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Abstract

If the state space of a homogeneous continuous-time Markov chain is too large, making inferences becomes
computationally infeasible. Fortunately, the state space of such a chain is usually too detailed for the inferences
we are interested in, in the sense that a less detailed—smaller—state space suffices to unambiguously formalise
the inference. However, in general this so-called lumped state space inhibits computing exact inferences
because the corresponding dynamics are unknown and/or intractable to obtain. We address this issue by
considering an imprecise continuous-time Markov chain. In this way, we are able to provide guaranteed lower
and upper bounds for the inferences of interest, without suffering from the curse of dimensionality.
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1. Introduction

State space explosion, or the exponential dependency of the size of a finite state space on a system’s
dimensions, is a frequently encountered inconvenience when constructing mathematical models of systems.
In the setting of continuous-time Markov chains this exponentially increasing number of states has as a
consequence that using the model to perform inferences about large-scale systems becomes computationally
intractable. Fortunately, for many of the inferences we would like to make, a higher-level state description
actually suffices to formalise the inference, allowing for a reduced state space with considerably fewer states.
However, unfortunately, this creates a new problem, because the low-level description and its corresponding
larger state space are necessary in order to easily characterise the system’s dynamics.

The procedure of going from a low-level to a higher-level state description is called lumping. It was—to
the best of our knowledge—first proposed by Kemeny and Snell [1] in the discrete-time setting and later
considered by Burke and Rosenblatt [2] in both the discrete-time and continuous-time settings. These authors
exploit the relation between the original state space—corresponding to the low-level state description—and
the lumped state space—corresponding to the higher-level state description—to obtain a lumped stochastic
process from the original Markov chain. Unfortunately, this lumped stochastic process is not necessarily
a homogeneous Markov chain. In fact, Burke and Rosenblatt [2] provide a very stringent (necessary and)
sufficient condition on the original Markov chain under which the lumped stochastic process is again a
homogeneous Markov chain. That this condition is not trivially satisfied is quite unfortunate, because if the
lumped stochastic process is not a homogeneous Markov chain, then using it to make inferences about the
system is not feasible in practice.

Further research on the lumping of Markov chains centred around two separate subjects. On the one hand,
several authors generalised the aforementioned (necessary and) sufficient conditions to other settings—see for
instance [3–6]—or devised algorithms to determine the smallest reduced state space for which the lumped
process is still a homogeneous Markov chain—see for instance [7, 8]. Franceschinis and Muntz [9] and Buchholz
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[10], on the other hand, proposed methods based on the lumping procedure to bound limit expectations with
respect to the original Markov chain. Furthermore, the lumping procedure has also been used by Katoen
et al. [11] in the context of model checking and bisimulation.

We here follow the historical evolution of the previously mentioned research: we start with a theoretical
study of the lumped stochastic process and then propose methods based on the lumping procedure to bound
expectations with respect to the original Markov chain. We start off our theoretical study in Section 2
with recalling some notation and terminology regarding Markov chains. This refresher is followed by a
formal introduction of the lumping procedure and the resulting lumped stochastic process in Section 3.
We consider the latter to be our first—albeit minor—contribution, because previous studies—for instance
that of Burke and Rosenblatt [2]—always ignored some technicalities in the construction of the lumped
stochastic process. Following this, we briefly introduce imprecise continuous-time Markov chains [12–14] in
Section 4. Subsequently, we look at the lumped stochastic process from the point of view of imprecise Markov
chains in Section 5. Specifically, we argue that the lumping procedure induces an elegantly characterised
imprecise Markov chain and explain how it yields bounds on (conditional) expectations with respect to the
lumped stochastic process. Next, we use the (building blocks of) our lumped imprecise Markov chain to
obtain bounds on (conditional) expectations with respect to the original Markov chain in Section 6 and limit
expectations with respect to the original (ergodic) Markov chain in Section 7. Compellingly, for Markov
chains with a very large original state space but a significantly smaller lumped state space, it turns out
that these bounds can be tractably computed even if it is infeasible to compute the precise value of the
expectation with respect to the original Markov chain! The performance of our methods is evaluated, and
compared to the performance of the methods of Franceschinis and Muntz [9] and Buchholz [10], by means of
some simple numerical experiments in Section 8. After a brief return to the original setting of lumping in
Section 9, we report our conclusions and provide some suggestions for future research in Section 10. Proofs
for the results in the main text, as well as some extra material, can be found in the Appendix.

This is by no means the first time that we approach the lumping procedure using imprecise Markov chains,
but our present approach is significantly more general. In [15, 16], we limited ourselves to providing bounds on
the limit expectation of a specific irreducible Markov chain that appears in the context of telecommunication;
an approach we generalised—to marginal expectations of general irreducible Markov chains—and properly
justified from a theoretical point of view in [17]. We here extend [17] on three fronts: (i) we define the
lumped stochastic process corresponding to a general Markov chain instead of an irreducible homogeneous
Markov chain; (ii) we provide bounds for (conditional) expectations of real-valued functions on the state
at any finite number of time points instead of marginal expectations of real-valued functions on the state
at a single time point; and (iii) we provide two methods to determine bounds on the limit expectation of
ergodic—that is, including irreducible—Markov chains instead of just one method for the limit expectation
of irreducible Markov chains.

2. Continuous-time Markov chains

We are interested in making inferences about a system, and more specifically about the state of this
system at any finite number of time points. The complication is that we are unable to predict the temporal
evolution of this state with certainty. Therefore, at all times 𝑡 ∈ R≥0

2, the state 𝑋𝑡 of the system is a random
variable that takes values—generically denoted by 𝑥, 𝑦 or 𝑧—in the non-empty and finite state space X .

Because we limit ourselves to inferences that depend on the state of the system at any finite number of
time points, we adopt the framework of Krak et al. [12] for stochastic processes, which is a bit different from
the standard framework. The main difference is that they consider (finitely-additive) coherent conditional
probability measures [18] instead of the more common 𝜎-additive probability measures; we refer to [12] for
several arguments in favour of this choice. In light of the current contribution, we here summarise three of
these arguments. First and foremost, they—and we—only consider expectations of functions that depend

2We use R, R≥0 and R>0 to denote the set of real numbers, non-negative real numbers and positive real numbers, respectively.
Furthermore, we use N to denote the natural numbers and write N0 when including zero.
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on the state of the system at a finite number of time points, hence eliminating the need for a 𝜎-algebra of
events. A second argument is that, in their framework, the conditional probability of an event is always
defined, even if the conditioning event has probability zero, whereas in the standard framework conditional
events are derived from the unconditional probabilities and therefore not defined if the conditioning event
has probability zero. Finally, Krak et al. [12] mention that their framework can be extended to allow for a
𝜎-algebra of events, and therefore also functions of the state at a (countably) infinite number of time points;
however, a proper theoretical study of this extension is no small feat and still remains to be done.

2.1. Finite sequences of time points

Essential to the description of stochastic processes are finite and increasing sequences of time points
𝑡1, . . . , 𝑡𝑛, which is why we introduce some simplifying notation. Following Krak et al. [12], we collect all
such sequences—including the empty sequence ∅—in the set U , and denote a generic element of this set
by 𝑢. We denote the set of all time sequences without the empty sequence by U∅, and for all 𝑡 in R≥0 use
U<𝑡 to denote the set of all time sequences of which the last time point strictly precedes 𝑡. Furthermore, for
any non-empty and finite set Y and any sequence 𝑢 = 𝑡1, . . . , 𝑡𝑛 in U , we define Y𝑢 := Y 𝑛 and then use
𝑥𝑢 to elegantly denote a generic 𝑛-tuple (𝑥𝑡1 , . . . , 𝑥𝑡𝑛) in Y𝑢. For the empty sequence ∅, we let Y∅ be the
singleton containing the empty tuple, usually denoted by 𝑥∅. We will sometimes also need to concatenate
two increasing sequences of finite time points, for instance 𝑢 and 𝑣 in U . Since 𝑢 and 𝑣 can be identified
with sets, we let 𝑢 ∪ 𝑣 denote their concatenation, taken to be their ordered union. Finally, for any sequence
𝑢 = 𝑡1, . . . , 𝑡𝑛 in U∅, we let min𝑢 := min{𝑡𝑖 : 𝑖 ∈ {1, . . . , 𝑛}} = 𝑡1 and max𝑢 := max{𝑡𝑖 : 𝑖 ∈ {1, . . . , 𝑛}} = 𝑡𝑛.
If 𝑢 is the empty sequence, then conditions of the form “max𝑢 < ·” are taken to be trivially satisfied.

2.2. Continuous-time stochastic processes

For a formal treatment of the coherent conditional probability framework for continuous-time stochastic
processes, we refer to the extensive exposition in [12, Section 4] or to the summary in Appendix A.2. For our
present purposes, it suffices to think of a continuous-time stochastic process 𝑃 with state space X as being
fully defined by its initial and transition probabilities. The initial probabilities are

𝑃 (𝑋0 = 𝑥0),

with 𝑥0 a state; the transition probabilities are of the form

𝑃 (𝑋𝑡+Δ = 𝑦 |𝑋𝑢 = 𝑥𝑢, 𝑋𝑡 = 𝑥),

where 𝑡 and 𝑡 + ∆ are time points—that is, 𝑡 and ∆ are non-negative real numbers—𝑢 is a sequence of time
points preceding 𝑡, 𝑥 and 𝑦 are states and 𝑥𝑢 is a state instantiation in X𝑢. Technically speaking, these
initial and transition probabilities are assumed to be part of a coherent conditional probability, as explained
in Appendix A.2. From a practical point of view, however, and for the purpose of following the main text
of this contribution, it suffices to understand that we essentially demand that the initial and transition
probabilities are compatible with the laws of probability: we demand that 𝑃 is non-negative, normed, finitely
additive for disjunct events and satisfies—the multiplicative version of—Bayes’ rule.

2.3. Homogeneous continuous-time Markov chains

A well-known and often-used type of stochastic processes are homogeneous continuous-time Markov
chains. Their popularity stems largely from the fact that they are easily characterised. Because most of the
terminology and notation concerning homogeneous continuous-time Markov chains is essentially well-known,
we here limit ourselves to the bare necessities; for a more thorough treatment, we refer to [12, 19, 20]. Since
we deal exclusively with continuous-time Markov chains, we will henceforth drop the “continuous-time”
adjective for the sake of brevity.

We now call a stochastic process 𝑃 a Markov chain if satisfies the Markov property. Informally, this
means that the transition probabilities only depend on the last state and not on the entire state history;
formally, the Markov property holds if for all 𝑡,∆ in R≥0, 𝑢 in U<𝑡, 𝑥, 𝑦 in X and 𝑥𝑢 in X𝑢,

𝑃 (𝑋𝑡+Δ = 𝑦 |𝑋𝑢 = 𝑥𝑢, 𝑋𝑡 = 𝑥) = 𝑃 (𝑋𝑡+Δ = 𝑦 |𝑋𝑡 = 𝑥). (1)
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This Markov chain 𝑃 is called homogeneous if furthermore

𝑃 (𝑋𝑡+Δ = 𝑦 |𝑋𝑡 = 𝑥) = 𝑃 (𝑋Δ = 𝑦 |𝑋0 = 𝑥). (2)

It is well-known that—both in the classical 𝜎-additive or measure-theoretic framework [20] and the full
conditional framework [12]—a homogeneous Markov chain is uniquely characterised by the triplet (X , 𝜋0, 𝑄),
where X is the state space, 𝜋0 an initial distribution and 𝑄 a transition rate matrix. In practice—see for
instance [9, 10, 15, 16, 21, 22]—a homogeneous Markov chain model is therefore specified by providing such
a triplet.

The initial distribution 𝜋0 models the initial state of the system. It is given by

𝜋0(𝑥) := 𝑃 (𝑋0 = 𝑥) for all 𝑥 ∈ X , (3)

and hence is a probability mass function on X —that is, is a non-negative function that sums to one.
The transition rate matrix 𝑄 models the dynamics of the system. Informally, the transition rate 𝑄(𝑥, 𝑦)

is to be understood as the rate of change—that is, the derivative—of the probability of going from a state 𝑥
to another state 𝑦 in an infinitesimal time period. More formally, it is the given by the limit expression

𝑄(𝑥, 𝑦) = lim
Δ→0+

𝑃 (𝑋Δ = 𝑦 |𝑋0 = 𝑥) − 𝐼(𝑥, 𝑦)

∆
for all 𝑥, 𝑦 ∈ X , (4)

where 𝐼 is the identity matrix. It now follows from the laws of probability that the matrix 𝑄 is a transition
rate matrix : it has non-negative off-diagonal entries and rows that sum up to zero. Before we continue with
explaining the use of the transition rate matrix, we first need to introduce some notation and terminology
concerning matrices and more general—not necessarily linear—transformations.

2.4. Functions, transformations and norms

For any non-empty and finite set Y , we let L (Y ) denote the set of all real-valued functions on Y .
An often-used type of functions in L (Y ) are the probability mass functions, in this setting usually called
distributions : a non-negative real-valued function on Y that sums up to one. We denote the subset of L (Y )
that consists of all distributions by D(Y ). A second often-used type of function in L (Y ) is the indicator of
some subset 𝐴 ⊆ Y , denoted by I𝐴 and defined by I𝐴(𝑥) := 1 if 𝑥 is an element of 𝐴 and I𝐴(𝑥) := 0 otherwise.
In order not to obfuscate the notation too much, for all 𝑥 in Y , we write I𝑥 instead of I{𝑥}. Another
notational convenience that we will adopt is to implicitly identify any real number 𝜇 with the corresponding
constant function. Finally, the inner product ⟨·, ·⟩ on L (Y ) is given by ⟨𝑓, 𝑔⟩ =

∑︀
𝑥∈Y 𝑓(𝑥)𝑔(𝑥) for all 𝑓, 𝑔

in L (Y ).
In the setting of (imprecise) Markov chains, we often use transformations on L (Y ): maps from L (Y )

to L (Y ). Such a transformation 𝑀 is non-negatively homogeneous if, for all 𝑓 in L (Y ) and 𝜆 in R≥0,
𝑀(𝜆𝑓) = 𝜆𝑀𝑓 . If furthermore 𝑀(𝑓 + 𝑔) ≥ 𝑀𝑓 + 𝑀𝑔 for all 𝑓, 𝑔 in L (Y ), then 𝑀 is super-additive;
𝑀 is called linear if this relation holds with equality instead of inequality. Note that if 𝑀 is linear, then
𝑀(𝜆𝑓) = 𝜆𝑀𝑓 for negative real numbers 𝜆 as well. If we fix some ordering on the set Y , then we can identify
any linear transformation with a square matrix, the (𝑥, 𝑦)-component of which is [𝑀I𝑦](𝑥). Therefore, we
will use the terms matrix and linear transformation interchangeably. One example of a linear transformation
is the identity transformation (or matrix) 𝐼 that we have already used in Eqn. (4), which maps any 𝑓 in
L (Y ) to itself: 𝐼𝑓 := 𝑓 . Another example are transition rate matrices such as the matrix 𝑄 defined in
Eqn. (4).

We end our discussion of transformations on L (Y ) with norms. We bestow L (Y ) with the maximum
norm:

‖𝑓‖ := max|𝑓 | = max{|𝑓(𝑥)| : 𝑥 ∈ Y } for all 𝑓 in L (Y ).

This norm on L (Y ) induces a norm for non-negatively homogeneous transformations 𝑀 : L (Y ) → L (Y ):

‖𝑀‖ := sup{‖𝑀𝑓‖ : 𝑓 ∈ L (Y ), ‖𝑓‖ = 1}.

Specifically, for any transition rate matrix 𝑅 we have

‖𝑅‖ = 2 max{−[𝑅I𝑥](𝑥) : 𝑥 ∈ Y } = 2 max{−𝑅(𝑥, 𝑥) : 𝑥 ∈ Y }. (5)
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2.5. Computing expectations

It is well-known—see for instance [12, 19]—that for any 𝑡, 𝑠 in R≥0 such that 𝑡 ≤ 𝑠, any 𝑢 in U<𝑡, any 𝑥𝑢

in X𝑢, 𝑥 in X and 𝑓 in L (X ),

𝐸(𝑓(𝑋𝑠) |𝑋𝑢 = 𝑥𝑢, 𝑋𝑡 = 𝑥) = [𝑇 𝑠
𝑡 𝑓 ](𝑥), (6)

with

𝑇 𝑠
𝑡 := 𝑒(𝑠−𝑡)𝑄 = lim

𝑛→+∞

(︂
𝐼 +

𝑠− 𝑡

𝑛
𝑄

)︂𝑛

, (7)

where the 𝑛-th power is to be interpreted as 𝑛 consecutive applications. It is then well-known—see for
instance [19, Theorem 2.1.2]—that 𝑇 𝑠

𝑡 is a transition matrix : it has non-negative entries and rows that sum
up to one.

