we used Eqn. and for the second equality we used the Markovianity

of P. It follows immediately from the preceding equality and the definition of the lower envelope E that
Ep(f(Xiga) | X = 2, Xy = zy) = inf{Ep(f(Xiya) | Xe =2, X, = x,): P € P}

inf{Ep(f(Xita)| Xy =2): P € P}

Ep(f(Xira) | Xe = 2),

as required.

Second, we assume that the jump process P is a subset of PHM. Because PHM C PM | we know that P is
Markovian. To prove that P satisfies the condition in Definition [17} it suffices to add one extra step — where
we use that every P in P is homogeneous — to the argument in the first part of our proof. O

One case in which we do have that the Markovian imprecise jump process IP’/{\A/I’Q is homogeneous, is
when Q has ‘separately specified rows’, meaning that we can select the ‘rows’ of the rate matrices in Q
independently [2, Definition 7.3].

Definition 19. A set R of rate matrices has separately specified rows if for any selection (Q;)zecx of rate
matrices in R, there is a rate matrix @) in R such that

Qe.y) = Qulzy) forall 2,y € X,

The following result states that if Q has separately specified rows, then the Markovian imprecise jump
process IPj\l\//l{Q is indeed homogeneous. Furthermore, quite remarkably, the imprecise jump process Py, turns
out to be Markovian and homogeneous as well.

Corollary 20. If Q has separately specified rows, then any imprecise jump process P such that IP’M)Q C
P C Bu.o is a homogeneous Markovian imprecise jump process.

Proof. Follows immediately from Lemma further on, which repeats Corollary 8.3 in [2]. O

Example 21. Obviously, the (non-empty and bounded) set Q of rate matrices defined in Example has
separately specified rows, since the conditions are given row by row. Hence, our model Py g is a homogeneous
Markovian imprecise jump process.

4. Extending the domain

The domain JS of the (conditional) lower expectation Ep corresponding to an imprecise jump process P C
P — or simply the expectation Ep corresponding to a jump process P — is not rich enough for many applications:
the domain JS only contains variables that depend on the state of the system at a finite number of time
points, and many practically relevant inferences correspond to variables that depend on the state of the
system at all time points in some — possibly unbounded — interval. Examples of such variables are abundant,
but let us give two examples relevant to our running example.
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Example 22. As we mentioned previously in Section [1, Troffaes et al. [10, Eqns. (16) and (17)] are
specifically interested in two types of variables: (i) the amount of time spent in a particular state during
a particular time period, and (i) the number of transitions to a particular state during a particular time
period. The first type generalises to what is known as an ‘occupancy time’: in general, it is the length of
time that the system is in some subset A of X during some interval [s,r]|; we will formally define this type
of variable in Section[].3.9 further on. The second type generalises to what we call ‘the number of selected
Jumps’: in general, it is the number of times that during some interval |s,r] the system jumps from some

state x to state y, with (x,y) in a particular set of couples of distinct states; we will formally define this type
of variable in Section[{.3-1 further on.

So how can we extend the domain of the lower (and upper) expectation corresponding to P to include
these general variables? We could extend this lower expectation directly, for example through ‘natural
extension’ [4, Section 13.7], which relies on a notion of coherence for lower expectations, or through the
notion of ‘previsibility’ [4, Chapter 15], which basically extends the notion of convergence in probability
to (unconditional) coherent lower expectations. Our reasons for not using these methods are the following.
The natural extension is motivated through a betting interpretation that need not make sense for these
general variables and is often overly conservative — as argued by Troffaes and De Cooman [4, Section 13.11]
and Erreygers [13] Section 5.1.1]. The notion of previsibility does not line up well with our setting either:
it starts from a coherent lower expectation on the set of all bounded real variables, while — for every
conditioning event {X, = x,} — we seek to extend a coherent lower expectation on the set of all A, -simple
variables. Furthermore, both of these approaches are limited to real variables, and we also desire to deal
with extended real variables. Hence, we propose the following alternative approach: we extend the domain of
the expectation Ep corresponding to every jump process P in P to a larger domain through the ‘classical’
approach in measure-theoretic probability theory — albeit with a twist — and subsequently take the lower
(and upper) envelope over these extended expectations.

In this section, we will rely heavily on some standard definitions and results from measure-theoretical
probability theory. While most reference works — for example [I7], [I8] or [27] — agree on the basics, there are
some subtle technical points that matter in our context. For this reason, we repeat the specific definitions
and results that we will need as we go; for a more gentle and thorough introduction to measure theory in
general and its application to probability theory in particular, we refer the reader to Fristedt and Gray [I§]
and Schilling [27].

4.1. Extending a jump process through Caratheodory’s Theorem

Consider a jump process P. We set out to extend the domain of Ep by extending the domain of
Ep(e| X, = x,) for every conditioning event {X, = x,}, and we will do so with the help of ‘countable
additivity’. Before we do so, let us briefly reconsider the notion of countable additivity in the general setting
of a generic sample space &. A probability charge P on an algebra S on & is countably additive if for any

sequence (A )nen of pair-wise disjoint events in S such that A := UneN A, belongs to S,

P(A) = P(Ay).

neN

A collection S of subsets of & is a g-algebra (of events) on & — sometimes also called a o-field — if it
is an algebra of events over & that is furthermore closed under countable unions, meaning that for any
sequence (A, )nen in S, |, ey An belongs to S — see [I8, Definition 1 in Chapter 1] or [27, Definition 3.1]. If
S is an algebra (on &), then there is a unique smallest o-algebra (again on &) that includes S, and this is
the intersection of all g-algebras that include S — see [I8] Section 1.3] or [27, Theorem 3.4]; we denote this
o-algebra by o(S), and call it the o-algebra generated by S.

Given a c-algebra § on G, a probability measure P on § is a countably additive probability charge
on S [I8, Definition 2 in Chapter 1], or equivalently, a non-negative real map on S that is normalised and
countably additive, in the sense that P(&) = 1 and that for any sequence (A, )nen of pair-wise disjoint
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events in S,

P(U An> = Z P(A,).
neN neN

Crucial to our extension method is that a countably additive probability charge P on some algebra S can
be extended to a probability measure on the o-algebra o(S) generated by S: Caratheodory’s Theorem — see
[18, Theorem 14 in Chapter 7] or [27, Theorem 6.1] — ensures that there is a unique probability measure P,
on o(S) that extends P, or equivalently, that coincides with P on S.

Now that we have refreshed the notion of countable additivity, we can find out what it can do for us in
the setting of jump processes. Recall from Section that P(e| X, = z,) is a probability charge on the
algebra of cylinder events A,,; whenever this probability charge is countably additive for any conditioning
event, we call the jump process P countably additive.

Definition 23. A jump process P is countably additive if for all v in Y and z,, in X,, P(e| X, = x,) is
countably additive.

Suppose P is a countably additive jump process. Then for any v in ¢ and z,, in X, P(e|X, = x,) is a
countably additive probability charge on A,, so by Caratheodory’s Theorem, there is a unique probability
measure P,(e|X, = x,) on the c-algebra o(A,) generated by A, that extends P(e|X, = x,). The
real-valued map P, on

D, ={(A| Xu=azu):ucl,z, € Xy, A€ U(Au)}ﬂ

thus defined coincides with P on D, so one might wonder whether this real-valued map P, is a coherent
extension of P to D, — that is, whether P, is a coherent conditional probability on D,. We have not been
able to prove that this is the case, nor have we found a counterexample. Yet, we do not perceive this as an
issue, and the reason for this is that the extended domain D, contains events that are not well-determined, so
as explained right after Definition [3] there is no compelling argument to demand coherence on this extended
domain. For example, fix some state x in X', and consider the event

Ay = ﬂ {X,, =z}

neN

Because every event on the right-hand side belongs to A C o(A) and the generated o-algebra o(.A) is closed
under countable intersections, A, belongs to o(A). However, it is clear that there is no point in time after
which we can unequivocally determine whether or not the event has occurred, so a bet based upon it cannot
be decided without question; consequently, the event A, is not well-determined.

4.2. Eztending the expectation corresponding to a countably additive jump process through Lebesgue integration

Consider a countably additive jump process P, and fix some v in i/ and x,, in X,,. The extension P,(e| X, =
x,,) of the countably additive probability charge P(e| X, = x,) is a (countably additive) probability charge
on o(A,). Hence, as we know from Section [2.5) there is a corresponding expectation operator Ep,_ (e|x,=z,) 01
the set SZ := S(0(Ay)) of o(A,)-simple variables. As the generated o-algebra o(A,) includes the algebra A,
of cylinder events, it is clear that every A,-simple variable is o(A,)-simple, so S,, € S7. Even more,
Ep, (e|X,=z,) coincides with Ep(e| X, = x,) on S,: for any A,-simple variable f, it follows immediately
from Eqn. that

EPU(O\Xu:wu)(f) = Z akPU(Ak |Xu = xu) = Z akP(Ak | Xu = mu) = EP(f | Xu = xu)a (12)
k=1 k=1

"Because the state space X equipped with the discrete topology is a Polish space, it follows from [I8, Chapter 31, Theorem 2]
that o(.Ay) is the o-algebra of events that are measurable with respect to the Skorokhod topology on  — at least if uw = () or
u = (0). For more information, we refer to Billingsley [20] Section 16].
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with n in N, a1, ..., a, in R and A, ..., A, in A, such that f = ZZ:1 arla,. However, this extended
domain S? is not sufficiently large for our purposes. For example, the number of jumps in some interval and
the occupancy time of some set of states during some interval, two real-valued variables which we informally
introduced in Example |T_Z| and will formally introduce in Section @ further on, are not S¢-simple: the former
is not bounded, while the latter is bounded but does not have a finite range. What we need is an extension
to the so-called measurable variables, and we can achieve this through Lebesgue integration.

To introduce Lebesgue integration, we briefly return to the general setting: as before, we consider a
generic sample space & and a o-algebra S on this sample space. An extended real-variable f: & — R
is S-measurabld?] if

{f>a}={s€6: f(s) >a}eS forallaeR, (13)

and we collect all S-measurable variables in M(S). This set M(S) of S-measurable variables is closed under
several operations. In the remainder, we will rely on the following operations; whenever the proof of a
property is not immediate from the condition in Eqn. (13)), a proof can be found in [27, Chapter 8].

M1. Any S-simple variable is S-measurable.

M2. For any S-measurable variable f and any real number A\, A\f is S-measurable.

M3. For any S-measurable variables f and g, their sum f + g is S-measurable whenever it is deﬁnedﬂ
M4. For any S-measurable variable f, |f| is S-measurable.

MS5. For any sequence (fy)nen of S-measurable variables that converges point-wise, its point-wise limit,
denoted by lim,_, 4 o frn, is S-measurable.

Another important property of S-measurable variables is that an extended real variable f is S-measurable
if and only if its non-negative part f* := f Vv 0 and its non-positive part f~ = —(f A 0) are S-measurable.
This is used implicitly in the definition of the Lebesgue integral, and here we repeat the one given by Fristedt
and Gray [I8, Definition 8]. Consider a probability measure P on S. Then for any S-measurable variable f
such that at least one of the suprema

sup{Ep(g): g €S(5),0<g < f*} and sup{Ep(g): g€S(S),0<g<f}

is real, the (Lebesgue) integral of f with respect to P exists and is

ER(f) =sup{Ep(g): g €S(S),0< g < fT} —sup{Ep(g): g €S(S),0< g < f 1}

otherwise, the (Lebesgue) integral does not exist. We denote the set of all S-measurable variables for which
the Lebesgue integral with respect to P exists by dom E5. In general, this domain need not be the same
for different probability measures. However, it is relatively easy to prove that dom EL always contains
the S-measurable variable f if it is either bounded below or bounded above, meaning that inf f > —oco or
sup f < 400, respectively.

Lemma 24. Consider a o-algebra S over &, a probability measure P on S and a S-measurable variable f.
If f is bounded below or bounded above, then the (Lebesgue) integral of f exists, or equivalently, f belongs
to dom E%.

8Technically, we should say S/B-measurable, where B denotes the Borel o-algebra on R, being the o-algebra generated by
the open sets of the topology on R that is the product of the usual topology on R and the discrete topology on {—oo, +00}. For
more details, we refer to Chapter 2 in [I8] and Chapter 8 in [27].

9We use the standard extensions of the binary operations of addition, subtraction and multiplication from R to R — see
[4, Appendix D] or [27, p. 58]. This means that we leave (+00) + (—00), (+00) — (4+00), (—00) + (+00) and (—o0) — (—o0)
undefined.
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Proof. Assume that f is bounded below. Note that for any S-simple variable g such that 0 < g < f—,
0 <ming < maxg <sup f~. It follows from this inequality and that

0< sup{Ep(g): gE€S(S),0<g< f_} <supf~.

Either sup f~ =01if f > 0, or sup f~ = sup(—f) = —inf f otherwise. Because inf f > —oco by assumption,
we infer from this that sup f~ < 400, and this proves that the Lebesgue integral of f exists.
The proof for the case that f is bounded above is analogous. O

It is well-known — see [18, Problem 14 in Chapter 4] — that the (Lebesgue) expectation E% on dom E%
extends the (Dunford) expectation Ep on S(S): any S-simple variable f belongs to dom E%, and EL(f) =
Ep(f). For future reference, we list some additional well-known properties of the Lebesgue integral E%; for
a proof, we refer to Fristedt and Gray [I8, Theorem 9 in Chapter 4]. For all f, g in dom E% and p in R,

LI1. inf f < E%(f) < sup f;

LI2. puf € dom Ep and Ep(uf) = pEp(f);

LI3. if f + g and EL(f) + EL(g) are defined, then f + g € dom E% and EL(f + g) = E5S(f) + E%(9);
LI4. EL(f) < EL(g) whenever f < g;

LI5. |f| € dom Ep and |EB(f)] < EB(|f]).

Furthermore, for all f in dom E%, its Lebesgue expectation is given by the Choquet integral [28, Chapter 5]:

“+o00 +oo “+o0 0
B = [ PUSt > anda= [ PUST > ahda= [ PUs > ahda— [ PUT<a})da
— 00

where the integrals are — possibly improper — Riemann integrals that always exists because their integrand is
monotone

Let us now return to the setting of jump processes. As before, we consider a countably additive jump
process P. For all v in U and z, in &,,, we denote the Lebesgue integral corresponding to the probability
measure P, (e | X, = x,) on 0(A,) by E¢(e| X, =z,,) = (s . While the domain of this Lebesgue
integral may depend on the specific jump process P, Lemma guarantees that this domain includes all
o(Ay)-measurable variables that are bounded below or bounded above. Therefore, we choose to restrict the
domain of the Lebesgue integral E%(e|X, = ,) to these variables, so to the set M, = M(c(A,)) N Vy,
where V}, is the set of all extended real variables f: © — R that are either bounded below or bounded above.
This ensures that the domain of E%(e | X, = x,,) is the same for any countably additive jump process P. In
Section [44] further on, it will become clear that this choice is especially convenient in the setting of imprecise
jump processes. Furthermore, to the best of our knowledge, this somewhat non-standard restriction of the
domain does not hinder the applicability of our framework: we are yet to encounter an application where all
of the ‘conventional’ (extended) real variables that may be of interest are not bounded below or above.

