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Abstract

One of the most basic problems in control theory is that of controlling a discrete-
time linear system subject to uncertain noise with the objective of minimising the
expectation of a quadratic cost. If one assumes the noise to be white, then solving
this problem is relatively straightforward. However, white noise is arguably unreal-
istic: noise is not necessarily independent and one does not always precisely know
its expectation. We first recall the optimal control policy without assuming inde-
pendence, and show that in this case computing the optimal control inputs becomes
infeasible. In a next step, we assume only knowledge of lower and upper bounds on
the conditional expectation of the noise, and prove that this approach leads to tight
lower and upper bounds on the optimal control inputs. The analytical expressions
that determine these bounds are strikingly similar to the usual expressions for the
case of white noise.
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1 INTRODUCTION

We consider the problem of controlling a scalar discrete-time linear system with perfect state information subject to stochastic
input noise, with the objective of minimising the expectation of a quadratic cost. It is well known—see for instance Root1—
that this problem, often referred to as the Linear-Quadratic Control (LQC) problem, is greatly simplified if the noise model is
assumed to be (wide-sense) white. However, the underlying assumptions of the white noise model are not always satisfied. In
particular, it is often difficult to provide a precise value for the expectation of the noise, and the values of the noise at different
times are not necessarily independent.
For this reason, we introduce the notion of a partially specified noise model, which does away with the aforementioned issues

of the white noise model. First and foremost, it is specified simply by providing lower and upper bounds on the conditional
expectation of the input noise, rather than providing a precise value for it. Second, the model does not include an independence
assumption in the classical sense; the only independence-like assumption that we make is that our knowledge about the condi-
tional expectation (i.e., the lower and upper bounds) does not depend on the noise history. The resulting model can therefore be
seen as an extension of the wide-sense white noise model.
Our main contribution consists in using the expectation bounds of the partially specified noise model to determine bounds

on the optimal control input. More specifically, we show that this optimal control input combines state feedback with noise
feedforward and provide a precise expression for the former and tight bounds on the latter. Quite remarkably, these bounds on the

Abbreviations: LQC, linear-quadratic control
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noise feedforward can be tractably computed using an interval-arithmetic version of the well-known backwards recursion that
defines the noise feedforward in the case of (wide-sense) white noise. As an immediate consequence, we also find that dropping
the independence assumption—as we do—does not result in wider bounds on the optimal control policy, but rather leads to the
exact same bounds as would be obtained with independence.
Because we end up with tight bounds on the noise feedforward instead of an exact value for it, we need a secondary decision

criterion to select a feedforward from the obtained interval. While at first sight this might seem disadvantageous, we argue that
using a secondary decision criterion can actually be beneficial, as it allows one to take into account additional requirements—
e.g., state or input constraints—that usually make solving the optimisation problem much harder. We also argue why dropping
the independence assumption is essential to make this approach reasonable. Furthermore, our bounds on the feedforward can be
used as a measure for the sensitivity of the optimal control policy with respect to misspecification of the (white) noise model. In
particular, we can easily check the effect of small changes to the expectation of the noise—i.e., narrow bounds on the conditional
expectations—on the (bounds on the) optimal control policy.
As for the connection with existing literature, we should note that we are not the first to take into account the sensitivity of

the optimal control policy to imprecision or errors in the noise model. Several other authors have proposed alternative noise
models that are more realistic, or less prone to modelling errors, than white noise. Examples of such alternative noise models
are the Linear Gaussian Vacuous Mixture,2 constrained uncertainty,3–8 uncertainty theory,9 and relative entropy constraints.10
Our approach and the mentioned alternative approaches differ in multiple ways.
A first difference is the noise model that is adopted. We use the partially specified noise model, which is a (non-white)

probabilistic noise model without the extra assumption that the precise value of the conditional expectation of the noise is
known: it is only assumed to have (possibly conservative) lower and upper bounds. Several authors3–5 assume that the noise is
known to be within an easily parametrised set. Benavoli and Chisci2 assume that the initial state, input noise and output noise
are independent, and that their probability distribution is given by a convex combination of a known Gaussian distribution and
an unknown arbitrary/vacuous distribution. Petersen10 assumes that the joint distribution of the initial state, input noise and
output noise is unknown, but he only considers joints that have some allowable distance to a product of Gaussian distributions.
Chen and Zhu9 model the additive input noise as “independent uncertain linear variables” with finite support.
A second difference is the optimality criterion. A popular choice is a type of minimax optimality criterion,2–5,10 in the sense

that one is interested in the control policy that minimises the (expectation of) the worst-case cost. This criterion usually leads to
a single optimal control input that has to be computed numerically. We minimise the expected quadratic cost, but do so for every
probabilistic noise model that satisfies the bounds on the expectation of the noise. In this way, we end up with an interval of
optimal control inputs, whose lower and upper bounds have analytical expressions that are easy to evaluate. These bounds lead
to a tight interval of conceivably optimal control inputs, which allows (and requires) the use of a secondary decision criterion
to select a unique control input to apply from this interval.
A third difference is that the mentioned alternatives study a multi-dimensional system, with perfect3–5,9 or imperfect2,10 state

information, while we restrict our attention to a one-dimensional system with perfect state information. Nevertheless, all of
the material in Sections 2 to 4 can be readily generalised to multi-dimensional systems. However, generalising the material in
Sections 5 and 6 to multi-dimensional systems, or also taking into account imperfect state information, seems less immediate,
unfortunately.
Finally, while the conditional expectation is assumed to be bounded, we do not impose constraints on the actual value of the

noise,3–5 nor do we impose feasibility constraints on the states and control inputs.2–5,9 These feasibility constraints are essential
to Model Predictive Control; we refer to the review papers of Mayne,6 Farina et al,7 or Saltik et al8—and references therein—
for a list of various ways to implement these constraints and a discussion of how they affect the solution of the control problem.
Our reason for assuming perfect state information and imposing no feasibility constraints is that we want to focus on the new
aspect of our approach—partially specified input noise—without complicating its treatment for extraneous reasons.
The remainder of the paper is structured as follows. We start in Section 2 by introducing some of the basic terminology and

notation concerning the control of discrete-time linear systems. We then formalise the notion of a probabilistic noise model in
Section 3, and use this to (re)define and solve the linear-quadratic control problem in Section 4. After introducing the partially
specified noise model in Section 5, everything is finally set up to present our main contribution in Section 6. We end with a brief
recap in Section 7. As most of the proofs are technical, and not an essential help in understanding the main ideas of the paper,
we have moved them to the Appendix.
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2 A BRIEF INTRO TO LINEAR-QUADRATIC CONTROL

The optimal control of a discrete-time linear system with respect to a quadratic cost function has been studied since the late
1950s, and the formulation of this problem is well known. In this section, we briefly introduce this problem so as to familiarise
the reader with the notation and terminology used throughout this contribution. Furthermore, we also mention explicitly all the
assumptions that we require in the remainder.
We consider a controller that steers the state of a discrete-time scalar linear system with dynamics described by

Xk+1 = akXk + bkuk +Wk for all k ∈ N ∶= {0, 1,… , n}, (1)

where n is a non-negative integer. † In this expression, Xk+1 is the real-valued state,Wk is the real-valued (input) noise and uk
is the real-valued control input; ak and bk are system parameters with bk ≠ 0, as controlling the system is impossible otherwise.
The controller’s objective is to apply the control inputs u0,… , un that minimise the cost

J =
n
∑

k=0

(

rku
2
k + qk+1X

2
k+1

)

. (2)

In this expression, rk and qk+1 are real-valued parameters with rk > 0 and qk+1 ≥ 0. Hence, the cost J and its increments are
always non-negative.
Prior to time 0 the controller is uncertain about the actual values of the noise W0, . . . , Wn in (1), and therefore also about

the actual values of the states X1, . . . , Xn+1 and the actual value of the cost J . Throughout this paper we follow the usual
convention of denoting uncertain variables with upper case letters, while we use lower case letters to denote their actual values.
We furthermore use the following notation for the noise, and similarly for the state and control input. Let k and l be elements of
N such that k ≤ l. The tuple (Wk,… ,Wl) is denoted byWk∶l , and we also letW l denoteW0∶l . For notational convenience, we
letWk∶k−1 be the empty tuple. We also denote this empty tuple by ⋄. For the actual values of the uncertain noise, we use similar
notations: wk∶l ∶= (wk,… , wl) and wl ∶= w0∶l . These tuples can take values in the sets Wk∶l ∶= ℝl−k+1 and W l ∶= W0∶l ,
respectively. As before, we let Wk∶k−1 ∶= {⋄} and wk∶k−1 ∶= ⋄.
At time k and before applying the control input uk, the controller observes xk, the actual value of the state. Furthermore, we

assume perfect recall, meaning that at every time k ∈ N the controller knows the entire state history xk.11 It is then customary
to determine the control input uk as a function of xk, which we will denote by �k. Such a function �k ∶ X k → ℝ is called a
feedback function, and we call a tuple of feedback functions � ∶= (�0, �1,… , �n) a control policy. We let Φ denote the set of
all control policies.
Throughout this contribution we assume that (i) the control policy may depend implicitly on the controller’s noise model,

and that (ii) at time k the controller knows the previous feedback functions �k−1 ∶= (�0,… , �k−1). This second assumption
implies that given the state history xk, the controller can determine the noise history wk−1 using (1). In the remainder, we will
sometimes use the noise historywk−1 without mentioning explicitly that this noise history is computed from the state history xk
and the feedback functions �k−1. We do this in order not to obfuscate the notation too much, as the dependence on xk and �k−1
is usually clear from the context.
For all k ∈ N , all state histories xk ∈ X k and all control policies � ∈ Φ, we define

J [�|xk] ∶=
n
∑

l=k

(

rl�l(xk, Xk+1∶l)2 + ql+1X2
l+1

)

. (3)

As previously mentioned, it is clear from (1) and (3) that the cost J [�|xk] is implicitly dependent on the noiseWk∶n and therefore
uncertain. Hence, in order to be completely correct, we ought to write J [�|xk,Wk∶n] instead of J [�|xk]; however, we will often
write the latter and implicitly assume the dependence on the noiseWk∶n.
Finally, it is customary to evaluate the performance of a control policy by means of its expected cost with respect to some

probabilistic model. A control policy � is then called (locally) optimal if it minimises the expected cost E(J [�|xk]|wk−1), and
the LQC problem consists in finding such an optimal control policy. However, in order to formally define and solve this LQC
problem, we first need to introduce conditional expectation operators.