Recall that our goal is to determine the expectation of functions on the state at any finite number of
time points instead of just a single time point; that is, expectations of the form 𝐸(𝑓(𝑋𝑢, 𝑋𝑣) |𝑋𝑢 = 𝑥𝑢).
One well-known way to achieve this is to combine Eqn. (6) with the law of iterated expectation. We refer
the interested reader to [12, Section 9] or our summary in Appendix A.3. For future reference, however, we
here do explicitly mention that

𝐸(𝑓(𝑋𝑡)) = ⟨𝜋0, 𝑇
𝑡
0𝑓⟩. (8)

3. Lumping and the lumped process

As we have just established, evaluating 𝑇 𝑠
𝑡 𝑓 is essential when computing expectations for a homogeneous

Markov chain. Unsurprisingly, analytically evaluating the limit in Eqn. (7) is often infeasible. Therefore, in
order to compute expectations we usually have to resort to one of the many available numerical methods—see
for example [23]—that approximate 𝑇 𝑠

𝑡 𝑓 . The problem is that these numerical methods turn out to be
computationally intractable when the state space becomes too large. This is especially unfortunate in
applications where Markov chains are used, because a system with practical relevance often results in a
model with a state space that is too large. We refer to [16] for one example of an application where the size
of the state space leads to tractability issues.

Fortunately, as we already mentioned in the Introduction, the state space X is often unnecessarily
detailed. Indeed, many interesting inferences can usually still be unambiguously defined using real-valued
functions on a less detailed state space that corresponds to a higher-order description of the system, denoted
by X̂ . However, this provides no immediate solution as the rationale for using the detailed state space X in
the first place is that this allows one to accurately model the system using a Markov chain; see [9, 10, 16, 21]
for practical examples. In contrast, the transition probabilities of the system with respect to the reduced state
space X̂ —that is, (the dynamics of) the induced stochastic process—are often unknown and/or intractable
to obtain, which inhibits us from making exact inferences using the induced stochastic process. We will
determine the initial and transition probabilities of the lumped process in Section 3.2 and address the
tractability issues by allowing for imprecision in Sections 5, 6 and 7.

3.1. Notation and terminology concerning lumping

We assume that the lumped state space X̂ is obtained by lumping—sometimes called grouping or
aggregating, see [2, 3]—states in X , such that 1 ≤ |X̂ | ≤ |X |. This lumping is formalised by the surjective

lumping map Λ: X → X̂ , which maps every state 𝑥 in X to a state Λ(𝑥) = 𝑥̂ in X̂ . In the remainder, we
will implicitly use the obvious extension of the lumping map Λ to tuples of states—that is, to the domain
X𝑢, where 𝑢 is a sequence of time points. Using this (extended) lumping map, we define the inverse lumping

map Λ−1: 𝑥̂∅ is mapped to Λ−1(𝑥̂∅) := 𝑥∅ and, for any 𝑢 in U∅, 𝑥̂𝑢 in X̂𝑢 is mapped to

Λ−1(𝑥̂𝑢) := {𝑥𝑢 ∈ X𝑢 : Λ(𝑥𝑢) = 𝑥̂𝑢} = {𝑥𝑢 ∈ X𝑢 : (∀𝑡 ∈ 𝑢) Λ(𝑥𝑡) = 𝑥̂𝑡}.

In order to lighten our notation, we will frequently shorten “𝑥𝑢 ∈ Λ−1(𝑥̂𝑢)” to “𝑥𝑢 ∈ 𝑥̂𝑢”.
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As far as our results are concerned, it does not matter in which way the states are lumped. Say we are
interested in 𝐸(𝑓(𝑋𝑡)) for a given 𝑓 in L (X ) and 𝑡 in R≥0. Then a naive choice is to lump together all
states that have the same image under 𝑓 . However, this is not necessarily a good choice. One reason is that
the resulting lumped state space can become very small, for example when 𝑓 is an indicator, resulting in
too much imprecision in the dynamics and/or the inference. Lumping-based methods therefore often let X̂
correspond to a natural higher-level description of the state of the system; see for example [9, 10, 16] for
some positive results. An extra benefit of this approach is that the resulting model can be used to determine
the expectation of multiple functions.

3.2. The lumped stochastic process

All of the necessary notation and tools have been introduced to define the lumped stochastic process. In
order not to unnecessarily complicate our exposition, we here restrict ourselves to an intuitive summary;
for the fully formal definition, we refer the interested reader to Appendix B. Furthermore, we will here and
in the remainder limit ourselves to homogeneous Markov chains, while our formal definition of the lumped
stochastic process actually concerns general Markov chains. We have two reasons for doing so: (i) it is in line
with the historical interest in lumping, see for instance [2, 3, 9, 10, 21] and Section 9; and (ii) almost all of
the Markov chains that arise when modelling practical problems are assumed to be homogeneous for the
sake of simplicity, see for instance [9, 10, 16, 21].

Recall from Section 2 that a stochastic process is characterised by its initial and transition probabilities.
For the lumped stochastic process, denoted by 𝑃 , these probabilities are determined by the homogeneous
Markov chain 𝑃 and the lumping map Λ: X → X̂ . More specifically, they follow from the relation

(𝑋̂𝑢 = 𝑥̂𝑢) ⇔ (𝑋𝑢 ∈ 𝑥̂𝑢) =
⋃︁

𝑥𝑢∈𝑥̂𝑢

(𝑋𝑢 = 𝑥𝑢) for all 𝑢 in U and 𝑥̂𝑢 in X̂𝑢. (9)

First, we observe that it follows from this relation that, for any 𝑢 in U and 𝑥̂𝑢 in X̂𝑢,

𝑃 (𝑋̂𝑢 = 𝑥̂𝑢) = 𝑃 (𝑋𝑢 ∈ 𝑥̂𝑢) =
∑︁

𝑥𝑢∈𝑥̂𝑢

𝑃 (𝑋𝑢 = 𝑥𝑢). (10)

The initial probabilities of the lumped stochastic process 𝑃 are obtained by setting 𝑢 = 0 in Eqn. (10):

𝑃 (𝑋̂0 = 𝑥̂0) =
∑︁

𝑥0∈𝑥̂0

𝑃 (𝑋0 = 𝑥0) for all 𝑥̂0 ∈ X̂ . (11)

The transition probabilities 𝑃 (𝑋̂𝑡+Δ = 𝑦 | 𝑋̂𝑢 = 𝑥̂𝑢, 𝑋̂𝑡 = 𝑥̂)—with 𝑡,∆ in R≥0, 𝑢 in U<𝑡, 𝑥̂, 𝑦 in X̂ and

𝑥̂𝑢 in X̂𝑢—follow from Eqn. (10) and Bayes’ rule, at least if the conditioning event (𝑋̂𝑢 = 𝑥̂𝑢, 𝑋̂𝑡 = 𝑥̂) has
non-zero probability. In case the conditioning event has zero probability—that is, if 𝑃 (𝑋̂𝑢 = 𝑥̂𝑢, 𝑋̂𝑡 = 𝑥̂) = 0—
the transition probability does not follow from Bayes’ rule. Hence, if there are conditioning events with
zero probability, “the” lumped stochastic process is not uniquely defined! Therefore, we need to speak
of a lumped stochastic process instead of the lumped stochastic process. From a technical point of view,
the non-uniqueness is a direct consequence of our formal definition of a lumped stochastic process—see
Appendix B—because we use an extension of the Markov chain—or coherent conditional probability—𝑃
to a coherent conditional probability on a larger domain, which need not be unique. That said, while the
transition probabilities conditional on events with probability zero need not be uniquely defined, this does
not mean that they can take any arbitrary value. For example, we show in Appendix D that for all 𝑡,∆ in
R≥0, 𝑢 in U<𝑡, 𝑥, 𝑦 in X , 𝑥𝑢 in X𝑢 and 𝑓 in L (X̂ ),

min
𝑥∈𝑥̂

𝐸([𝑓 ∘ Λ](𝑋Δ) |𝑋0 = 𝑥) ≤ 𝐸̂(𝑓(𝑋̂𝑡+Δ) | 𝑋̂𝑢 = 𝑥̂𝑢, 𝑋̂𝑡 = 𝑥̂) ≤ max
𝑥∈𝑥̂

𝐸([𝑓 ∘ Λ](𝑋Δ) |𝑋0 = 𝑥), 3 (12)

3Here and in the remainder we use ℎ ∘ 𝑔 to denote the composition of any two functions 𝑔 and ℎ, given by ℎ ∘ 𝑔 : dom 𝑔 →
range ℎ : 𝑥 ↦→ ℎ(𝑔(𝑥)).

6



where 𝐸̂ denotes the expectation with respect to a lumped stochastic process 𝑃 . Setting 𝑓 = I𝑦, it follows
from this inequality and the additivity of 𝑃 that

min
𝑥∈𝑥̂

∑︁
𝑦∈𝑦

𝑃 (𝑋Δ = 𝑦 |𝑋0 = 𝑥) ≤ 𝑃 (𝑋̂𝑡+Δ = 𝑦 | 𝑋̂𝑢 = 𝑥̂𝑢, 𝑋̂𝑡 = 𝑥̂) ≤ max
𝑥∈𝑥̂

∑︁
𝑦∈𝑦

𝑃 (𝑋Δ = 𝑦 |𝑋0 = 𝑥). (13)

We emphasise here that the inequalities of Eqns. (12) and (13) hold for any conditioning event (𝑋̂𝑢 =
𝑥̂𝑢, 𝑋̂𝑡 = 𝑥̂), regardless of whether it has probability zero or not.

In [17], we circumvented the non-uniqueness due to conditioning on events with probability zero by a
priori limiting ourselves to homogeneous Markov chains with an irreducible transition rate matrix 𝑄—see
Section 7 further on for a definition—and positive initial distribution 𝜋0. In that case, as more thoroughly
explained in [24, Appendix D.1]—the appendix of the extended pre-print of [17]—the lumped stochastic
process is uniquely defined because any conditioning event (𝑋̂𝑢 = 𝑥̂𝑢, 𝑋̂𝑡 = 𝑥̂) has non-zero probability.

Putting aside the issue of non-uniqueness for now, there is another, much more important issue that
we need to address: how can we describe the lumped stochastic process directly, without resorting to the
original process. It is precisely for this reason that the original interest in the lumping of a Markov chain
was limited to the case that the—or, more precisely, any—lumped stochastic process is again a homogeneous
Markov chain. As is essentially well-known, this is not necessarily the case. We will return to this specific
case in Section 9 further on; for now, we only mention that in order for a lumped stochastic process to again
be a homogeneous Markov chain, the original chain needs to satisfy a very restrictive condition.

This is a major setback because this means that in order to compute the transition probabilities of—or,
more generally, expectations with respect to—a lumped stochastic process 𝑃 , we cannot simply determine a
lumped transition rate matrix 𝑄̂ and use the matrix exponential 𝑇 𝑠

𝑡 that it generates according to Eqn. (7);
instead, we have to explicitly determine the transition probabilities from the initial probability distribution
and transition probabilities of the original chain. In the setting of large-scale Markov chains, computing
the transition probabilities of the original chain is already intractable, and so explicitly determining the
transition probabilities of—or, more generally, expectations with respect to—a lumped stochastic process is
intractable as well! This is rather unfortunate, as it renders the whole lumping procedure useless at first
sight: since lumping does not yield more tractable computations, we might as well just stick with the original
Markov chain anyway.

The essential point of our contribution is that, while—in general—we cannot tractably determine (the
dynamics of) a lumped stochastic process 𝑃 , we can consider a set of stochastic processes, not necessarily
homogeneous and/or Markovian but all with X̂ as state space, that is fully characterised by 𝜋0, 𝑄 and Λ
and definitely contains any lumped stochastic process 𝑃 . Crucially, it turns out that this set takes the form
of a so-called imprecise (continuous-time) Markov chain.

In the upcoming section, we explain how tight lower and upper bounds on the expectations that correspond
to this set of processes are relatively easy to obtain. In particular, they can be determined without having
to explicitly optimise over this set of processes, thus mitigating the need to actually construct it. Besides
computational tractability, another benefit of this approach is that we circumvent the uniqueness issue
because we can obtain conclusions about any lumped stochastic process 𝑃 without having to explicitly
determine it entirely.

4. Imprecise Markov chains

For a formal definition of (continuous-time) imprecise Markov chains, and an extensive study of their
properties, we refer the reader to the work of Krak et al. [12] and De Bock [13]. We here only present a brief
overview of the terminology, notation and results that are relevant in our setting.

4.1. Sets of consistent processes and lower expectations

In general, the main idea behind imprecise Markov chains is to consider a set of stochastic process
instead of a single stochastic process. In particular, Krak et al. [12] focus on a set of processes that is fully
characterised by a non-empty set of initial distributions M and a non-empty bounded set of transition
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rate matrices Q. More specifically, they collect in PW
Q,M all stochastic processes that are: (i) well-behaved,

a technical condition [12, Definition 4.4]; (ii) consistent with Q, in the sense that at all times the “outer
partial derivative of the history-dependent transition matrix” is contained in Q [12, Definition 6.1]; and (iii)
consistent with M , in the sense that M contains the initial distribution [12, Definition 6.2].

Using this set PW
Q,M of well-behaved and consistent stochastic processes, Krak et al. [12] define lower and

upper expectations as follows. For any non-empty set of initial distributions M and non-empty bounded set
of transition rate matrices Q, they let

𝐸W
Q,M (· | ·) := inf{𝐸𝑃 (· | ·) : 𝑃 ∈ PW

Q,M} and 𝐸W
Q,M (· | ·) := sup{𝐸𝑃 (· | ·) : 𝑃 ∈ PW

Q,M}, (14)

where 𝐸𝑃 denotes the expectation with respect to the process 𝑃 . It is obvious from Eqn. (14) that the lower
expectation 𝐸W

Q,M and the upper expectation 𝐸W
Q,M are conjugate, in the sense that

𝐸W
Q,M (𝑓(𝑋𝑢, 𝑋𝑣) |𝑋𝑢 = 𝑥𝑢) = −𝐸W

Q,M (−𝑓(𝑋𝑢, 𝑋𝑣) |𝑋𝑢 = 𝑥𝑢),

with 𝑣 in U∅, 𝑢 in U<min 𝑣, 𝑓 in L (X𝑢∪𝑣) and 𝑥𝑢 in X𝑢. Because of this conjugacy, it suffices to focus on
either one of them; we here focus on the lower expectation.

At first sight, it would seem that in order to execute the minimisation in Eqn. (14), we first have to
explicitly construct the set of consistent processes PW

Q,M . Fortunately, Krak et al. [12] show that this is
not the case. Instead, lower expectations can be computed using a non-linear semi-group that is generated
by a so-called lower transition rate operator. The analogy with the case of homogeneous Markov chains
is quite striking, as in that case expectations can be computed using a linear semi-group—the matrix
exponential—that is generated by the transition rate matrix.

4.2. Lower transition rate operators

Let us first focus on the generator of the non-linear semi-group that we will be using. For any non-empty
bounded set of transition rate matrices Q, this generator is given by the transformation 𝑄

Q
: L (X ) →

L (X ) : 𝑓 ↦→ 𝑄
Q
𝑓 , where

[𝑄
Q
𝑓 ](𝑥) := inf{[𝑄𝑓 ](𝑥) : 𝑄 ∈ Q} for all 𝑓 ∈ L (X ), 𝑥 ∈ X . (15)

This operator 𝑄
Q

is called the lower envelope of Q. By [12, Proposition 7.5], we know that it is a lower
transition rate operator [12, Definition 7.2]: a super-additive and non-negatively homogeneous transformation
that has “non-negative off-diagonal entries”—in the sense that [𝑄

Q
I𝑦](𝑥) ≥ 0 if 𝑥 ̸= 𝑦—and “rows that sum

up to zero”—in the sense that 𝑄
Q
𝜇 = 0 for any constant function 𝜇. Note that transition rate matrices

are lower transition rate operators that are furthermore linear; hence, a lower transition rate operator is a
non-linear generalisation of a transition rate matrix.

Just like a set of lower transition rate matrices Q defines a lower transition rate operator 𝑄
Q

, any generic
lower transition rate operator 𝑅 defines a corresponding set of dominating transition rate matrices

Q𝑅 := {𝑄 ∈ R(X ) : (∀𝑓 ∈ L (X )) 𝑄𝑓 ≥ 𝑅𝑓}, (16)

where R(X ) denotes the set of all transition rate matrices on L (X ). As we will see in Proposition 1 further
on, the set Q𝑅 has some very nice properties. One of these properties is that is has separately specified rows,
which is defined as follows.

Definition 1 (Definition 7.3 in [12]). A non-empty set of transition rate matrices Q has separately specified
rows if for any collection {𝑄𝑥}𝑥∈X in Q, there is a 𝑄⋆ in Q such that

𝑄⋆(𝑥, 𝑦) = 𝑄𝑥(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ X .

The following result establishes that the set of dominating rate matrices satisfies this as well as several
other convenient properties. It is one of our motivations for introducing the specific lumped lower transition
rate operator in Section 5.2 further on.

Proposition 1 (Propositions 7.6, 7.7 and 7.8 in [12]). Let 𝑅 be a lower transition rate operator and Q𝑅 be
the corresponding set of dominating transition rate matrices. Then Q𝑅 is non-empty, bounded, closed and
convex. Furthermore, Q𝑅 has separately specified rows and 𝑅 is the lower envelope of Q𝑅.
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4.3. Computing lower expectations

As we already hinted at in the introduction of Section 4.2, the lower transition rate operator 𝑄
Q

is an

essential tool when computing lower (conditional) expectations for an imprecise Markov chain PW
Q,M , much

like 𝑄 is essential when computing expectations for precise Markov chains; the following result establishes an
imprecise version of Eqn. (6).