To summarise, we have defined an expectation operator £% with domain

IM = {(f| Xu=2.): u € Uy € Xoy f € M}

But does E% extend Ep to a domain that includes interesting (extended) real variables that are not
o(Ay)-simple? The following result establishes that E% extends Ep, which partially answers this question.

Lemma 25. Consider a countably additive jump process P. Then JS C JM, and
ES(f| Xy =zy) = Ep(f| Xy =2y) forall (f| X, =x,) €IJS.

Proof. Fix any u in U and z,, in U. Recall from right before |(LI1)|that E%(e| X, = x,) = EII; (o] Xuza)
coincides with Ep_(e|x,=z,) on S(0(A,)), and from around Eqn. (12)) that Ep_(e|x,=z,) coincides with Ep(e |

Xy =zy) on Sy, C S(o(Ay)). Consequently, E% (e | X, = x,) coincides with Ep(e | X, = z,) on S,. O
19



4.8. Two classes of measurable variables

It remains for us to show that the extended domain JM contains many — if not most or all — of the
non-simple variables that may be of interest in applications. We cannot possibly give an exhaustive list, so
we will formally introduce two classes of such variables: Section deals with the number of (selected)
jumps in an interval ]s, 7], while Section takes a closer look at real variables that take the form of a
Riemann integral of f(X}) as ¢ ranges over the interval [s,r]. We have chosen these two classes because they
cover the two types of variables which Troffaes et al. [10] consider, and which we have informally introduced
in Example That said, we would like to emphasise that the extended domain JM includes a lot more
variables that appear in applications. For example, this domain also includes indicators of until events [I3]
Section 6.2] — which play an important role in model checking [29, [30] — and hitting times [I3] Section 6.3].

Our exposition simplifies due to the following notation and terminology. Fix two time points s,7 in R>g
such that s < r. A grid over [s,r] is a sequence of time points v = (tg,...,t,) in Upe that starts in tg = s
and ends in ¢, = r. For any such grid v = (g, ...,t,) over [s,r], we call

A(v) = max{ty —tp_1: k€ {l,...,n}}

the mazimum grid width of v. For grids v, w over [s,r], we say that w refines v, and denote this by v C w,
if w includes all the time points in v.

4.8.1. The number of selected jumps

Fix some cadlag path w in €. Recall from Section that then, by definition, for all ¢ in Ry, w has a
left-sided limit in ¢ and w is continuous from the right in ¢. Whenever the value of w in t differs from the
left-sided limit of w in ¢, meaning that

li t—A t
Jim w(t = 2) # w(t)
we say that a jump occurs at time t. For any time points s, in R>¢ such that s < r, we collect the jump
times in |s,r| in the set

s (w) = {t €ls,r]: gir\now(t —A) # w(t)}; (14)

it is essentially well known — see for example Lemma 5.20 in [I3] — that this set of jump times is always finite.
Hence, for all s,r in R>( such that s < r, the number of jumps in ]s, r], which we denote by

Ms,r]* Q— ZZO: W = Mg, (w) = ’k7]s,'r‘] (W)|,

is a non-negative real-valued variable. Sometimes we are not interested in all jumps, but only in jumps
between specific couples of states, which we then collect in some subset A of Xi = {(z,y) € X?: x # y}. To

deal with this more general case, for any such subset A of Xi and any time points s, in R>q such that s <,

A .

we let Mot

2 = Z>o be the non-negative real variable that is defined for any w in Q by

)= |{ee s (o - 8).00) € 4}

N0

)

and we refer to this variable as the number of selected jumps. It follows immediately from this definition that
0< 77]1271,«] < Ms,r)» (15)

and that for A = X2, n}’:’r] = Nsr]-

In order to show that the number of (selected) jumps belongs to our domain, we set out to show that
we can approximate the number of (selected) jumps by means of a specific type of simple variables. Fix
time points s, 7 in R>¢ such that s < r, and a subset A of X;. The crucial idea is that we can approximate
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the number of selected jumps n]‘gm] in ]s,7] by looking at the number of selected jumps along some grid v
over [s,r|. More precisely, for any grid v = (¢, ...,t,) over [s,7], we use the corresponding approximation

Q= Lo w e (W) = Hk‘ e{l,....n}: (Wtp—1),w(ty)) € A}

to simplify our notation, we write 7, instead of ! whenever A = Xi. It is easy to see that

n

7711;4 = ZHA(th—17th)7 (16)
k=1

where here and in the remainder, we follow the convention that the empty sum is zero, and where we let 14
be the function on X2 defined by

1 if (z,y)€e A

g for all z,y € X.
0 otherwise

Ta(z,y) = {

It follows immediately from Eqn. that
0 <ngt <o (17)

Because 1} clearly only depends on the state of the system at the time points in v, we have the following
corollary of Lemma [7}

Corollary 26. Consider some u in U and some s, in R>g such that maxu < s <r. Then for any subset A
of Xi and any grid v over [s,r], the corresponding approzimation 1. is a non-negative A, -simple variable.

Because the number of jumps of a cadlag path w in © in the interval ]s,r] is finite, there is a grid
width Aj‘; ] such that every grid v with a grid width A(v) smaller than Aj‘; ;] captures all (selected) jumps
in ]s,r]. The following result, which is a generalisation of Lemma 5.25 in [I3], establishes this.

Lemma 27. Consider time points s, in R>q such that s < r and a subset A of Xi. For any cadlag path w
in §, there is a positive real number & such that if v is a grid over [s,r] with A(v) < 4, then

o (@) = 115 1y (@)

Proof. Fix some path w in Q. Recall from right after Eqn. that the set Jj,,)(w) of the jump times of
w in ]s, 7] is finite, so we can order this finite set. This way, we obtain a grid (¢, ...,t,) over [s,r], where
we always add ¢ty = s and only add t,, = r if it is not a jump time of w. Note that for all k in {1,...,n},
w(t) = w(tr—1) for all ¢ in [tx_1,tx[, so w is constant over [t;_1,tx[. Let

0= min{tk —tr—1: ke {1,... ,n}},

and take any grid v = (¢3,...,t%,) over [s,r] such that A(v) < §. It follows from this condition on v that, for
all kin {1,...,n}, v contains at least one time point ¢} in the subinterval [t;_1,tx[ where w is constant. In
other words, for every jump time ¢; of w in |s, 7], there is an index ¢ in {1,...,m} such that ¢t} _, is a time
point in [tx_1,t,[ and ¢} is a time point in [ty, g1 [ if k < nor tj =t if k = n. It is not difficult to see that
this implies that né’r] (w) = nt(w), as required. O

Due to Lemma ﬁ the approximation n# converges point-wise to 77]‘;‘ , 88 the grid width A(v) of the

grid v over [s,r] vanishes; in combination with Corollary this implies that the number of (selected) jumps
belongs to our domain.

Lemma 28. Consider some u in U and s,r in R>q such that maxu < s < r. Fiz some subset A of Xi

and let (vy)nen be a sequence of grids over [s,r] such that limy, oo A(vy) = 0. Then (n;j‘n)neN s a sequence

of Ay-simple variables that converges point-wise to 77]’2 .y Consequently, n]‘g rl belongs to M, .
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Proof. For all n in N, 77;)4" is a non-negative A,-simple variable due to Corollary Furthermore, because
lim;, 100 A(v,) = 0 by assumption, it follows from Lemma that the sequence (Uqﬁl)neN converges
point-wise to nﬁﬂ. This proves the first part of the statement. The second part of the statement follows
immediately from the first part because (i) every A,-simple variable is trivially o(.A,)-simple and therefore
o(A,)-measurable due to|(M1)} (ii) the point-wise limit of a sequence of o (A, )-measurable variables is again
o(Ay)-measurable due tom and (iii) nﬁyr] is non-negative and therefore trivially bounded below. O

In general, the convergence of n2 to n]‘:,r] need not be monotone. However, it can be in the case of all
jumps, so if A= Xi. The reason for this is that for any two grids v and w over [s, ] such that w refines v,
the number of jumps along w is (point-wise) greater than or equal to the number of jumps along v; Erreygers
[13, Lemma 5.23] gives a formal proof.

Lemma 29. Consider some u in U and some s,r in R>q such that maxu < s <r. Then for all grids v,w
over [s,r] with v Cw, 1, < Ny -

Closely related to this, we also have that n]‘z l need not yield an upper bound for 7];}4. However, here too,
it will if A = Xfé.

Lemma 30. Consider some u in U and some s, in R>q such that maxu < s <r. Then for all grids v
over [8,7”], Ny < Ms,r]-

Proof. We fix some grid v = (to, ..., t,) over [s,r]. Furthermore, for all k in N, we let v be the grid over [s, 7]
that is the (ordered) union of the grids vy 1, ..., Uk, where for all £ in {1,...,n},

1 2k—1
Ut = <t4—17te—1 + F(té —te-1), s tem1 + F(te - té—l))

is the grid over [t,_1,t,] that consists of 2#~! 4 1 evenly spaced time points. Then by construction, v; = v,
v, C vpyq for all kin N, and limy,_s oo A(vg) = limg_s oo A(v) /2571 = 0. Hence, it follows from Lemmas
and [29| that the corresponding sequence (1, )ren is a non-decreasing sequence of variables that converges
point-wise to 7, . Because v = vy, this proves that 7, < . O

4.3.2. Integral of f(X:) over the interval [s,r]

As a second example of a class of measurable variables that is included in our extended domain, we treat
real variables that take the form of (Riemann) integrals over time. As we will see momentarily, this class of
variables includes occupancy times, which we have previously encountered in Example

Fix some real-valued function f on X and any two time points s, 7 in R>( such that s < r. Then for any
path w in Q, the function composition f ow is piece-wise constant over [s, ] because w is cadlag; as every
piece-wise constant real-valued function on [s,r] is Riemann integrable [26], Section 24.26], it follows that
f ow is Riemann integrable over [s,r]. Hence,

/rf(Xt)dt: Q—>R:w— /Tf(w(t)) dt

is well-defined, and we call this real variable the integral of f(X;) over [s,r]. Without much extra effort,
we could generalise this to families (f;)¢e[s, of real-valued functions on &X' that are piece-wise constant.
However, because the ‘stationary’ case already encompasses a lot of important types of measurable variables,
and because it allows for a simpler exposition, we do not treat this more general set-up here; instead, we
refer the interested reader to Section 6.4 in [13]

Before we continue, let us mention two types of measurable variables that take the form of an integral
over time. For the first example, we take the real-valued function f =14 for some subset A of X. Then the
integral [ I4(X;)dt of I4(X;) over [s,r] is the length of time that the system’s state is in A between time
points s and r; as explained in Example we call this the occupancy time of A over [s,r] [31l Section 4.5].
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As a second example, for any real-valued function h on X, the temporal average of h(X;) over [s,r] is the

integral
1 T T 1 r
X, = —h(X = X,
T_S/S h(X,) dt / (X dr /Sf( ),

of f(X;) over [s,7], with f :== —-h.

T—S

For any path w in €, the integral f; f(w(t)) dt is defined through a limit of Riemman sums [see [26]

Definition 24.3], so it is natural to use these Riemann sums to construct a sequence of simple variables that
. . T . . .

converges point-wise to [, f(X;)dt. More precisely, for any grid v = (to, ..., t,) over [s, 7], we consider the

corresponding Riemann sum
n

(Flo =Y _(tr — te1) F(Xs,). (18)

k=1

Note that in this expression, for every k in {1,...,n}, we could replace f(X3,) with f(X;,) where s is any
element of [tx_1,1x]; we choose to use f(Xy,) for the sake of simplicity. By construction, (f), only depends
on the state of the system at the time points in the grid v; for this reason, we have the following corollary of
Lemma [7

Corollary 31. Consider some u in U and s,r in R>q such that maxu < s < r. Then for any grid v
over [s,r] and any real-valued function f on X, the corresponding Riemann sum (f), is A,-simple, and

(r—s)min f < (f), < (r — s) max f.

Due to the definition of the Riemann integral [26], Definition 24.3], the Riemann sum (f), converges to
the integral | f(X;)dt as the grid width A(v) of the grid v vanishes.

Lemma 32. Consider some u in U and s, in R>q such that maxu < s < r. Fiz some real-valued function f
on X, and let (vp)nen be a sequence of grids over [s,r] such that lim, oo A(vy) = 0. Then ((f)v, )nen
is a uniformly bounded sequence of A,-simple variables that converges point-wise to f: f(Xy)dt. Con-
sequently, fsr f(X%) dt belongs to M.

Proof. That ((f)s, )nen is a uniformly bounded sequence of A,-simple variables follows immediately from
Corollary That ((f), )nen converges point-wise to [ f(X;)dt follows immediately from the definition of
the Riemann integral — see, for example, Definition 24.3 in [26]. The second part of the statement follows
from the preceding part due to the same argument as in the second part of our proof for Lemma (i) every
A, -simple variable is o(A,)-simple and therefore o(.A, )-measurable; (ii) the point-wise limit of a sequence of
o(A,)-measurable variables is again (A, )-measurable; and (iii) the integral of f(X;) over [s,r] is bounded
below by (r — s) min f and above by (r — s) max f. O

4.4. Extending the domain of Markovian imprecise jump processes

The extension method that we have laid out in Sections [£.1] and [£:2] allows us to extend the domain JS of
the expectation Ep corresponding to any countably additive jump process P to the larger domain JM that
includes many — if not all — relevant variables. Clearly, this method is only applicable to an imprecise jump
processes P C P if every jump processes P in P is countably additive. The following result establishes that
this is the case for P\,o and therefore, by Eqn. , also for IP/I\W/I’Q and IPEMQ Although it might seem a bit
underwhelming, we believe that this is in fact the single most important result in this contribution — without
it, we would not be able to state the others — and definitely the most difficult one to obtain; the interested
reader can find a rather long proof in [I3] Corollary 5.30].

Theorem 33. Every jump process P in the imprecise jump process Py o is countably additive.

To appreciate this result, it should be contrasted with the ‘standard’ measure-theoretical approach to
continuous-time stochastic processes. On that approach, one starts off with the set X®>0 of all paths — so not
only those that are cadlag — to ensure countable additivity of any probability charge on the algebra of cylinder
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events, subsequently extends this probability charge by means of Caratheodory’s Theorem to a probability
measure on the product o-algebra, and finally constructs a ‘modification’ of the projectors (X;)ier., to
obtain cadlag sample paths — see, for example, [17, Section 38|, [I5, Lemma 3.16 and Theorem 3.18] or [19]
Chapter 18]. Theorem [33| demonstrates that this somewhat convoluted method is not needed — at least not
for bounded Q and finite X’ — as it is possible to immediately start with cadlag paths. Ironically, our proof
for Theorem [33| does make use of this ‘modification’ method, albeit as an intermediate step under the hood.