†Note that the control horizon of length n + 2 could start at any point in time, but that we have opted to start it at time 0 for notational convenience.
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3 PROBABILISTIC NOISE MODELS

In the remainder of this contribution we assume that the controller’s uncertainty about the actual value of the noise W k can
be adequately modelled using a probabilistic model. The most popular probabilistic framework for doing so is that of measure-
theoretic probability theory.1,10–17 However, this measure-theoretic framework suffers from the fact that a lot of technicalities
arise while using it; we refer to Bertsekas and Shreve17 for a thorough discussion. Furthermore, the measure-theoretic framework
also has the drawback that its elementary concepts are probability measures, and that the expectations we are actually interested
in need to be derived from these measures.
In order to address these issues, an alternative—yet similar and mathematically equivalent—probabilistic framework was

proposed by Whittle.18 In contradistinction with the measure-theoretic approach, Whittle constructs his framework using an
expectation operator as the elementary concept. He proposes five axioms that an expectation operator should satisfy. Combining
these five axioms with a definition of independence and conditional expectation allows Whittle to derive the classical results of
measure-theoretic probability theory.
In order to circumvent the technicalities that often arise when using the measure-theoretic approach and inspired by Whittle’s

approach to probability theory, we will model the controller’s uncertainty about the noiseW n using a conditional expectation
operator, the basic aspects of which are outlined below.

3.1 Expectation-based probabilistic noise models
For all k ∈ N , the actual value wk of the noise Wk is an element of the possibility space or sample space Wk = ℝ. Any
real-valued function on W n is called an uncertain variable, and the set of all uncertain variables is denoted by F (W n). More
generally, we will use F (S) to denote the set of all real-valued functions on a set S. Examples of uncertain variables are the
uncertain state Xk+1 and the remaining cost J [�|xk] induced by some control policy � ∈ Φ and some state history xk ∈ X k.
As already mentioned in the introduction to this section, we use a conditional expectation operator E(⋅|⋅) to model the con-

troller’s uncertainty about W n. The expectation of the uncertain variable f ∈ F (W n), conditional on the knowledge that the
actual value ofW k−1 iswk−1, is denoted by E(f (W n)|wk−1). Since this notation E(f (W n)|wk−1) is a bit lengthy, we will often
shorten it to E(f |wk−1). If k = 0, we write E(⋅) instead of E(⋅|⋄).
A conditional expectation operator is an operator

E(⋅|⋅)∶ D × ∪nk=0W
k−1 → ℝ∶ (f,wk−1) → E(f |wk−1),

where the domain D ⊆ F (W n) is some real linear space that includes all constant functions, and where ℝ ∶= ℝ ∪ {−∞,+∞}
denotes the extended real number line. For any k ∈ N and anywk−1 ∈ W k−1,E(⋅|wk−1) is taken to satisfy the following axioms.

(E1) E(cf |wk−1) = cE(f |wk−1) for all f ∈ D and all c ∈ ℝ,

(E2) E(f + g|wk−1) = E(f |wk−1) + E(g|wk−1) for all f, g ∈ D ,

(E3) if f ≥ 0, then E(f |wk−1) ≥ 0, for all f ∈ D , [positivity]

(E4) E(1|wk−1) = 1, [normalisation]

(E5) E(f (W n)|wk−1) = E(f (wk−1,Wk∶n)|wk−1) for all f ∈ D .

Because the co-domain is the extended real number line, the equality in axiom (E2) is only imposed if the addition on the right
hand side is well defined. Terminology-wise, we say that E(f |wk−1) exists if f belongs to the domain D .
Now fix some f ∈ D . Then for any k ∈ N , we can consider the conditional expectation E(f |wk−1) as a function on W n.

We use E(f |W k−1) to denote this function, which maps anywn ∈ W n to E(f |wk−1). Note that this function E(f |W k−1) is not
necessarily real-valued nor necessarily an element of the domain D ; whenever it is real-valued and belongs to D , we demand
that

(E6) E(E(f |W k−1)|wk−2) = E(E(f |wk−2,Wk−1)|wk−2) = E(f |wk−2) for all wk−2 ∈ W k−2.

Axiom (E6) is called the law of iterated expectations, and can be seen as the generalisation of the law of total probability to
expectation operators. In classical measure-theoretic probability, where conditional expectation is not a primitive notion, (a
simplified version of) this law is used to define conditional expectation. A conditional expectation operator E that satisfies
(E1)–(E6) will be called a probabilistic noise model.
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3.2 White noise models
One thing that should be obvious from our definition of a probabilistic noise model is that specifying such a model is non-
trivial. For any k ∈ N and f ∈ D , a different noise history wk−1 in W k−1 = ℝk can for instance lead to a different value of
E(f (Wk)|wk−1). In some situations, it might however be justified to assume that the value of E(f (Wk)|wk−1) is the same for
all values of wk−1, which brings to mind a frequently made independence assumption.
This concept of independence is introduced as a product rule for probability measures in the measure-theoretic framework,

and as a product rule for the expectation operator in Whittle’s expectation framework.18 We here use a slightly altered version
of Whittle’s product rule, which, for all l ∈ N , makes use of the notation Dl ∶= D ∩F (Wl) for those uncertain variables in
the domain D that only depend onWl .
We say that a probabilistic noise model E is independent if for all k ∈ N , all wk−1 ∈ W k−1, and all fk,… , fn in Dk,… ,Dn

such that the product E(fk)⋯E(fn) is well-defined, it holds that the product fk⋯ fn belongs to D and that

E(fk⋯ fn|w
k−1) = E(fk)⋯E(fn).

As a consequence of this, it follows that for all k,l ∈ N such that k ≤ l, all wk−1 ∈ W k−1 and all fl ∈ Dl ,

E(fl|wk−1) = E(fl).

In particular, if the function fl(Wl) ∶= Wl belongs to the domain, we find that

E(Wl|w
k−1) = E(Wl) (4)

for all k,l ∈ N such that k ≤ l and all wk−1 ∈ W k−1.
In this context of independent probabilistic noise models, to ensure that the optimal control problem is solvable, it is necessary

to demand that some specific uncertain variables belong to the domain D and that their expectations are finite; see for instance
Bertsekas.19 In particular, it is necessary that:

(W1) E(Wk) exists and is finite, for all k inN ;

(W2) E(W 2
k ) exists and is finite, for all k inN .

If a probabilistic noise model E is independent and furthermore satisfies (W1) and (W2), then it is called white. Assump-
tions (W1) and (W2) ensure that at least one control policy has a finite expected cost, such that the optimal control problem
studied in Section 4 is well-defined.

3.3 Well-behaved probabilistic noise models
However, assuming that the noise is white—i.e., that it is independent—is not always justifiable. Therefore, we here propose a
set of weaker assumptions on the probabilistic noise model that, as we will see, still ensure that the optimal control problem is
solvable.
In particular, we call a probabilistic noise model E well-behaved if for all k, l, i and j inN satisfying k ≤ l ≤ i ≤ j and all

wk−1 ∈ W k−1

(B1) E(Wl|wk−1) exists and is finite;

(B2) E(E(Wi|W l)E(Wj|W l)|wk−1) exists and is finite;

(B3) E(Wl|W k) ∈ D ;

(B4) E(E(Wi|W l)E(Wj|W l)|W k) ∈ D .

Assumptions (B1)–(B4) are (non-trivial) generalisations of assumptions (W1) and (W2) to more general, non-independent
probabilistic noise models. In fact, a noise model is white if and only if it is well-behaved and independent. This can be imme-
diately verified: for an independent well-behaved probabilistic noise model, (B1) and (B2) reduce to (W1) and (W2), and (B3)
and (B4) are then redundant as they are an immediate consequence of (B1) and (B2).
The reason for assuming (B1) and (B2) is that they guarantee the existence of at least one control policy that has a finite

expected (remaining) cost. (B3) and (B4) ensure that the law of iterated expectations can be used in some specific cases that
appear in our proofs; see the Appendix.
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3.4 Wide-sense white noise models
It is clear that specifying a generic well-behaved probabilistic noise model is—in general—infeasible due to its complexity.
One way to reduce this complexity is to assume independence, but this is often not justified. The main reason for assuming
independence in our setting is that it simplifies the expression for the optimal control policy. However, to be able to execute this
simplification we do not need to assume independence. As we will see, it actually suffices to assume that

E(Wk|w
k−1) = E(Wk) for all k ∈ N and all wk−1 ∈ W k−1. (WSW)

A well-behaved probabilistic noise model E that satisfies (WSW) is called wide-sense white. Note that, as an immediate
consequence of (E1), (E4) and (E6) and similarly to the independent case, every wide-sense white noise model E satisfies (4).

4 LQC OF A SYSTEM SUBJECT TO PROBABILISTIC NOISE

Before we formulate the LQC problem using our well-behaved noise model, we first introduce some additional notation. For all
k ∈ N and � ∈ Φ, we let Φ(�k−1) ∶= { ∈ Φ∶ (∀l ∈ {0,… , k − 1})  l = �l}. Note that �−1 is the empty tuple ⋄ and that
Φ(�−1) = Φ.

4.1 Optimality
Let E be a well-behaved noise model. We say that a control policy �̂ ∈ Φ is optimal if it is an element of the set of optimal
control policies

opt(Φ) ∶=
{

� ∈ Φ∶ (∀k ∈ N)(∀xk ∈ X k)(∀ ∈ Φ(�k−1)) E(J [�|xk]|wk−1) ≤ E(J [ |xk]|wk−1)
}

, (5)

where, as explained in Section 2, wk−1 is implicitly understood to be a function of xk and �k−1. The rationale behind this
definition is the following. The “(∀k ∈ N)(∀xk ∈ X k)” part of (5) ensures that an optimal control policy is optimal for all state
histories. The “(∀ ∈ Φ(�k−1))” part of (5) ensures that locally, we only compare control policies that have applied the same
feedback functions before the current time k.
It is important to emphasise that for a generic well-behaved probabilistic noise model, E(J [ |xk]|wk−1) is not guaranteed

to exist for all xk ∈ X k and  ∈ Φ(�k−1). To ensure that this is the case, we will from here on limit Φ to the set of control
policies � for which:

(J1) E(J [�|xk]|wk−1) exists for all k ∈ N and xk ∈ X k;

(J2) E(J [�|xk, Xk+1]|wk−1,Wk) ∈ D for all k ∈ N and xk ∈ X k,

where wk−1 is derived from xk and �k−1, and where Xk+1 is a function ofWk and xk determined by (1).
Assumption (J1) ensures that the optimality operator is well-defined, while assumption (J2) allows us to find the optimal

control policy using dynamic programming. A more specific motivation for assuming (J2) can be found in the proof of Lemma 4
in the Appendix. For a well-behaved probabilistic noise model, one can verify that the trivial control policy �, defined for all
k ∈ N and all xk ∈ X k as �k(xk) ∶= 0, satisfies assumptions (J1) and (J2). Hence, for a well-behaved probabilistic noise
model, the set Φ is non-empty. Furthermore, as we will show in Theorem 1, every well-behaved probabilistic noise model has
a unique optimal control policy.