Proposition 2 (Corollary 8.3 in [12]). Let M be a non-empty set of initial distributions and Q a non-empty
and bounded set of transition rate matrices that has separately specified rows. Then for any 𝑡, 𝑠 in R≥0 with
𝑡 ≤ 𝑠, 𝑢 in U<𝑡, 𝑥 in X , 𝑥𝑢 in X𝑢 and 𝑓 in L (X ),

𝐸W
Q,M (𝑓(𝑋𝑠) |𝑋𝑢 = 𝑥𝑢, 𝑋𝑡 = 𝑥) = [𝑇 𝑠

𝑡𝑓 ](𝑥) (17)

with

𝑇 𝑠
𝑡 := lim

𝑛→+∞

(︂
𝐼 +

𝑠− 𝑡

𝑛
𝑄

Q

)︂𝑛

, (18)

where the 𝑛-th power should be interpreted as 𝑛 consecutive applications.

By [12, Theorem 7.12], we know that 𝑇 𝑠
𝑡 , as defined in Eqn. (18), is a lower transition operator [12,

Definition 7.1]: a super-additive and non-negatively homogeneous transformation that dominates the minimum,
so a non-linear generalisation of a transition matrix. Important to mention here is that, at least in general,
it is infeasible if not impossible to determine 𝑇 𝑠

𝑡𝑓 by analytically evaluating the limit in Eqn. (18), and
we therefore have to resort to an approximation method. In essence, this approximation method comes
down to (i) choosing a suitable sequence 𝛿1, . . . , 𝛿𝑛 of—sufficiently small—positive real numbers such that∑︀𝑛

𝑘=1 𝛿𝑘 = 𝑠− 𝑡; and (ii) iteratively determining 𝑔𝑘 := (𝐼 + 𝛿𝑘𝑄)𝑔𝑘−1 = 𝑔𝑘−1 + 𝛿𝑘𝑄𝑔𝑘−1 for 𝑘 ranging from 1
to 𝑛 with initial condition 𝑔0 := 𝑓 . This way, we end up with an approximation 𝑔𝑛 for 𝑇 𝑠

𝑡𝑓 . We refer to [12,
Section 8.2] and [25] for a more thorough treatment of this approximation method, including procedures for
choosing 𝛿1, . . . , 𝛿𝑛 such that the error of the approximation is guaranteed to be smaller than some desired
maximal error.

It is an immediate consequence of Eqns. (17) and (18) that

𝐸W
Q,M (𝑓(𝑋𝑡+Δ) |𝑋𝑢 = 𝑥𝑢, 𝑋𝑡 = 𝑥) = 𝐸W

Q,M (𝑓(𝑋𝑡+Δ) |𝑋𝑡 = 𝑥) = 𝐸W
Q,M (𝑓(𝑋Δ) |𝑋0 = 𝑥).

The first equality is an imprecise version of the Markov property, while the second equality is an imprecise
version of the homogeneity property of a (precise) Markov chain. Therefore, Proposition 2 justifies calling
PW

Q,M a (homogeneous) imprecise Markov chain. Even more, the imprecise Markov chain PW
Q,M also satisfies

an imprecise version of the law of iterated expectation.

Proposition 3 (Theorem 6.5 in [12]). If M is a non-empty set of initial distributions and Q a non-empty,
bounded and convex set of transition rate matrices, then for any 𝑢, 𝑣, 𝑤 in U with max𝑢 < min 𝑣 and
max 𝑣 < min𝑤, 𝑥𝑢 in X𝑢 and 𝑓 in L (X𝑢∪𝑣∪𝑤),

𝐸W
Q,M (𝑓(𝑋𝑢, 𝑋𝑣, 𝑋𝑤) |𝑋𝑢 = 𝑥𝑢) = 𝐸W

Q,M (𝐸W
Q,M (𝑓(𝑋𝑢, 𝑋𝑣, 𝑋𝑤) |𝑋𝑢, 𝑋𝑣) |𝑋𝑢 = 𝑥𝑢).

Propositions 2 and 3 imply a practical method to compute lower expectations that is entirely similar to
the method for precise Markov chains outlined in Appendix A.3; for a detailed explanation of how and why
this works, we refer to [12, Section 9.2] or our summary in Appendix C.2. This method is tractable as long
as the state space X is sufficiently small and either the number of time points in 𝑣 is small—because the
number of computations is clearly exponential in |𝑣|—or the function 𝑓 is of a particular type.

5. The induced imprecise Markov chain

Now that we have established what imprecise Markov chains are, we are ready to consider the lumping
procedure from their point of view. More specifically, we set out to characterise an imprecise Markov chain
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that contains any lumped stochastic process corresponding to a given (precise) Markov chain. To that end,
we need to determine a set of initial distributions that contains the lumped initial probabilities and a set of
transition rate matrices that contains the “outer partial derivatives of the instantaneous transition matrix”
of any lumped stochastic process. Throughout this section, we let 𝑃 be some homogeneous Markov chain
and Λ: X → X̂ some lumping map.

5.1. The set of lumped initial probability distributions

We start with determining a suitable set of initial distributions. Recall from Eqn. (11) that, for any
lumped stochastic process 𝑃 ,

𝑃 (𝑋̂0 = 𝑥̂) =
∑︁
𝑥∈𝑥̂

𝑃 (𝑋0 = 𝑥) =
∑︁
𝑥∈𝑥̂

𝜋0(𝑥) for all 𝑥̂ ∈ X̂ ,

where the final equality holds due to the definition of the initial distribution 𝜋0. From this, it follows
immediately that the initial distribution of any lumped stochastic process 𝑃 is the lumped initial distribution

𝜋̂0 : X̂ → R : 𝑥̂ ↦→ 𝜋̂0(𝑥̂) :=
∑︁
𝑥∈𝑥̂

𝜋0(𝑥). (19)

Hence, if we let M̂ := {𝜋̂0}, then any lumped stochastic process 𝑃 is consistent with M̂ ; see Section 4.1.

5.2. The set of lumped transition rate matrices

For the set transition rate matrices, we are looking for a set of transition rate matrices on L (X̂ ) that
contains the “outer partial derivative of the instantaneous transition matrix” of any lumped stochastic
process. We will not explicitly construct such a set of transition rate matrices; instead, we define a lower
transition rate operator and then consider the set of dominating transition rate matrices; see Section 4.2.

We deliberately do not go into detail about what the “outer partial derivative of the instantaneous
transition matrix” of a lumped stochastic process 𝑃 exactly is. For our present purposes, it suffices to
understand that we are interested in the rate of change of 𝐸̂(𝑓(𝑋̂𝑡+Δ) | 𝑋̂𝑢 = 𝑥̂𝑢, 𝑋̂𝑡 = 𝑥̂) for ∆ going to 0;
the interested reader is referred to Appendix D. Using Eqn. (12), we show in Appendix D that there is a
lower bound for this rate of change that applies to any lumped stochastic process. Specifically, this lower
bound uses the transformation 𝑄̂ : L (X̂ ) → L (X̂ ), defined for all 𝑓 in L (X̂ ) and 𝑥̂ in X̂ as

[𝑄̂𝑓 ](𝑥̂) := min

⎧⎨⎩∑︁
𝑦∈X̂

𝑓(𝑦)
∑︁
𝑦∈𝑦

𝑄(𝑥, 𝑦) : 𝑥 ∈ 𝑥̂

⎫⎬⎭ = min
{︁

[𝑄(𝑓 ∘ Λ)](𝑥) : 𝑥 ∈ 𝑥̂
}︁
. (20)

We call 𝑄̂ the lumped lower transition rate operator because of the following straightforward result.

Proposition 4. Let 𝑄 be a transition rate matrix and Λ: X → X̂ a lumping map. Then the corresponding
transformation 𝑄̂ is a lower transition rate operator.

Important to mention here is that in case the lumped state space corresponds to some higher-order state
description, we often find that executing the optimisation in Eqn. (20) is fairly straightforward—that is,
reduces to computing the minimum over a very small (in our examples as low as two to four) number of
cases—as is for instance observed in [15, 16] and Section 8 further on. In fact, a numerical implementation of
𝑄̂ usually does not require an explicit construction of the original transition rate matrix 𝑄.

Because the lumped lower transition rate operator 𝑄̂ is a lower transition rate operator, we know from
Section 4.2 that it induces a set of dominating transition rate matrices. In the current setting, we call this
set the set of lumped transition rate matrices

Q̂ :=
{︁
𝑄̂ ∈ R(X̂ ) : (∀𝑓 ∈ L (X̂ )) 𝑄̂𝑓 ≥ 𝑄̂𝑓

}︁
, (21)

where R(X̂ ) denotes the set of all transition rate matrices on L (X̂ ). The following result is now an
immediate corollary of Propositions 1 and 4.
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Corollary 5. Let 𝑄 be a transition rate matrix and Λ: X → X̂ a lumping map. The associated set Q̂ of
lumped transition rate matrices is non-empty, bounded, closed and convex. Furthermore, it has separately
specified rows and its lower envelope is 𝑄̂, in the sense that 𝑄

Q̂
= 𝑄̂.

5.3. The imprecise lumped Markov chain

With some more work, we can furthermore prove that any lumped stochastic process 𝑃 is well-behaved;
see Section 4.1. The exact statements and proofs of the relevant results are rather technical and do not
immediately contribute to a better understanding of the main text, which is why we have relegated these to
Appendix D. Nonetheless, we now know that any lumped stochastic process is well-behaved and consistent
with M̂ and Q̂. Therefore, we immediately obtain the following result.

Theorem 6. Consider a homogeneous Markov chain 𝑃 and a lumping map Λ: X → X̂ . Then any
corresponding lumped stochastic process 𝑃 is contained in PW

Q̂,M̂
.

We consider Theorem 6 to be one of our main contributions, as it establishes that we can use all of the
results from the theory of imprecise Markov chains to determine bounds on (conditional) expectations with
respect to any lumped stochastic process. At present—at least to the best of our knowledge—this is limited
to lower and upper expectations of functions that depend on the state at a finite number of time points.
However, if the theory of imprecise Markov chains were to be extended to more general inferences—for
instance to lower and upper conditional expectations of functions that depend on the state at an infinite
number of future time points—then this result will immediately allow us to obtain bounds for these more
general inferences with respect to any lumped process. With our present knowledge, however, we are limited
to inferences of the following type.

Corollary 7. Consider a homogeneous Markov chain 𝑃 , a lumping map Λ: X → X̂ and a corresponding
lumped stochastic process 𝑃 . Then for all 𝑢 in U , 𝑣 in U∅ with max𝑢 < min 𝑣, 𝑥̂𝑢 in X̂𝑢 and 𝑓 in L (X̂𝑢∪𝑣),

𝐸W
Q̂,M̂

(𝑓(𝑋̂𝑢, 𝑋̂𝑣) | 𝑋̂𝑢 = 𝑥̂𝑢) ≤ 𝐸̂(𝑓(𝑋̂𝑢, 𝑋̂𝑣) | 𝑋̂𝑢 = 𝑥̂𝑢) ≤ 𝐸
W

Q̂,M̂ (𝑓(𝑋̂𝑢, 𝑋̂𝑣) | 𝑋̂𝑢 = 𝑥̂𝑢),

where 𝐸̂ denotes expectation—in the usual sense—with respect to the lumped stochastic process 𝑃 .

The benefit of this result is that it mitigates the need to explicitly determine the lumped transition
probabilities; instead—as explained in Section 4.3—we can use the semi-group 𝑇 𝑠

𝑡 generated by 𝑄̂ instead.
This is especially useful in case the size of the original state space X makes computing 𝑇 𝑠

𝑡 𝑓 infeasible, but

the size of the lumped state space X̂ is significantly smaller so that computing 𝑇 𝑠
𝑡𝑓 is feasible. In this case,

our results allow us to obtain guaranteed bounds on an inference that we could not compute otherwise!

6. Bounding expectations

Corollary 7 allows us to bound expectations with respect to any lumped process. However, we are actually
interested in (bounding) expectations with respect to the original Markov chain, and it is not immediately
clear how one can use Corollary 7 to do this. In this section, we nevertheless set out to use the lumped
imprecise Markov chain to determine bounds on expectations with respect to the original Markov chain.

One problem is that the expectations with respect to the original Markov chain are for real-valued
functions on X𝑢, while the expectations with respect to the lumped imprecise Markov chain are for real-
valued functions on X̂𝑢. Therefore, we need a way to reduce real-valued functions on X𝑢 to real-valued
functions on X̂𝑢. Fix some 𝑢 in U∅. The sole functions 𝑓 in L (X𝑢) for which this reduction is obvious

are those that are constant on the lumps, in the sense that for all 𝑥̂𝑢 in X̂𝑢, 𝑓(𝑥𝑢) = 𝑓(𝑦𝑢) for all 𝑥𝑢, 𝑦𝑢 in

Λ−1(𝑥̂𝑢). Clearly, this is equivalent to the existence of a real-valued function 𝑓 on X̂𝑢 such that 𝑓 = 𝑓 ∘ Λ.

If such a function 𝑓 in L (X̂𝑢) exists, then the real-valued function 𝑓 on X𝑢 is called lumpable with respect

to Λ. The reduction of a non-lumpable function 𝑓 to X̂𝑢 is not unequivocally defined. In the remainder, we
will make extensive use of the following two reductions:

𝑓L : X̂𝑢 → R : 𝑥̂𝑢 ↦→ min{𝑓(𝑥𝑢) : 𝑥𝑢 ∈ 𝑥̂𝑢} and 𝑓U : X̂𝑢 → R : 𝑥̂𝑢 ↦→ max{𝑓(𝑥𝑢) : 𝑥𝑢 ∈ 𝑥̂𝑢}.
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These two reductions are generalised versions of the reductions defined by Franceschinis and Muntz [9, p. 232];
they clearly provide bounds on the original function:

𝑓L ∘ Λ ≤ 𝑓 ≤ 𝑓U ∘ Λ. (22)

Using Eqn. (22) and after some additional work, we establish the following result.

Theorem 8. Consider a homogeneous Markov chain 𝑃 and a lumping map Λ: X → X̂ . Then for all 𝑢 in
U , 𝑣 in U∅ with max𝑢 < min 𝑣, 𝑥𝑢 in X𝑢 and 𝑓 in L (X𝑢∪𝑣),

𝐸W
Q̂,M̂

(𝑓L(𝑋̂𝑢, 𝑋̂𝑣) | 𝑋̂𝑢 = 𝑥̂𝑢) ≤ 𝐸(𝑓(𝑋𝑢, 𝑋𝑣) |𝑋𝑢 = 𝑥𝑢) ≤ 𝐸
W

Q̂,M̂ (𝑓U(𝑋̂𝑢, 𝑋̂𝑣) | 𝑋̂𝑢 = 𝑥̂𝑢), (23)

where 𝑥̂𝑢 := Λ(𝑥𝑢).

Theorem 8 is similar to Corollary 7, but it is more useful as it provides bounds on the (conditional)
expectation with respect to the original Markov chain—instead of with respect to a lumped stochastic
process—of a real-valued function that depends on the state at any finite number of time points. As the
lower and upper bounds of Theorem 8 are exactly the same as those of Corollary 7, the remarks we made
earlier—right after Corollary 7—about the tractability of the computations needed to determine these bounds
are applicable here as well.

We repeat here that our sole reason for limiting ourselves to functions that depend on a finite number of
future time points in Theorem 8 is that, for now, this is the most general type of inference that can be dealt
with using the framework of imprecise (continuous-time) Markov chains [12]. A possible alternative for the
reader that is interested in more general inferences is the work of Katoen et al. [11], who also use lumping
but follow a different approach that enables them to compute bounds on several specific types of inferences,
including some that depend on an infinite number of future time points.

7. Bounding limit expectations

In many practical applications, see for instance [15, 21, 22], the Markov chain model of the system is used
to determine the limit expectation lim𝑡→+∞ 𝐸(𝑓(𝑋𝑡)) of some real-valued function 𝑓 on X . Under some
conditions on the transition rate matrix 𝑄—ergodicity, see Section 7.1 further on—this limit expectation
lim𝑡→+∞ 𝐸(𝑓(𝑋𝑡)) does not depend on the initial distribution 𝜋0 of the Markov chain. In other applications—
for instance those treated in [9, 10, 16]—one is interested in the long-term temporal average of 𝑓(𝑋𝑡):

lim
𝑠→+∞

1

𝑠

∫︁ 𝑠

0

𝑓(𝑋𝑡) d𝑡.4

Under a slightly more stringent condition on the transition rate matrix 𝑄—irreducibility, see for instance
[19, Theorem 3.8.1]—this long-term temporal average is (almost surely) equal to the limit expectation
lim𝑡→+∞ 𝐸(𝑓(𝑋𝑡)), which then again does not depend on the initial distribution 𝜋0 of the Markov chain.
Clearly, methods to efficiently determine the limit expectation are therefore of tremendous practical interest.