Due to Theorem [33] we can extend the domain of the lower and upper expectations corresponding to any
imprecise jump process P C Py, 0 — and so in particular By, o, PM o and }P’M o — as follows. First, for every
jump process P in P, we use the method in Sections [{.1] and @ to extend the domain of the expectation Ep
on JS by going over to the expectation E% on JM. Second, we take the lower and upper envelopes over
these extended expectations: this yields the lower and upper expectation E% and E; on JM, defined for all
(f ‘ Xy = xu) in JM by

E%(f| Xu = zu) = inf{EZ(f| X, = 2,): P € P} and Eo(f| Xu=2y) = sup{ E%(f | Xu = zu): P € P}.

It follows from the properties of (E%)pecp that E% and E; extend Ep and Ep to JM, and that they are
conjugate, in the sense that for all (f| X, = z,) in JM,

BA(f| Xy =24) = —Ep(—f | Xu = 24).

In order not to burden our notation, we will implicitly extend the domain of the (conditional) lower and upper
expectations corresponding to PM o IP vi,o and B, o; that is, we will henceforth use EiM E o to denote E]P,HMQ,
and similarly for IP’M o and Py o and their corresponding lower expectation, makmg the superscript o
implicit.

5. Convergence theorems

For any countably additive jump process P, w in U and z, in X,, the corresponding (conditional)
expectation operator E% (e | X, = z,) has two well-known continuity properties. First and foremost, it
is continuous with respect to monotone sequences of o(A,)-measurable variables. The general result for
the (Lebesgue) expectation with respect to a probability measure is known as the Monotone Convergence
Theorem [I8, Theorem 11 and Corollary 13 in Chapter 4]; in our specific setting of jump processes, it
specialises to the following result.

Theorem 34. Consider a countably additive jump process P, fix some u in U, x, in X, and f in M,, and
let (fn)nen be a sequence in M, that converges point-wise to f. If the sequence (fn)nen s non-decreasing
and E%(f1] X, = xy) > —00, then

lim Ep(fn|Xu=2u) =Ep(f|Xu=2y).

n—-+o0o
A similar statement holds if the sequence (fn)nen is non-increasing and EE(f1| Xy = ) < +00.

The second continuity result is known as Lebesgue’s Dominated Convergence Theorem [18, Theorem 9
in Chapter 8]. As with the Monotone Convergence Theorem, we only state this convergence result in the
particular setting of countably additive jump processes.

Theorem 35. Consider a countably additive jump process P, fix some u in U, x, in X, and f in M,, and
let (fn)nen be a sequence in M, that converges point-wise to f. If there is some g in M, such that |f,| < g
for all n in N and E%(g| X, = zy4) < 00, then

lm E%(fn| Xy =24) = EZ(f| Xu = z0).

n—-+o00
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The conditions in Theorem [35| regarding g are trivially satisfied if there is a non-negative real number B
such that |f,| < B for all n in N. Fristedt and Gray [I8, Theorem 10 in Chapter 8] call this well-known
special case of Lebesgue’s Dominated Convergence Theorem the Bounded Convergence Theorem.

Unfortunately, similar continuity results are not available for the (conditional) lower and upper expecta-
tions E%(e| X, = x,) and Ep(e | X, = x,) corresponding to an imprecise jump process P C Py g, at least
not in general. This (potential) lack of continuity is not exclusive to imprecise jump processes. In a more
general setting, Miranda and Zaffalon [32] Section 5.1] establish that for any given set of probability measures,
the lower envelope of the corresponding expectations — in essence, the corresponding Lebesgue integrals —
is always continuous with respect to monotone non-increasing sequences but may not be continuous with
respect to non-decreasing sequences. In our setting, this translates to the following result.

Theorem 36. Consider an imprecise jump process P C By o, fix some v in U, x,, in X, and f in M, and
let (fn)nen be a sequence in M, that converges point-wise to f. If the sequence (fn)nen s non-decreasing
and EL(f1| Xy = z,) > —o0, then

lim E3(fo| Xy =24) <ER(f| Xy =24) and  lim Ej(fn| Xy = 24) = Ep(f | Xu = ).

n—-+4oo n—-+oo
Similarly, if the sequence (fn)nen 48 non-increasing and E;(fl | Xy = 24) < 400, then

lim E3(fo|Xu=24) = ER(f| Xy =) and  lim Ep(fu| Xy =4) > Ep(f | Xy = ).

n—+oo n—-+4oo

Proof. This proof is essentially that of Theorem 5.31 in [I3], but with the necessary modifications to account
for the difference between Lebesgue and Daniell integration. We will only prove the first part of the statement;
the proof for the second part is analogous, but it also follows from the first part due to conjugacy.

Fix some P in P. Then

Eg(fl |Xu = xu) > E%(fl |Xu = xu) > —00,
where the strict inequality holds by assumption. Consequently, it follows from Theorem [34] that

ER(f1 Xy =w,) = lim Ep(fo]X, =)

n—-+o0o

Because (f5,)nen is non-decreasing by assumption, it follows from |(LI4)| that the corresponding sequence
(EZ(fn| Xy = Tu))nen is non-decreasing, and therefore

E(f| Xy =my) = ngrwag(fn|Xu =12,) = sup{Ej';(fn | Xy =2y):in € N}. (19)

Because for every P in P, (E%(fn | Xu = u))nen is a non-decreasing sequence of extended real numbers
(bounded below by E%(f1| X, = x,) > —00), it is easy to see that

(E%(fn | Xu = z"))neN and (Eg(fn | X = xu))neN

are non-decreasing sequences of extended real numbers (bounded below by E%(f1| X, = x,) > —00), so the
limits of these sequences exist. Because these sequences are non-decreasing,

nEEI}OOEP(fn | Xu = z4) = SUP{EP(fn | Xu=au):n € N} (20)
and
ngrfooEp(fﬂXu =1xy,) :sup{Ep(fn|Xu =x,):n€ N} (21)

To verify the equality in the first part of the statement, we recall that by definition of the upper
envelope E;, B
Er(flXy=2,) = sup{Ej'J(f | Xy =ay): P € ’P}.
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From this and Eqn. , it follows that
Ep(f| Xu=12y) = sup{sup{Ej';(fn | X, =wz,):neN}: Pe P}

= sup{sup{Ej'g(fn | Xy =2u): PEP}:ince N}
= sup{E;(fn | Xy = z,): n €N},
The equality in the first part of the statement follows immediately from the preceding equality and Eqn. :
Bp(f 1 Xu = @) = sup{ B (fu | Xu = ) n € N} = lim Bp(fu] Xu = 20).
The inequality in the first part of the statement follows from a similar argument. By definition of E%,
E5(f| X,y = v) = inf{ER(f| X, =2,): P € P}.

From this and Eqn. , it follows that
EL(f| Xu=124) = inf{sup{Ej‘;.(fﬂXu =z,):neN}: Pe 77}

> sup{inf{Ej';(fﬂXu =z,): PEP}:ine N}
= Sup{E’}UD(fn | X, = xu): ne N}a

where the inequality holds because we have changed the order of the supremum and the infimum — for a
proof of this property, we refer to [4, Lemma 15.18]. The inequality in the first part of the statement follows
immediately from the preceding inequality and Eqn. :

E%(f|Xu =Ty) > SUP{E%(fn|Xu =Ty):n € N} = HBIEOOEOP(JCTL | Xu = 2u). O

We would like to emphasise that for non-decreasing sequences (f,)nen of variables in M, the limit
of EZ(fn| Xy = x,,) exists as n recedes to 400, but this limit is only guaranteed to be a — possibly conservative
— lower bound; a similar remark holds for the limit of Ep(f, | X, = 2,,) for non-increasing sequences. For
dominated sequences, we have a similar type of conservative limit behaviour.

Theorem 37. Consider an imprecise jump process P C By o, fix some v in U, z,, in X, and f in M,,
and let (fn)nen be a sequence in M, that converges point-wise to f. If there is some g in M, with
Ep(g| Xu = 24) < +00 such that |f,| < g for all n in N, then

limsup B (fn | Xy = 2u) < Ep(f| Xy = 2u)  and  liminf BY(fu| Xy = 4) > Bp(f| Xy = 20).

n——4o0o

Proof. This proof is essentially that of Theorem 5.32 in [I3], but with some obvious modifications to adapt
it to the Lebesgue integral instead of the Daniell expectation. It clearly suffices to prove the inequality
for the conditional lower expectation E%, because this implies the inequality for the conditional upper
expectation E; due to the conjugacy relation.

Observe that by assumption,

(VP €P) ER(g] Xy = 2u) < Bplg] Xy = 24) = B < +00. (22)
Due to Eqn. , and because |f,| < g for all n in N by assumption, it follows from Theorem [35| that
(VP € ,P) E%(f | Xu = xu) = Er_{_l Ej‘?(fn | Xu = xu) (23)
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Furthermore, because —g < f,, < g for all n in N by assumption, it follows from Eqn. (22)), [[LI4)] and [(LI2)
that
(VTLEN)(VPEP) _BSE%(f7L|Xu:Iu) <B. (24)

From Eqns. and , we infer that —8 < E%4(f| X, = z,) < B for all P in P, and therefore also
—-B< E%(f|Xu =x,) < B.
Fix any € in Rsg. As EZ(f| X, = =z, is real, there is some P in P such that

EL(f| Xu=2u) > Ep(f| Xu=24) —€= Erf Ep(fol| Xu=124) — €

Note that ES(fp | Xy = zy) > ES(fn | Xu = z,) for all nin N, and therefore

lim E%(fn| Xy =xy) =limsup EG(fr | Xy = ) > limsup ES(fr | Xy = zu).

n—+00 n——+o0 n——+o00

It follows immediately from the preceding two inequalities that

E’}UD(f|Xu = xu) > hmsupﬂ%(fn|Xu = xu) — €

n—-+oo

Because € was an arbitrary positive real number, we conclude that

E;;(f|Xu = xu) > hmsuPE%(fn|Xu = xu)v

n——+00
and this is what we set out to prove. O

While there is a (potential) lack of continuity in general, it turns out that for many practically relevant
variables g in M, the lower and upper expectations corresponding to P C PM,Q are actually continuous for
appropriately chosen sequences (gn)neN of A,-simple variables. In Section [5.1)| we show that this is the case
for the number of selected jumps 7} 1 and the sequence (08! Ynen with (vn)neN a sequence of grids over [s, r]
such that lim,_, 1 o0 A(v,) = 0, and we do the same in Section [5.2] for [ f(X;)dt and the sequence ({f)s,)
with (vp,)nen again a sequence of grids over [s, 7] with vanishing grld width. In both of these cases, we make
use of the following straightforward intermediary result to show that the lower/upper expectation of the
simple variable g,, converges to that of the measurable variable g as n recedes to +oc.

Lemma 38. Consider an imprecise jump process P C By, o. Fiz some uw in U, x,, in Xy, f in M, and g
m Sy. If € is a non-negative real number such that

(VP eP) ER(If —gl| Xu =124) <,
then
|EOP(f‘Xu =zy) — Ep(g] Xu = xu)’ <e and |E7Z(f|Xu =) — Ep(g] Xu = xu)| Se

Proof. We only prove the inequality of the statement for the lower expectation. The inequality for the upper
expectation can be proven in an analogous manner, but also follows from the one for the lower expectation
due to conjugacy.

Observe that for any jump process P in P,

|E73(f|Xu =xy) — Ep(g]| Xu =74 ‘ ’ Ep(f1 Xu=24) — E5(g| Xy :l'u)|
’ %(f‘Xu:xu)+E%(_g|Xu:$u)|
! Bp(f — g1 Xu =)
E3(|f — || Xu = ),



where for the first equality we used that E¢ extends Ep, for the second equality we used |(LI2)] for the third
equality we used and the fact that E¢(—g| X, = z,) = —E%(g9| Xy = z,,) is real (due to |(LI1))), and
for the inequality we used It follows from this inequality and the assumption in the statement that

(VP €P) |ER(f | Xu=2u) — Ep(g]| Xu = 2,)| <
This implies that

E%(f| Xu=2u) =inf{EZ(f| X, =,): P€ P} <inf{Ep(g9| Xy =,) +€: P € P}
=inf{Ep(g9| Xy =zu): PEP} +e¢
:EP(9|Xu qu) + e

Similarly, we find that
Ep(f| Xu=24) 2 Ep(g| Xu = 24) — €.

The inequality of the statement follows immediately from these two inequalities because Ep(g| X, = x,,) is
real valued due to [(LD1)]

5.1. Convergence for the expected number of (selected) jumps

Consider an imprecise jump process P C Py o, and fix a sequence of time points u in U, a state
instantiation z,, in X, time points s,¢ in R>¢ such that maxu < s < r and a subset A of Xi. Our aim is to
obtain a convergence result for Ep(nﬁﬂ | X,, = x,) and/or Ep(nﬁ’r] | X\, = 2,). In particular, we want to
specialise Theorems [36| and |37 for f = 77]‘27T] and (fn)neny = (nfn)neN, with (v, )nen a suitable sequence of
grids over [s, r]. From Lemma [28 we know that (Uﬁ)neN converges point-wise to nﬁﬂ if limy, 1 oo A(v,) = 0.
Furthermore, if A = Xi, then we know from Lemma |29| that this sequence is non-decreasing if v,, C v,,41 for
all n in N. Hence, if all these conditions are satisfied, then we can use Theorem [36]| to determine conservative
bounds on the lower/upper expectation of 77]’;‘ ] = M- If we only have that lim,,_, 4. A(v,) = 0, then we
need to resort to Theorem In that case, we need to find some g in M, with E; (9| Xy = x) < +00 such
that |7];f‘n| < g for all n in N. To this end, we observe that for all n in N, [ | < n,,) by Eqn. and
Lemma 30} So all we need to apply Theorem [37]is a real-valued upper bound on the upper expectation of
Ms,r)- The following result, which will also play an essential role in our proofs for Theoremf via Lemma
— and Theorem [46| further on, provides such a bound. The proof is rather lengthy, and can be found in [13]
Corollary 5.18 and Theorem 5.27].

Theorem 39. Consider any jump process P in Py o. Fizx some u in U, z,, in X, and time points s,r

in R>q such that maxu < s <r. Then for any grid v over [s,r],

12| <l
5 .

Ep(ny | Xy =24) < (1 —3) 9

and E?’(n]s,r] |Xu = l'u) < (7" - S)

Because Eg(n]w] | X = x,) < 400 due to Theorem this means that g = 7, ,) satisfies our needs, so
we could invoke Theorem (37| to bound the lower/upper expectation of 77]‘:77” . Remarkably, however, in the
particular case of the number of (selected) jumps, the bounds in Theorems [36] and [37| turn out to be tight,
and the limit superior and limit inferior in Theorem [37] are in fact limits. The reason for this is the following
important result, which generalises Proposition 6.3 in [33].

Theorem 40. Consider an imprecise jump process P C By o. Fiz some v in U, z,, in X, and time
points s,r in R>q such that maxu < s <r, and fir any subset A of Xi. Then for any grid v over [s,r],

[a—y

ED (001 | X = 20) = Ep ()| Xu = z)| < 2A@)(r = 5)[ Q)7

and the same inequality holds for the upper expectation.
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For our proof, we use several intermediary results. The first one is a consequence of Theorem and is
taken from [I3] Corollary 5.18 and Lemma 6.53].