4.2 Solution to the LQC problem with probabilistic noise
LQC problems were first studied in the late 1950s, and therefore it should not come as a surprise that LQC problems similar to
ours have already been studied. In almost all cases, discrete-time LQC problems are studied in the context of multi-dimensional
systems with imperfect state information and white noise. Two exceptions are Akashi and Nose15 and Tse and Bar-Shalom16,
where the authors study an LQC problem with imperfect state information, without assuming white input and output noise. Tse
and Bar-Shalom16 assume noise with “known but arbitrary statistics”, while Akashi and Nose15 assume that “a priori probability
distributions of all uncertain variables are known, and that each of these has a finite covariance matrix”. The following result
can be regarded as a formalised version of theirs, in terms of expectation operators, and in the special case of a one-dimensional
system with perfect state information. We provide a full proof of this theorem in the Appendix.



ERREYGERS ET AL 7

Theorem 1. Let E be a well-behaved probabilistic noise model. Then the unique element of opt(Φ) is �̂, defined for all k inN
and all xk in X k as

�̂k(xk) ∶= −r̃kbk
(

mk+1akxk + ℎk
|
wk−1

)

. (6)

The parameters r̃k and mk+1 in (6) are derived from the initial conditions mn+1 ∶= qn+1 and r̃n+1 ∶= 0, and, for all k ∈ N , from
the backwards recursive expressions

r̃k ∶= (rk + b2kmk+1)
−1 (7)

and

mk ∶= qk + r̃ka2krkmk+1. (8)

For all k ∈ N and all wk−1 ∈ W k−1, the feedforward ℎk
|
wk−1 is derived from the initial condition ℎn+1

|
wk−1 ∶= 0 and, for all

l ∈ N such that l ≥ k, from the recursive expression

ℎl
|
wk−1 ∶= r̃l+1al+1rl+1ℎl+1

|
wk−1 + ml+1E(Wl|w

k−1), (9)

where here and in the remainder, for notational convenience we let an+1 ∶= 0 and rn+1 ∶= 0.

The optimal feedback function �̂k defined in (6) should be a function of xk, but at first sight it is a function of only xk and
wk−1. Recall however that, as mentioned in Section 2, we implicitly assume the noise history wk−1 to be a function of the state
history xk and the feedback functions �̂k−1. This confirms that �̂k is indeed a function of xk, and therefore �̂ is indeed a control
policy.
The parameters that determine �̂k need to be computed using backwards recursive expressions. This means that if we want

to compute the parameters that determine the optimal feedback function at time 0, we need to compute the parameters that
determine all the remaining future optimal feedback functions as well. This is a computational disadvantage, especially if we
consider a long control horizon n + 1.
More problematically, the backwards recursive computations that are necessary to determine ℎk

|
wk−1 are—at least in general—

intractable, as the following reasoning illustrates. Indeed, assume that the controller knows the noise history wk−1. In order to
compute the feedforward ℎk

|
wk−1 , he then needs to know the conditional expectations E(Wk|wk−1), … , E(Wn|wk−1). While

obtaining E(Wk|wk−1) is still somewhat feasible, obtaining E(Wk+1|wk−1), … ,E(Wn|wk−1) is usually not. For example, it
follows from (E6) that

E(Wk+1|w
k−1) = E(E(Wk+1|w

k−1,Wk)|wk−1).

Hence, in order to determine E(Wk+1|wk−1), the controller first needs to know E(Wk+1|wk) for every wk ∈ Wk, after which he
can use these values to compute E(E(Wk+1|wk−1,Wk)|wk−1). As Wk = ℝ, this is typically infeasible. Iteratively determining
E(Wk+2|wk−1) is even harder, and so on. Fortunately, there are at least two specific cases where these computations do become
tractable; see Corollary 1 and Theorem 2 further on.
Finally, we note that the expression for the optimal control policy �̂ is strikingly similar to the well-known expression for the

optimal control input of a system subject to deterministic noise. The similarity between these two is a property referred to as
certainty equivalence. It was initially studied by Simon13 and Theil12 under the term first period certainty equivalence in the
context of an economic planning problem, and later became a well-researched property in optimal control.15,16

4.3 Solution to the classical stochastic LQC problem
In the classical approach to the LQC problem with probabilistic noise, the noise model is assumed to be white1,14,19 or, more
generally, wide-sense white. The popularity of this assumption in large part stems from the fact that (WSW) simplifies the
calculation of the feedforward in the optimal solution (9) considerably. Executing this simplification yields—a stronger version
of—the well-known solution to the classical LQC problem.1,19 Alternatively, this result can be see as a special case of Theorem 2
further on.

Corollary 1. LetE be a wide-sense white noise model. Then the unique element of opt(Φ) is �̂, as defined in Theorem 1 by (6).
For all k ∈ N and allwk−1 ∈ W k−1, the feedforward ℎk

|
wk−1 is equal to ℎk, which is derived from the initial condition ℎn+1 ∶= 0

and, for all k ∈ N , from the backwards recursive relation

ℎk ∶= r̃k+1ak+1rk+1ℎk+1 + mk+1E(Wk). (10)
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Observe that in this case the only expectations that determine the feedforward—and hence the optimal control policy—are the
marginal expectations E(W0),… , E(Wn), which simplifies specifying the noise model considerably. Therefore, and as evident
from (10), computing the feedforward is no longer intractable.
There is also a special case in which, for wide-sense white noise models, the computational disadvantage of the backwards

recursive computations disappears completely. This happens when the parameters of the system—ak and bk—as well as the
parameters of the cost—rk and qk+1—are the same at all time instants k ∈ N , i.e., if ak = a, bk = b, rk = r and qk+1 = q. We then
call the system stationary. If E(Wk) = E(W ) for all k ∈ N , then the wide-sense white noise model E is also called stationary.
It is well known—see for example Bertsekas19—that in this case the parameters mk+1 and gk that describe �̂k converge to limit
values in the limit for n → +∞. Moreover, these limit values can be calculated in a non-recursive manner, as stated by the
following proposition.

Proposition 1. Assume that the linear system is stationary. In the limit for n→ +∞, mk—as defined in Theorem 1—converges
to

m ∶=

⎧

⎪

⎨

⎪

⎩

0 if q = 0,
(a2 − 1)r + b2q +

√

((a2 − 1)r + b2q)2 + 4b2qr
2b2

otherwise.
(11)

Even more, in the special case that q = 0, then mk = m = 0 for all k ∈ N ; if on the contrary q > 0 and a = 0, then mk = m = q
for all k ∈ N . If moreover E is a stationary wide-sense white noise model, then ℎk—as defined in Corollary 1—converges to

ℎ ∶=

⎧

⎪

⎨

⎪

⎩

0 if q = 0,
(r + b2m)m
r + b2m − ar

E(W ) otherwise.
(12)

Again, in case q = 0, ℎk = ℎ = 0 for all k ∈ N ; if on the contrary q > 0 but a = 0, then ℎk = ℎ = qE(W ) for all k ∈ N .

This result allows us to consider an infinitely long control horizon and use the a priori computed limit values m and ℎ as the
parameters of the feedback function at all times. Therefore, in this particular case, the disadvantage of the backwards recursive
computations is indeed eliminated.

5 PARTIALLY SPECIFIED NOISE MODELS

If we assume a generic well-behaved probabilistic noise model, as we did in Section 4.2, then the optimal control input is a
unique function of this noise model, but determining the value of this function for a given noise model is—at least in general—
intractable. Fortunately, if our knowledge about E(Wk|wk−1) is independent of wk−1—if E is wide-sense white—then, as we
have seen in Section 4.3, determining the optimal control input does become tractable. However, while this assumption yields
a nice result, one could argue that it is overly restrictive. Moreover, in order to specify a wide-sense white noise model, the
controller needs to specify the precise value of the marginal expectations E(W0),… , E(Wn), which is not always possible.
Therefore, from here on, we will assume that the controller is not able to specify an exact or precise value for E(Wk|wk−1).

Instead, the controller can only assess a lower bound E(Wk) ∈ ℝ and upper bound E(Wk) ∈ ℝ for E(Wk|wk−1), with E(Wk) ≤
E(Wk). In other words, we assume that the controller assesses that the noise can be adequately modelled using a well-behaved
probabilistic noise model E, but that he only knows that for all k ∈ N and all wk−1 ∈ W k−1,

E(Wk) ≤ E(Wk|w
k−1) ≤ E(Wk). (PS)

We will call such a noise model E partially specified.
We would like to emphasise that the only independence assumption we make in a partially specified noise model E is that

the controller’s knowledge—which in this case is partial—about E(Wk|wk−1) is independent ofwk−1, and not that E(Wk|wk−1)
is independent of wk−1. Consequently, the partially specified noise model can be seen as an extension of the wide-sense white
noise model that allows for partial or inexact specifications of the local conditional expectations. In fact, if the bounds of a
partially specified noise model are degenerate, i.e., if E(Wk) = E(Wk) = E(Wk) for all k ∈ N , then the partially specified
noise actually degenerates to a wide-sense white noise model.
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6 LQCWITH PARTIALLY SPECIFIED NOISE

All prerequisites to present our main contribution are now in place. This section is entirely parallel to Section 4, be it that we
now use the partially specified noise model instead of a well-behaved (or wide-sense white) probabilistic noise model.

6.1 Possible optimality criteria
As the noise model is not precisely known, it should come as no surprise that we cannot precisely determine the optimal
control policy either—unless the bounds of the partially specified noise model are degenerate. We therefore need an alternative
optimality criterion that can handle the partially specified nature of our noise model. While there are plenty of alternatives—we
refer to Troffaes20 for an overview—we here use E-admissibility20,21. This simply means that we consider the set of all control
policies that are optimal—in the sense of (5)—for at least one well-behaved noise modelE that satisfies (PS). By Theorem 1, any
such conceivably optimal control policy is a combination of the same state feedback and a possibly different noise feedforward.
The approachwewill consider here is to determine tight lower and upper bounds on the feedforward terms of these conceivably

optimal control policies. One way to interpret these bounds is then that they quantify the sensitivity of the optimal control policy
to errors in the noise model. If the lower and upper bounds on the feedforward terms form a small interval, then the optimal
control policy is not very sensitive to errors in the noise model; if on the contrary the bounds form a large interval, then the
optimal control policy is rather more sensitive to modelling errors.
This approach should be contrasted with methods that try to derive a single control policy within this set, for example by

minimising the worst or best case cost. On our approach, choosing among the conceivably optimal control policies is regarded
as a second step, which we discuss in Section 6.4. Adopting a minimax20—minimising the worst case cost—strategy already
at this stage in our current setting results in an optimisation problem that—in general—cannot be (efficiently) solved, as from
Lemma 4 in the Appendix we know that the expression for the expected cost of a conceivably optimal control policy contains
several second order terms, including for instance E(W 2

k |w
k−1) and E(WkE(Wk+1|W k)|wk−1).

6.2 Solution to the partially specified LQC problem
We consider the following theorem to be the main result of our contribution. It allows us to easily determine tight lower and
upper bounds on the feedforward ℎk

|
wk−1 —and hence on the optimal control input uk—when the controller can only specify

(noise history independent) lower and upper bounds on the conditional expectation of the noise.