There are plenty of methods available to determine the limit expectation; we refer to [26, Section 10]
for an overview. However, it is well-known—see [9, 10, 16]—that these methods to precisely determine the
limit expectation become computationally intractable for Markov chains with large state spaces. In this
section, we therefore set out to obtain bounds on the limit expectation using the lumped lower transition rate
operator 𝑄̂. Our hope is that, if the lumped state space is sufficiently small, these bounds can be tractably
computed. If this is the case, then we can bound inferences that we could not tractably compute using

4Note that in our current framework, the expectation of this inference cannot be expressed because it depends on the state
at an infinite number of time points. This is not a problem, however, because we can always extend the domain of the coherent
conditional probability 𝑃 so that the expectation is well-defined. Furthermore, in the classical framework this turns out to be
almost surely equal to the limit expectation, which is well-defined in our framework.
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the precise methods for the original Markov chain. We refer to Sections 7.2 and 7.3 further on for more
arguments regarding the tractability of the relevant methods.

We here consider two well-known methods to determine the limit expectation precisely. More specifically,
we argue how these methods can be made computationally tractable again using the lumped transition rate
operator 𝑄̂ at the cost of imprecision—provided of course that 𝑄̂𝑓 can be evaluated much more efficiently
than 𝑄𝑓 . First, however, we start with some general theory concerning ergodic Markov chains.

7.1. Ergodicity and irreducibility

Essential to the study of limit expectations and long-term temporal averages are the concepts of ergodicity
and irreducibility. These two terms are not always used in the same sense by all authors; we here adhere to
the use of Norris [19] and Tornambè [27].

Definition 2 (Definition 4.17 in [27]). A transition rate matrix 𝑄 is ergodic if there is a distribution 𝜋∞ on
X such that, for all 𝑓 in L (X ) and 𝜋0 in D(X ), lim𝑡→+∞⟨𝜋0, 𝑇

𝑡
0𝑓⟩ = ⟨𝜋∞, 𝑓⟩.

We call the distribution 𝜋∞ corresponding to an ergodic transition rate matrix 𝑄 the limit distribution.
The reason for this name is that if 𝑄 is the transition rate matrix of a homogeneous Markov chain 𝑃 , then

lim
𝑡→+∞

𝐸(𝑓(𝑋𝑡)) = lim
𝑡→+∞

⟨𝜋0, 𝑇
𝑡
0𝑓⟩ = ⟨𝜋∞, 𝑓⟩ for all 𝑓 ∈ L (X ),

where the first equality follows from Eqn. (8). It is well-known—see for example [27, Theorem 4.12]—that if
the transition rate matrix 𝑄 is ergodic, then the corresponding limit distribution 𝜋∞ is the unique distribution
that satisfies the equilibrium condition

(∀𝑦 ∈ X )
∑︁
𝑥∈X

𝜋∞(𝑥)𝑄(𝑥, 𝑦) = 0. (24)

Many equivalent necessary and sufficient conditions for ergodicity exist; see for instance [19, Theorem 3.2.1].
The following is the one that is arguably the most easy to check for a given transition rate matrix. It is based
on the accessibility relation · ·. We say that a state 𝑥 is accessible from a state 𝑦, denoted by 𝑦  𝑥, if
there is a sequence 𝑦 = 𝑥0, 𝑥1 . . . , 𝑥𝑛 = 𝑥 in X such that 𝑄(𝑥𝑖−1, 𝑥𝑖) > 0 for all 𝑖 in {1, . . . , 𝑛}. Note that
any state 𝑥 is always accessible from itself because the sequence 𝑥 = 𝑥0 = 𝑥𝑛 = 𝑥 (with 𝑛 = 0) trivially
satisfies this condition.

Proposition 9. A transition rate matrix 𝑄 is ergodic if and only if

Xtop := {𝑥 ∈ X : (∀𝑦 ∈ X ) 𝑦  𝑥} ≠ ∅.

A transition rate matrix 𝑄 is said to be irreducible if Xtop = X ; see for instance [19, Sections 1.2 and
3.2]. Most authors limit themselves to irreducible instead of the more general ergodic transition rate matrices
whenever they are interested in limit expectations. Their reason for doing so is the following result, which
states that as far as the limit expectation is concerned, one can limit the state space to the top class Xtop.

Proposition 10. Let 𝑄 be an ergodic transition rate matrix. Then the matrix 𝑄′ on L (Xtop), defined by

𝑄′(𝑥, 𝑦) := 𝑄(𝑥, 𝑦) for all 𝑥, 𝑦 in Xtop,

is an irreducible transition rate matrix. Furthermore, for all 𝑓 in L (X ), ⟨𝜋∞, 𝑓⟩ = ⟨𝜋′
∞, 𝑓 ′⟩, where 𝜋′

∞ is
the limit distribution of 𝑄′ and 𝑓 ′ is the restriction of 𝑓 to Xtop.

Observe that in order to use this result, one has to explicitly determine the top class. If this top class can
be easily obtained, then reducing the state space to this top class makes sense because it will speed up all
methods to determine the limit expectation ⟨𝜋∞, 𝑓⟩. However, this is not always the case, as it might occur
that checking that the top class is non-empty is straightforward, while explicitly determining the top class is
not. Therefore, in the remainder, we will not a priori limit ourselves to irreducible transition rate matrices
but will always consider general ergodic ones.

13



7.2. Bounding limit expectations iteratively

The first method we consider is based on a link between Markov chains in discrete and continuous time.
Here, we are especially interested in the fact that (𝐼 + 𝛿𝑄) is a transition matrix—at least under suitable
conditions on 𝛿. It is essentially well-known that (𝐼 + 𝛿𝑄) is ergodic if 𝑄 is ergodic, and that both have the
same limit distribution. The following result establishes these links in the form that we will need them.

Proposition 11. If 𝑄 is an ergodic transition rate matrix, then for all 𝑓 in L (X ), 𝛿 in R>0 with 𝛿‖𝑄‖ < 2,
and 𝑛 in N0,

min(𝐼 + 𝛿𝑄)𝑛𝑓 ≤ ⟨𝜋∞, 𝑓⟩ ≤ max(𝐼 + 𝛿𝑄)𝑛𝑓.

Furthermore, the lower and upper bounds in this expression become monotonously tighter with increasing 𝑛,
and converge to ⟨𝜋∞, 𝑓⟩ as 𝑛 approaches +∞.

Note that the step size 𝛿 in Proposition 11 is only required to be sufficiently small such that 𝛿‖𝑄‖ < 2.
Empirically, we observe that the convergence of the bounds is faster—in the sense that we need smaller
𝑛—for larger values of 𝛿.

Note, however, that if the size of the original state space is too large, then the bounds in Proposition 11
cannot be tractably computed. One way to make the computations tractable is to “replace” the transition
rate matrix 𝑄 with the lumped lower transition rate operator 𝑄̂ and its conjugate

𝑄̂ : L (X̂ ) → L (X̂ ) : 𝑓 ↦→ 𝑄̂𝑓 := −𝑄̂(−𝑓).

The following result establishes that this replacement is allowed.

Theorem 12. Consider an ergodic transition rate matrix 𝑄 and a lumping map Λ: X → X̂ . Then for all
𝑓 in L (X ), 𝛿 in R>0 with 𝛿‖𝑄‖ < 2, and 𝑛 in N0,

min(𝐼 + 𝛿𝑄̂)𝑛𝑓L ≤ ⟨𝜋∞, 𝑓⟩ ≤ max(𝐼 + 𝛿𝑄̂)𝑛𝑓U.

Moreover, for fixed 𝛿, the lower and upper bounds in this expression become monotonously tighter with
increasing 𝑛, and each converges to a—possibly different—limit as 𝑛 approaches +∞. If 𝑄 is furthermore
irreducible, (𝐼 + 𝛿𝑄̂)𝑛𝑓L and (𝐼 + 𝛿𝑄̂)𝑛𝑓U both converge to a—possibly different—constant function as 𝑛
approaches +∞.

Theorem 12 naturally suggests an iterative method to determine guaranteed bounds on the limit
expectation ⟨𝜋∞, 𝑓⟩. For the lower bound, one simply needs to (i) choose a step size 𝛿 such that 𝛿‖𝑄‖ < 2; (ii)

iteratively compute 𝑔𝑖 := (𝐼+𝛿𝑄̂)𝑔𝑖−1 with initial condition 𝑔0 := 𝑓L; and (iii) stop after 𝑛 iterations if min 𝑔𝑛—

or in case 𝑄 is irreducible, 𝑔𝑛—has empirically converged; the lower bound is then min(𝐼 + 𝛿𝑄̂)𝑛𝑓L = min 𝑔𝑛.
As a consequence of the conjugacy of 𝑄̂, the upper bound can be iteratively obtained by applying the iterative

scheme for the lower bound with initial condition 𝑔0 := −𝑓U; the upper bound is then max(𝐼 + 𝛿𝑄̂)𝑛𝑓U =
−min 𝑔𝑛 = −min(𝐼 + 𝛿𝑄̂)𝑛𝑔0. Empirically, we observe that larger step sizes 𝛿 result in faster convergence,
in the sense that less iterations are required. The influence of the step size 𝛿 on the tightness of the bounds
is something that we have not properly investigated yet. Our limited experiments suggest that a smaller step
size 𝛿 results in tighter bounds, although after some threshold—that depends on the specific model being
used and that can be rather large—the tightness does not seem to change any more.

7.3. Bounding limit expectations with a linear program

Another popular method to determine the limit expectation ⟨𝜋∞, 𝑓⟩ is to first determine the limit
distribution 𝜋∞ and then compute the inner product directly. Recall from Section 7.1 that 𝜋∞ is the unique
distribution that satisfies the equilibrium condition, so—in theory—we can determine it by explicitly solving
Eqn. (24), see for instance [26, Section 10.2]. Unfortunately, if the state space X is large then solving the
resulting linear system of |X | equations becomes computationally infeasible. Therefore, we here combine the
equilibrium condition for several different states 𝑦; subsequent manipulation of the resulting expressions then
allows us to establish the following result.
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Theorem 13. Consider an ergodic transition rate matrix 𝑄 and a lumping map Λ: X → X̂ . Then for all
𝒜 ⊆ 𝒫(X̂ )5 and 𝑓 in L (X ),

min{⟨𝜋̂, 𝑓L⟩ : 𝜋̂ ∈ D𝒜} ≤ ⟨𝜋∞, 𝑓⟩ ≤ max{⟨𝜋̂, 𝑓𝑈 ⟩ : 𝜋̂ ∈ D𝒜}

with
D𝒜 := {𝜋̂ ∈ D(X̂ ) : (∀𝐴 ∈ 𝒜) ⟨𝜋̂, 𝑄̂I𝐴⟩ ≤ 0}.

It might not immediately look like it, but closer inspection shows us that the two optimisations in the
expression above are in fact straightforward linear programs. The variables of these linear programs are the
components of 𝜋̂. Since 𝜋̂ is a distribution on X̂ , there are |X̂ | variables and already |X̂ | + 1 constraints:

𝜋̂(𝑥̂) ≥ 0 for all 𝑥̂ in X̂ and
∑︀

𝑥̂∈X̂ 𝜋̂(𝑥̂) = 1. Some |𝒜| additional constraints are induced by the requirement

that 𝜋̂ is an element of D𝒜: for all 𝐴 in 𝒜, ⟨𝜋̂, 𝑄̂I𝐴⟩ ≤ 0.

An obvious issue when applying the method of Theorem 13 is how to choose the collection of subsets 𝒜.
First and foremost, as 𝑄̂ is a lower transition rate operator, 𝑄̂I∅ = 0 and 𝑄̂IX̂ = 0. Therefore, the condition

⟨𝜋̂, 𝑄̂I𝐴⟩ ≤ 0

is always satisfied if 𝐴 is equal to ∅ or X̂ . Knowing this, one obvious choice is 𝒜 = 𝒫(X̂ ) ∖ {∅, X̂ },

which leads to a linear program with |X̂ | + 2|X̂ | − 1 distinct constraints. As the number of constraints
scales exponentially with the number of lumped states, this becomes computationally intractable if the
lumped state space X̂ is large. An obvious alternative choice is to consider the collection of all singletons:
𝒜 = {{𝑥̂} : 𝑥̂ ∈ X̂ }. This choice results in 2|X̂ | + 1 distinct constraints for the linear program, which is
certainly tractable. From an implementation point of view, it makes sense to also add the complements of the
singletons to the collection 𝒜. The reason for this is that the functions I𝐴𝑐 need not be explicitly constructed
because 𝑄̂I𝐴𝑐 = 𝑄̂(−I𝐴)—as can be easily verified. In this case, the linear program has 3|X̂ | + 1 constraints.
The tractability of this choice for a smaller collection 𝒜 can come at the cost of reduced tightness of the
resulting bounds compared to using the power set, because the set D𝒜 is less constrained and hence can be
larger. This trade-off between tractability and tightness is something that we leave for future research.

8. Numerical assessment

We leave the numerical assessment of Theorem 8 for future work. Our main reason for this is that the
performance of this method is tied to the performance of the method used to approximate 𝑇 𝑠

𝑡𝑓 , and this
would lead us too far astray. For a preliminary study of the performance of some methods to approximate
𝑇 𝑠

𝑡𝑓 , we refer to [25]. We here fully focus on bounding limit expectations: we compare the methods implied
by Theorem 12 and 13 with the methods of Franceschinis and Muntz [9] and Buchholz [10] in Sections 8.1–8.3,
and consider the large-scale tractability of our methods in Section 8.4.

8.1. A closed queueing network

Following Franceschinis and Muntz [9] and Buchholz [10], we test our methods on the closed queueing
network depicted in Figure 1. This closed queueing network is populated by 𝑁 customers and consists of
a single server, denoted by S0, in series with 𝐾 parallel servers, denoted by S1, . . . , S𝐾 . In order not to
unnecessarily complicate our exposition, we will assume that 𝐾 is even. As is clear from Figure 1, the
customers alternatingly visit the server S0 and one of the parallel servers S1, . . . , S𝐾 .

One obvious way to describe this closed queueing network is to use states of the form (𝑖, 𝑖1, . . . , 𝑖𝐾), where
𝑖 is the number of customers in the single server and 𝑖𝑘 is the number of customers in the 𝑘-th parallel server.
This state description yields the state space

X :=

{︃
(𝑖, 𝑖1, . . . , 𝑖𝐾) ∈ {0, 1, . . . , 𝑁}𝐾+1 : 𝑖 +

𝐾∑︁
𝑘=1

𝑖𝑘 = 𝑁

}︃
.

5Here and in the remainder, we denote the power set of the set 𝑆 by 𝒫(𝑆).

15



S0

S1

S𝑘

S𝐾

...

...

Figure 1: The closed queueing network

As a reduced, higher-order state description, Franceschinis and Muntz [9] propose to use (𝑖, 𝑗0, . . . , 𝑗𝑁 ), where
𝑖 is again the number of customers in the single server and 𝑗ℓ is the number of parallel servers that have ℓ
customers. This yields the lumped state space

X̂ :=

{︃
(𝑖, 𝑗0, . . . , 𝑗𝑁 ) ∈ {0, 1, . . . , 𝑁} × {0, 1, . . . ,𝐾}𝑁+1 : 𝑖 +

𝑁∑︁
𝑛=1

𝑛𝑗𝑛 = 𝑁,

𝑁∑︁
𝑛=0

𝑗𝑛 = 𝐾

}︃
.

The lumped state space X̂ is significantly smaller than the original state space X , as is clear from the
number of states and lumps reported in [9, Table 3] and Table 2.

We are interested in two performance measures for the first server S0 of the queueing network: (i) the
population—or, in the words of Franceschinis and Muntz, the mean queue length— of this server (POP),
which is the limit expectation of the lumpable function

𝑓 : X → R : (𝑖, 𝑖1, . . . , 𝑖𝐾) ↦→ 𝑖, with 𝑓 : X̂ → R : (𝑖, 𝑗0, . . . , 𝑗𝑁 ) ↦→ 𝑖

and (ii) the throughput at this server (TP), which is the limit expectation of the lumpable function

𝑔 : X → R : (𝑖, 𝑖1, . . . , 𝑖𝐾) ↦→

{︃
𝜇 if 𝑖 < 𝑁,

0 otherwise,
with 𝑔 : X̂ → R : (𝑖, 𝑗0, . . . , 𝑗𝑁 ) ↦→

{︃
𝜇 if 𝑖 < 𝑁,

0 otherwise,

where 𝜇 is the rate of the distribution of the service time of S0.

8.2. Exponential service time

Franceschinis and Muntz [9] assume that the single server S0 has a service time that is exponentially
distributed with rate 𝜇—or equivalently, mean service time 1/𝜇. After its service in server S0 has completed, a
customer randomly joins the queue of one of the parallel servers S1, . . . , S𝐾 , and for the sake of simplicity each
choice is assumed to be equally probable. The parallel servers also have a service time that is exponentially
distributed: half of the parallel servers have rate 𝜆1 and the other half have rate 𝜆2, with 𝜆1 < 𝜆2. Note
that due to symmetry, without loss of generality, we may assume that S1, . . . , S𝐾

2
have rate 𝜆1 and the

remaining servers have rate 𝜆2 Under these assumptions, we can model the system as a homogeneous Markov
chain with state space X , but the lumped state space X̂ is not sufficiently detailed to allow a homogeneous
Markov chain model.