Lemma 41. Consider a jump process P in By, o. Fiz some u in U, x,, in X, and time points s,t,r in R>g
such that maxu < s <t<r. Then

{Xe # X # X} ={we Q:w(s) #wt) and w(t) # w(r)}
belongs to Ay, and .
P(Xs # X # X, [ Xu = 2a) < 7(t=s)(r =) Q"

The second intermediary result we need is a generalisation of Lemma 5.24 in [I3] from 7, to n2; the
original statement of this result contained a small error, and we thank Arne Decadt for pointing this out to
us.

Lemma 42. Consider time points s, in R>o such that s < r and a grid v = (to,...,tn) over [s,r]
with n > 2. Then for any subset A of Xi,

n—1 n—1

A A
n(s,r) - ];H{th—17éxfk7$XT} S T S 77(87r) 2 ]; ]I{th_17éxtk7éx’“}'

Proof. Crucial to our proof is the following observation. Let w = (s, ..., $m») be any grid over [s,r], and fix
some time point ¢ in |8;,—1, ;[ Then it follows from Eqn. that

Moo — M = 1a(Xe, ., Xo) +1a(Xe, X)) = La(Xs,,_,, Xs,,)-
Forallz,y,zin X, Ia(z,y)+1a(y, 2)—la(z,2) =0ifz =yory = z,and —1 < Ia(z,y)+1a(y, 2)—la(z, z) <2

otherwise, so if x # y # z. Hence,

A A A
nw - ]I{Xsm—l #Xt#XSm} S n’u}U(t) S nw + 2H{Xsm717éXt7£Xsm}’ (25)

Let vy == (to,tn), and for all k in {1,...,n — 1}, let vy :== (to,...,tk, tn); note that v,_; = v. Then it
follows from Eqn. that for all & in {1,...,n—1},

<pt <ph 21 :
o nvk o nvk_l * {th—17éth7£an}

77734;6_1 - H{th71¢xtk¢xtn}
We repeatedly apply the second inequality, to yield
n—1
nt=mh  <nt o+ 2]1{th72¢th71¢th} <<+ 2;1[{)(%1#%#%}
n—1

_ A :
= o) T2 ; H{xtk,ﬁéxtk;ﬁxr}’

similarly, by repeated use of the first inequality we find that
n—1
A A A A
= > —1I > > — I
o o1 = Mo {th,Q #th,ﬁéxtn} - = "o ; {X‘k—l 7£th5‘£th,}

n—1

_ A
B n(s,r) B kz—l H{th—17£ka7éXr}.

This proves the inequalities in the statement. O

29



Next, we establish that the absolute value of the difference between the number of selected jumps in |s, 7]
and the number of selected jumps along a grid v over [s,r] is measurable and bounded below; this result is
similar to — and, in some sense, is a corollary of — Lemma [28]

Lemma 43. Consider some u in U and s,r in R>¢ such that maxu < s <r. Fix some subset A of Xi
and a grid v over [s,r], and let (vy)nen be a sequence of grids over [s,r] such that lim, 1. A(v,) =
0. Then (Iny — nit)nen is a sequence of A,-simple variables that converges point-wise to ‘77]12,7”] —nA.
Consequently, |n]‘;"r] —nA| belongs to M,.

Proof. Recall from Lemma [28| that (72 ),y is a sequence of A,-simple variables that converges point-wise
to n]"s"r], and from Corollary [26| that 7, is a A,-simple variable. For any two A,-simple variables f and g,
the non-negative real variable |f — g| is A,-simple too. Hence, (|77fn — 02 )nen is a sequence of A,-simple
variables, and it is obvious that this sequence converges point-wise to |77]2‘,7T,] —n?|. By the same argument as

in the second part of the proof of Lemma this verifies that |n]‘2 " Y| belongs to M,,. O

As a final intermediary result, we use Lemmas and [43] to bound the expectation of the absolute
value of the difference between the number of selected jumps in some interval |s, r] and the number of selected
jumps along the trivial grid (s,r) over [s,r].

Lemma 44. Consider a jump process P in By,o. Fiz some u in U, z,, in X, and time points s,r in R>g
such that maxu < s < r. Then for any subset A of Xi,

(r—s)?l1Qll*.

NG

E?D(h]]é,r] - né,7)| |Xu = xu) <

Proof. For all n in N, we let v, := (tn.0,...,tn,n) be the grid over [s, r] that consists of n + 1 evenly spaced
time points, so with

k
btk ::s—&-ﬁ(r—s) for all k € {0,...,n}.

Our construction of the sequence (v, )nen guarantees that limy, -, oo A(v,) = limy, 400 . = 0. Therefore,

it follows from Lemma [43] that (|n;} — né nen is a sequence in S, € M, that converges point-wise to
\nﬁ i né_r)\ € M,,. Because this convergence is not monotone, we need to resort to Theorem To this
end, we observe that for all n in N,

|771114n - né,ﬂ' < maX{Ui,»Uf?«,s)} < max{nvnan(r,s)} < Ms,r]s

where for the first inequality we used that nqﬁl and 77(45 ) are non-negative, for the second inequality we used
Eqn. and for the final inequality we used Lemma Due to the preceding, and because E% (15, |
Xy = xy) < 400 due to Theorem it follows from Theorem that

In order to bound the right-hand side of Eqn. (26), we fix any n in N. Because |n;} — né T)| is A, -simple
and because E'% extends Ep,

E$(|n11)4” - né;@' |Xu = xu) = EP(|77;,4" - ném)‘ ‘Xu = a:u)
Next, we recall from Lemma [42] that

n—1

A A E
|’rlun - n(s,r)' S 2 H{th,k—1¢th,k7£X7'}’
k=1
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and from Lemma [41| that each of the events occurring on the right-hand side belongs to A,, which makes
the expression on the right-hand side an A,-simple variable. Due to|(E4)| this implies that

Xu = xu)

n—1
=2 Z P({th,k—l # th,k a Xr} | Xy = xy).
k=1

n—1

E%(‘nvAn - né,r)| | Xy = x“) < Ep <2 Z H{th’k,ﬁéxtn’kin}
k=1

where for the equality we used Eqn. . We replace the probabilities on the right-hand side of the equality
with the upper bound in Lemma [41] and execute some straightforward manipulations, to yield

(s — tops)(r — )| Q2 = §i ( k04$)gw

k=1

|
—

NG

n

Eg (I, = nfh,pl| Xu=2.) <2

T
—

—~

I
B

r—s)? 9 1(r—s 9
=P - wyjor = Lo S
k=1

I

Il

—
NG

Because Y1 (n — k) = (”;1)”, it follows from this inequality that

I1n—1

Ej‘a(lnfn - né,r)l | Xy =) < 77— (r = 5)*1Q|1%. (27)
Finally, it follows from Eqns. ) and (27) that
. _ In-—1 1
Epwﬁﬂgn@ﬂuxu:mgsnggmz (r— 712l = 1 sl Q. =

At long last, we can get around to proving Theorem [40] and we do this with the help of Lemmas [38] 3]
and [44] and some properties of the Lebesgue integral E% (e | X, = z,,).

Proof of Theorem[{0} Due to Lemma it suffices to prove that for any jump process P in P C Py o,

1
B (s = 1| Xu = 2) < 2A@)(r = s)[1QJ% (28)

Hence, we fix any jump process P in P C By, o.
Let us enumerate the time points in v as (tg,...,t,). It follows immediately from the definition of 77

and 77 that

1s,7]
n n
A A A A
Ms,r] = Zn]tk—htk] and 7y = Zn(tk—htk)’
k=1 k=1
and therefore

a0 —

n n
A _ A A
“1te] Zn(tk—htk) - < Z‘T]]tk—l;tk] B n(tk—l,tk)"
k=1 k= k=1

Due to Lemma |17]é, . —nA| belongs to the domain M,,, and so does |nf2 ] ”(tk iyl forallkin {1,... n}.
Furthermore, for all k in {1,...,n}, EZ(|ni Mite 1itn] — n(tk iy [ Xu = 2u) > 0 due to|(LI1) Hence7 due to
the monotonicity and add1t1v1ty of EY, it follows from the preceding inequality that

E$(|77] -y | ’X = ﬁu < EP <Z| tk 1,tk] nék—lik)‘

X, = xu>
k=1

= Z Eg’(mﬁka,tk] - nék—lvtk)| ‘X" = m“)'

k=1

A A
(n]tk—htk] - n(tk—l,tk))
1

n
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We substitute the expectations on the right-hand side of the equality by the upper bound in Lemma [44] to
yield

n

(tr — tu—1)[12Q]1%.

| =

Ep(Infan — il | Xu = 24) <
k=1

Finally, because (t; — tx—1) < A(v) for all k in {1,...,n} and > _, (tx — ts—1) = (tn — to) = (r — s), it
follows from this inequality that

Ep(Infe) — il | Xu = z4) <

o~ =
>

DIQIP Yt~ th1) = AW~ 5)[QI7,
k=1

and this is precisely the inequality in Eqn. . O

Finally, it follows immediately from Theorem [A0] that in the particular case of the number of selected
jumps, the convergence in Theorem [37|— and, if A = Xi and v, C v,41 for all nin N, also that in T heorem
— is not conservative but tight, and that we have limits instead of a limit superior and a limit inferior.

Corollary 45. Consider an imprecise jump process P C By, o. Fiz some u in U, x,, in X, and s,7 in Rxg
such that maxu < s <r, and fix a subset A of Xi. Then for any sequence (vy)nen of grids over [s,r] such
that lim, 400 A(vy) =0,

EP( |X =x,) = EIEOQ Ep (r]vn X, =wz,) and Ep (nﬁ)r] | Xy =2,) = llTooEp(nvn w=Ty).
Proof. Follows immediately from Theorem [40] O

Theorem [40[ and Corollary |45| allow us to compute — or approximate — the lower/upper expected number
of selected jumps with respect to an imprecise jump process P C By o. Obviously, however, this requires
that we can compute Ep(n | X, = x,) and/or Ep(nst| X, = x,) for any grid v over [s,7]. In Section
further on, we will identify conditions on P under which this is possible as well as present other, more explicit
methods for computing lower /upper expectations of the number of selected jumps.

5.2. Convergence for the expected Riemann sums

Next, we set out to prove a (tight) convergence result for the lower/upper expectation of f; f(X:)dt. Fix
some sequence (v, )nen of grids over [s, 7] with lim, 4. A(v,) = 0 — take, for example, the sequence with
grids defined for all n in N by

r—s r—s r—s
vp = | s, 8+ ,5+ 2 N L .
n n n

Then by Lemma[32] the corresponding sequence ({f >U" )nen of Riemann sums is a uniformly-bounded sequence
of simple variables that converges point-wise to f f(Xy) dt. Consequently, we could invoke Theorem [37] -
with g the constant (and therefore bounded and measurable) real variable (r — s)|| f|| — to conservatively
bound the lower/upper expectation of f: f(Xy) dt. Here too, however, the approximation in Theorem [37is
actually tight, and the limit superior and limit inferior in the statement are actually limits. The reason for
this is the following important result; it is a special case of Proposition 6.38 in [13], but we provide a formal
proof for the sake of completeness.

Theorem 46. Consider an imprecise jump process P C By 0. Fiz som w in U, z,, in X, and time points s,r
in R>q such that maxu < s <r, and firx a real-valued function f on X. Then for any grid v over [s,r],

E% Tf(Xt)dt Xu=zu ) = Ep({f)o| Xu=zu)| < 1(maXf*mirlj")A(v)(T*S)HQII’
/

[\

and the same inequality holds for the upper expectation.
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Our proof for Theorem [46] uses the following rather obvious intermediary result, which is a special case of
Lemma 6.37 in [33]; again, we provide a formal proof here for the sake of completeness.

Lemma 47. Consider time points s,r in R>q such that s <r, and a real-valued function f on X. Then
for any grid v over [s,r],

< (max f — min f)A(v)ns .-

/WﬂXdﬁfU%

Proof. We enumerate the time points in v as (tg,...,t,). Then

(Fro =D F(Xe)(th — tea),

k=1

by definition, and it is a well-known property of Riemann integrals [see 26l Theorem 24.19] that

/Sf(Xt)dt—kZ:l/ F(X,)dt.

th—1

It follows from these two equalities and the triangle inequality that

n
k=1
n

<
k=1

We now investigate the terms of the sum on the right-hand side of this inequality individually. To this

/ﬁﬂ&wﬂ—un

tr—1

/ k FXe)dt =7 (X)) (b — te1)
k=1

tr

F(Xe)dt — f( X)) (e — tr-1)

tr—1

. (29)

end, we fix some k in {1,...,n} and w in Q. Because the Riemann integral is additive,
tr tr tr
[ flwt)de— fltw)ton -t =| [ s@)a- [ fwm)d
th—1 th—1 te—1

_ / Cf(w(0) - () dil. (30)

te—1

First, we consider the case that w is constant over [ty_1,x], meaning that 7y, _, +,j(w) = 0. Then for all
tin [ty—1,tk], w(t) = w(tx), and hence f(w(t)) = f(w(ty)). Consequently, using Eqn. (30),

tk
/ 0dt
tr_1

/k fw(t)) dt — f(w(te)) (tr — tre1)| =

tp—1

=0 = (max f — min f)A(U)U]tk,l,tk](W)~

Second, we consider the case that w is not constant over [t;_1, ], in the sense that 1y, _, +,1(w) > 0. Observe
that

(Vt € [te—1,t]) |f(w(®)) = f(w(te))| < (max f — min f).
It follows from Eqn. (30), this inequality, the counterpart of [(LI5)] for the Riemann integral and the
monotonicity of the Riemann integral that

= /k fw(®) = f(w(ty)) dt

th—1

/kf@@»M—f@m»@Hr4w

tr—1

s/”\ﬂw@)—fw@mﬂm

th—1

tr
§/ (max f — min f) d¢

th—1

= (max f — min f)(ty — tg—1) < (max f — min f)A(v),
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where for the final inequality we used that (¢, —tx—1) < A(v). Hence, and because 4, , +,1(w) > 1, it follows
that

/ ' f(w(t)) dt — f(w(tk))(tk+1 —tg)| < (max f —min f)A(v)me, 4 (w)-

th—1

Thus, we have shown that for all k in {1,...,n},

T
/ f(Xe)dt = f(Xe, ) (e — te—1)| < (max f —min f)AQ)m,_, 0,
te—1

It follows from this and Eqn. that

/ "Rt~ (f)

< Z(maxf — min f)A(U)U]tk_l,tk] = (max f — min f)A(v)n]s,r],
k=1

where for the equality we used that ZZ:1 Mtr_1,tn] = Ms,r]- O

Proof of Theorem[/f For any jump process P in P, it follows from Lemma A7 the monotonicity and
homogeneity of E% and Theorem [39] that

w3

[ sexa- i,

u:xu) < Ef((max f — min f)AW)ns,) | Xu = 24)
= (max f — min f)A(V)EE (5,07 | Xu = Tu)
< (max f — min A@)(r )]

Since this inequality holds for any jump process P in P, it implies the inequalities in the statement due to
Lemma [

Clearly, Theorem [46| implies that in the case of a measurable variable that can be written as the integral
of f(X}) over some interval [s,r], the bounds in Theorem [37] are actually tight; even more, the lower/upper
expectation of (f), converges to a limit.