Theorem 2. Let E be a partially specified noise model defined by the lower bounds E(W0),… , E(Wn) and the upper bounds
E(W0),… , E(Wn). Then there is a unique optimal control policy �̂, as defined in Theorem 1 by (6). For every k ∈ N and every
wk−1 ∈ W k−1, the exact value of the feedforward term ℎk

|
wk−1 in (6) cannot in general be determined exactly, but it holds that

ℎk ≤ ℎk
|
wk−1 ≤ ℎk,

where the real-valued bounds ℎk and ℎk are derived from the initial condition

ℎn+1 ∶= 0 =∶ ℎn+1, (13)

and, for all l ∈ N , from the recursive relations

ℎl ∶= r̃l+1al+1rl+1ℎl+1 + ml+1E(Wl), (14)

ℎl ∶= r̃l+1al+1rl+1ℎl+1 + ml+1E(Wl), (15)

if al+1 ≥ 0 or from the recursive relations

ℎl ∶= r̃l+1al+1rl+1ℎl+1 + ml+1E(Wl), (16)
ℎl ∶= r̃l+1al+1rl+1ℎl+1 + ml+1E(Wl) (17)

if al+1 < 0. Moreover, the bounds ℎk and ℎk are tight, in the sense that if we fix some k ∈ N and some ℎk ∈ [ℎk, ℎk], then
there is a white probabilistic noise model that satisfies (PS) and for which the feedforward term—defined in (10)— at time k is
equal to ℎk.
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In the special case that the bounds are degenerate—that is, if E(Wk) = E(Wk) for all k ∈ N—this result reduces to
Corollary 1. This should come as no surprise; we already know from Section 5 that a partially specified noise model degenerates
to a wide-sense white noise model if it has degenerate bounds.
We would like to emphasise here that the partially specified noise model considers more than just all possible white noise

models or all possible wide-sense white noise models that are compatible with the upper and lower bounds on the expectation of
the noise. In fact, almost none of the well-behaved probabilistic noise models that satisfy the bounds of (PS) actually correspond
to a (wide-sense) white noise model, since most of them do not satisfy (WSW)! We therefore find it rather remarkable that the
bounds ℎk and ℎk are obtained as the bounds of an interval arithmetic version of (10), which is the recursive expression for the
feedforward that corresponds to wide-sense white noise.
In fact, it follows from the last sentence of Theorem 2 that the obtained bounds on the feedforward ℎk

|
wk−1 are identical to those

that we would have obtained if we had only considered white noise models—instead of all well-behaved noise models—that are
compatible with the lower and upper bounds. Even stronger, one can verify that if all ak’s were non-negative, then considering
only stationary white noise models still results in the same bounds. In other words, dropping the independence assumption—as
we do—does not result in wider bounds on the feedforward! Of course, this begs the question why we put in all this effort in
order to drop the independence assumption in the first place. A first argument for dropping the independence assumption is that
it allows us to obtain the same result—i.e., the tight bounds on the feedforward—in a more general setting. So we can use simple
formulas as if our noise models were independent, but our conclusions hold for a class of more complicated noise models, and we
know which ones. A second, more involved, argument for dropping the independence assumption will be given in Section 6.4.

6.3 Convergence due to stationarity
For wide-sense white noise models, as we know from Section 4.3, stationarity ensures that the parameters that characterise
the optimal control policy converge to easily computable limit values. The following proposition shows that a similar result
continues to hold for stationary partially specified noise models, that is, if E(Wk) = E(W ) and E(Wk) = E(W ) for all k ∈ N .

Proposition 2. Let E be a stationary partially specified noise model with stationary bounds E(W ) and E(W ), and assume that
the linear system is stationary as well. In the limit for n → +∞ the bounds ℎk and ℎk on the feedforward term of the optimal
control policy then converge to

ℎ ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if q = 0,
(r + b2m)m
r + b2m − ar

E(W ) if q > 0 and a ≥ 0,

(r + b2m)m
(r + b2m)E(W ) + arE(W )

(r + b2m)2 − (ar)2
if q > 0 and a < 0,

(18)

and

ℎ ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if q = 0,
(r + b2m)m
r + b2m − ar

E(W ) if q > 0 and a ≥ 0,

(r + b2m)m
(r + b2m)E(W ) + arE(W )

(r + b2m)2 − (ar)2
if q > 0 and a < 0.

(19)

Moreover, in the special case that q = 0, ℎk = 0 = ℎk for all k ∈ N ; if on the contrary q > 0 and a = 0, then ℎk = qE(W ) and
ℎk = qE(W ) for all k ∈ N .

This result is an extension of Proposition 1 from wide-sense white noise models to the more general partially specified noise
models. Here too, as in Section 4.3, this result eliminates the computational disadvantage of having to conduct backwards
recursive computations.
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6.4 Selecting a control input
Consider now a practical situation where the controller’s information about the noise can be adequately modelled by a partially
specified noise model. Then as we know from Section 4, the optimal control input at time k is

uk = �̂k(xk) = −r̃kbk
(

mk+1akxk + ℎk
|
wk−1

)

.

However, as we have argued in Section 6.1, due to the controllers limited information about the noise, he cannot determine the
precise value of the feedforward term ℎk

|
wk−1 exactly. All he knows are the tight lower and upper bounds that we obtained for

this feedforward in Theorem 2, which naturally induce lower and upper bounds on the control input: the optimal control input
is guaranteed to be an element of a closed interval [uk, uk]. In particular, if bk > 0, then

uk ∶= −r̃kbk
(

mk+1akxk + ℎk
)

and uk ∶= −r̃kbk
(

mk+1akxk + ℎk
)

,

and if bk < 0, then ℎk and ℎk switch places. Hence, based on his information about the noise—i.e., the partially specified noise
model—the controller does not have a preference for any element of the interval [uk, uk].
Of course, in a practical scenario the controller does need to choose a control input uk. One possible—but naive—way to do

this would be the following. Recall from our discussion in Section 6.2 that the bounds on the feedforward remain the same if we
were to consider only white noise models. Hence, if the controller is comfortable with making an independence assumption, one
way to select a control input is to simply apply the noise feedforward corresponding to a white noise model that is compatible
with the bounds. This way, the problem is reduced to choosing precise values for the marginal expectationE(Wl) in the interval
[E(Wl), E(Wl)] for all l ∈ N a priori. However, this choice is arbitrary, since one of our two motivations for introducing the
partially specified noise model was the assumption that the controller was not able to specify precise values for the marginal
expectation in the first place!
Therefore, an arguably more sensible way to select a value uk from the interval [uk, uk] is to use a secondary decision criterion.

Although one might regard the need for such an extra criterion as a drawback, we think that this is actually an important benefit
of our approach, because it allows the controller to take into account additional requirements that would have made solving the
original optimisation problem more difficult, if not impossible.
Indeed, the classic set up of the LQC problem—unconstrained and real-valued states and control inputs in combination with

a linear-quadratic cost functional—is popular mainly because it leads to an optimisation problem that can be solved relatively
easily, and not necessarily because it is a good model for reality. In fact, there are many possible extensions of the LQC problem
that make it arguably more realistic or useful, such as extra requirements on the state and control input3–5 or an exponential
optimality criterion.22 This extra realism comes at a price though, as solving the optimisation problem is usually (much) harder
for the extended LQC problem than for the original LQC problem.
One practical example of an extension that results in a much harder LQC problem is the addition of a cost penalty for every

non-zero control input. However, in our approach, dealing with this penalisation of non-zero control inputs using a secondary
decision criterion is straightforward: the controller simply selects the element uk of [uk, uk] that has the smallest absolute value.
The simple idea behind this choice is that if a non-zero control input has to be chosen, choosing the one with the smallest absolute
value results in the lowest cost of the control at that time point. Given the available partial information about the probabilistic
noise model E, one could argue that it is the most sensible policy that can be considered.
Another basic extension of the LQC problem is to impose that the states and/or control inputs are constrained.3–5 Solving

the resulting LQC problem is then more involved than solving the one without bounds, and an analytical solution is no longer
possible. However, if we are working with a partially specified noise model, we can often satisfy these state and/or control input
constraints using a secondary decision criterion, i.e., by appropriately selecting an element of [uk, uk] that aims to satisfy these
constraints locally.
A similar situation occurs if the control input can only take a finite number of values. If the number of possible values or the

length of the control horizon is large, solving the LQC problem then becomes computationally intensive. Here too, the controller
can use a secondary decision criterion to select, if possible, a suitable control input in [uk, uk].
All the examples above have one thing in common: at every time point k and given the current state xk, they select one element

u⋆k from [uk, uk]. This is equivalent to choosing an element ℎ⋆k from [ℎk, ℎk] for every state xk, and clearly defines a control
policy. Ideally, such a control policy would be optimal with respect to at least one well-behaved noise model that satisfies (PS).
Although we have reason to believe that this claim is—at least in a slightly different/weaker form—true, verifying or refuting
it would require an excessively extensive argument, and we therefore leave this as a conjecture. We do argue however that in
general, such a control policy cannot be optimal with respect to a (wide-sense) white noise model that satisfies (PS), which
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implies that the correctness of the claim—and therefore, the reasonability of the secondary decision criteria above—requires
dropping the independence assumption, as allowed by our model.
The argument revolves around the following counterexample. Consider a control problem with N = {0, 1}, and assume

that ak > 0 and qk+1 > 0 for all k ∈ N . Furthermore, consider a partially specified noise model with E(W0) < E(W0) and
E(W1) < E(W1). Assume that our choices are ℎ⋆0 = ℎ0 and ℎ

⋆
1 = ℎ1. We now claim that there is no (wide-sense) white noise

model that satisfies (PS), ℎ0 = ℎ⋆0 and ℎ1 = ℎ⋆1 . If this claim is true, then it follows from Corollary 1 that the control policy
that corresponds to our choices cannot be optimal with respect to a (wide-sense) white noise model that satisfies (PS), hence
completing our argument. We verify this claim as follows. First, we observe that from ℎ1 = ℎ⋆1 = ℎ1, (10) and (15) it follows
that E(W1) = E(W1). Second, we apply (14) twice to yield

ℎ⋆0 = ℎ0 = r̃1a1r1q2E(W1) + m1E(W0).

Similarly, applying (10) twice yields

ℎ0 = r̃1a1r1q2E(W1) + m1E(W0).

We subtract the first equality from the second, to yield

ℎ0 − ℎ⋆0 = r̃1a1r1q2(E(W1) − E(W1) + m1(E(W0) − E(W0)).

Since E(W1) = E(W1) > E(W1) and E(W0) ≥ E(W0)—and because the relevant system parameters are positive—this implies
that ℎ0 − ℎ⋆0 > 0. Clearly, this contradicts with the requirement that ℎ0 = ℎ⋆0 , which verifies our claim.