The lumping map Λ that models the relation between these two state descriptions is easily obtained.
Hence, we obtain the lumped lower transition rate operator 𝑄̂ according to Eqn. (20). In this case, it turns
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out that the minimisation reduces to

[𝑄̂𝑓 ](𝑖, 𝑗0, . . . , 𝑗𝑁 ) =
𝜇

𝑁

𝑁∑︁
𝑛=1

(𝑓(𝑖− 1, 𝑗0, . . . , 𝑗𝑛−1, 𝑗𝑛 + 1, 𝑗𝑛+1 . . . , 𝑗𝑁 ) − 𝑓(𝑖, 𝑗0, . . . , 𝑗𝑁 ))

+
∑︁
𝑛∈𝒩

𝜆′
𝑛(𝑓(𝑖 + 1, 𝑗0, . . . , 𝑗𝑛−1, 𝑗𝑛 − 1, 𝑗𝑛+1 . . . , 𝑗𝑁 ) − 𝑓(𝑖, 𝑗0, . . . , 𝑗𝑁 )), (25)

where the first summation is only present in case 𝑖 > 0. In this expression, 𝒩 is the set of all indices 𝑛 such
that 𝑗𝑛 > 0. The rates 𝜆′

𝑛 are equal to either 𝜆1 or 𝜆2. One has to choose their values in such a way that the
resulting value of the expression in Eqn. (25) is minimised, under the condition that at most 𝐾/2 can have
value 𝜆1 and at most 𝐾/2 can have value 𝜆2.

Table 1: Comparison of the bounds obtained by using Theorems 12 and 13 with those obtained by the method presented in [9,

Section 3.2]. Model parameters: 𝐾 = 4, 𝑁 = 5, 𝜇 = 1, 𝜆1 = 1, 𝜆2 = 1.01. Computation parameters: 𝒜1 consists of all the

singletons, 𝒜2 consists of all the singletons and their complements.

Theorem 12 Theorem 13

[9, Table 2] 𝛿 = 1.8/‖𝑄‖ 𝛿 = 0.9/‖𝑄‖ 𝒜1 𝒜2

Exact Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

POP 3.7262 3.6141 3.7493 3.7195 3.7336 3.7195 3.7336 3.6162 3.7487 3.7113 3.7414
TP 0.9828 0.9676 0.9835 0.9825 0.9831 0.9825 0.9831 0.9679 0.9835 0.9823 0.9834

Franceschinis and Muntz [9] compute bounds on the performance measures for the closed queueing
network with 𝐾 = 4 parallel servers and 𝑁 = 5 customers. These parameters yield a state space X with
126 states and a lumped state space X̂ with 18 states. For the service time distributions, they use the
parameters 𝜇 = 1, 𝜆1 = 1 and 𝜆2 = 1.01. In Table 1, we report bounds on the performance measures that we
obtain with the two methods based on Theorems 12 and 13. Note that Franceschinis and Muntz actually
report the limit expectation of 𝑁 − 𝑖 instead of that of 𝑖 in [9, Table 2], but we have transformed their
bounds to correspond to our setting.

For all cases reported in Table 1, our bounds are tighter than those of Franceschinis and Muntz [9].
Furthermore, the bounds obtained with the iterative method based on Theorem 12 are tighter than those
obtained with the linear programming method based on Theorem 13. For the method based on Theorem 12,
the obtain bounds are the same—at least up to the reported precision—for both choices of step sizes. We
observed that in this case, halving the step size results in a doubling of the number of iterations required
to reach empirical convergence. For the method based on Theorem 13, the obtained bounds are noticeably
tighter if we use the collection 𝒜2 that consists of all singletons and their complements instead of the
collection 𝒜1 that consists of only the singletons. We have chosen not to use the power set as collection

because we believe that adding 2|X̂ | − 2 = 65 534 constraints on 18 variables is a bit excessive.

8.3. Erlang-2 serivce time

Buchholz [10] considers a slightly changed version of the closed queueing network: instead of assuming
that the service time of S0 is exponentially distributed, he assumes an Erlang-2 distribution with mean service
time 1/𝜇. This assumption still allows for a homogeneous Markov chain model, be it that the component
𝑖 is replaced by two components in both the full state description and the lumped state description. The
lumped lower transition rate operator 𝑄̂ obtained with Eqn. (20) reduces to an expression similar to that of
Eqn. (25).

Buchholz [10] considers several combinations of the number of parallel servers 𝐾 and the number of
customers 𝑁 . For the service time distributions, he uses the parameters 𝜇 = 5, 𝜆1 = 1 and 𝜆2 = 1 + 𝜖, with 𝜖
equal to 0.1 or 0.01. In Table 1, we report bounds on the throughput, obtained with the two methods based
on Theorems 12 and 13, and compare those with the bounds obtained by Buchholz. First and foremost, we
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Table 2: Comparison of the bounds obtained on the throughput by using Theorems 12 and 13 with those obtained by the
method presented in [10, Section 4]. Model parameters: 𝜇 = 5, 𝜆1 = 1, 𝜆2 = 𝜆1 + 𝜖. Computation parameters: 𝒜1 consists of

all the singletons, 𝒜2 consists of all the singletons and their complements.

Theorem 12 Theorem 13

[10, Figure 3] 𝛿 = 1.8/‖𝑄‖ 𝛿 = 0.9/‖𝑄‖ 𝒜1 𝒜2

K N |X | |X̂ | Exact Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

𝜖 = 0.1

4 6 336 45 2.611 2.509 2.730 2.529 2.713 2.531 2.713 1.928 3.181 2.401 2.820
4 8 825 91 2.892 2.784 3.028 2.813 3.003 2.814 3.003 1.982 3.633 2.582 3.171
4 10 1716 165 3.090 2.973 3.239 3.012 3.207 3.014 3.207 2.002 3.961 2.670 3.435
6 8 4719 108 3.486 3.365 3.624 3.382 3.613 3.383 3.613 2.068 4.188 3.069 3.846
6 10 13 013 215 3.802 3.675 3.984 3.707 3.930 3.708 3.930 2.083 4.515 3.191 4.244
8 10 68 068 232 4.202 4.087 4.327 4.103 4.320 4.104 4.320 2.111 4.736 3.542 4.595

𝜖 = 0.01

4 6 336 45 2.520 2.509 2.532 2.511 2.530 2.511 2.530 2.428 2.591 2.500 2.541
4 8 825 91 2.793 2.780 2.806 2.784 2.803 2.784 2.803 2.655 2.894 2.764 2.821
4 10 1716 165 2.984 2.971 2.998 2.975 2.995 2.976 2.995 2.802 3.116 2.948 3.020
6 8 4719 108 3.378 3.365 3.392 3.367 3.391 3.367 3.391 3.121 3.488 3.340 3.416
6 10 13 013 215 3.689 3.675 3.704 3.678 3.702 3.678 3.702 3.336 3.821 3.639 3.738
8 10 68 068 232 4.100 4.087 4.113 4.088 4.113 4.088 4.113 3.609 4.213 4.047 4.151

observe that the bounds obtained with the iterative method based on Theorem 12 are tighter than those
obtained with the method of Buchholz [10], which in turn are tighter than those obtained with the linear
programming method based on Theorem 13; hence, as was also the case in Section 8.1, our iterative method
outperforms the linear programming method. Second, we observe that halving the step size 𝛿 in the iterative
method does increase the tightness of the bounds, be it only marginally. Adding the complements to the
collection 𝒜 in the linear programming method clearly results in tighter bounds, as was also the case in
Section 8.1.

We end with two caveats. First, we have also conducted experiments for the population. However, the
exact values we obtain for the population do not lie in the intervals reported in [10, Fig. 3]. We have not
managed to clear out whether this is due to an error on our part or not. Since this prevents a proper
comparison of our bounds with those reported in [10, Fig. 3], we have chosen not to report any bounds on
the population. Second, Buchholz mentions in [10, Section 5.3] that he assumes “service rates between 1.0
and 1.0 + 𝜖”, but it is unclear to us if he additionally assumes that half of the servers have rate 1.0 and
the other half of the servers have rate 1.0 + 𝜖. If he does not make this additional assumption, his bounds
hold for the more general setting that the transition rate matrix 𝑄 is only known to belong to some set
of transition rate matrices. Our methods can be adapted to this more general setting as well, in a similar
fashion to the approach followed in [16], but we leave this for future work. We here only mention that this
yields a lumped lower transition rate operator 𝑄̂ that is very similar to that of Eqn. (25); it turns out that
the 𝜆′

𝑛’s can all be independently optimised without taking into account the restrictions on how many of
them can take the value 𝜆1 or 𝜆2.

8.4. Large-scale tractability

We have chosen to limit the scenarios for our numerical experiments to those scenarios that were also
considered by Franceschinis and Muntz [9] and Buchholz [10]. Our reason for this is two-fold. First, this
allows us to compare our bounds with the exact result. Second, this allow us to compare our bounds with
those obtained by Franceschinis and Muntz [9] and Buchholz [10] without needing to implement their methods
ourselves. As we have previously argued, our experiments seem to suggest that our bounds—or at least those
obtained using the iterative approximation method—are tighter than those obtained by the existing methods.

18



As the precise value of the relevant limit expectations can still be tractably computed, these scenarios
do not correspond to the intended range of applications. We leave a thorough study of the tractability for
large-scale Markov chains, as well as a comparison with the scalability of the existing methods, for future
work. However, this does not mean that we are oblivious to the scalability of our methods. Quite the
contrary, we have previously studied the tractability of our iterative approximation method for large-scale
Markov chains in [16], where we used the iterative approximation method based on Theorem 12 to compute
(bounds on) performance measures of a specific telecommunication system. The largest Markov chain model
that we consider there has 1 221 759 states, which gets reduced to 35 301 states for the lumped imprecise
Markov chain. For that large-scale model, the precise methods turn out to be computationally infeasible,
while the computations for our iterative approximation method are still tractable.

9. Lumpability

Until now, our sole objective has been to use the lumped imprecise Markov chain to determine bounds
on expectations with respect to the original Markov chain. Recall from the Introduction that this is only
a secondary setting in which the lumping of Markov chains has been previously studied. In this section,
we briefly return to the original setting of lumping in Markov chains, and ask ourselves the question if the
lumped process is again a homogeneous Markov chain. Crucial to this question is the concept of lumpability.

Definition 3. The transition rate matrix 𝑄 is lumpable with respect to the lumping map Λ: X → X̂ if
there is a 𝑄̂ in R(X̂ ) such that

(∀𝑥̂, 𝑦 ∈ X̂ )(∀𝑥 ∈ 𝑥̂)
∑︁
𝑦∈𝑦

𝑄(𝑥, 𝑦) = 𝑄̂(𝑥̂, 𝑦). (26)

Burke and Rosenblatt consider homogeneous Markov chains and prove in [2, Theorem 4] that lumpability
of the transition rate matrix is necessary and sufficient for the lumped stochastic process to be a Markov
chain, regardless of the initial distribution. In [3, Theorem 2.4], Ball and Yeo establish that if the original
homogeneous Markov chain has a denumerable state space and is irreducible, then lumpability of the
transition rate matrix is also a necessary and sufficient condition for the lumped stochastic process to be a
homogeneous Markov chain.

Since lumpability is clearly a strong property, we expect that our previous results can be simplified under
the condition that it holds. First and foremost, we have the following obvious result.

Proposition 14. Consider a transition rate matrix 𝑄 and lumping map Λ: X → X̂ . Then 𝑄 is lumpable
with respect to Λ if and only if 𝑄̂ is linear, or equivalently, if and only if Q̂ is a singleton. In this case,

Q̂ = {𝑄̂} and 𝑄̂ = 𝑄̂, where 𝑄̂ is the unique transition rate matrix that satisfies Eqn. (26).

We combine Proposition 14 with Theorem 6 to immediately obtain the following very strong result.

Corollary 15. Consider a homogeneous Markov chain 𝑃 with transition rate matrix 𝑄, and a lumping
map Λ: X → X̂ . If 𝑄 is lumpable with respect to Λ, then the lumped stochastic process 𝑃 is uniquely
defined and equal to the homogeneous Markov chain characterised by the lumped initial distribution 𝜋̂0 and
the transition rate matrix 𝑄̂.

Note that Corollary 15 is similar to [2, Theorem 4], although it only provides the sufficiency and not the
necessity of the lumpability condition. However, if we follow the strategy that Burke and Rosenblatt use in
the proof of [2, Theorem 4], then we also obtain the necessity of the condition, at least if—like Burke and
Rosenblatt in [2, Theorem 4]—we demand that the lumped stochastic process is a homogeneous Markov
chain for any initial distribution.

For our present purposes, what is particularly interesting about the above results, is that we can specialise
the results of Sections 6 and 7 if combine them with Proposition 14 and/or Corollary 15. We limit ourselves
to lumpable functions because this allows for more elegant statements. Our first result is then a specialisation
of Theorem 8 that is useful in the same setting, and follows almost immediately from Corollary 15.
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Corollary 16. Consider a homogeneous Markov chain 𝑃 with transition rate matrix 𝑄, and a lumping
map Λ: X → X̂ . If 𝑄 is lumpable with respect to Λ, then for all 𝑢 in U , 𝑣 in U∅ with max𝑢 < min 𝑣, 𝑥𝑢

in X𝑢 and all lumpable 𝑓 in L (X𝑢∪𝑣),

𝐸(𝑓(𝑋𝑢, 𝑋𝑣) |𝑋𝑢 = 𝑥𝑢) = 𝐸̂(𝑓(𝑋̂𝑢, 𝑋̂𝑣) | 𝑋̂𝑢 = 𝑥̂𝑢),

with 𝑥̂𝑢 := Λ(𝑥𝑢) and where 𝐸̂ denotes the expectation with respect to the lumped homogeneous Markov
chain 𝑃 .

We now turn to specialising the results of Section 7. While we could simply combine Theorems 12 and 13
with Corollary 15, the following result makes more sense.

Theorem 17. Consider an ergodic transition rate matrix 𝑄 and a lumping map Λ. If 𝑄 is lumpable with
respect to Λ, then 𝑄̂ is ergodic. Furthermore, for any lumpable 𝑓 in L (X ),

⟨𝜋∞, 𝑓⟩ = ⟨𝜋̂∞, 𝑓⟩,

where 𝜋̂∞ denotes the limit distribution of 𝑄̂.

The reason why Theorem 17 is more sensible than simply specialising Theorems 12 and 13 is that we
can use any of the standard methods to determine the limit expectation ⟨𝜋̂∞, 𝑓⟩, instead of only our two
(approximate) methods.

10. Conclusions

Broadly speaking, we can conclude that imprecise Markov chains are not only a robust uncertainty
model—as they were originally intended to be—but also a useful computational tool for determining bounds
on inferences for large-scale homogeneous (continuous-time) Markov chains. More concretely, we have shown
that lumping states in a homogeneous Markov chain inevitably introduces imprecision, in the sense that—in
general—we cannot exactly determine the transition probabilities of the lumped stochastic process without
also explicitly determining the transition probabilities of the original Markov chain. However, we can easily
characterise a set of processes that definitely contains the lumped process, in the form of an imprecise Markov
chain. Using this imprecise Markov chain, we can then determine guaranteed lower and upper bounds on the
(conditional) expectation—with respect to the original Markov chain—of a real-valued function on the state
of the system at any finite number of time points. Furthermore, we also presented two methods to bound the
limit expectations of ergodic Markov chains. From a practical point of view, these results are essential tools
in cases where state space explosion occurs: they allow us to determine guaranteed lower and upper bounds
on inferences that we otherwise could not determine at all!

Regarding future work, we envision the following. For starters, a more thorough numerical assessment
of the methods outlined in Sections 6 and 7.3 is necessary. Furthermore, we believe that almost all of our
result can be adapted to the setting of discrete-time Markov chains. Moreover, Theorems 12 and 13 can also
be quite easily extended to the setting in which we are interested in the limit expectation associated with
some ergodic homogeneous Markov chain 𝑃 , but where we only know that its transition rate matrix 𝑄 is
contained in some non-empty and bounded set of (ergodic) transition rate matrices. Finally, it would be of
theoretical as well as practical interest to determine bounds on the (conditional) expectation of functions
that depend on the state at infinitely many time points.
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Appendix A. Extra material for Section 2

Recall from Section 2.3 that we can consider stochastic processes in two frameworks: the classical
framework of measure-theoretic probability and the slightly less standard framework of coherent conditional
probability. For the former, we refer to [20, Section 1.1] and references therein. Since the latter is the
approach that is introduced and followed by Krak et al. [12], it will also be the approach that we will follow
here. We therefore briefly recall the notation, terminology and results from [12, Sections 4 and 5] that we will
need in the remainder: we discuss coherent conditional probabilities in Appendix A.1, explain how stochastic
processes are coherent conditional probabilities with a specific domain in Appendix A.2 and treat the special
case of (homogeneous) Markov chains in Appendix A.3.
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Appendix A.1. Coherent conditional probabilities

Fix some non-empty set 𝑆 called the outcome space. For this outcome space 𝑆, we let E (𝑆) denote the
set of all events—that is, the set of all subsets of 𝑆—and furthermore let E∅(𝑆) := E (𝑆) ∖ {∅}. Coherent
conditional probabilities are maps from a subset C of E (𝑆) × E∅(𝑆) to the real numbers that, in essence,
satisfy the laws of probability. More specifically, Regazzini [18] put forward the following definition.