Corollary 48. Consider an imprecise jump process P C By o. Fiz some u in U, x, in X, s,r
in Rsq such that maxu < s < r and f in RY. Then for any sequence (vy)nen of grids over [s,r]
such that lim,—, 1o A(v,) =0,

E% (/Tf(Xt)dt ‘ X, = a;u> = lim Ep((fv, | Xu =24)

n—-+oo
and
T
B ([ socat| X =2.) = i Ep((fn, | Xu =),
s n—-+4oo
We can make a similar remark here as the one we made right after Corollary Theorem [46] and
Corollary E alloW us to compute — or approximate — the lower/upper expectation of f f(X¢)dt for an
imprecise jump process P C By, 0, given that we can determine the lower/upper expectation of (f), for any

sufficiently fine grid v over [s,r]. Here too, we leave a more thorough discussion, and improved algorithms,
for Section [6.1] further on.
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6. Computational methods

In Section we learned that we can use Theorem 40| or Corollary 45| to determine the lower/upper
expectation of the number of selected jumps nﬁ’r] if we can determine the lower/upper expectation of 7}
for a suitably fine grid v over [s,r], and we learned a similar thing for variables of the form of a Riemann
integral in Section provided we can determine the lower/upper expectation of (f),. In this section, we go
deeper into this idea of determining these lower /upper expectations. In Section we investigate conditions
on the set of rate operators Q under which we can compute the lower /upper expectation of n* and (f),
with respect to Py, o. Quite surprisingly, this provides the ideal starting point for a computational method
that works under fewer conditions on Q and for any imprecise jump process P such that IP’AI\,/II, o ©P CBu,o,
as we will see in Section [6.21

6.1. Computing the lower expectation of simple variables with a specific sum decomposition

Fix a sequence of time points u in U, a state instantiation z,, in &, and time points s, in R>( such
that maxu < s < r, and let v = (to,...,t,) be any grid over [s,r]. The aim of this section is to investigate
under which conditions on the imprecise jump process P we can determine Ep(f(X,)| X, = z,) and/or
Ep(f(X,)| Xy = x,). We are particularly interested in the case that f(X,) =07 or f(X,) = (f).; We cover
both of these cases if we point our attention to a generic A,-simple variable f(X,) with a sum decomposition

of the form .

FX) = gk(Xee_,» X1, (31)
k=1
where g1, ..., gn are real-valued functions on X2. This specific sum decomposition suffices because both 77;)4

and (f), are of this form: it follows from Eqn. that n2 is of this form with g, = I4 for all k in {1,...,n},
and from Eqn. that (f), is of this form with gg (X, ,, X, ) = (tx — tk—1)f(Xy, ) for all kin {1,...,n}.
Even more, both —n7' and —(f), are obviously of this form as well; due to conjugacy, it therefore suffices to
focus on determining the lower expectation of a generic A,-simple variable f(X,) with a sum decomposition

of the form in Eqn. .

6.1.1. The law of iterated lower expectations

Krak et al. [2, Section 9] essentially argue — but see [I3, Section 4.1] for a more generic and detailed
explanation — that determining lower expectations becomes simpler whenever P satisfies the ‘law of iterated
lower expectations’, which generalises the well-known ‘law of iterated expectations’. To state this law of
iterated expectations in the setting of jump processes, we need to introduce some additional notation: for all
win U, v in Uye such that w < v and f in R* | we define the S,-simple variable

Ep(f(X,)1Xu) = Y Ep(f(Xo)| Xu = 2u){x,=0.}- (32)
T €EXy

Proposition 49. Consider any jump process P. Then for all w in U, v,w in Uy such that v < v
and uUv S w, fin R and z, in X,,

EP(f(Xw) |Xu = xu) = EP (EP(f(Xw) |XuU1)) ’ Xu = xu)

For imprecise jump processes, a result similar to Proposition [9] exists for the corresponding lower
expectation, but it is a bit more involved. To see why, we let P be any imprecise jump process. First, we
generalise the variable defined in Eqn. : for all u in U, v in Uye such that u < v and f in R*, we define
the S,-simple variable

EP(f(XzJ) | Xu) = Z EP(f(Xv) | Xu = mu)H{Xu:a:u}-
Ty €EXy
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Fix some u in U, some v, w in Uy such that u < v and v U v < w, some real-valued function f on X, and
some x, in X,. It is obvious that

Er(f(Xy)| Xuw) < Ep(f(Xyw)| Xuuw) forall Pe P,

and we infer from this inequality, Proposition 49| and |(E4)| that for any jump process P in the imprecise
jump process P,

EP(f(Xw) | Xu = (Eu) = EP(EP(f(Xw) | Xqu) |Xu = xu) > EP(EP(f(Xw) |Xqu) | Xu = (Eu)'

Inequalities are preserved under taking the infimum, so we can conclude that

EP(f(Xw) ‘ Xu=1ay) > Ep (EP(f(Xw) |Xqu) ’ Xu = xu)

In the special case that this inequality always holds with equality, we say that P satisfies the law of iterated
lower expectations.

Definition 50. An imprecise jump process P satisfies the law of iterated lower expectations if for all u in U,
v,w in Upe such that u < v and uUv < w, f in R* and x, in X,

EP(f(Xw) ‘Xu = xu) = EP (EP(f(Xw) |Xqu) | Xu = xu) (33)

Unfortunately, many imprecise jump processes do not satisfy this law of iterated lower expectations; see
for example [2, Example 9.2]. However, Krak et al. [2, Theorem 6.5] show that whenever the non-empty and
bounded set Q of rate matrices is convex and has separately specified rowsH Bui,o satisfies this law — and it
is important to stress that ]P’/\l\//ig or ]P’/\IleQ may not [2, Example 9.2].

Proposition 51. If QO is convex and has separately specified rows, then Py o satisfies the law of iterated
lower expectations.

Example 52. It follows immediately from its definition in Example that the set Q is convex, and we
have seen in Fxample @ that Q also has separately specified rows. Hence, our model By, o of the power
network is a Markovian jump process that satisfies the law of iterated lower expectations.

Crucially, if an imprecise jump process P satisfies the law of iterated lower expectations, then we can
compute conditional lower expectations of the general form E,(f(X,)| X, = z,) — with u < v — through
backwards recursion. This recursive method goes back to earlier work on imprecise Markov chains — see [35),
Section 4.5] and [36] Section 3]. In this contribution, we will only give this backwards recursive method for
a special case. First, we make the additional assumption that P is Markovian. Second, we only consider
variables f(X,) that have a sum decomposition of the form in Eqn. . Third, we assume that the sequence
of time points u in the conditioning event is non-empty, and that the last time point of u equals the first
time point of v; formally, we do this by considering conditioning events of the form {X, = x,, X; = 2} with
u < (s) and non-empty sequences of time points v such that to = s. This third assumption is not strictly
necessary, but it does allow for more elegant statements — we refer the interested reader to Lemma 6.44 in
[13] for ideas on how to remove this condition. We prove in that, under these three additional
assumptions, Proposition 4.11 in [I3] specialises to the following result.

Proposition 53. Consider a Markovian imprecise jump process P that satisfies the law of iterated lower

expectations. Fix time points s,r in Rxo such that s <r, a grid v= (to,...,t,) over [s,r] and real-valued
functions g1, ..., gn on X2. Let fy, ..., fn be the real-valued functions on X defined by the initial
condition f, =0 and, for all k in {0,...,n — 1}, by the recursive relation

fk: X —=R:z HEP(gk+1(x)th+l) +fk+1(th+1)|th = Z‘)

Then for all x in X, u in U<s and x, in Xy,

Ep (Z gk(th,—l ) th)

k=1

Xy =12, Xs = il?) = fo(l’)

10The published result lacks the condition that Q has separately specified rows, but this is implicitly used in the proof given
there; the interested reader can find the corrected statement and proof in [I3} Theorem 3.88] or [34, Theorem 5.32].
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6.1.2. The lower envelope Q of Q and its exponential
Obviously, Proposition [53|is only useful if we can determine lower expectations of the form

Ep(h(Xeya) | Xu = 24, Xt = 2).

As we will presently see, this turns out to be the case for any imprecise jump process P such that P/%\/t/[,g C
P C Bu,o, at least if Q has separately specified rows. To explain how this works, we need to introduce the
operator exponential 22 of the lower envelope Q of Q.

Given a non-empty and bounded set R C 9 of rate matrices, Krak et al. [2, Eqn. (38)] define the
corresponding lower envelope Rz : RY — R? as the operator that maps any real-valued function f on X to

Rrf: X - R:z— [Refl(z) = nf{[Qf](z): Q € R}; (34)

the upper envelope R : RY — R is defined similarly, and is related to the lower envelope Rz by conjugacy:
Rrf = —Rgr(—f) for any real-valued function f on X. Krak et al. [2, Proposition 7.5] show that the lower
envelope Ry is a so-called lower (transition) rate operator — a generalisation of the notion of a rate matrix
that relaxes linearity to non-negative homogeneity and superadditivity.

Definition 54. A lower rate operator R is an operator R: RY — R?Y such that

LR1. R(Af) = ARf for all X in R and f in RY; [non-negative homogeneity]
LR2. R(f +g) > Rf + Ry for all f,g in RY; [superadditivity]
LR3. [RI,](x) > 0 for all z,y in X such that z # y; [non-negative off-diagonal components]
LR4. Ry = 0 for any constant function g on X [zero on constant functions]

In order to shorten our notation, we will denote the lower envelope of Q by @ := Rg, and its conjugate
upper envelope by Q = Ro.

Example 55. In Ezample we defined a set of rate matrices through inequalities on the off-diagonal
components. For this reason, the lower envelope Q of this set Q can be easily determined: for all f
in RY and x in X, [Qf](z) can be determined either through a straightforward case study or through linear

programming [see also [10, p. 293].

One interesting property of the lower envelope @ of Q is that its operator norm ||Q| is equal to the
supremum of the norms of the rate matrices in Q.

Lemma 56. For any non-empty and bounded set R of rate matrices, |Rz| = [|R/||-

Proof. Let us denote the lower envelope of R by R := Rr. For any rate operator @) in R, it follows from
Eqn. @ and the non-positivity of the off-diagonal elements of @ that

1Q|| = 2max{-Q(z,z): z € X} = —2min{Q(z,z): z € X} = —2min{[QL,](z): z € X}.
Similarly, by (LR7) in [13, p. 111] or Proposition 4 in [33],
IR|| = Zmax{—[ﬂﬂx](x): T € X} = -2 min{[ﬂﬂx](x): T € X}.

To obtain the equality in the statement, we substitute the definition of R in the preceding equality, change
the order of minimisations and substitute our expression for ||Q||:

IR| = —2min{inf{[QH$](1‘): QeR}:ze X} = —Zinf{min{[Qﬂx](x): reX}: Qe 'R}
=sup{—2min{[QL)(z): z € X}: Q e R} =sup{||Q||: Q e R} = |R]|.
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More importantly, the ‘operator exponential’ 2% of the lower envelope Q of Q plays the same role for the
imprecise jump processes IP’AI\//I{Q and Py o as the matrix exponential eAQ of the rate matrix Q does for the
homogeneous Markovian jump process P, o in Eqn. @D We formalise this statement in Lemma [57| further
on, but we need to introduce the operator exponential of a lower rate operator before we can do so.

Consider a lower rate operator R. Krak et al. [2, Corollary 7.11 and Theorem 7.12] — see also Section 6 in
[37] — prove that for all A in R,

n
AR RY S RY: fis e29f = lim <I—|— AR) f
n—-+o0o n
is well-defined. If the lower rate operator R is linear — or equivalently, if R is a rate matrix — then AL ig the
(matrix) exponential of R; for this reason, we call £ the (operator) exponential of R.

Now recall from Eqn. @ that the matrix exponential e of the rate matrix Q can be used to compute
specific expectations for a homogeneous Markovian jump process with rate matrix ). Interestingly, the
(operator) exponential e of the lower envelope @ of Q plays a similar role for the homogenous Markovian
imprecise jump processes PM,Q and By g, in the sense that whenever Q has separately specified rows, the
operator exponential of its lower envelope @) gives the (lower) expectation of any real variable that depends
on the state of the system at a single future time point [2, Corollary 8.3].

Lemma 57. If Q has separately specified rows, then for all t, A in R>q, f in RY, zin X, u in U~ and x,
m Xy,

E%A,Q(f(AXH-A) | Xo =20, Xy = 2) = [eAQf] () and EM,Q(f(Xt+A) | Xy =2y, Xy = 1) = [eAQf] (),
and hence, more generally, for any imprecise jump process P such that P/%\/t/[,g CPCPuv.o,
Ep(f(Xega)| Xy =24, Xy =) = [EAQf] (z).

Finally, combining Proposition [53]and Lemma[57] gives us the straightforward backwards-recursive method
we are after, although it only works for Py o and in case Q is convex and has separately specified rows.

Corollary 58. Fiz time points s,r in R>q such that s <, a grid v = (to,...,t,) over [s,r] and real-valued
functions g1, ..., gn on X% Let hy, ..., h, be the real-valued functions on X defined by the initial
condition h, =0 and, for all k in {0,...,n — 1}, by the recursive relation

hy: X >R:z— [e(t’“+17t’“)9(gk+1($, o) +hk+1)} (z).

If Q is convex and has separately specified rows, then for all x in X, u in U< and x, in X,

Enmo <Z Ie(Xtp_ys Xy,

Xy =xy, Xs = .13) = ﬁo(x)
k=1

Proof. Because Q is convex and has separately specified rows, By, o is Markovian due to Corollary @ and
satisfies the law of iterated lower expectations due to Proposition Hence, the equality in the statement
follows immediately from Lemma |[57] and Proposition O

At first sight, Corollary simply shifts the problem we had with Proposition we now need to
determine [e22h](z) instead of Ep(h(Xsya)|X: = x) for h in R¥. This is not an issue though, because
there are plenty of methods to determine e2%h. We will not treat these computational methods in detail,
but the interested reader may refer to [2, Proposition 8.5], [33] or [I3] Section 4.2]. Because it is relevant
further on, we do mention that it is standard practice to use ‘Euler’s method’ to approximate ¢22 with
(I +2Q)" for some (sufficiently large) natural number n. Krak et al. [2, Lemma E.8] give an upper bound
on the resulting error, but here we only need this bound for the special case that n = 1 — in fact, we repeat
the slightly tighter bound from [I3} Lemma 4.16].
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Lemma 59. Consider a lower rate operator R. Then for any A in Rxg,
1
22 = (I + AR)|| < S A% B,

If Q is not convex and/or does not have separately specified rows, we can still use the method in
Corollary [58| to give a lower bound on the lower expectation, even for imprecise jump processes other than
But,0. To see this, consider an imprecise jump process P such that P C Py o, and some bounded set R of
rate matrices that includes Q. Recall from Section [3|that every jump process P that is consistent with @ C R
is also consistent with R. Consequently, P C Pyv,o C Py, =, and therefore

Ep(s]) > Epole]e) > Eprle]e).