7 CONCLUSION

Throughout this contribution, we were interested in determining the control policies that optimally control a linear system
subject to input noise with respect to a quadratic cost. It is well known that if a controller’s knowledge about the input noise can
be modelled accurately by a white noise model, then there is a single optimal control policy, which can be easily determined
from well-known backwards recursive expressions. The independence assumption made in the white noise model is however
quite restrictive and often not justifiable. Fortunately, as we have seen—and as is essentially well-known—there is also a single
optimal control policy if the controller’s knowledge does not allow for assuming independence. In that case, however, we argued
that determining the resulting optimal control inputs is, in general, computationally infeasible.
The special case where the local conditional expectation of the noise is independent of the noise history at all times deserves

special attention. Indeed, we found that in this case the optimal control inputs can be determined using the same backwards
recursive expressions from the case of white noise. While this is a nice result, this still requires a quite stringent assumption, and
also requires that the controller is able to specify precise—exact—values for the (marginal) expectation of the noise at all times.
Therefore, we here considered the situation where the controller’s knowledge about the noise is partial, in the sense that he

can only specify lower and upper bounds on the conditional expectation of the noise, and where the noise is not required to be
(wide-sense) white. Of course, as a consequence of the imprecision in the noise model, the optimal control input can no longer
be uniquely determined. Nonetheless, we were able to show that there are tight—with respect to the controller’s knowledge—
lower and upper bounds on the optimal control inputs. Even more surprisingly, we found that these lower and upper bounds can
be easily computed, using interval-arithmetic versions of the backwards recursive expressions from the case of (wide-sense)
white noise. Additionally, we found that in the case of a stationary system, stationary noise model and long control horizon,
similar to the (wide-sense) white noise case, the (lower and upper bounds for the) parameters that determine the optimal control
input converge to limit values, which can be easily determined from closed-form expressions.
Inevitably, we have had to leave some questions unanswered. First and foremost, we have not thoroughly studied how to choose

which value in the feedforward interval to actually apply. We have argued that this might be done using a secondary decision
rule, which is a computationally tractable way of trying to satisfy some extra requirements on the state and/or control input,
including requirements that would make solving the LQC problem hard when taken into account during optimisation. However,
we have only presented a brief discussion on this use of secondary decision criteria, and a proper study using simulations and
real-world applications is certainly necessary. We leave this for future work.
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APPENDIX

Lemma 1. The sequence mn+1, mn,… , m0 that is defined by the initial condition mn+1 ∶= qn+1 and the recursive relation (8) is
a monotonously increasing sequence of non-negative real numbers, which, provided the linear system is stationary, is bounded
above by q + ra2∕b2. Consequently, r̃n,… , r̃0, defined by (7), is a sequence of strictly positive real numbers.

Proof. Bertsekas makes this observation about the first sequence in the proof of Proposition 4.4.1 of Bertsekas.19 The statement
about the second sequence then follows directly from this and the strict positivity of rk.

Lemma 2. Let k be in N , wk−1 in W k−1 and let E be a conditional expectation operator with domain D that satisfies (E1)–
(E5). Let f and g be two uncertain variables in D and assume that E(f |wk−1) and E(g|wk−1) are not both infinite. If f ≤ g,
then E(f |wk−1) ≤ E(g|wk−1).

Proof. Since the domainD of E is a real linear space, g−f belongs toD ; and by assumption g−f ≥ 0. By (E3),E(g−f |wk−1) ≥
0, from which the stated follows by (E2).

Lemma 3. Let E be a well-behaved probabilistic noise model with domain D and fix some arbitrary k ∈ N and some wk−1 ∈
W k−1. Let the real-valued function f onW n be any linear combination of (i) constants; (ii) terms of the formWl orE(Wl|W k),
with l ∈ N such that k ≤ l; and (iii) terms of the form E(Wi|W l)E(Wj|W l)—which includes terms of the form W 2

l
andWlE(Wj|W l) as special cases‡—or E(E(Wi|W l)E(Wj|W l)|W k)—which includes terms of the form E(W 2

l |W
k) and

E(WlE(Wj|W l)|W k) as special cases§—with l, i, j ∈ N such that k ≤ l ≤ i ≤ j. Then f belongs to the domain D , and
E(f |wk−1) is finite.

Proof. This proof is based on a trivial extension of (E1) and (E2). Let m be some strictly positive integer, f1,… , fm some real-
valued functions on W n that belong to the domain D and d1,… , dm some real numbers. It now follows from (E1) and (E2) that
if E(fr|wk−1) is finite for all r ∈ {1,… , m}, then

∑m
r=1 drfr ∈ D and

E

( m
∑

r=1
drfr

|

|

|

|

|

wk−1

)

=
m
∑

r=1
drE(fr|wk−1)

is finite.
Therefore, we can prove the statement as follows. First, we verify that every term fi in the linear combination is contained

in the domain D . Second, we check that E(fi|wk−1) is finite. If this is the case, then the above reasoning implies that f—the
function that is a linear combination of the terms in the statement—belongs to D and that E(f |wk−1) is indeed finite.

‡Recall that by (E5), E(Wl|W l) = Wl . Hence, terms of the formW 2
l are obtained by letting l = i = j, as then E(Wl|W l)E(Wl|W l) = W 2

l . Similarly, terms of
the formWlE(Wj |W l) are obtained by letting l = i ≤ j, as then E(Wl|W l)E(Wj |W l) = WlE(Wj |W l).

§As before, these two special cases follow by letting l = i = j and l = i ≤ j and using (E5).

http://dx.doi.org/10.1016/j.ijar.2006.06.001
http://dx.doi.org/10.2307/1426972
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We first consider the constant terms. Let d be any real number. Observe that it follows from (E4) and (E1) that the constant
function g(W n) ∶= d, which is contained in the domain D , has expectation E(g|wk−1) = d, which is clearly finite.
Second, we focus on the terms of the form Wl or E(Wl|W k). By (B1), Wl belongs to the domain D and E(Wl|wk−1) is

finite. By (B3), E(Wl|W k) ∈ D , such that we now only need to prove that E(E(Wl|W k)|wk−1) is finite. As E(Wl|W k) ∈ D

by (B3) andWl ∈ D by (B1), it follows from (E6) that E(E(Wl|W k)|wk−1) = E(Wl|wk−1). Recall that E(Wl|wk−1) is finite
by (B1), such that E(E(Wl|W k)|wk−1) is indeed finite.
Third, we focus on the terms of the form E(Wi|W l)E(Wj|W l) and E(E(Wi|W l)E(Wj|W l)|W k). By

(B2), E(Wi|W l)E(Wj|W l) belongs to the domain D and E(E(Wi|W l)E(Wj|W l)|wk−1) is finite. By (B4),
E(E(Wi|W l)E(Wj|W l)|W k) belongs to the domain D , such that what remains for us to prove is that these terms have finite
conditional expectation. As E(Wi|W l)E(Wj|W l) ∈ D and E(E(Wi|W l)E(Wj|W l)|W k) ∈ D , it follows from (E6) that

E(E(E(Wi|W
l)E(Wj|W

l)|W k)|wk−1) = E(E(Wi|W
l)E(Wj|W

l)|wk−1).

Recall that the right hand side of this equality is finite by (B2), such that E(E(E(Wi|W l)E(Wj|W l)|W k)|wk−1) is indeed
finite.

Lemma 4. Let E be a well-behaved probabilistic noise model. Fix some � ∈ Φ, some k ∈ N , and some xk ∈ X k, and let
wk−1 ∈ W k−1 denote the noise history associated with � and xk according to (1). Then

ĉ(�k−1, xk) ∶= (mk − qk)x2k + 2r̃kakrkxkℎk|wk−1 − r̃k(bkℎk
|
wk−1 )2 + 2

n−1
∑

l=k
r̃l+1al+1rl+1E(Wlℎl+1|W l |wk−1)

−
n−1
∑

l=k
r̃l+1b

2
l+1E((ℎl+1|W l )2|wk−1) +

n
∑

l=k
ml+1E(W 2

l |w
k−1) (1)

is well defined—in the sense that all conditional expectation operators act on functions contained in their common domain
D—and finite. Furthermore, for any xk ∈ X k and any  ∈ Φ(�k−1),

ĉ(�k−1, xk) ≤ E(J [ |xk]|wk−1). (2)

Let �̂ be defined as in Theorem 1, and let  be an arbitrary element of Φ(�k−1). If  k ≠ �̂k, then

(∃xk ∈ X k) ĉ(�k−1, xk) < E(J [ |xk]|wk−1). (3)

Alternatively, if  l = �̂l for all l ∈ N such that l ≥ k, then

(∀xk ∈ X k) E(J [ |xk]|wk−1) = ĉ(�k−1, xk). (4)

Proof. Throughout the proof, we let � be an arbitrary element of Φ.
First, we verify that the expression for ĉ(�k−1, xk) is indeed well defined and finite. To that end, we fix some k ∈ N and some

xk ∈ X k. As mentioned in Section 2, we use wk−1 to denote the noise history associated with �k−1 and xk. It clearly suffices
to show that ℎk

|
wk−1 is well-defined and finite, and that each of the conditional expectations in (1) is well-defined and finite.

For verifying that ℎk
|
wk−1 is well-defined and finite, we explicitly execute the recursion in (9), and observe that ℎk

|
wk−1 is

a linear function of E(Wk|wk−1), … , E(Wn|wk−1). As by (B1) these conditional expectations exist and are finite, ℎk
|
wk−1 is

indeed well-defined and finite.
Similarly for the conditional expectations, we observe that ℎl+1|W l is a linear combination ofE(Wl+1|W l),… ,E(Wn|W l).

Consequently, the functions in the conditional expectations in (1) all satisfy the requirements of Lemma 3, from which it follows
that these conditional expectations are well-defined and finite.
We now turn to proving the remainder of the statement—that is (2), (3) and (4)—using induction. In order to do that, for all

 ∈ Φ, all k ∈ N and all xk ∈ X k, we let
c( , xk) ∶= E(J [ |xk]|wk−1)

for notational convenience. Note that c( , xk) is well-defined—in the sense that the conditional expectation exists—by (J1),
implying that J [ |xk] ∈ D .
Now let ∈ Φ(�n−1), and fix an arbitrary xn ∈ X n. The setΦ(�n−1) is constructed in such away that the noise historywn−1 ∈

W n−1 associated with any  ∈ Φ(�n−1) and the state history xn is the same as that associated with � and xn. By (3),

c( , xn) = E(rn n(xn)2 + qn+1X2
n+1|w

n−1).
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Substituting Xn+1 with its dynamics (1) yields

c( , xn) = E(qn+1(anxn + bn n(xn) +Wn)2 + rn n(xn)2|wn−1).