Definition 4 (Definition 1 in [18] or Definition 4.2 in [12]). Let 𝑆 be a non-empty set and 𝑃 a real-valued
map from C ⊆ E (𝑆) × E∅(𝑆) to R. Then 𝑃 is a coherent conditional probability if, for all 𝑛 in N, (𝐴1, 𝐶1),
. . ., (𝐴𝑛, 𝐶𝑛) in C and 𝜆1, . . . , 𝜆𝑛 in R,

max

{︃
𝑛∑︁

𝑖=1

𝜆𝑖I𝐶𝑖
(𝑠)(𝑃 (𝐴𝑖 | 𝐶𝑖) − I𝐴𝑖

(𝑠)) : 𝑠 ∈ ∪𝑛
𝑖=1𝐶𝑖

}︃
≥ 0. (A.1)

Lemma 18 ((5)–(8) in [18]). Let 𝑆 be a non-empty set. If 𝑃 is a coherent conditional probability on
C ⊆ E (𝑆) × E∅(𝑆), then,

P1. 𝑃 (𝐴 | 𝐶) ≥ 0 for all (𝐴,𝐶) in C ;

P2. 𝑃 (𝐴 | 𝐶) = 1 for all (𝐴,𝐶) in C with 𝐶 ⊆ 𝐴;

P3. 𝑃 (𝐴 ∪𝐵 | 𝐶) = 𝑃 (𝐴 | 𝐶) + 𝑃 (𝐵 | 𝐶) for all (𝐴,𝐶), (𝐵,𝐶) and (𝐴 ∪𝐵,𝐶) in C such that 𝐴 ∩𝐵 = ∅;

P4. 𝑃 (𝐴 ∩𝐵 | 𝐶) = 𝑃 (𝐴 |𝐵 ∩ 𝐶)𝑃 (𝐵 | 𝐶) for all (𝐴 ∩𝐵,𝐶), (𝐴,𝐵 ∩ 𝐶) and (𝐵,𝐶) in C .

Lemma 18 states that a coherent conditional probability satisfies the standard laws of (conditional)
probability on its domain: properties (P1)–(P3) state that 𝑃 (· |𝐶) is a (finitely-additive) probability measure,
while (P4) is Bayes’ rule. Important to mention here is that the conditions (P1)–(P4) are, at least in general,
not sufficient for 𝑃 to be a coherent conditional probability! However, as is established in the following result,
the conditions (P1)–(P4) are necessary and sufficient for 𝑃 to be a coherent conditional probability if the
domain C has some special structure.

Proposition 19 (Theorem 3 in [18]). Let 𝑆 be a non-empty set and 𝑃 a real-valued map from C ⊆
E (𝑆)×E∅(𝑆) to R. If there are algebras A ⊆ E (𝑆) and H ⊆ E (𝑆) such that H ⊆ A and C = A ×(H ∖{∅}),
then 𝑃 is a coherent conditional probability if and only if it satisfies (P1)–(P4).

An additional reason for using the more abstract condition of Definition 4 are the two following results,
which are essential to our formal definition of the lumped stochastic process in Appendix B further on.

Lemma 20 (Theorem 4 in [18]). Let 𝑆 be a non-empty set. If 𝑃 is a coherent conditional probability on
C ⊆ E (𝑆) × E∅(𝑆), then for any C ⋆ such that C ⊆ C ⋆ ⊆ E (𝑆) × E∅(𝑆), 𝑃 can be extended to a coherent
conditional probability 𝑃 ⋆ on C ⋆, in the sense that 𝑃 ⋆(𝐴 | 𝐶) = 𝑃 (𝐴 | 𝐶) for all (𝐴,𝐶) ∈ C .

Lemma 21 (Corollary 4.3 in [12]). Let 𝑆 be a non-empty set. Then 𝑃 is a coherent conditional probability
on C ⊆ E (𝑆) × E∅(𝑆) if and only if it can be extended to a coherent conditional probability on E (𝑆) × E∅(𝑆).

Appendix A.2. Stochastic processes

We here briefly introduce the coherent conditional framework for stochastic processes; we refer to [12,
Section 4.2] for a more extensive introduction. The outcome space is now the set of paths Ω, where a path 𝜔
basically is the state of the system over time, so a map from the non-negative real numbers to the (non-empty
and finite) state space X . In the current setting, the only thing that is required of this set Ω is that

(∀𝑢 ∈ U∅)(∀𝑥𝑢 ∈ X𝑢)(∃𝜔 ∈ Ω)(∀𝑡 ∈ 𝑢) 𝜔(𝑡) = 𝑥𝑡. (A.2)

For all 𝑡 in R≥0 and 𝑥 in X , we then define the elementary event

(𝑋𝑡 = 𝑥) := {𝜔 ∈ Ω: 𝜔(𝑡) = 𝑥}.
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Similarly, for all 𝑢 in U and 𝑥𝑢 in X𝑢, we let

(𝑋𝑢 = 𝑥𝑢) :=
⋂︁
𝑡∈𝑢

(𝑋𝑡 = 𝑥𝑡).

We follow the convention that an empty intersection in expressions similar to the one above corresponds to
Ω; hence (𝑋∅ = 𝑥∅) = Ω. For all 𝑢 in U , the set of elementary events

E𝑢 :=

{︃
{(𝑋𝑡 = 𝑥) : 𝑡 ∈ R≥0, 𝑥 ∈ X } if 𝑢 = ∅,
{(𝑋𝑡 = 𝑥) : 𝑡 ∈ 𝑢 ∪ [max𝑢,+∞), 𝑥 ∈ X } otherwise,

(A.3)

induces an algebra of sets A𝑢 := ⟨E𝑢⟩.

Definition 5 (Definition 4.3 in [12]). A stochastic process 𝑃 is a coherent conditional probability 𝑃 with
domain

C SP := {(𝐴𝑢, 𝑋𝑢 = 𝑥𝑢) : 𝑢 ∈ U , 𝑥𝑢 ∈ X𝑢, 𝐴𝑢 ∈ A𝑢}.

In order not to unnecessarily clutter our notation, we leave out the conditioning event if it is (𝑋∅ = 𝑥∅) = Ω:

𝑃 (𝐴) := 𝑃 (𝐴 |𝑋∅ = 𝑥∅) = 𝑃 (𝐴 | Ω) for any 𝐴 in A∅.

It immediately follows from Lemma 18 that a stochastic process 𝑃 satisfies the laws of (conditional) probability.
Because these laws are so well-known, we will frequently use them without explicitly referring to Lemma 18.

Appendix A.3. Precise (homogeneous) continuous-time Markov chains

The following is a more formal definition of the terms introduced in Section 2.3.

Definition 6. A stochastic process 𝑃 : C SP → R is a continuous-time Markov chain if, for all 𝑡,∆ in R≥0,
𝑢 in U<𝑡, 𝑥, 𝑦 in X and 𝑥𝑢 in X𝑢,

𝑃 (𝑋𝑡+Δ = 𝑦 |𝑋𝑢 = 𝑥𝑢, 𝑋𝑡 = 𝑥) = 𝑃 (𝑋𝑡+Δ = 𝑦 |𝑋𝑡 = 𝑥).

This Markov chain 𝑃 is homogeneous if furthermore

𝑃 (𝑋𝑡+Δ = 𝑦 |𝑋𝑡 = 𝑥) = 𝑃 (𝑋Δ = 𝑦 |𝑋0 = 𝑥).

To ensure that the process behaves sufficiently nice, Krak et al. [12] always assume that the Markov
chain 𝑃 is well-behaved [12, Definition 4.4]; throughout the remainder, we implicitly assume that the Markov
chains we consider are well-behaved. Our statement in Section 2.3 that a (well-behaved) homogeneous Markov
chain is uniquely characterised by the triplet (X , 𝜋0, 𝑄) is justified by [12, Corollary 5.3 and Theorem 5.4].

Let 𝑃 be a homogeneous Markov chain. To compute expectations that depend on the state at multiple
future time points, we make use of Eqn. (6) and the law of iterated expectation, which states that for all 𝑢 in
U , 𝑣 and 𝑤 in U∅ with max𝑢 < min 𝑣 and max 𝑣 < min𝑤, 𝑥𝑢 in X𝑢 and 𝑓 in L (X𝑢∪𝑣∪𝑤),

𝐸(𝑓(𝑋𝑢, 𝑋𝑣, 𝑋𝑤) |𝑋𝑢 = 𝑥𝑢) = 𝐸(𝐸(𝑓(𝑋𝑢, 𝑋𝑣, 𝑋𝑤) |𝑋𝑢, 𝑋𝑣) |𝑋𝑢 = 𝑥𝑢). (A.4)

In this expression, we use the notational convention that 𝐸(𝑓(𝑋𝑢, 𝑋𝑣, 𝑋𝑤) | 𝑋𝑢, 𝑋𝑣) is the real-valued
function on X𝑢∪𝑣 that maps any (𝑥𝑢, 𝑥𝑣) in X𝑢∪𝑣 to 𝐸(𝑓(𝑋𝑢, 𝑋𝑣, 𝑋𝑤) |𝑋𝑢 = 𝑥𝑢, 𝑋𝑣 = 𝑥𝑣).

We now follow the exposition in [12, Section 9]. First, we consider a non-empty sequence of time
points 𝑢 = 𝑡1, . . . , 𝑡𝑛 in U∅ and a single future time point 𝑠 in R≥0 such that 𝑠 > max𝑢 = 𝑡𝑛. Fix some
real-valued function 𝑓 in L (X𝑢∪𝑠) that depends on the state at these time points. It is then well-known
that, for any 𝑥𝑢 in X𝑢,

𝐸(𝑓(𝑋𝑢, 𝑋𝑠) |𝑋𝑢 = 𝑥𝑢) = 𝐸(𝑓(𝑥𝑢, 𝑋𝑠) |𝑋𝑢 = 𝑥𝑢) = 𝐸(𝑓𝑥𝑢(𝑋𝑠) |𝑋𝑢 = 𝑥𝑢), (A.5)
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where we let 𝑓𝑥𝑢 : X → R : 𝑥 ↦→ 𝑓𝑥𝑢(𝑥) := 𝑓(𝑥𝑢, 𝑥). It now follows from Eqns. (6) and (A.5) that

𝐸(𝑓(𝑋𝑢, 𝑋𝑠) |𝑋𝑢 = 𝑥𝑢) = [𝑇 𝑠
𝑡𝑛𝑓𝑥𝑢

](𝑥𝑡𝑛), (A.6)

where [𝑇 𝑠
𝑡𝑛𝑓𝑥𝑢

](𝑥𝑡𝑛) depends on the entire state history 𝑥𝑢, and not just on 𝑥𝑡𝑛 . Inspired by this equation,
for any 𝑠 in R≥0, 𝑢 = 𝑡1, . . . , 𝑡𝑛 in U∅ such that 𝑡𝑛 < 𝑠 and 𝑓 in L (X𝑢∪𝑠), we let 𝑇 𝑠

𝑡𝑛𝑓 be the real-valued
function on X𝑢 defined by

[𝑇 𝑠
𝑡𝑛𝑓 ](𝑥𝑢) := [𝑇 𝑠

𝑡𝑛𝑓𝑥𝑢
](𝑥𝑡𝑛) = [𝑇 𝑠

𝑡𝑛𝑓(𝑥𝑢, 𝑋𝑠)](𝑥𝑡𝑛) for all 𝑥𝑢 ∈ X𝑢. (A.7)

We are now ready to move on to functions that depend on multiple future time points. To that end, we
fix some 𝑢 = 𝑡1, . . . , 𝑡𝑛 and 𝑣 = 𝑠1, . . . , 𝑠𝑚 in U∅ with 𝑡𝑛 = max𝑢 < min 𝑣 = 𝑠1, and some 𝑓 in L (X𝑢∪𝑣).
With some tedious but straightforward work—essentially repeatedly applying the law of iterated expectation
and Eqn. (A.6), see for instance [12, Section 9.2]—we obtain that

𝐸(𝑓(𝑋𝑢, 𝑋𝑣) |𝑋𝑢 = 𝑥𝑢) = [𝑇 𝑠1
𝑡𝑛 𝑇

𝑠2
𝑠1 · · ·𝑇 𝑠𝑚

𝑠𝑚−1
𝑓 ](𝑥𝑢) for all 𝑥𝑢 ∈ X𝑢, (A.8)

where we use the notational convention defined in Eqn. (A.7).
Finally, we are ready to consider marginal expectations. From the law of iterated expectation and

Eqn. (A.8), it now follows that for all 𝑢 = 𝑡0, . . . , 𝑡𝑛 in U∅ such that 𝑡0 = 0 and all 𝑓 in X𝑢,

𝐸(𝑓(𝑋𝑢)) = 𝐸(𝑓(𝑋𝑢) |𝑋∅ = 𝑥∅) = 𝐸(𝐸(𝑓(𝑋𝑢) |𝑋0 = 𝑥0)) = 𝐸𝜋0(𝑇 𝑡1
𝑡0 𝑇

𝑡2
𝑡1 · · ·𝑇 𝑡𝑛

𝑡𝑛−1
𝑓), (A.9)

where 𝐸𝜋0
is the expectation operator defined by 𝐸𝜋0

(𝑔) := ⟨𝜋0, 𝑔⟩ for all 𝑔 in L (X ). The requirement
𝑡0 = 0 is a purely formal one and does not impose any restrictions. Indeed, if min𝑢 ≠ 0, then—as argued
in [12, right after Proposition 9.5]—one can simply consider the extension 𝑓⋆ of 𝑓 to X{0}∪𝑢, defined by
𝑓⋆(𝑥, 𝑥𝑢) := 𝑓(𝑥𝑢) for all (𝑥, 𝑥𝑢) in X{0}∪𝑢.

Appendix B. Extra material for and proofs of the results in Section 3

In order to define the lumped process rigorously, we need a more formal construction than that given
in Section 3. To that end, we now consider an arbitrary Markov chain 𝑃 and an arbitrary lumping map
Λ: X → X̂ .

For starters, we observe that the lumping map naturally induces a set of lumped paths Ω̂:

Ω̂ := {Λ ∘ 𝜔 : 𝜔 ∈ Ω}. (B.1)

Note that because Ω satisfies Eqn. (A.2), Ω̂ clearly satisfies a lumped version of Eqn. (A.2):

(∀𝑢 ∈ U∅)(∀𝑥̂𝑢 ∈ X̂𝑢)(∃𝜔̂ ∈ Ω̂)(∀𝑡 ∈ 𝑢) 𝜔̂(𝑡) = 𝑥̂𝑡.

The elementary events are now of the form

(𝑋̂𝑡 = 𝑥̂) := {𝜔̂ ∈ Ω̂ : 𝜔̂(𝑡) = 𝑥̂},

with 𝑡 in R≥0 and 𝑥̂ in X̂ . As before, for any 𝑢 in U and 𝑥̂𝑢 in X̂𝑢, we also let

(𝑋̂𝑢 = 𝑥̂𝑢) :=
⋂︁
𝑡∈𝑢

(𝑋̂𝑡 = 𝑥̂𝑡),

where (𝑋̂∅ = 𝑥̂∅) = Ω̂. For any 𝑢 in U , the set of elementary elements

Ê𝑢 :=

{︃
{(𝑋̂𝑡 = 𝑥̂) : 𝑡 ∈ R≥0, 𝑥̂ ∈ X̂ } if 𝑢 = ∅,
{(𝑋̂𝑡 = 𝑥̂) : 𝑡 ∈ 𝑢 ∪ [max𝑢,+∞), 𝑥̂ ∈ X̂ } otherwise,
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induces the algebra of sets Â𝑢 := ⟨Ê𝑢⟩. The domain of the lumped stochastic process 𝑃 should hence be

Ĉ SP := {(𝐴𝑢, 𝑋̂𝑢 = 𝑥̂𝑢) : 𝑢 ∈ U , 𝑥̂𝑢 ∈ X̂𝑢, 𝐴𝑢 ∈ Â𝑢}.

We have now introduced almost all concepts needed to formally define the lumped stochastic process 𝑃 .
The sole remaining concept that we need is another inverse derived from Λ, this time from Ω̂ to Ω. To that
end, we consider the map Λ−1

Ω : E (Ω̂) → E (Ω) that maps any subset 𝐴 of Ω̂ to

Λ−1
Ω (𝐴) := {𝜔 ∈ Ω: Λ ∘ 𝜔 ∈ 𝐴}, (B.2)

which is a subset of Ω. Note that Λ−1
Ω is indeed an inverse, as clearly

{Λ ∘ 𝜔 : 𝜔 ∈ Λ−1
Ω (𝐴)} = 𝐴. (B.3)

The following result establishes that Λ−1
Ω maps events in the algebra Â𝑢 to events in the algebra A𝑢.

Lemma 22. Consider a lumping map Λ: X → X̂ . Then for all 𝑢 in U and 𝑥̂𝑢 in X̂𝑢,

Λ−1
Ω (𝑋̂𝑢 = 𝑥̂𝑢) =

⋃︁
𝑥𝑢∈𝑥̂𝑢

(𝑋𝑢 = 𝑥𝑢), (B.4)

More generally, for all 𝑢 in U and 𝐴𝑢 in Â𝑢, Λ−1
Ω (𝐴𝑢) belongs to A𝑢.