Hence, if R is convex and has separately specified rows, then we can use the method in Corollary [58|
to compute a lower bound on the lower expectation of interest, provided we can evaluate the lower rate
operator R associated with R. Krak et al. [2| Propositions 7.6 to 7.8] prove that the set

Rg={Q€Q: (VfeRY) Qf > Qf},

of rate matrices that dominate the lower envelope @ of Q has the required properties, and — quite conveniently
— that it turns out to have the same lower envelope as Q.

Lemma 60. The set Rq of rate matrices that dominate the lower envelope Q of Q (i) includes Q; (ii)
is bounded and convex and has separately specified rows; and (iii) its lower envelope Rr,, as defined by

Eqn. , is Q.

Because Rq includes Q, is convex, has separately specified rows and has @ as lower envelope, we end up
with the following immediate consequence of Corollary 58| by applying it to By r,,-

Corollary 61. Fiz time points s,r in R>o such that s <, a grid v = (to,...,t,) over [s,r] and real-valued
functions g1, ..., gn on X2. Let by, ..., h, be the real-valued functions on X as defined in Corollary .
Then for all imprecise jump processes P C Py,0,  in X, u in Uxs and x,, in X,

Ep <Z gr(Xt,_1» Xe,)

k=1

Xy =2y, Xs = J?) > ﬁ0($)§

in particular, this holds for P = IF}&%, P = P/i\/[/l’g and P =DBuy.o.

Our next result shows that if @ has separately specified rows — but isn’t necessarily convex — we do
not have to settle for a conservative lower bound; instead, we can replace it by an approximation, at least
up to an error that is proportional to A(v). This approximation furthermore has the added benefit that
instead of the operator exponential e(trt1=t)Q that appears in the definition of by, it uses its ‘one-step Euler
approximation’ I + (tx4+1 — t£)Q. Our proof for this result is rather technical and quite long, which is why

we have relegated it to

Theorem 62. Fiz time points s, in R>¢ such that s <r, a grid v = (to,...,t,) over [s,r] and real-valued
functions g1, ..., gn on X2. Let hg, ..., hn be the real-valued functions on X defined by the initial
condition hy, =0 and, for all k in {0,...,n — 1}, by the recursive relation

hi: X = Rize (T4 (tgr — te)Q) (gt (z, @) + hit1)] (2).

If (i) Q has separately specified rows, (ii) A(v)|| Q|| < 2 and (iii) there is a non-negative real number § such
that

(Vk €{0,...,n = 1})(Vz € X)(VP € Bur) |Ep(gr+1(Xty, Xtprr) | Xty = @) < B(try1 — tr),
39



with R '=Rg, then for any imprecise jump process P such that ]P/%\,[/IVQ CPCPBuyg andall x in X, uin Uz,
and x, in X,

E’P (Z gk(tha ) th)

k=1

<

Xu=2, X, = 1’) - bo(w)

AW S Al QP (lgisll + A(r - 5)),
k=0

where for all k in {0,...,n — 1}, we let A = (tg41 — tx) and ||grs1] = max{|gr+1(y,2)|: (y,2) € X?}.

6.2. Two direct computational methods

Corollary [58 and Theorem [62] solve the issue we encountered at the end of Sections [5.1| and To return
to that setting, we fix an imprecise jump process P such that P/%\/t/[,g C P C Py,o, time points s, in R>g
such that s < r, a subset A of Xi, a real-valued function f on X, a sequence of time points u in U4 and a
tuple of states x,, in X,. The issue we raised there was that for a sufficiently fine grid v over [s, 7], we need to
be able to determine the lower/upper expectation of 7' or (f), conditional on {X,, = z,, X = s}. Clearly,
Corollary [58] allows us to do so whenever Q is convex and has separately specified rows, at least if we can
easily evaluate the operator exponential €% of the lower envelope Q of Q. Alternatively, Theorem [62] also
allows us to do so, although only up to some bounded error. This method furthermore has the advantage
that it does not require Q to be convex, but only that it has separately specified rows, and that it does
not require us to evaluate 22, but only the lower envelope Q. However, it does require that the condition
regarding the non-negative real number ( is satisfied. B

Hence, let us deal with the condition in Theorem [62| regarding 3. In the case of the number of selected
jumps, this condition is satisfied due to Theorem [39]

Lemma 63. Fiz time points s, in R>g such that s <r, a grid v = (to,...,t,) over [s,r] and a subset A

of Xi. Then for any non-empty and bounded set of rate matrices R,

(Vk €{0,...,n—1})(Vz € X)(VP € By r) [Ep(Ia(Xy,, Xtppy) | Xy, = 2)| <

1
< 5t — IR,

Proof. Fix any index k in {0,...,n — 1} and z in X. Then obviously minls (X, ,X;,,,) = 0 and
Ia(Xey, Xtpyy) = nék tr,)- Hence, for all P in By x, it follows from (E1)[and Theorem (39| that

IRY

0< EP(HA(Xthtk+1) | th = x) < (tk+1 - tk) 2
Clearly, this implies the inequality in the statement. O

In the case of the Riemann sum (f), that approximates the integral of f(X;) over [s,r], the condition
regarding 3 in Theorem [62|is trivially satisfied due to

Lemma 64. Fiz time points s,r in R>¢ such that s <r, a grid v = (to,...,tn) over [s,r] and a real-valued
function f on X. Then for any non-empty and bounded set of rate matrices R,

(Vk €{0,...;n = 1) (Ve € X)(VP € Brr) [Ep((terr — 1) (X)) | KXoy = 2) < (tr = ) [ f]]-

Proof. Fix any index k in {0,...,n — 1} and = in X. Then —(tg41 — t&)|| fI| < min(tpy1 —tx) f(Xe,,,) and
max(try1 — ) f(Xepy) < (tegr — )| f|. Hence, for all P in Py, it follows from that

—(trt1 —t)IfIl < Ep(Anf (X ) [ Xt = y) < (e — ),

and this verifies the inequality in the statement. O
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At this point, it should be clear that together with the preceding results — Lemmal[63] and either Theorem [40]
or Corollary or Lemma [64] and either Theorem [46] or Corollary 48] — Theorem [62] provides us with a
method to compute the lower/upper expectation of n]“slﬂ or fst f(X})dt up to arbitrary precision, and that
this method will only require the (repeated) evaluation of Q. If we were to go with Theorems (40| and
we would get a theoretical upper bound on the error made by the approximation, but we know from past
experience — for example [33] and [I3, Section 6.5.2] — that when replacing 2% by (I + %Q)", the theoretical
upper bound on the error is usually overly — and often ridiculously — conservative. Hence, we choose to lean
on Corollaries |45 and [48| with a sequence of ‘uniform’ grids (v, )nen over [s,7], as the resulting theorems
make clear that one can rely on empirical convergence. For the number of selected jumps, this yields the
following result.

Theorem 65. Consider an imprecise jump process P such that IP’A%Q C P CPu,g, and fiz time points s,r

in R>q such that s <r and a subset A of Xi. For all n in N, let A, := (r—s)/n and let f, o be recursively
defined by the initial condition fy , =0 and, for all k in {0,...,n — 1}, by the recursive relation

fag: X = Riz [(I + AnQ)(HA(% o) + fn,k-‘rl)] (). (35)
If Q has separately specified rows, then for all x in X, u in U<s and x,, in X,,

B (s | Xu = 20, Xs =) = Tim_ fno(2);

n
a similar equality holds for the upper expectation F; if we replace @Q by Q in Equation .

Proof. We only prove the statement for the lower expectation, the proof for the upper expectation is similar,
although here and there one may have to use the conjugacy of Ep and Ep or the homogeneity of Ep with P
a jump process. For all n in N, we let v,, be the grid over [s,r] that consists of n + 1 evenly spaced time
points, so

Up = (tn,0y - s tnm) = (8,8 + Dy oy s+ 0A).

Because P C By, o by assumption, it follows from Theorem @ that for all n in N
- 1
|EP(77f2,r] | Xy =204, Xs =) — Ep(mﬁ | Xy = 24, Xs = 33)| < ZAH(T - S)HQ”2 (36)

Next, we seek to apply Theorem To this end, we fix any natural number n such that A(v,)| Q| < 2,
or equivalently, because A(v,) = A, = (r — s)/n by construction, any n such that (r — s)||Q||/2 < n. Recall

from Eqn. that

Mo = D La(Xouy, Xin).
k=1

Furthermore, we recall from Lemma that the set R := R of rate operators that dominate @ includes Q,
is bounded and has @ as lower envelope. Hence, it follows from Lemma |63| that

1
(Vk €{0,...,n = 1}(Vy € X)(VP € Bur) [EpLa(Xe, o Xt prd) [ Xt = 9| < 5 (Enprs = tap) IR

Because Rr = @Q, it follows from Lemma twice that |R| = ||Rz| = [|Q|| = ||Q]|. Hence, we conclude that
the condition in Theorem [62| regarding g1 = L4, ..., g, = L4 is satisfied for 8 = ||Q||/2. For this reason, and
because Q has separately specified rows and P/%\A/[,Q C P C Py, o by assumption, it follows from Theorem
that

n—1
1 1
BP0, 1 X = 200 X =) = Fuo(o)] < 180 3 QP (84l + 5 = )1 )
k

=0
< IaJOPe+ - sleh T A,
k=0
_ éano»— )12+ (r — s)|Q]), (37)
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where for the second inequality we used that ||I4]| < 1 and for the first equality we used that ZZ;S A, =
nA, = (r —s).

For all n in N such that (r — s)||Q||/2 < n, it follows from the triangle inequality and Eqns. and
that

- 1 1
B (05,01 | Xu = 20, Xo = ) = fa0(@)] £ 780 (r = )| QI + A (r = )1 Q72+ (r = 5) Q)
1
= 38n(r=9)[QIP(4+ (r = s)llQll). (38)
Because A,, = (r — s)/n vanishes as n recedes to +o0o, this proves the limit in the statement. O

It is relatively straightforward to adapt the argument in our proof for Theorem so that it works
for [ : f(X¢) dt instead of n]‘;‘ ,- This gives the following result, which is a special case of Theorem 6.50 in [13]
as well — but the proof given there differs from the one we give here.

Theorem 66. Consider an imprecise jump process P such that ]P’M .o © P C Bu,g. Fiz time points s,
in R>o such that s < r and a real-valued function f on X. For all n in N, let An = (r—s)/n and let f, o
be recursively defined by the initial condition f,, = 0 and, for all k in {0,. — 1}, by the recursive
relation

fn,k: = (I + Ang)(Anf + fn,kJrl)' (39)
If Q has separately specified rows, then for all x in X, u in U<s and x,, in X,,

Ef, ( / o ar ’ Xu=wu X, = m) = fro(@);

n—-+4oo

a similar equality holds for the upper expectation E; if we replace Q by Q in Eqn. .

Proof. The proof is almost entirely the same as that for Theorem so we only highlight the differences
between both proofs. Clearly, we need to invoke Theorem [46] instead of Theorem [0} To verify that
Theorem 62| is applicable here, we recall from Eqn. that

<f>vn = ZAnf(th,k)v

k=1
and we invoke Lemma [64] instead of Lemma Hence, we may use Theorem [62[ with 8 = || f||, to find that
for all n in N such that (r — s)||Q||/2 < n,

|Ep((f)o, | Xu = 20, Xs = 2) = fao(2)] < 780 = $)1QI*(An + (r = 5))lIf-

| =

For all n in N, we know from Theorem [46] that

LAu(r - 5)[ Q)| (max f — min f)

‘EP</ F(X0) dt‘X —xu,Xs—x) B3 (f)u, | Xu =20, Xo = 2)| <
< Ap(r = s)||2JIfI],

where for the second inequality we used that (max f — min f) < 2||f||. Hence, for all n in N such that
(r—9)]19|l/2 < n, we find that

< 7An(r =94+ (An+ (r=s)IIQDIL (40)

2 ([ 1t X = X =) = )| < 7

Because A,, = (r — s)/n vanishes as n recedes to +oo, this proves the limit in the statement. O
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Table 2: The lower/upper expected number of downtimes during the first 10-year period
r  AB A B F | [10, Eqn. (62)]

1.902 1.902 1.902 1.902 1.900
2.405 2405 2.405 2.405 2.407

B,
Ba

Table 3: The lower/upper expected downtime during the first 10-year period
r AB A B F | [10, Eqn. (60)]

-10* 6.512 6.513 6.513 9.938 6.513
1.647

Q,
a, - 103 1.647 1.647 1.647 2.332

Let us put these two methods to the test in the setting of our running example.

Example 67. Recall from Example that Troffaes et al. [10] are interested in the expected number of
Jumps to a particular set. Specifically, they heuristically determine conservative bounds on the lower/upper
expected number of downtimes — that is, the number of jumps to F — during a period of 10 years, and the
lower/upper expected downtime — that is, the amount of time in F — during the same period. We do not have
to resort to heuristics any more, because we can use our methods to determine these quantities exactly.

We start with the number of downtimes. Let F := {(AB,F), (A,F),(B,F)}. Then in our more formal
setting, the expected down period over the first 10-year period is tightly bounded by

B, = Exmo (Moo | Xo=x) and B, = Epo (o0 | Xo = 2),

where x in X is the initial state of the system. Because Q has separately specified rows, we can use Theorem[65]
to compute the lower and upper expected number of downtimes. More precisely, we start with ny,, = 29200
itemtion@ and repeatedly double the number of iterations until we observe empirical convergence, up to
four significant digits. Quite remarkably, in this case convergence aleardy occurs after the first doubling, and
the first four significant digits remain the same even after 10 doublings. Even more, halving the minimum
number of iterations nmin also gives the same results up to at least four significant digits; halving the number
of iterations again gives ‘NaN’ values, which indicates that something is going wrong, as we would expect. Our
results can be found in Table[3 Quite remarkably, the exact values we find are quite close to the conservative
bounds that Troffaes et al. [I0, Eqn. (62)] obtain with their heuristic. While they appear not to depend on the
initial state x, this is only true for the first four significant digits, and we find that the lower/upper expected
downtimes differ more for shorter time periods.

Nezt, we deal with the downtime. In our formalism, the downtime over a period of 10 years corresponds
to

10 10
Q, = EM’Q</0 Ip(X;) dt ‘ Xo = x) and @ = Em.0 (/0 Ip(X:)dt ’ Xy = :r),

where x is the initial state of the system. For any such initial state x in X, we use Theorem[66] to compute
the lower and upper expected downtime. Here too, we start with nyiy, = 29200 iterations and repeatedly
increase the number of iterations by a factor 2 until we observe empirical convergence, up to four significant
digits; this time around, we need to double the number of iterations about twelve times before we observe
convergence. This yields the values reported in Table[3. Remarkably, for the initial states AB, A and B, the
lower and upper bounds reported by Troffaes et al. [10, Eqn. 60] agree with the values we find up to three
significant digits. However, this is not the case if we start in the state x = F where both power lines are down.

HThe reason for this specific start is straightforward: it is the smallest value of n for which the condition in Theorem

regarding A(v) is satisfied, or equivalently, due to Lemma in |Appendix B} such that (I + A, Q) is a so-called lower transition
operator.
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Figure 1: Maximum relative difference between the approximation for n = 25n;n and that for n = 2%n;, for o, and ag.