We expand the squares, use the linearity of the conditional expectation operator—which is allowed as the conditional expectation
is finite by Lemma 3—and complete the squares containing  n(xn), to yield

c( , xn) = r̃−1n s
2
n + (mn − qn)x

2
n + 2r̃nanrnxnℎn|wn−1 − r̃n(bnℎn

|
wn−1 )2 + qn+1E(W 2

n |w
n−1), (5)

where ℎn
|
wn−1 , r̃n and mn are as defined in Theorem 1 and

sn ∶=  n(xn) + r̃nbn(qn+1anxn + ℎn
|
wn−1 ). (6)

The only term in our expression for c( , xn) that is influenced by  n—the component of the control policy  that we are free
to choose—is r̃−1n s

2
n. By Lemma 1, this term is always non-negative, and zero if and only if sn = 0. Setting sn = 0 in (5) is the

only way to minimise c( , xn), which yields the minimum

c( , xn) ≥ (mn − qn)x2n + 2r̃nanrnxnℎn|wn−1 − r̃n(bnℎn
|
wn−1 )2 + qn+1E(W 2

n |w
n−1) = ĉ(�n−1, xn). (7)

Note that (7) agrees with (1) for k = n, such that (2) is true for k = n. Setting sn = 0 in (6) yields

 n(xn) = −r̃nbn
(

qn+1anxn + ℎn
|
wn−1

)

. (8)

Hence, the expected remaining cost c( , xn) is equal to its minimum ĉ(�n−1, xn) for all xn ∈ X n if and only if  n = �̂n, which
agrees with (3) and (4) for k = n.
Next, we fix some k ∈ N such that k < n, and assume that (2)–(4) hold for all l ∈ N such that l > k. It follows from (3)

that, for all any xk ∈ X k and all  ∈ Φ(�k−1),

J [ |xk] = rk k(xk)2 + qk+1X2
k+1 + J [ |x

k, Xk+1],

an equality between two (implicit) real-valued functions on W n. We now substitute Xk+1 in the middle term of the right hand
side with its dynamics (1), which, after expanding and regrouping the terms, yields

J [ |xk] = f (Wk) + J [ |xk, Xk+1], (9)

where again both sides of the equality are (implicit) functions on W n and where the real-valued function f on Wk is defined for
all wk ∈ Wk as

f (wk) ∶= (rk + qk+1b2k) k(x
k)2 + qk+1(a2kx

2
k +w

2
k) + 2qk+1bk k(x

k)(akxk +wk) + 2qk+1akxkwk.

As c( , xk) = E(J [ |xk]|wk−1) is well-defined, it follows from (9) that f (Wk) + J [ |xk, Xk+1] ∈ D . We plan on applying
(E6), so we now verify that alsoE(f (Wk)+J [ |xk, Xk+1]|wk−1,Wk) ∈ D . To that end, first note that f (Wk) satisfies Lemma 3,
such that f (Wk) ∈ D and E(f (Wk)|wk−1) is finite. Since D is a linear space, and because we already know that J [ |xk] ∈ D ,
(9) now implies that J [ |xk, Xk+1] ∈ D . Furthermore, it follows from (E5), (E1) and (E4) that E(f (Wk)|W k) = f (Wk). Com-
bining our observations about f , we find that E(E(f (Wk)|W k)|wk−1) is finite because it is equal to E(f (Wk)|wk−1), which is
finite. As an immediate consequence of (E5),E(E(f (Wk)|wk−1,Wk)|wk−1) is equal toE(E(f (Wk)|W k)|wk−1) and hence finite
(and therefore also well-defined), which implies thatE(f (Wk)|wk−1,Wk) ∈ D . Also, recall thatE(J [ |xk, Xk+1]|wk−1,Wk) ∈
D by (J2). Hence, since D is a linear space, E(f (Wk)|wk−1,Wk)+E(J [ |xk, Xk+1]|wk−1,Wk) ∈ D . However, since f (Wk) ∈
D and J [ |xk, Xk+1] ∈ D , it follows from applying (E2) that E(f (Wk) + J [ |xk, Xk+1]|wk−1,Wk) = E(f (Wk)|wk−1,Wk) +
E(J [ |xk, Xk+1]|wk−1,Wk). Therefore, we find that E(f (Wk) + J [ |xk, Xk+1]|wk−1,Wk) ∈ D .
We have now verified that both f (Wk) + J [ |xk, Xk+1] ∈ D and E(f (Wk) + J [ |xk, Xk+1]|wk−1,Wk) ∈ D . Hence,

c( , xk) = E(J [ |xk]|wk−1) = E(f (Wk) + J [ |xk, Xk+1]|wk−1)
= E(E(f (Wk) + J [ |xk, Xk+1]|wk−1,Wk)|wk−1),

where the first equality is the definition of c( , xk), the second equality follows from (9) and the final equality follows from (E6).
Using (E5), (E2), (E1) and (E4), we rewrite the argument—that is, the inner conditional expectation—of the outer conditional
expectation, to yield

c( , xk) = E(f (Wk) + E(J [ |xk, Xk+1]|wk−1,Wk)|wk−1). (10)
For all xk+1 ∈ Xk+1, we now define

c( , xk, xk+1) ∶= E(J [ |xk+1]|wk−1, vk),
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where vk ∈ Wk is derived from a bijective linear function of xk+1 (and the “fixed” values  k(xk) and xk) given by (1). By
construction, we may substitute E(J [ |xk, Xk+1]|wk−1,W k) with c( , xk, Xk+1)—where Xk+1 is a function of Wk—in (10),
to yield

c( , xk) = E
(

(rk + qk+1b2k) k(x
k)2 + qk+1(a2kx

2
k +W

2
k )

+ 2qk+1bk k(xk)(akxk +Wk) + 2qk+1akxkWk + c( , xk, Xk+1)
|

|

|

wk−1),

where we have also re-substituted f (Wk) with its full expression.
From the induction hypothesis, we know that—regardless of  k—choosing  k+1 = �̂k+1, ...,  n = �̂n leads to the smallest

possible point-wise value of c( , xk, Xk+1). Hence, because of Lemma 2, letting  k+1 = �̂k+1, ...,  n = �̂n and using the
induction hypothesis yields

c( , xk) ≥ E
(

(rk + qk+1b2k) k(x
k)2 + qk+1(a2kx

2
k +W

2
k ) + 2qk+1bk k(x

k)(akxk +Wk) + 2qk+1akxkWk

+ (mk+1 − qk+1)X2
k+1 + 2r̃k+1ak+1rk+1Xk+1ℎk+1|W k − r̃k+1(bk+1ℎk+1|W k)2

+ 2
n−1
∑

l=k+1
r̃l+1al+1rl+1E(Wlℎl+1|W l |W k) −

n−1
∑

l=k+1
r̃l+1b

2
l+1E((ℎl+1|W l )2|W k)

+
n
∑

l=k+1
ml+1E(W 2

l |W
k)||
|

wk−1
)

. (11)

In order to obtain the minimum for c( , xk), we now simply need to correctly choose the value of  k(xk). This is the main
reason for assuming that (J2) holds, as this assumption allows us to use dynamic programming—optimisation in a backwards
recursive manner—to find the optimal control input. We continue by again substituting Xk+1 with its dynamics (1). After
expanding the square and regrouping some terms, we find

c( , xk) ≥ E
(

(rk + mk+1b2k) k(x
k)2 + mk+1(a2kx

2
k +W

2
k ) + 2bk k(x

k)
(

mk+1akxk + mk+1Wk + r̃k+1ak+1rk+1ℎk+1|W k

)

+ 2mk+1akxkWk + 2r̃k+1ak+1rk+1akxkℎk+1|W k + 2r̃k+1ak+1rk+1Wkℎk+1|W k − r̃k+1(bk+1ℎk+1|W k)2

+ 2
n−1
∑

l=k+1
r̃l+1al+1rl+1E(Wlℎl+1|W l |W k) −

n−1
∑

l=k+1
r̃l+1b

2
l+1E((ℎl+1|W l )2|W k)

+
n
∑

l=k+1
ml+1E(W 2

l |W
k)||
|

wk−1
)

.

One can verify that all the terms in the above conditional expectation satisfy the requirements of Lemma 3. For most terms
this is obvious, so we restrict our attention to the terms containing ℎl|W l+1 . Note that, as mentioned before, it follows from (9)
that ℎl+1|W l is a linear combination of terms of the form E(Wj|W l) for j > l. Hence, from (B2) and (E2) it now follows
that E(Wlℎl+1|W l |W k) is equal to a linear combination of terms of the form E(WlE(Wj|W l)|W k) with j > l, which
indeed satisfy the requirements of Lemma 3. Furthermore, it also follows from (B2) and (E2) that E((ℎl+1|W l )2|W k) is a linear
combination of terms of the form E(E(Wi|W l)E(Wj|W l)|W k) with l < i ≤ j , which also satisfy the requirements of
Lemma 3. Hence, all terms in the above conditional expectation satisfy the requirements of Lemma 3, such that this conditional
expectation is finite. We may therefore use the linearity of the expectation operator, to yield

c( , xk) ≥ (rk + mk+1b2k) k(x
k)2 + mk+1a2kx

2
k + 2bk k(x

k)(mk+1akxk + gk
|
wk−1 ) + 2akxkgk

|
wk−1

+ 2r̃k+1ak+1rk+1E(Wkℎk+1|W k |wk−1) + 2
n−1
∑

l=k+1
r̃l+1al+1rl+1E(E(Wlℎl+1|W l |W k)|wk−1) (12)

− r̃k+1b2k+1E((ℎk+1|W k)2|wk−1) −
n−1
∑

l=k+1
r̃l+1b

2
l+1E(E((ℎl+1|W l )2|W k)|wk−1)

+ mk+1E(W 2
k |w

k−1) +
n
∑

l=k+1
ml+1E(E(W 2

l |W
k)|wk−1), (13)

where
gk
|
wk−1 ∶= r̃k+1ak+1rk+1E(ℎk+1|W k |wk−1) + mk+1E(Wk|w

k−1). (14)
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In order to continue, we first show that gk
|
wk−1 is equal to ℎk

|
wk−1 as defined in Theorem 1. To see this, recall from (9) that

for all wk ∈ Wk, ℎk+1
|
wk is derived from the initial condition ℎn+1

|
wk = 0 and, for all l ∈ N such that l ≥ k + 1, from the

recursive relation
ℎl
|
wk = r̃l+1al+1rl+1ℎl+1

|
wk + ml+1E(Wl|w

k).

If we explicitly execute this recursion, we find that

ℎk+1
|
wk =

n
∑

l=k+1
lE(Wl|w

k), (15)

where for all l ∈ N such that l ≥ k + 1, l is a real number derived from r̃l+1,… , r̃n, al+1,… , an, rl+1,… , rn and
ml+1,… , mn+1. Similarly, we also find that ℎk+1|W k =

∑n
l=k+1 lE(Wl|W k). Using (15) we can immediately verify that the

conditions of Lemma 3 hold, such that ℎk+1|W k ∈ D and E(ℎk+1|W k |wk−1) exists and is finite. Moreover, from the proof of
Lemma 3 we know that then

E(ℎk+1|W k |wk−1) =
n
∑

l=k+1
lE(E(Wl|W

k)|wk−1).