Proof. We start with proving the first part of the statement. To that end, we distinguish two cases: 𝑢 = ∅
and 𝑢 ̸= ∅. If 𝑢 = ∅, then (𝑋̂𝑢 = 𝑥̂𝑢) = Ω̂. From this and the definitions of Ω̂ and Λ−1

Ω , it then follows
immediately that

Λ−1
Ω (𝑋̂𝑢 = 𝑥̂𝑢) = Λ−1

Ω (Ω̂) = Ω = (𝑋𝑢 = 𝑥𝑢),

which agrees with the stated.
Next, we assume that 𝑢 ̸= ∅. Then

Λ−1
Ω (𝑋̂𝑢 = 𝑥̂𝑢) = {𝜔 ∈ Ω: Λ ∘ 𝜔 ∈ (𝑋̂𝑢 = 𝑥̂𝑢)} = {𝜔 ∈ Ω: (∀𝑡 ∈ 𝑢) [Λ ∘ 𝜔](𝑡) = 𝑥̂𝑡}

=
⋂︁
𝑡∈𝑢

{𝜔 ∈ Ω: [Λ ∘ 𝜔](𝑡) = 𝑥̂𝑡} =
⋂︁
𝑡∈𝑢

⋃︁
𝑥𝑡∈𝑥̂𝑡

{𝜔 ∈ Ω: 𝜔(𝑡) = 𝑥𝑡}

=
⋂︁
𝑡∈𝑢

⋃︁
𝑥𝑡∈𝑥̂𝑡

(𝑋𝑡 = 𝑥𝑡) =
⋃︁

𝑥𝑡1
∈𝑥̂𝑡1

· · ·
⋃︁

𝑥𝑡𝑛∈𝑥̂𝑡𝑛

(𝑋𝑡1 = 𝑥𝑡1) ∩ · · · ∩ (𝑋𝑡𝑛 = 𝑥𝑡𝑛)

=
⋃︁

𝑥𝑢∈𝑥̂𝑢

⋂︁
𝑡∈𝑢

(𝑋𝑡 = 𝑥𝑡) =
⋃︁

𝑥𝑢∈𝑥̂𝑢

(𝑋𝑢 = 𝑥𝑢),

where we let 𝑢 = 𝑡1, . . . , 𝑡𝑛.
We now move on to the second part of the stated. If 𝐴𝑢 = ∅, we infer from Eqn. (B.2) that Λ−1

Ω (𝐴) = ∅,

so Λ−1
Ω (𝐴𝑢) belongs to A𝑢. Fix some 𝑢 in U and some 𝐴𝑢 in Â𝑢. It remains to consider the case 𝐴𝑢 ̸= ∅.

Because Â𝑢 is the algebra generated by the elementary events in Ê𝑢 there is—see for instance also [12, Proof

of Lemma C.3]—some time sequence 𝑣 in U with max𝑢 < min 𝑣 and a non-empty set of tuples 𝑆 ⊆ X̂𝑢∪𝑣

such that
𝐴𝑢 =

⋃︁
𝑧𝑤∈𝑆

(𝑋̂𝑤 = 𝑧𝑤),

where we let 𝑤 := 𝑢 ∪ 𝑣. By Eqn. (B.2),

Λ−1
Ω (𝐴𝑢) =

⎧⎨⎩𝜔 ∈ Ω: Λ ∘ 𝜔 ∈
⋃︁

𝑧𝑤∈𝑆

(𝑋̂𝑤 = 𝑧𝑤)

⎫⎬⎭ =
⋃︁

𝑧𝑤∈𝑆

{𝜔 ∈ Ω: Λ ∘ 𝜔 ∈ (𝑋̂𝑤 = 𝑧𝑤)}.
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Using the definition of (𝑋̂𝑤 = 𝑧𝑤) and Eqn. (B.1), we write this as

Λ−1
Ω (𝐴𝑢) =

⋃︁
𝑧𝑤∈𝑆

{𝜔 ∈ Ω: (∀𝑡 ∈ 𝑤) Λ(𝜔(𝑡)) = 𝑧𝑡} =
⋃︁

𝑧𝑤∈𝑆

(︃⋂︁
𝑡∈𝑤

{𝜔 ∈ Ω: Λ(𝜔(𝑡)) = 𝑧𝑡}

)︃

=
⋃︁

𝑧𝑤∈𝑆

(︃⋂︁
𝑡∈𝑤

[︃ ⋃︁
𝑧𝑡∈𝑧𝑡

(𝑋𝑡 = 𝑧𝑡)

]︃)︃
.

It is now immediately clear that Λ−1
Ω (𝐴𝑢) is an element of A𝑢.

The inverse Λ−1
Ω naturally suggests a sensible formal definition of a lumped stochastic process 𝑃 : Ĉ SP → R.

Recall from Definition 6, Definition 5 and Lemma 20 that the Markov chain 𝑃 can be extended to a coherent
conditional probability 𝑃 ⋆ on E (Ω)× E∅(Ω). Then the lumped stochastic process 𝑃 : Ĉ SP → R corresponding

to this extension 𝑃 ⋆ is defined for all (𝐴𝑢, 𝑋̂𝑢 = 𝑥̂𝑢) in Ĉ SP as

𝑃 (𝐴𝑢 | 𝑋̂𝑢 = 𝑥̂𝑢) := 𝑃 ⋆(Λ−1
Ω (𝐴𝑢) | Λ−1

Ω (𝑋̂𝑢 = 𝑥̂𝑢)). (B.5)

This is a proper definition because Λ−1
Ω (𝐴𝑢) belongs to E (Ω) due to the definition of Λ−1

Ω and Λ−1
Ω (𝑋̂𝑢 = 𝑥̂𝑢)

belongs to E∅(Ω) due to Lemma 22 and Eqn. (A.2). Unfortunately, this definition is—at least in general—not
unique, since the extension 𝑃 ⋆ of the Markov chain 𝑃 need not be unique. However, it does yield a stochastic
process.

Theorem 23. Consider a Markov chain 𝑃 and a lumping map Λ: X → X̂ . Let 𝑃 ⋆ be a coherent extension
of 𝑃 to E (Ω) × E∅(X ). Then 𝑃 : Ĉ SP → R, as defined by Eqn. (B.5), is a stochastic process.

Proof. We first construct the real-valued map 𝑃 ⋆ on E (Ω̂) × E∅(Ω̂), defined by

𝑃 ⋆(𝐴 | 𝐶) := 𝑃 ⋆(Λ−1
Ω (𝐴) | Λ−1

Ω (𝐶)) for all (𝐴,𝐶) ∈ E (Ω̂) × E∅(Ω̂). (B.6)

It is clear that 𝑃 is the restriction of 𝑃 ⋆ to Ĉ SP. Hence, it follows from Lemma 21 that 𝑃 is a stochastic
process if 𝑃 ⋆ is a coherent conditional probability.

We now verify that 𝑃 ⋆ is indeed a coherent conditional probability. To that end, we fix any 𝑛 in N,
(𝐴1, 𝐶1), . . ., (𝐴𝑛, 𝐶𝑛) in E (Ω̂) × E∅(Ω̂) and 𝜆1, . . ., 𝜆𝑛 in R and show that max𝑆 ≥ 0, where

𝑆 :=

{︃
𝑛∑︁

𝑖=1

𝜆𝑖I𝐶𝑖
(𝜔̂)
(︁
𝑃 ⋆(𝐴𝑖 | 𝐶𝑖) − I𝐴𝑖

(𝜔̂)
)︁

: 𝜔̂ ∈
𝑛⋃︁

𝑖=1

𝐶𝑖

}︃
.

Substituting Eqn. (B.6) yields

𝑆 =

{︃
𝑛∑︁

𝑖=1

𝜆𝑖I𝐶𝑖
(𝜔̂)
(︁
𝑃 ⋆(Λ−1

Ω (𝐴𝑖) | Λ−1
Ω (𝐶𝑖)) − I𝐴𝑖

(𝜔̂)
)︁

: 𝜔̂ ∈
𝑛⋃︁

𝑖=1

𝐶𝑖

}︃
.

Furthermore, using Eqns. (B.2) and (B.3) yields

𝑆 =

{︃
𝑛∑︁

𝑖=1

𝜆𝑖I𝐶𝑖
(Λ ∘ 𝜔)

(︁
𝑃 ⋆(Λ−1

Ω (𝐴𝑖) | Λ−1
Ω (𝐶𝑖)) − I𝐴𝑖

(Λ ∘ 𝜔)
)︁

: 𝜔 ∈
𝑛⋃︁

𝑖=1

Λ−1
Ω (𝐶𝑖)

}︃
.

Observe that for all 𝜔 in Ω and 𝐴 ⊆ Ω̂,

I𝐴(Λ ∘ 𝜔) =

{︃
1 if Λ ∘ 𝜔 ∈ 𝐴

0 otherwise
=

{︃
1 if 𝜔 ∈ Λ−1

Ω (𝐴)

0 otherwise
= IΛ−1

Ω (𝐴)(𝜔), (B.7)
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where the second equality follows from Eqn. (B.2). We substitute Eqn. (B.7) in our expression for 𝑆, to yield

𝑆 =

{︃
𝑛∑︁

𝑖=1

𝜆𝑖I𝐶𝑖
(𝜔)(𝑃 ⋆(𝐴𝑖 | 𝐶𝑖) − I𝐴𝑖

(𝜔)) : 𝜔 ∈
𝑛⋃︁

𝑖=1

𝐶𝑖

}︃
,

where, for all 𝑖 in {1, . . . , 𝑛}, we let 𝐴𝑖 := Λ−1
Ω (𝐴𝑖) and 𝐶𝑖 := Λ−1

Ω (𝐶𝑖). Because 𝑃 ⋆ is a coherent conditional
probability on E (Ω) × E∅(Ω), it follows from Definition 4 that max𝑆 ≥ 0.

The previous theorem validates our use of the term “lumped stochastic process” for 𝑃 . However, at first
sight, the sensibility of our definition might still not seem entirely obvious. That it nevertheless is, follows
from the following two results. The first result provides a justification for Eqn. (10); the second one also
makes clear that the lack of uniqueness in our definition is a consequence of conditioning on events with zero
probability.

Corollary 24. Consider a Markov chain 𝑃 , a coherent extension 𝑃 ⋆ of 𝑃 to E (Ω) × E∅(X ), a lumping

map Λ: X → X̂ and the corresponding lumped stochastic process 𝑃 . For all 𝑢 in U and 𝑥̂𝑢 in X̂𝑢,

𝑃 (𝑋̂𝑢 = 𝑥̂𝑢) = 𝑃 ⋆(Λ−1
Ω (𝑋̂𝑢 = 𝑥̂𝑢)) =

∑︁
𝑥𝑢∈𝑥̂𝑢

𝑃 ⋆(𝑋𝑢 = 𝑥𝑢) =
∑︁

𝑥𝑢∈𝑥̂𝑢

𝑃 (𝑋𝑢 = 𝑥𝑢) = 𝑃 (𝑋𝑢 ∈ 𝑥̂𝑢).

Proof. It follows immediately from Eqn. (B.5) and Lemma 22 that

𝑃 (𝑋̂𝑢 = 𝑥̂𝑢) = 𝑃 ⋆(Λ−1
Ω (𝑋̂𝑢 = 𝑥̂𝑢)) = 𝑃 ⋆(

⋃︁
𝑥𝑢∈𝑥̂𝑢

(𝑋𝑢 = 𝑥𝑢)) =
∑︁

𝑥𝑢∈𝑥̂𝑢

𝑃 ⋆(𝑋𝑢 = 𝑥𝑢) =
∑︁

𝑥𝑢∈𝑥̂𝑢

𝑃 (𝑋𝑢 = 𝑥𝑢),

where the third equality follows from the finite additivity of 𝑃 ⋆ and the final equality holds because 𝑃 ⋆ is an
extension of 𝑃 and (𝑋𝑢 = 𝑥𝑢,Ω) belongs to the domain C SP of 𝑃 for all 𝑥𝑢 in Λ−1(𝑥̂𝑢). Finally, it follows
immediately from the finite additivity of 𝑃 and Eqn. (9) that∑︁

𝑥𝑢∈𝑥̂𝑢

𝑃 (𝑋𝑢 = 𝑥𝑢) = 𝑃 (𝑋𝑢 ∈ 𝑥̂𝑢).

Proposition 25. Consider a Markov chain 𝑃 and a lumping map Λ: X → X̂ , and let 𝑃 be a lumped
stochastic process. Then for any (𝐴𝑢, 𝑋̂𝑢 = 𝑥̂𝑢) in Ĉ SP with 𝑃 (𝑋̂𝑢 = 𝑥̂𝑢) =

∑︀
𝑥𝑢∈𝑥̂𝑢

𝑃 (𝑋𝑢 = 𝑥𝑢) > 0,

𝑃 (𝐴𝑢 | 𝑋̂𝑢 = 𝑥̂𝑢) =

∑︀
𝑥𝑢∈𝑥̂𝑢

𝑃 (Λ−1
Ω (𝐴𝑢) |𝑋𝑢 = 𝑥𝑢)𝑃 (𝑋𝑢 = 𝑥𝑢)∑︀
𝑧𝑢∈𝑥̂𝑢

𝑃 (𝑋𝑢 = 𝑧𝑢)
.

Proof. Observe that by Eqn. (B.5),

𝑃 (𝐴𝑢 | 𝑋̂𝑢 = 𝑥̂𝑢) = 𝑃 ⋆(Λ−1
Ω (𝐴𝑢) | Λ−1

Ω (𝑋̂𝑢 = 𝑥̂𝑢)),

where 𝑃 ⋆ is a coherent extension of 𝑃 to E (Ω)×E∅(Ω). As 𝑃 ⋆ is a coherent conditional probability, it follows
from Lemma 18 (P4) that

𝑃 ⋆(Λ−1
Ω (𝐴𝑢) | Λ−1

Ω (𝑋̂𝑢 = 𝑥̂𝑢))𝑃 ⋆(Λ−1
Ω (𝑋̂𝑢 = 𝑥̂𝑢)) = 𝑃 ⋆(Λ−1

Ω (𝐴𝑢) ∩ Λ−1
Ω (𝑋̂𝑢 = 𝑥̂𝑢)), (B.8)

where 𝑃 ⋆(Λ−1
Ω (𝑋̂𝑢 = 𝑥̂𝑢)) := 𝑃 ⋆(Λ−1

Ω (𝑋̂𝑢 = 𝑥̂𝑢) | Ω).
It follows immediately from Corollary 24 that

𝑃 ⋆(Λ−1
Ω (𝑋̂𝑢 = 𝑥̂𝑢)) = 𝑃 (𝑋̂𝑢 = 𝑥̂𝑢) =

∑︁
𝑧𝑢∈𝑥̂𝑢

𝑃 (𝑋𝑢 = 𝑧𝑢). (B.9)
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Recall from Lemma 22 that Λ−1
Ω (𝐴𝑢) is an element of A𝑢. Since Λ−1

Ω (𝑋̂𝑢 = 𝑥̂𝑢) is clearly also an element of

A𝑢, this implies that Λ−1
Ω (𝐴𝑢) ∩ Λ−1

Ω (𝑋̂𝑢 = 𝑥̂𝑢) is an element of A𝑢 as well. Consequently, we find that

𝑃 ⋆(Λ−1
Ω (𝐴𝑢) ∩ Λ−1

Ω (𝑋̂𝑢 = 𝑥̂𝑢)) = 𝑃 (Λ−1
Ω (𝐴𝑢) ∩ Λ−1

Ω (𝑋̂𝑢 = 𝑥̂𝑢)) = 𝑃 (Λ−1
Ω (𝐴𝑢) ∩ (∪𝑥𝑢∈𝑥̂𝑢

(𝑋𝑢 = 𝑥𝑢)))

=
∑︁

𝑥𝑢∈𝑥̂𝑢

𝑃 (Λ−1
Ω (𝐴𝑢) ∩ (𝑋𝑢 = 𝑥𝑢))

=
∑︁

𝑥𝑢∈𝑥̂𝑢

𝑃 (Λ−1
Ω (𝐴𝑢) |𝑋𝑢 = 𝑥𝑢)𝑃 (𝑋𝑢 = 𝑥𝑢). (B.10)

Since
∑︀

𝑧𝑢∈𝑥̂𝑢
𝑃 (𝑋𝑢 = 𝑧𝑢) > 0, substituting Eqn. (B.9) and (B.10) in Eqn. (B.8) yields

𝑃 (𝐴𝑢 | 𝑋̂𝑢 = 𝑥̂𝑢) = 𝑃 ⋆(Λ−1
Ω (𝐴𝑢) | Λ−1

Ω (𝑋̂𝑢 = 𝑥̂𝑢)) =

∑︀
𝑥𝑢∈𝑥̂𝑢

𝑃 (Λ−1
Ω (𝐴𝑢) |𝑋𝑢 = 𝑥𝑢)𝑃 (𝑋𝑢 = 𝑥𝑢)∑︀
𝑧𝑢∈𝑥̂𝑢

𝑃 (𝑋𝑢 = 𝑧𝑢)
.

Appendix C. Extra material regarding Section 4

In this section of the appendix, we provide some more background information on (imprecise) Markov
chains. More specifically, we focus on four relevant types of transformations in Appendix C.1, and explain
how to compute lower expectations using the law of iterated expectation in Appendix C.2.