The heuristics of Troffaes et al. [10] do not take into account this initial state because they are designed for a
system that is in regime; for this reason, they do mot pick up the transient effect caused by the initial state.
In Figure[1, we report the mazimum relative difference

,0(%) = J2150,1,,0(T
maX{ f2knmnno( ) f21 n“"“’O( ) ’: S X}
f215nmi1170('r)

between the k-th estimate and the last estimate, with k ranging from 0 to 14. The mazximum relative difference
for k=0 is 0.147 and then decreases as the number of iterations grows; the decrease is linear on the log-log
graph, so the error decreases exponentially as the number of iterations increases. For n = 2Fnp,, the
theoretical upper bound on the error given by Eqn. 18

1 102 10 292030
I (4+ ( n 10) ||Q|) I = 292080,

42k 25 Nmin 2k

where we used that ||Iz|| = 1 and used the value of ||Q|| which we determined in Example (14 While this
bound does decrease exponentially, it is clearly overly conservative; it overestimates the error by about five
orders of magnitude!

For our running example, our limited experiments in Example [67] show that our method based on
Theorems |65 and 66| gives similar results as the heuristics proposed in [10]. There are a couple of important
differences though. First, their heuristics can only be used to conservatively bound the lower and upper
expected ‘number of jumps to some state’ — that is, it works for 77]’;‘770] with A = {(y,z): y € X,y # «} for
some x in X — while our method works for the lower and upper expected ‘number of selected jumps’ — so
with A any arbitrary subset of Xi. In the example of the power network, this means that in contrast to
Troffaes et al. [10], we can for example determine the lower and upper expected number of common cause
failures — so the number of jumps from AB to F. Second, our method takes into account transient effects due
to the initial state, while Troffaes et al.| their heuristics are based around a system in regime.

That said, even if the system is in regime — so if the time period is long enough — our method can
outperform that of [Troffaes et al.j while this is not so in our running example, it is clear in the following
example.
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Example 68. Let us consider an imprecise jump process with ternary state space X = {a,b,c}, set of rate
matrices

—Aa Aa 0
Q= I —fo— X Ao | da =1, =10, X € [1,100], e € [1,100]
0 He —Hc

and arbitrary set M of initial probability mass functions. This time around, we are after the upper expected
fraction of time that the system is in state b. For each initial state x in X and period of time T in Rsg,

this upper expected fraction is
_ 1 /T - T4
Fvio 7/ (X)) dt| Xo =2 | = Bro / L n(x)dt| X0 == |,
’ T 0 ’ 0 T

and can thus be obtained by applying Theorem [66l We observe that for increasing values of T, this
upper expected fraction converges to about 0.091, or 9.1 %, and does not depend on the initial state. The
heuristic of Troffaes et al. [10], on the other hand, comes down to determining the limit of En,o(Io(Xt) |
X =z) = —[e!%(=I)|(z) for t going to 400 — that this limit exists follows from the ergodicity of Q, see
[37]. This way, we find that an upper bound on the fraction is 0.703, or 70.3%. The fact that this bound
differs a lot from the upper expected fraction may come as a surprise to the reader who is familiar with the
(Point-Wise) Ergodic Theorem for homogeneous Markovian jump processes — see [38, Section 8.6.6] or [25,
Theorem 3.8.1]. Indeed, in the case of a homogeneous Markovian jump process P with so-called ergodic rate
operator @, this Ergodic Theorem implies that

. 1T

In our example, the ‘upper expectation’ counterpart of the first of these equalities turns out to be a strict
inequality! This is in line with recent results regarding the Point-Wise Ergodic Theorem in the setting of
imprecise Markov chains [39{77).

This example, together with Example shows that while the heuristic of Troffaes et al. [10] performs
surprisingly well in some instances, there are also instances where it yields approximations that are much too
conservative compared to the exact results provided by our methods.

XO = l’) = tl}?oo EP(]Ib(Xt) |X0 = l‘) = tl}gloo[etQHbKIE)

7. Conclusion

We have extended the domain of imprecise jump processes, so that these can formally deal with (extended)
real variables that depend on the state of the system at more than a finite number of time points. Furthermore,
we have investigated the continuity properties of the extended lower and upper expectations, similar to the
Monotone Convergence Theorem and Lebesgue’s Dominated Convergence Theorem. While the extended
lower and upper expectations may not be continuous with respect to monotone and dominated convergence
in general, we have identified two particular cases in which they are. For these two particular cases, being the
number of selected jumps and integrals over time, we have also established recursive numerical methods to
iteratively compute the lower and upper expectations exactly. Our experiments indicate that these methods
can — significantly — outperform the heuristics of Troffaes et al. [I0], at least with respect to transient
behaviour and the tightness of the bounds.

As far as future research is concerned, we see two promising avenues. First, one could study other
measurable variables in a similar fashion as we have studied the number of selected jumps and integrals over
time here, so with the intent of obtaining a convergence theorem similar to Corollaries 45| and [48] and /or
a recursive computational method as in Theorems [65| and For so-called ‘until events’ and ‘(truncated)
hitting times’, this has already been done in [I3], where the focus lies on approximating these measurable
variables with simple variables f(X,) of the form

n k—1
£6) =3 gn (X)) T he(Xe) = 90(Xeo) + ho(Xeo)gs (Xe,) + -+ ho(Xeg) -+ Bt (Xt g (X)),
k=0 =0
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with g¢1,..., g, real-valued functions on X and hy, ..., h,_1 non-negative real-valued functions on X.
However, it is possible to deal with much more intricate measurable variables, for example the number of
visits to some state x over some period of time [s,r] before you visit an ‘unsafe’ state — that is, a state
outside of a given set S C X of ‘safe’ states. The reason for this is that as an intermediary step, one could
generalise the results in Section from A, -simple variables f(X,) that have a sum decomposition of the
form in Eqn. to those that have a ‘sum-product’ decomposition of the form

k—1

f(XU) = ng<thf1vth) H hé(Xtewatz)
k=1 =1

=01 (Xto,th) + hl(Xto’ Xt1 )gQ(th ) Xt2) +oee hl(Xto’ th) U h’ﬂfl(thfw th—l)gn(th—l , Xy )’

n

where g1,. .., gy are real-valued functions on X2 and hq, ..., h,_1 are non-negative real-valued functions
on X2. Second, because temporal averages belong to the extended domain of imprecise jump processes, one
can now set out to investigate if and how the Point-Wise Ergodic Theorem for homogeneous Markovian jump
processes, which we mentioned in Example [68] generalises to imprecise jump processes. A good starting point
is the second author’s work on ergodicity [37], as well as the work done on ergodicity and the Point-Wise
Ergodic Theorem in the setting of imprecise Markov chains [39H41].
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Appendix A. Proof of Proposition

Proposition [53| follows from Proposition 4.11 in [I3] and the combination of the sum decomposition of
f(X,) and but our formal proof is rather long.

Proof of Proposition[53. For all kin {1,...,n}, we let t1. == (t1,...,t) and o == (to,...,tx). Fix any x,
in X, uin Uss and z,, in X,. Then by Corollary 4.1 in [13],

Ep(f(Xu) |Xu =Ty, Xs = JJS) = E”P(f(xsathm) |Xu =Ty, X, = 335).

Due to this equality, and because P satisfies the law of iterated lower expectations, it follows from Proposi-
tion 4.11 in [13] that

E’P(f(Xv) |Xu = xU7Xs = !ES) = EP(f{(th) |Xu = xqus = .’ES), (A]-)

where f] is the real-valued function on X’ that is defined recursively by the initial condition
n
f'r/L: th:n - R: Tty f(QTU) = ng(‘rtk—mxtk)
k=1

and, for all k in {1,...,n — 1}, by the recursive relation
fl,c: th:k - R: Tty EP(fllc+1(mt1;thk+1) |Xu = ‘Tquto:k = xto:k);

in both of these expressions, we silently used the fact that =5 = x¢, has already been fixed.

We now claim that for all k¥ in {1,...,n} and zy,, in X, ,,
k
f/lc(xtlzk) = de(xté—IV%‘tZ) + fk(xtk)' (A'Q)
=1
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Our proof for this claim will be one by induction. For the base case that k = n, this is obvious from the
definition of f/, and f,. For the inductive step, we fix some £ in {1,...,n — 1}, and assume that the equality
in Eqn. (A.2) holds for k = ¢+ 1. Fix any xy,, in Xy,,. Then by the definition of f; and the induction
hypothesis,

f (Tty.,) ) =Ep <Z 9i(Te,_y, ;) + g€+1(xte7Xte+1) + fZJrl(Xte-H) Xu =2y, X, = xto:z)'

From this and [(LD5)} it follows immediately that

xtl z Zgl ti_19 L + EP (g€+l(xthte+1) + f€+1 th+1 ’ Xy = xquto ¢ xto:tz)'

Because P is Markovian, it follows that

fé Tty ﬁ Zgl Lt;_15T + EP (g€+1(xthtﬁ+1) + f€+1 Xtﬁ+1 ’Xtﬁ - xtﬁ)

= Zgz touo @)+ fe(a,).

As this equality holds for all z;,,, in A}, ,,, this proves that Eqn. (A.2)) holds for k£ = ¢, and this finalises our

proof of our claim in Eqn. (A.2).
Finally, we substitute Eqn. (A.2)) for £ = 1 in Eqn. (A.1])) and use the Markovianity of P, to yield

E’P(f(Xv) ‘Xu = xu;Xs = xs) = E’P(gl(xs’th) + fl(th) |Xu = xuaXs = xs)
= Ep(g1(zs, Xo,) + [1(Xe,) | Xs = 2)
:fO(-rs)a

as required. O

Appendix B. Proof of Theorem

In our proof for Theorem [62] we make use of several intermediary results. In many of thebe intermediary
results, we use that for any lower rate operator R, its corresponding operator exponential e®£ is a so-called
‘lower transition operator’ — see [2, Corollary 7.10] or [37, Proposition 8 and 10]. This notion of a lower
transition operator generalises the notion of a (linear) transition operator — also known as a transition matrix
[42, Theorem 9.2.3] or a stochastic matrix [25], p. 2] — by relaxing the linearity to non-linear homogeneity
and superadditivity; see, for example, Definition 7.1 in [2].

Definition 69. A lower transition operator T is an operator T: RY — R¥ such that

LT1. T(Af) = ALf for all A in R>q and f in RY; [non-negative homogeneity]
LT2. T(f +9) > Tf +Tg for all f,gin RY; [superadditivity]
LT3. Tf > min f for all f in R¥. [bounded below by the minimum)]

For any lower transition operator 7', its conjugate upper transition operator T is the (non-negatively
homogeneous, subadditive) operator defined by T'f := —T(—f) for all f in RY; in the particular case of the
operator exponential e*£ of a lower rate operator R, it is not difficult to verify that the conjugate is

AR —  lim <I+ AR) ,
n—-+oo n

where R is the conjugate of the lower rate operator R — so Rf == —R(—f) for all f in R*. Furthermore,
De Bock [37, (L10), p. 165] proves that for any lower transition operator T
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LT4. |Tf —Tg| <||f — g| for all f, g in RY.

The following result, which links lower rate operators and lower transition operators and is taken from [I3]
Lemma 3.72] — see also Proposition 5 in [37] — will also be of use in the remainder.

Lemma 70. Consider a lower rate operator R. Then for all A in R>q such that A||R|| <2, (I + AR) is a
lower transition operator.

Now that we have covered lower transition operators, we can start with establishing the necessary
intermediary results. The first of these results deals with replacing e2"2 by (I + ALQ).

Lemma 71. Consider a non-empty sequence of time points v = (tg,...,t,) in U with n > 1, real-valued
functions gy, ..., gn on X% and lower rate operators Ry, ..., R,_1. Let hg, ..., h, and ho, ..., hy, be the
real-valued functions on X defined by the initial condition h, =0 =: h, and for all k in {0,...,n—1} by
the recursive relations

By X = Rix s [e25 8 (gyy (2, 0) + by )] (o)
and

hi: X = R: 2z [(I + ApRy) (g1 (2, @) + hipr)] (),

with A = (tge1 — tg). If Ag||Brll <2 for all k in {0,...,n — 1}, then for all k in {0,...,n},

n—1

1
Iy, = Bill < 3 A@) Y AellBell* (llgeall + lesa ),
{=k
with ||ges || = max{|ges1(y, 2)|: (y,2) € X%}

Proof. Our proof will be by induction. For the base case that k = n, we observe that ||h,, — hy|| = 0 because
h,, =0 = h,, by definition. Clearly, this agrees with the inequality in the statement.

For the inductive step, we fix some £ in {0,...,n — 1}, assume that the inequality in the statement holds
for k = ¢+ 1, and set out to prove that it then also holds for k = ¢. To this end, we fix any = in X. Then by
definition of h, and hy,

|hy(x) — ()] = |[€A'ZEZ (ges1(x, 0) + hyy )] (@) — [(I + ArRe)(ges1(x, @) + heg1)] ()]

It follows from this equality and the triangle inequality that

() = Be(a)| < [ [ (geir (@, 0) + hyiy)] (@) = [(1+ AeRe)(gesr (2, 0) + hyyr)] ()]
+ |[(1+ AR (ges1 (2, 0) + )] (@) = [(1+ AeRe)(ges1 (w,0) + heyr)] ()] (B.1)
Let us deal with the two terms on the right-hand side of this inequality separately.

For the first term, it follows from the definition of the maximum norm ||e||, [37, (N1) on p. 163] — that is,
that | M f|| < ||M]|||f]| for any non-negatively homogeneous operator M and f in R* — and Lemma that

[[22 (ger1(x, 0) + Ry iy)] (@) = [(1 + AeRe)(gesr (2, 0) + gyr)] ()]
< |2 B (gogr(z, ) + hyiq) — (I + AeRe)(ges1(z, 0) + hyyy)||
€245 — (I + AcRy)|[llgesr (2, 9) + bl

IN

IN

1
S AR ges1(w, 9) + B |
Due to the triangle inequality

1ge41(2, @) + herll < llgea (e, o)l + [[Bepall < llgeall + el
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and therefore

[ (gor(x, @) + hyyy)] (@) = [(T + AeRe)(ger(, 0) + hyyy)] ()
< AR (lgesall + ey ll). (B.2)

N |

For the second term, we observe that (I + AyRy) is a lower transition operator due to Lemma because
Agl|Re|| < 2 by assumption. Hence, it follows from that
|[(I + AcRo)(ger1(w,0) + by )| (@) = [(1+ AeRe)(ges1(w,0) + hesr) ] (2))
<+ AeRe)(geri(x,0) + hoyy) = (I + AeRe)(gesa(z,0) + hesr) |
< [(ge41(z, 0) + hypy) — (get1(z, @) + hetr)]]
= [|Bgy1 = ot ll- (B.3)

We substitute each of the two terms on the right-hand side of the inequality in Eqn. (B.1)) with the upper
bounds in Eqns. (B.2)) and (B.3)), to yield
1
(@) = he(@)] < JAZNBE (Igesa ]l + Nhgsall) + ey = Besa

1
< JAWAAEN (lgesall + Magrall) + 2oy = Besall

where for the second inequality we used that Ay < A(v). Since this inequality holds for arbitrary x in X', it
follows that

1
g = Bell < FA@)AR (lgesall + Mg all) + 12esr = Besall

We substitute [|h,,; — hey1]| on the right-hand side of this inequality by the upper bound of the induction
hypothesis — that is, by the right-hand side of the inequality in the statement for k = ¢+ 1 — to yield

n—1

1 1
2 = Bell < ZA@)A RN ([lgesa [l + llResall) + 3 A) D AR (Igirall + Nl l)
i=0+1
1 n—1
= 780) D AR (giall + eiall);
i=¢
this shows that the inequality in the statement holds for k& = . O

The second technical result that we need is a construction method for Markovian jump processes starting
from some rate matrices, and this is exactly what Proposition 5.6 in [2] provides us. Here, we give a version
of this result using our notation and tailored to our needs.