As for all l ∈ N such that l ≥ k + 1,Wl ∈ D by (B1) and E(Wl|W k) ∈ D by (B3), it now follows from (E6) that

E(ℎk+1|W k |wk−1) =
n
∑

l=k+1
lE(Wl|w

k−1).

It is now a matter of straightforward verification—and intuitively clear from (9)—that E(ℎk+1|W k |wk−1) = ℎk+1
|
wk−1 , where

ℎk+1
|
wk−1 is as defined in Theorem 1. Consequently, we may substitute E(ℎk+1|W k |wk−1) in (14) with ℎk+1

|
wk−1 , to yield

gk
|
wk−1 = r̃k+1ak+1rk+1ℎk+1

|
wk−1 + mk+1E(Wk|w

k−1) = ℎk
|
wk−1 ,

where the final equality follows from (9).
We continue simplifying (13), the expression for c( , xk), by (i) substituting gk

|
wk−1 by ℎk

|
wk−1 , (ii) applying the law of iterated

expectations—which is allowed by Lemma 3—and (iii) incorporating some terms into the summations, to yield

c( , xk) ≥ (rk + mk+1b2k) k(x
k)2 + mk+1a2kx

2
k + 2bk k(x

k)(mk+1akxk + ℎk
|
wk−1 ) + 2akxk+1ℎk

|
wk−1

+ 2
n−1
∑

l=k
r̃l+1al+1rl+1E(Wlℎl+1|W l |wk−1) −

n−1
∑

l=k
r̃l+1b

2
l+1E((ℎl+1|W l )2|wk−1) +

n
∑

l=k
ml+1E(W 2

l |w
k−1).

In order to simplify finding the minimising value of  k(xk), we complete the squares containing  k(xk), to yield

c( , xk) ≥ r̃−1k s
2
k + (mk − qk)x

2
k + 2r̃kakrkxkℎk|wk−1 − r̃kb2kℎ

2
k
|
wk−1 + 2

n−1
∑

l=k
r̃l+1al+1rl+1E(Wlℎl+1|W l |wk−1)

−
n−1
∑

l=k
r̃l+1b

2
l+1E((ℎl+1|W l )2|wk−1) +

n
∑

l=k
ml+1E(W 2

l |w
k−1), (16)

where mk and r̃k are as defined in Theorem 1 and

sk ∶=  k(xk) + r̃kbk
(

mk+1akxk + ℎk
|
wk−1

)

. (17)

The only term in (16) that is influenced by our remaining choice of  k is r̃−1k s
2
k. This term is minimised by demanding

r̃−1k s
2
k = 0, which is equal to demanding sk = 0 by Lemma 1. By letting r̃−1k s

2
k = 0 in (16) we obtain (2)—the expression for

ĉ(�k−1, xk)—such that the first statement of this lemma is true.
If now  k ≠ �̂k, then there is at least one xk⋆ ∈ X k such that sk ≠ 0. This implies that c( , xk⋆) > ĉ(�

k−1, xk⋆), such that the
second statement of this lemma—(3)—is also true.
Finally, we confirm (4). Recall that the inequality in (11) is an equality if  k+1 = �̂k+1,… ,  n = �̂n. If this is the case, then

c( , xk) = ĉ(�k−1, xk) for all xk ∈ X k if we let sk = 0 for all xk ∈ X k in (17). This can be achieved by choosing

 k(xk) = −r̃kbk
(

mk+1akxk + ℎk
|
wk−1

)

= �̂k(xk), (18)

which proves that (4) indeed holds.
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Proof of Theorem 1. Recall from (5) that the set of optimal control policies is defined as

opt(Φ) ∶=
{

� ∈ Φ∶ (∀k ∈ N)(∀xk ∈ X k)(∀ ∈ Φ(�k−1)) E(J [�|xk]|wk−1) ≤ E(J [ |xk]|wk−1)
}

.

We now use Lemma 4 to show that the control policy �̂, as defined in Theorem 1, is indeed the only control policy in this set.
Fix some k ∈ N , some xk ∈ X k and letwk−1 ∈ W k−1 be the noise history that is associated to xk and �̂ by (1). By combining
(2) and (4), we find that

ĉ(�̂k−1, xk) = E(J [�̂|xk]|wk−1) ≤ E(J [ |xk]|wk−1)

for all  ∈ Φ(�̂k−1). From the above inequality, we can infer that �̂ is indeed an element of opt(Φ).
Next, consider any �̂ ∈ Φ such that �̂ ≠ �̂. Then there is at least one k ∈ N such that �̂k ≠ �̂k. Consider the smallest

such k. Our choice of k obviously ensures that �̂k−1 = �̂k−1, or equivalently that Φ(�̂k−1) = Φ(�̂k−1). From Lemma 4—more
specifically from (4)—it follows that

(∀xk ∈ X k) E(J [�̂|xk]|wk−1) = ĉ(�̂k−1, xk) = ĉ(�̂k−1, xk). (19)

However, it also follows from Lemma 4—and more specifically from (3)—that there is an xk⋆ ∈ X k such that

ĉ(�̂k−1, xk⋆) = ĉ(�̂
k−1, xk⋆) < E(J [�̂|x

k
⋆]|w

k−1). (20)

Combining (19) and (20) now yields that

E(J [�̂|xk⋆]|w
k−1) < E(J [�̂|xk⋆]|w

k−1).

As �̂k−1 ∈ Φ(�̂k−1), this inequality implies that �̂ cannot be optimal. Hence, �̂ is the unique element of opt(Φ).

Proof of Proposition 1. This proposition is just an alternative statement of Proposition 4.4.1 of Bertsekas,19 with the addition
of a statement about the convergence of ℎk. LetN ′ ∶= N ∪{n+1}. The proof is more easily stated by considering the reversed
sequences {m′j}j∈N ′ and {ℎ′j}j∈N ′ , defined as m′j ∶= mn+1−j and ℎ′j ∶= ℎn+1−j for all j ∈ N ′. Alternatively, these sequences
can be derived from the initial conditions m′0 = q and ℎ

′
0 = 0 and, for all j ∈ N , from the recursive relation

m′j+1 = q + r̃
′
j+1a

2rm′j , (21)

ℎ′j+1 = r̃
′
jarℎ

′
j + m

′
jE(W ), (22)

where

r̃′j ∶=

{

0 if j = 0,
(r + b2m′j−1)

−1 otherwise.

For k ∈ N fixed, the limit of mk for n → +∞ is equal to that of m′j for j → +∞, and similarly for ℎk and ℎ′j . Therefore, we
can now focus on the limit behaviour of the infinite sequences {m′j}j∈ℕ and {ℎ′j}j∈ℕ. Throughout the remainder, we use ℕ to
denote the set of non-negative integers (including zero) and ℕ>0 to denote the set of strictly positive integers.
From Lemma 1 it follows that m′j converges for j → +∞. Let m be its limit value. In case q = 0, we can immediately verify

from the initial condition m′0 = q = 0 and the recursive relation (21) that m′j = 0 for all j ∈ ℕ, which implies that m = 0. If on
the contrary q > 0, then {m′j}j∈ℕ is a monotonously increasing sequence of strictly positive real numbers. The limit value m of
this sequence can be determined by setting m′j+1 and m

′
j equal to m in (21)—i.e., assuming the convergence has occurred—and

solving the resulting second order equation for m. Doing this yields two solutions:

m+ =
(a2 − 1)r + b2q +

√

((a2 − 1)r + b2q)2 + 4b2qr
2b2

and

m− =
(a2 − 1)r + b2q −

√

((a2 − 1)r + b2q)2 + 4b2qr
2b2

,

of which—since b ≠ 0, q > 0 and r > 0—the first is strictly positive and the second is strictly negative. As m is the limit
value of a strictly positive and monotonously increasing sequence, we may discard the second, strictly negative solution m− and
withhold only the first, strictly positive solution m+. Note that if q > 0 and also a = 0, then it follows immediately from (21)
that m′j = q for all j ∈ ℕ, which agrees with the obtained limit value m and the stated.
The convergence of {ℎ′j}j∈ℕ is proved a bit differently. In the special case that q = 0, it follows immediately from the initial

value ℎ′0 = 0 and from setting m′j = 0 in (22) that ℎ′j = 0 for all j ∈ ℕ. This agrees with the limit value ℎ as defined in (12) of
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the statement. If on the contrary q > 0 but a = 0, then it also follows immediately from the initial value ℎ′0 = 0 and from setting
m′j = q in (22) that ℎ

′
j = qE(W ) for all j ∈ ℕ0, which also agrees with the limit value ℎ as defined in (12) of the statement. The

final trivial case for which we can immediately verify the limit value is E(W ) = 0, as in this case it immediately follows from
(22) that ℎ′j = 0 for all j ∈ ℕ.
In the remainder of the proof, without loss of generality, we assume that q > 0, a ≠ 0 and E(W ) ≠ 0. Fix some arbitrary

j ∈ ℕ, then we now posit that for all k ∈ ℕ>0,

ℎ′j+k =

(k−1
∏

l=0
r̃′j+lar

)

ℎ′j +

(k−1
∑

l=0

(k−2
∏

i=l
r̃′j+i+1ar

)

m′j+l

)

E(W ), (23)

where the empty product is taken to equal 1 for notational convenience. We now prove the correctness of (23) using induction.
For k = 1, (23) immediately reduces to (22). Next, we consider some r ∈ ℕ>0, assume that (23) is valid for all k ∈ ℕ>0 such
that k ≤ r, and prove that then (23) also holds for k = r + 1. By (22),

ℎ′j+r+1 = r̃
′
j+rarℎ

′
j+r + m

′
j+rE(W ).

If we substitute ℎ′j+r with its expression (23) and rewrite the resulting expression, we immediately find that (23) also holds for
k = r + 1.
Before continuing with the proof, we observe that

|

|

|

|

ar
r + b2m

|

|

|

|

< 1. (24)

To verify that this indeed holds, we consider the cases 0 < |a| ≤ 1 and |a| > 1 separately. If 0 < |a| ≤ 1, (24) immediately
follows from the strict positivity of r, b2 and m:

|ar| ≤ r < r + b2m = |r + b2m|.

If on the contrary |a| > 1, (24) follows from (11). Indeed, note that

|r + b2m| =
|

|

|

|

r + 1
2

(

(a2 − 1)r + b2q +
√

((a2 − 1)r + b2q)2 + 4b2qr
)

|

|

|

|

> |

|

|

r + (a2 − 1)r + b2q||
|

= |

|

|

a2r + b2q||
|

> |a2r| ≥ |ar|.

Consequently, we can fix some (arbitrarily small) strictly positive real number � such that � < m—we previously proved that
for q > 0, m is strictly positive—and

r + b2m > r + b2(m − �) > |a|r.
If for all  ∈ [0, m) we let

c ∶=
ar

r + b2(m − )
,

then we have chosen � such that 0 < |c0| < |c�| < 1.
Next, observe that due to the convergence of {m′j}j∈ℕ to m and because � > 0, there exists some J ∈ ℕ>0 such that m − � <

m′J−1. As the sequence {m
′
j}j∈ℕ moreover monotonously increases tom and because � < m, it follows that 0 < m−� < m′J+l−1 ≤

m for all l ∈ ℕ. In order to proceed, we consider such a J and distinguish two cases based on the sign of a.
We first assume that a > 0, and recall that b ≠ 0 and r > 0. It then follows that for all k ∈ ℕ0,

k−1
∏

l=0
r̃′J+lar =

k−1
∏

l=0

ar
r + b2m′J+l−1

≥
k−1
∏

l=0

ar
r + b2m

= ck0 (25)

and
k−1
∏

l=0
r̃′J+lar =

k−1
∏

l=0

ar
r + b2m′J+l−1

≤
k−1
∏

l=0

ar
r + b2(m − �)

= ck� . (26)

Similarly, we also find that
k−1
∑

l=0

(k−2
∏

i=l
r̃′J+i+1ar

)

m′J+l =
k−1
∑

l=0

(k−2
∏

i=l

ar
r + b2m′J+i

)

m′J+l ≥ (m − �)
k−1
∑

l=0

(k−2
∏

i=l

ar
r + b2m′J+i

)

≥ (m − �)
k−1
∑

l=0

(k−2
∏

i=l

ar
r + b2m

)

≥ (m − �)
k−1
∑

l=0
cl0 = (m − �)

1 − ck0
1 − c0

(27)
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and
k−1
∑

l=0

(k−2
∏

i=l
r̃′J+i+1ar

)

m′J+l =
k−1
∑

l=0

(k−2
∏

i=l

ar
r + b2m′J+i

)

m′J+l ≤ m
k−1
∑

l=0

(k−2
∏

i=l

ar
r + b2(m − �)

)

≤ m
1 − ck�
1 − c�

. (28)

Next, we need to take into account the sign of E(W ). From the recursive definition (22) and the signs of all involved param-
eters, it follows that ℎ′J is some non-negative real number if E(W ) > 0 and some non-positive real number if E(W ) < 0. We
first consider the case E(W ) > 0. Combining (23) and (25)–(28) yields

ck0ℎ
′
J + (m − �)

1 − ck0
1 − c0

E(W ) ≤ ℎ′J+k ≤ ck� ℎ
′
J + m

1 − ck�
1 − c�

E(W ).

As 0 < c0 < c� < 1, taking the limit for k→ +∞ for the lower and upper bound on ℎ′J+k yields

lim sup
k→+∞

ℎ′J+k ≤
1

1 − c�
mE(W ) =

r + b2(m − �)
r + b2(m − �) − ar

mE(W ),

lim inf
k→+∞

ℎ′J+k ≥
1

1 − c0
(m − �)E(W ) = r + b2m

r + b2m − ar
(m − �)E(W ).

Next, we consider the case E(W ) < 0. Combining (23) and (25)–(28) now yields

ck� ℎ
′
J + m

1 − ck�
1 − c�

E(W ) ≤ ℎ′J+k ≤ ck0ℎ
′
J + (m − �)

1 − ck0
1 − c0

E(W ),

such that

lim sup
k→+∞

ℎ′J+k ≤
r + b2m

r + b2m − ar
(m − �)E(W ),

lim inf
k→+∞

ℎ′J+k ≥
r + b2(m − �)

r + b2(m − �) − ar
mE(W ).

As � > 0 can be taken arbitrarily small, this proves the stated in the case that a > 0.
The proof for a < 0 is largely analogous, which is why we omit it. The only difference is that, due to the negativity of a, one

needs to consider the bounds (25)–(28) for even and odd k separately.

Lemma 5. Let E be a partially specified noise model defined by the lower bounds E(W0),… , E(Wn) and the upper bounds
E(W0),… , E(Wn). For all k ∈ N , choose an arbitrary �k ∈ [E(Wk), E(Wk)]. There is at least one well-behaved probabilistic
noise model E that agrees with the bounds, is white and has E(Wk) = �k for all k ∈ N .

Proof. We can trivially construct such a white noise model E. For all k ∈ N , we let E(Wk) = �k and E(W 2
k ) = 1. We can

then trivially extend the domain and co-domain of E such that it satisfies (E1)–(E6) and is independent. As by construction
the conditional expectation operator is independent and satisfies (W1) and (W2), it is indeed a white noise model. Also by
construction it satisfies (PS), which proves the stated.

Lemma 6. Let E be a partially specified noise model defined by the lower bounds E(W0),… , E(Wn) and the upper bounds
E(W0),… , E(Wn). Then for all k,l inN such that k ≤ l and all wk−1 in W k−1:

E(Wl) ≤ E(Wl|w
k−1) ≤ E(Wl).

Proof. We prove this lemma using induction. Fix some arbitrary l ∈ N . By (PS), the stated holds for k = l. Consider now any
r ∈ N such that r < l and assume that the stated holds for k = r + 1. We will prove that this implies that the stated holds for
k = r as well. By (B3), E(Wl|W r) ∈ D such that we may use the law of iterated expectations (E6):

E(Wl|w
r−1) = E(E(Wl|W

r)|wr−1).

From the induction hypothesis, we know that

E(Wl) ≤ E(Wl|w
r) ≤ E(Wl)

for all wr ∈ W r. Combining Lemma 2 with the first inequality yields

E(E(Wl|W
r)|wr−1) ≥ E(E(Wl)|wr−1) = E(Wl),



22 ERREYGERS ET AL

where the equality follows from (E1) and (E4). Using the second instead of the first inequality yields

E(E(Wl|W
r)|wr−1) ≤ E(E(Wl)|wr−1) = E(Wl).

This way we have shown that indeed
E(Wl) ≤ E(Wl|w

r−1) ≤ E(Wl),

which finalises this proof.

Proof of Theorem 2. Let E be the partially specified noise model defined by the lower bounds E(W0),… , E(Wn) and the upper
bounds E(W0),… , E(Wn).
We first show that the feedforward term ℎk

|
wk−1 has a lower bound ℎk and an upper bound ℎk for all w

k−1 ∈ W k−1. Let E be
a well-behaved noise model that satisfies the bounds (PS), and fix some k ∈ N and some wk−1 ∈ W k−1.
We will prove the bounds on ℎk

|
wk−1 by proving by induction that ℎl

|
wk−1 ∈ [ℎl , ℎl] for all l ∈ N such that l ≥ k. First,

observe that if l = n, then (9) reduces to
ℎn
|
wk−1 = mn+1E(Wn|w

k−1).

By the non-negativity of mn+1 = qn+1 and Lemma 6,

ℎn = mn+1E(Wn) ≤ ℎn
|
wk−1 ≤ mn+1E(Wn) = ℎn.

Next, fix some l ∈ N such that k ≤ l < n and assume that for all j ∈ N such that j > l, ℎj ≤ ℎj
|
wk−1 ≤ ℎj . By (9),

ℎl
|
wk−1 = r̃l+1al+1rl+1ℎl+1

|
wk−1 + ml+1E(Wl|w

k−1).

By Lemmas 1 and 6, the second term in the expression for ℎl
|
wk−1 is bounded:

ml+1E(Wl) ≤ ml+1E(Wl|w
k−1) ≤ ml+1E(Wl).

By the induction hypothesis and Lemma 1, the first term in the expression for ℎl
|
wk−1 is bounded too, but we need to distinguish

between two cases. If al+1 ≥ 0, then

r̃l+1al+1rl+1ℎl+1 ≤ r̃l+1al+1rl+1ℎl+1
|
wk−1 ≤ r̃l+1al+1rl+1ℎl+1.

If al+1 < 0, then
r̃l+1al+1rl+1ℎl+1 ≤ r̃l+1al+1rl+1ℎl+1

|
wk−1 ≤ r̃l+1al+1rl+1ℎl+1.

Combining the bounds on the first and the second term of the expression for ℎl
|
wk−1 , we find that ℎl ≤ ℎl

|
wk−1 ≤ ℎl . Hence,

for all l ∈ N such that l ≥ k, we have found that ℎl ≤ ℎl
|
wk−1 ≤ ℎl .

Now fix some k ∈ N and some ℎk ∈ [ℎk, ℎk]. Using Lemma 5, it is then possible to construct a white noise model that
satisfies (PS) such that the resulting feedforward at time k is equal to ℎk. This proves that the bounds ℎk and ℎk are tight.

Proof of Proposition 2. The proof of this result is an extended version of the proof of Proposition 1. We will again consider the
convergence of the “reversed” infinite sequences. The sequences {m′j}j∈ℕ and {r̃′j}j∈ℕ are defined as in the proof of Proposition 1.
The bounds of the feedforward result in two sequences, {ℎ′j}j∈ℕ and {ℎ

′
j}j∈ℕ, with initial conditions ℎ′0 = 0 and ℎ

′
0 = 0. If

a ≥ 0, then the sequences {ℎ′j}j∈ℕ and {ℎ
′
j}j∈ℕ are constructed recursively, for all j ∈ ℕ, by

ℎ′j+1 = r̃
′
jarℎ

′
j + m

′
jE(W ) and ℎ

′
j+1 = r̃

′
jarℎ

′
j + m

′
jE(W ).

These definitions result in sequences that are equivalent to the infinite sequence {ℎ′j}j∈ℕ of the proof of Proposition 1, but with
E(W ) = E(W ) or E(W ) = E(W ). Hence, we can immediately conclude that the stated holds for a ≥ 0.
Next, we consider the case a < 0. For all j ∈ ℕ, the recursive relations are now

ℎ′j+1 = r̃
′
jarℎ

′
j + m

′
jE(W ) and ℎ

′
j+1 = r̃

′
jarℎ

′
j + m

′
jE(W ).

In the case q = 0, we immediately infer from (the proof of) Proposition 1 and the above recursive expressions that m′k = 0 = m,
ℎ′k = 0 and ℎ

′
k = 0 for all k ∈ ℕ. Consequently, for any fixed k ∈ N ,

lim
n→+∞

ℎk = lim
n→+∞

ℎ′n+1−k = lim
j→+∞

ℎ′j = 0
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and
lim
n→+∞

ℎk = lim
n→+∞

ℎ
′
n+1−k = lim

j→+∞
ℎ
′
j = 0.

These limit values indeed correspond to those given in (18) and (19) for the case q = 0.
The stated therefore only remains unproven for q > 0 and a < 0. Depending on the sign of E(W ) and E(W ), we need to

distinguish between three cases: 0 ≤ E(W ) ≤ E(W ), E(W ) < 0 ≤ E(W ) and E(W ) ≤ E(W ) < 0. For each of these
cases, we can prove the convergence of ℎ′J+2k, ℎ

′
J+2k, ℎ

′
J+2k+1 and ℎ

′
J+2k+1 using a similar strategy as outlined in the proof of

Proposition 1, i.e., grouping the terms with odd or even powers of a.
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