Lemma 72. Consider a non-empty sequence of time points (lo,...,t,) in Une with n > 1 and rate
matrices Qq, ..., Qn_1 n Q. Then there is a Markovian jump process P in ]P’/{\/[/{Q such that for all k
in {0,...,n—1}, z in X, f in RY, win Uz, and z, in X,,

EP(f(th+1> |Xu = .Tu,th = l‘) = [e(tk+1_tk)Qkf] (.’L‘)

Proof. Krak et al. [2] actually prove a stronger result, but they use a lot of notation and terminology regarding
so-called ‘transition matrix systems’ to do so. Because we have no need for these ‘transition matrix systems’
except in this lemma, we choose not to introduce them; instead, we will explain why this lemma is a special
case of Proposition 5.6 in [2]. Let p be any mass function in M. Then it follows from Proposition 5.6 — and
Definitions 3.5, 3.6 and 4.5 — in [2] that there is a Markovian jump process P in BY{ 5 such that

(i) P(Xo =) =p(x) for all z in X;
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(ii) for all indices k in {0,...,n — 1}, time points s, 7 in [tg,tx4+1] such that s < r and states z,y in X,
P(X, =y|Xs =) = [e")%L,](2). (B.4)

What remains for us is to verify the equality in the statement. To this end, we fix any k in {0,...,n — 1},
rin X, f in RY, uin Uy, and 2, in X,. Then by Eqn. 7

EP<f<th+1) |Xu = mUnth = "E) = Z f(y)P(th+1 =Y | Xu = SL‘u,th = w)
yeX
Because P is Markovian,
Ep(f(th+1) |Xu = xuVth = x) = Z f(y)P(th+1 =Yy | th = iE)
yeX
Finally, we substitute Eqns. (B.4]) and to yield the equality in the statement:
Bp(J(Xu) | Xu = @0 X, =) = 3 J(3) [0 7L, () = [eCn =09 f] (). =
yexX

The third and final technical result allows us to replace the lower rate operator @ by rate matrices Qo,
.., Qn_1in Q. In essence, this result is a consequence of the definition of the lower envelope, Lemma @
and of several properties of (lower) transition operators.

Lemma 73. Consider a non-empty sequence of time points (to,...,t,) in U with n > 1 and real-valued
functions g1, ..., gn on X2. Let hg, ..., hn be the real-valued functions on X defined by the initial
condition hy, =0 and for all k in {0,...,n — 1} by the recursive relation

hi: X > R:z— [(I + ArQ)(grt1(z, @) + bk+1)} (z),

with Ay = (tg+1 — tr). If Q has separately specified rows and A(v)||Q < 2, then for any positive real

number € in Rsg, there are rate matrices Qq, ..., Qn—1 in Q such that for all k in {0,...,n} and x in X,
~ tn — 1
e — huf < =t (B.5)
tn — 1o
where iLQ, e h,, are the real-valued functions on X defined by the initial condition hy, =0 and, for all k
in {0,...,n — 1}, by the recursive relation

hp: X = R: x> [(I+Aka)(9k+1($,°) +/~1k+1)] (z).

Proof. Let us determine the rate matrices Qo, ..., Qn—1. To this end, we fix any k in {0,...,n—1}. Then for
all z in X, it follows from Eqn. (34)), the definition of the lower envelope @, that there is a rate matrix Q.
in Q such that

1
€.
tn - tO

|[Qgk+1(x,0) + hiy1)] (2) = [Qra(grr1(z, @) + hry1)] (2)| <

Let Qp, be the matrix defined by Qx(x,y) = Qi..(z,y) for all z,y in X — or more formally put, we let
Qr: RY — RY be the operator defined by [Qx f](z) = [Qk..f](x) for all fin R* and z in X. Then because
Q has separately specified rows, it is clear that Qj belongs to Q. Furthermore, our definition of Q; ensures
that for all = in X,

1
€.
tn, —to

|[QUgr+1(w, ) + hit1)] (2) — [Qu(grra(z, @) + hit1)] ()| < (B.6)
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Next, we set out to verify Eqn. (B.5]), and we will do so using induction. For the base case that k = n, it

follows immediately from the definition of h,, and h,, that
~ tn, —tn
[Bn = hn|l =0= €.
tn - tO

For the inductive step, We ﬁx some £ in {0,...,n — 1} assume that Eqn. ) holds for k =¢+1, and
set out to prove that Eqn. ) holds for k& = /. To this end, we fix any x in X Then by definition of hy
and hy, the triangle mequahty and the definition of the maximum norm ||e||,

|he(z) — he(x )| =T+ AeQ)(ges1(z, 0) + hes1)] () — [(I + ArQe)(ges1(, @) + hesr)](2)
< [+ 26Q)(ger1(z, ) + hern)](@) = [(1+ AeQe) (ges1(2, ) + hetr)] (@)
+ (T + ArQe) (g1 (w,0) + bey1)](®) = [(1 + AeQe)(gera(x, @) + huyr)]
< + AeQ)(ges1(z, 0) + horr)|(2) — [(1 4+ AeQr)(ges1(x, @) + heyr)](x)
+[|(T + AeQe) (ger1(x, @) + her1) — (I + ArQe)(ges1(z, @) + hos)]|-
For the first term, it follows from some straightforward manipulations and Eqn. that
|he(x) = he(2)] < Ag|[Q(ges1(x, @) + her1)](x) — [Qe(gesi(x, @) + hesr)] ()|
+ /(T + AeQe)(ger1(w, 0) + hagr) = (I + AeQe)(ger1(, @) + ey )|

ti—‘r% + || I"‘ AZQ@)(Q@-&-I(J; .) + he_i,_l) (I + AZQ[)(Q[-{—l(Jf,.) —+ ﬁ[+1)||.

|
|
()]
|

For the second term, we observe that (I + AyQy) is a (lower) transition operator due to Lemma because
(i) A(v)]|Q|l < 2 by assumption, and (ii) @, belongs to Q by construction and therefore ||Q,|| < ||Q||. Hence,
it follows from the preceding inequality and m that

|b€(l’) - ﬁé(x)} < t?r%t + [[(ger1(w, @) + hoy1) — (gesr(z, @) + ?lz+1)||

toy1 —

= et hogll.
— 6+|| o1 — hega |

Because this inequality holds for all x in X, we infer that
ty ~
1o = hell < “ = gy — .
tn — o

Finally, it follows from the induction hypothesis — so from Eqn. (B.5)) for k£ = ¢ + 1 — that

~ t —1 t, — 1t tn, —t
||bé_hé|| < l+1 Z€+ n €+1€: n é€,
tn_tO tn_tO tn_tO
and this shows that Eqn. (B.5)) holds for k& = ¢ too. O

Finally, we combine these intermediary technical results and Corollary [61]in our proof for Theorem

Proof of Theorem[63 Fix any x in X, u in U<, and z,, in X,. To simplify our notation, we let

F=> oe(Xe_,, X,),

Recall from Lemma [60] that R includes Q — and is bounded and convex, has separately specified rows and
has @ as lower envelope. Because P C Prq o by assumption, it follows that P C vy o € Py », and therefore

E’P(f|Xu =Ty, Xs = x) = inf{EP(f|Xu =Ty, Xs = Cﬂ)i Pe P}
> ll’lf{Ep(f|Xu = xu,Xs = {,C)Z Pe IP)M,R}
= EM,R(f | Xy = 24, Xy = ). (B.7)
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Because R is bounded and convex and has separately specified rows, it follows from Corollary [20| that By =
is Markovian, and from Proposition [5I| that Py » satisfies the law of iterated lower expectations. Hence, it
follows from Proposition [53] and Lemma [57] that

EM,R(f | Xy=2y, Xs=2)= ﬁo($)7 (B.S)

where hy, is the real-valued function on X’ defined by the initial condition h,, := 0 and, for all k¥ in {0, ..., n—1},
by the recursive relation

hp: X 5 Ry By (ki1 (0 Xeyy) + Ry (X)) | Xy, =y) = [eAkQ(gk-&-l(yv o) +h 1))

Recall from Lemma [56 that [|Q| = [|Q|. Because (tgy1 —tx) < A(v) for all £ in {0,...,n — 1} and
A()||@]] £ 2 by assumption, it now follows from Lemma — with Ry =@, ..., R,—1 = Q — that

n—1

1
1o = holl < 7 A(v) > ARIQIP (llgall + eg 1)
k=0

To obtain and expression similar to the one in the inequality in the statement, we set out to verify that for

all kin {1,...,n}, ||hs]l < B(r — tr). Our proof will be one by induction. For the base case that k = n, this

is trivial because h,, = 0 by definition, and therefore ||h,| = 0 = B(r — t,). For the inductive step, we fix

some k in {1,...,n — 1} and assume that ||k, | < B(r — tg41). Fix any y in X'. Then by definition of A
hk(y) = EM)R(gk+1(y7 th+1) + hk+1(th+1) | th = y)

For all P in Py g, it follows from and the triangle inequality that

|EP(gk+l(y> th+1)+hk+1(th+1) |th = y)| < |EP(gk+1(ya th+1) ‘th = y)|+|EP(hk+l(th+1) |th = y)|
The second term on the right-hand side of this expression can be bounded with and the first term is
indirectly bounded by the condition on gx41 in the statement because

EP(gk+1(y7th+1) |th = y) = EP(gk+1(th?th+1> |X75k = y)

due to Corollary 3.18 in [I3]. Hence, for all P in By r

|Ep (k1 (ys X)) Fhi (X ) | Xey = 9)| < Btesr—tr) + gy |  Bltrgr —ti) +B(r—tuy1) = Blr—ty),

where we used the induction hypothesis for the second inequality. Because this inequality holds for all P
in By » and y in X, we conclude that ||| < B(r — tx), as required.
We substitute this upper bound on [|h; || in our upper bound on ||k, — hol|, to yield

n—1 n—1
o~ holl < 3A(v) > Al lawsall + 50— ths) < 120 Y AIQI (lgies | + B0 = 5)),

k=0

where for the second inequality we used that (r — tgx+1) < (r — s). Finally, it follows from Eqns. (B.7) and
(B.8) and the preceding inequality that

n—1

Ep(f Xy =2u, Xs =) > ho(x) = ho(z) — iA(v) > ALIQIP gkl + Br — 9))- (B.9)
k=0

Eqn. proves ‘one side’ of the inequality in the statement. In the second part of this proof, we
will prove the ‘other side’. To this end, we fix any positive real number e. Then by Lemma [73] - which is
applicable here because by assumption Q has separately specified rows and satisfies A(v)|| Q|| < 2 — there are
rate matrices Qg, ..., @Q,_1 in Q such that

lho — holl < e, (B.10)
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where hg, ..., hy, are the real-valued functions on X defined by the initial condition h,, = 0 and, for all k
in {0,...,n — 1}, by the recursive relation

hi: X = R: = [+ AkQr) (gt (y, @) + iLkJrl)] (y)-

For all k in {0,...,n—1}, ||Qk| < ||QH because the rate matrix @y belongs to Q by construction. Because
(tps1 —tr) < A(v) for all k in {0,...,n—1} and A(v)||Q|| < 2 by assumption, it now follows from Lemma 71|
— with EO = QOa BERE) R,_1 = 9,1 — that

n—1 n—1
1
[0 — hol| < A ©) Y Akl @l (lgrsall + llArsall) < ZA(U)ZAk”Q”Q(”gk-&-IH + [|Prsall),  (B.11)
k=0 k=0
where hq, ..., h, are the real-valued functions on X defined by the initial condition h,, := 0 and, for all k&
in {1,...,n — 1}, by the recursive relation

hi: X = R:y e [€259% (gry1(y, ) + het1)] ().

By Lemma there is a Markovian jump process P in ]P/{\/[/I’Q C P such that for all k£ in {0,...,n — 1}
and y in X,

Ep(gri1(y, Xop o) + hiesr (Xey,) | Xoy = y) = [0 79 (g1 (y, @) + hiey 1) (y) = (). (B.12)

With this equality, it is easy to verify that ||hg|| < B(r —t) for all kin {1,...,n}. As before, our proof for
this claim will be one by induction. For the base case that k = n, this is trivial because h,, = 0 by definition
and therefore ||h,|| = 0= B(r — t,). For the inductive step, we fix any k in {1,...,n — 1} and assume that
1hi+1]l < B(r —tg1). We use Eqn. (B.12)), the additivity of Ep — so|(E3)[— and the triangle inequality, to
find that for all y in X,
|hk(y)| = |EP(gk+1(y’ th+1) + hk+1(th+1) ‘th = y)’
< |Ep(gh+1(y: Xoy) | Xow = 9)| + [Ep(hiir (Xepy,) | Xo = 9)-

As before, it follows from this inequality, the condition on g4 in the statement — which is relevant due to [33]
Corollary 3.18] and because P belongs to IP’/{\,[/I’Q C Py, by construction —|(E1){and the induction hypothesis
that ||hg|| < B(tgs1 — tr) + B(r — tge1) = B(r — tx), as required. Hence, it follows from Eqns. (B.10]) and

(BT1) that

n—1

ho(w) > ho(x) — € > ho(x) — *A ) > Akl (lgrsall + B(r = 5)) — ¢, (B.13)
k=0
where for the last inequality we used that ||hry1]| < B(r — tey1) < B(r —s) for all kin {0,...,n —1}.
It also follows from Eqn. (B.12) and Proposition [53| for the degenerate imprecise jump process {P} —
which trivially satisfies the law of iterated lower expectation due to Proposition 49| and is Markovian due to
Proposition [18] because P is Markovian by construction — that

Ep(f| Xy = 2, Xo = 2) = hola).

Because P belongs to PA&/I,Q by construction and IP/{\,I/{Q C P by assumption, we infer from this equality that
Ep(f| Xy =24, Xs=x)=f{Ep(f| Xy =24, Xs =x): P € P} < ho(x). (B.14)

Finally, we combine Eqns. (B.13)) and (B.14), to yield

ho(z) 2 Ep(f | Xu = 2y, Xs = ) = *A Z ARl QP lgrsall + B(r — ) —

Because this inequality holds for any positive real number €, we conclude that

n—1

ho(x) 2 Ep(f | Xy = 2u, Xs = ) — *A Z ARl QIP(lgk+all + B(r — 5)).

Together with Eqn. , this implies the inequality in the statement. O
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