Appendix C.1. Lower transition (rate) operators

A lower transition rate operator—see for instance [12, Definition 7.2]—is a transformation 𝑅 : L (X ) →
L (X ) such that

LTR1. 𝑅(𝑓 + 𝑔) ≥ 𝑅𝑓 + 𝑅𝑔 for all 𝑓, 𝑔 in L (X );

LTR2. 𝑅(𝜆𝑓) = 𝜆𝑅𝑓 for all 𝑓 in L (X ) and 𝜆 in R≥0;

LTR3. [𝑅I𝑦](𝑥) ≥ 0 for all 𝑥, 𝑦 in X with 𝑥 ̸= 𝑦;

LTR4. 𝑅𝜇 = 0 for all 𝜇 in R.

We have already seen in Section 4.2 that lower transition rate operators generate a lower transition rate
operator, which can be thought of as the non-linear matrix exponential. The following lemma establishes a
second connection between lower transition rate operators and lower transition operators.

Lemma 26 (Proposition 3 in [25]). Consider a transition rate operator 𝑄 on L (X ) and some ∆ in R≥0.
Then (𝐼 + ∆𝑄) is a lower transition operator if and only if ∆‖𝑄‖ ≤ 2.

In the remainder, we will need the following interesting properties of lower transition operators. For their
proofs, we refer to [28] and [12].

Lemma 27. Let 𝑇 , 𝑇 1 and 𝑇 2 be lower transition operators on L (X ). Then

LT4. the composition 𝑇 1𝑇 2 is a lower transition operator;

LT5. min 𝑓 ≤ 𝑇𝑓 ≤ 𝑇𝑓 ≤ max 𝑓 for all 𝑓 in L (X );

LT6. 𝑇𝑓 ≤ 𝑇𝑔 for all 𝑓, 𝑔 in L (X ) such that 𝑓 ≤ 𝑔.

Because transition (rate) matrices are simply lower transition (rate) operators that are linear, Lemmas 26
and 27 specialise to transition (rate) matrices as follows.

Corollary 28. Consider a transition rate matrix 𝑄 on L (X ) and some ∆ in R≥0. Then (𝐼 + ∆𝑄) is a
transition matrix if and only if ∆‖𝑄‖ ≤ 2.
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Corollary 29. Let 𝑇 , 𝑇1 and 𝑇2 be transition matrices on L (X ). Then

T4. the composition 𝑇1𝑇2 is a transition matrix;

T5. min 𝑓 ≤ 𝑇𝑓 ≤ max 𝑓 for all 𝑓 in L (X );

T6. 𝑇𝑓 ≤ 𝑇𝑔 for all 𝑓, 𝑔 in L (X ) such that 𝑓 ≤ 𝑔.

Appendix C.2. Computing lower (conditional) expectations

In order to compute lower (conditional) expectations of functions that depend on the state at a finite
number of future time points, we follow exactly the same approach as the one for precise Markov chains that
we have previously outlined in Appendix A.3; for a more detailed treatment, we refer to [12, Section 9]. We
let M be a non-empty set of initial distributions and 𝑄 a non-empty bounded and convex set of transition
rate matrices that has separately specified rows, and fix some 𝑢 = 𝑡1, . . . , 𝑡𝑛 in U∅. We first generalise the
notational convention of Eqn. (A.7): for any 𝑠 in R≥0 with 𝑠 > max𝑢 = 𝑡𝑛 and any 𝑓 in L (X𝑢∪𝑠), we let
𝑇 𝑠

𝑡𝑛𝑓 be the real-valued function on X𝑢 defined by

[𝑇 𝑠
𝑡𝑛𝑓 ](𝑥𝑢) := [𝑇 𝑠

𝑡𝑛𝑓𝑥𝑢 ](𝑥𝑡𝑛) = [𝑇 𝑠
𝑡𝑛𝑓(𝑥𝑢, 𝑋𝑠)](𝑥𝑡𝑛) for all 𝑥𝑢 ∈ X𝑢. (C.1)

It now follows from [12, Corollary 9.2] that, for any 𝑣 = 𝑠1, . . . , 𝑠𝑚 in U∅ such that min 𝑣 > max𝑢 and any 𝑓
in L (X𝑢∪𝑣),

𝐸W
Q,M (𝑓(𝑋𝑢, 𝑋𝑣) |𝑋𝑢 = 𝑥𝑢) = [𝑇 𝑠1

𝑡𝑛𝑇
𝑠2
𝑠1 · · ·𝑇

𝑠𝑚
𝑠𝑚−1

𝑓 ](𝑥𝑢) for all 𝑥𝑢 ∈ X𝑢. (C.2)

Next, we move from conditional lower expectations to marginal ones. In [12, Proposition 9.5], Krak et al.
establish that for all 𝑢 = 𝑡0, . . . , 𝑡𝑛 in U∅ such that 𝑡0 = 0 and all 𝑓 in L (X𝑢),

𝐸W
Q,M (𝑓(𝑋𝑢)) = 𝐸W

Q,M (𝑓(𝑋𝑢) |𝑋∅ = 𝑥∅) = 𝐸M (𝑇 𝑡1
𝑡0𝑇

𝑡2
𝑡1 · · ·𝑇

𝑡𝑛
𝑡𝑛−1

𝑓), (C.3)

where 𝐸M is the lower expectation operator defined by

𝐸M (𝑔) := inf{⟨𝜋, 𝑔⟩ : 𝜋 ∈ M } for all 𝑔 ∈ L (X ).

Recall from Appendix A.3 that the requirement 𝑡0 = 0 is a purely formal one: if min𝑢 ̸= 0, then one considers
the extension 𝑓⋆ of 𝑓 to X{0}∪𝑢.

Appendix D. Extra material for and proofs of the results in Section 5

Proposition 4. Let 𝑄 be a transition rate matrix and Λ: X → X̂ a lumping map. Then the corresponding
transformation 𝑄̂ is a lower transition rate operator.

Proof. We simply need to verify (LTR1)–(LTR4).

(LTR1). Fix some 𝑥̂ in X̂ , and observe that for all 𝑓 and 𝑔 in L (X̂ ),

[𝑄̂(𝑓 + 𝑔)](𝑥̂) = min

⎧⎨⎩∑︁
𝑦∈X̂

(𝑓(𝑦) + 𝑔(𝑦))
∑︁
𝑦∈𝑦

𝑄(𝑥, 𝑦) : 𝑥 ∈ 𝑥̂

⎫⎬⎭
≥ min

⎧⎨⎩∑︁
𝑦∈X̂

𝑓(𝑦)
∑︁
𝑦∈𝑦

𝑄(𝑥, 𝑦) : 𝑥 ∈ 𝑥̂

⎫⎬⎭+ min

⎧⎨⎩∑︁
𝑦∈X̂

𝑔(𝑦)
∑︁
𝑦∈𝑦

𝑄(𝑥, 𝑦) : 𝑥 ∈ 𝑥̂

⎫⎬⎭
= [𝑄̂𝑓 ](𝑥̂) + [𝑄̂𝑔](𝑥̂).
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(LTR2). Fix some 𝑥̂ in X̂ , and observe that for all 𝑓 in L (X̂ ) and 𝜆 in R≥0,

[𝑄̂(𝜆𝑓)](𝑥̂) = min

⎧⎨⎩∑︁
𝑦∈X̂

𝜆𝑓(𝑦)
∑︁
𝑦∈𝑦

𝑄(𝑥, 𝑦) : 𝑥 ∈ 𝑥̂

⎫⎬⎭ = 𝜆min

⎧⎨⎩∑︁
𝑦∈X̂

𝑓(𝑦)
∑︁
𝑦∈𝑦

𝑄(𝑥, 𝑦) : 𝑥 ∈ 𝑥̂

⎫⎬⎭ = 𝜆[𝑄̂𝑓 ](𝑥̂).

(LTR3). Fix some 𝑥̂, 𝑦 in X̂ such that 𝑥̂ ̸= 𝑦, and observe that

[𝑄̂I𝑦](𝑥̂) = min

⎧⎨⎩∑︁
𝑧∈X̂

I𝑦(𝑧)
∑︁
𝑧∈𝑧

𝑄(𝑥, 𝑧) : 𝑥 ∈ 𝑥̂

⎫⎬⎭ = min

⎧⎨⎩∑︁
𝑦∈𝑦

𝑄(𝑥, 𝑦) : 𝑥 ∈ 𝑥̂

⎫⎬⎭ ≥ 0,

where the inequality holds because 𝑄(𝑥, 𝑦) = [𝑄I𝑦](𝑥) ≥ 0 for all 𝑥 in 𝑥̂ and 𝑦 in 𝑦 as 𝑄 is a transition rate
matrix.

(LTR4). Fix some 𝑥̂ in X̂ and 𝜇 in R, and observe that

[𝑄̂𝜇](𝑥̂) = min

⎧⎨⎩∑︁
𝑦∈X̂

𝜇
∑︁
𝑦∈𝑦

𝑄(𝑥, 𝑦) : 𝑥 ∈ 𝑥̂

⎫⎬⎭ = min

⎧⎨⎩∑︁
𝑦∈X

𝜇𝑄(𝑥, 𝑦) : 𝑥 ∈ 𝑥̂

⎫⎬⎭ = 0,

where the final equality is immediate because the transition rate matrix 𝑄 has zero row-sums.

Lemma 30. Let 𝑄 be a transition rate matrix and Λ: X → X̂ a lumping map. Then for any 𝑓 in L (X̂ ),

(𝑄̂𝑓) ∘ Λ ≤ 𝑄(𝑓 ∘ Λ).

Proof. Fix an arbitrary 𝑥 in X . Then some straightforward manipulations yield

[(𝑄̂𝑓) ∘ Λ](𝑥) = (𝑄̂𝑓)(Λ(𝑥)) = min

⎧⎨⎩∑︁
𝑦∈X̂

𝑓(𝑦)
∑︁
𝑦∈𝑦

𝑄(𝑥′, 𝑦) : 𝑥′ ∈ Λ(𝑥)

⎫⎬⎭
= min

⎧⎨⎩∑︁
𝑦∈X̂

∑︁
𝑦∈𝑦

𝑓(𝑦)𝑄(𝑥′, 𝑦) : 𝑥′ ∈ Λ(𝑥)

⎫⎬⎭
= min

⎧⎨⎩∑︁
𝑦∈X

[𝑓 ∘ Λ](𝑦)𝑄(𝑥′, 𝑦) : 𝑥′ ∈ Λ(𝑥)

⎫⎬⎭
= min

{︁
[𝑄(𝑓 ∘ Λ)](𝑥′) : 𝑥′ ∈ Λ(𝑥)

}︁
≤ [𝑄(𝑓 ∘ Λ)](𝑥),

where the inequality follows from the fact that 𝑥 is an element of Λ−1(Λ(𝑥)).

Lemma 31. Consider a Markov chain 𝑃 and a lumping map Λ: X → X̂ . Let 𝑃 ⋆ be a coherent extension
of 𝑃 to E (Ω) × E∅(X ) and 𝑃 the corresponding lumped stochastic process. Fix some 𝑡 in R≥0, 𝑢 in U<𝑡, 𝑣

in U∅ with min 𝑣 > 𝑡, 𝑥̂ in X̂ and 𝑥̂𝑢 in X̂𝑢. Then for any real-valued function 𝑓 on X̂𝑣,

min{𝐸([𝑓 ∘ Λ](𝑋𝑣) |𝑋𝑡 = 𝑥) : 𝑥 ∈ 𝑥̂} ≤ 𝐸̂(𝑓(𝑋̂𝑣) | 𝑋̂𝑢 = 𝑥̂𝑢, 𝑋̂𝑡 = 𝑥̂),

where 𝐸̂ denotes the expectation with respect to the lumped stochastic process 𝑃 .
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Proof. By definition of the lumped stochastic process, it holds that

𝐸̂(𝑓(𝑋̂𝑣) | 𝑋̂𝑢 = 𝑥̂𝑢, 𝑋̂𝑡 = 𝑥̂) = 𝐸𝑃*([𝑓 ∘ Λ](𝑋𝑣) | 𝐶),

where we let 𝐶 := Λ−1
Ω (𝑋̂𝑢 = 𝑥̂𝑢, 𝑋̂𝑡 = 𝑥̂) and where 𝑃 * is the coherent extension of 𝑃 to E (Ω) × E∅(Ω) used

to define the lumped stochastic process 𝑃 . Recall from Lemma 22—more specifically, from Eqn. (B.4)—that

𝐶 = Λ−1
Ω (𝑋̂𝑢 = 𝑥̂𝑢, 𝑋̂𝑡 = 𝑥̂) =

⋃︁
𝑥𝑢∈𝑥̂𝑢

⋃︁
𝑥∈𝑥̂

(𝑋𝑢 = 𝑥𝑢, 𝑋𝑡 = 𝑥).

We now use this in combination with the law of total probability, to yield

𝐸𝑃*([𝑓 ∘ Λ](𝑋𝑣) | 𝐶) =
∑︁

𝑥𝑢∈𝑥̂𝑢

∑︁
𝑥∈𝑥̂

𝐸𝑃*([𝑓 ∘ Λ](𝑋𝑣) |𝑋𝑢 = 𝑥𝑢, 𝑋𝑡 = 𝑥)𝑃 ⋆(𝑋𝑢 = 𝑥𝑢, 𝑋𝑡 = 𝑥 | 𝐶).

Observe that the right-hand side of this equality is a convex combination of terms of the form

𝐸𝑃*([𝑓 ∘ Λ](𝑋𝑣) |𝑋𝑢 = 𝑥𝑢, 𝑋𝑡 = 𝑥) = 𝐸([𝑓 ∘ Λ](𝑋𝑣) |𝑋𝑢 = 𝑥𝑢, 𝑋𝑡 = 𝑥) = 𝐸([𝑓 ∘ Λ](𝑋𝑣) |𝑋𝑡 = 𝑥),

where the first equality holds because 𝑃 ⋆ is an extension of 𝑃 and where the second equality follows from
the Markov property. The stated now follows because a convex combination of terms is always bounded
below by the minimum of these terms.

In the remainder, we will need the following corollary.

Corollary 32. Consider a Markov chain 𝑃 , a lumping map Λ: X → X̂ and a corresponding lumped
stochastic process 𝑃 . Fix some 𝑡,∆ in R≥0, 𝑢 in U<𝑡, 𝑥̂ and 𝑦 in X̂ and 𝑥̂𝑢 in X̂𝑢. Then for any real-valued

function 𝑓 on X̂ ,

min{[𝑇 𝑡+Δ
𝑡 (𝑓 ∘ Λ)](𝑥) : 𝑥 ∈ 𝑥̂} ≤ 𝐸̂(𝑓(𝑋̂𝑡+Δ) | 𝑋̂𝑢 = 𝑥̂𝑢, 𝑋̂𝑡 = 𝑥̂),

where 𝐸̂ denotes the expectation with respect to the lumped stochastic process 𝑃 .

Proof. This is an immediate consequence of Lemma 31 and Eqn. (6).

A similar corollary of Lemma 31 provides a justification for Eqn. (12) in the main text.

Corollary 33. Consider a homogeneous Markov chain 𝑃 , a lumping map Λ: X → X̂ and a corresponding
lumped stochastic process 𝑃 . Fix some 𝑡,∆ in R≥0, 𝑢 in U<𝑡, 𝑥̂ and 𝑦 in X̂ and 𝑥̂𝑢 in X̂𝑢. Then for any

real-valued function 𝑓 on X̂ ,

min{𝐸([𝑓 ∘ Λ](𝑋Δ) |𝑋0 = 𝑥) : 𝑥 ∈ 𝑥̂} ≤ 𝐸̂(𝑓(𝑋̂𝑡+Δ) | 𝑋̂𝑢 = 𝑥̂𝑢, 𝑋̂𝑡 = 𝑥̂)

≤ max{𝐸([𝑓 ∘ Λ](𝑋Δ) |𝑋0 = 𝑥) : 𝑥 ∈ 𝑥̂},

where 𝐸̂ denotes the expectation with respect to the lumped stochastic process 𝑃 .

Proof. The left inequality is an immediate consequence of Lemma 31 and the homogeneity of 𝑃 ; the right
inequality follows almost immediately from applying the the left one to −𝑓 .

The following technical result allows us to use the results from [12].

Lemma 34. Consider a well-behaved Markov chain 𝑃 and a lumping map Λ: X → X̂ , and let 𝑃 be a
lumped process. Then 𝑃 is well-behaved [12, Definition 4.4], in the sense that, for all 𝑡 in R≥0, 𝑢 in U<𝑡,

𝑥̂, 𝑦 in X̂ and 𝑥̂𝑢 in X̂𝑢,

lim sup
Δ→0+

1

∆

⃒⃒⃒
𝑃 (𝑋̂𝑡+Δ = 𝑦 | 𝑋̂𝑢 = 𝑥̂𝑢, 𝑋̂𝑡 = 𝑥̂) − I𝑥̂(𝑦)

⃒⃒⃒
< +∞

and, if 𝑡 ̸= 0,

lim sup
Δ→0+

1

∆

⃒⃒⃒
𝑃 (𝑋̂𝑡 = 𝑦 | 𝑋̂𝑢 = 𝑥̂𝑢, 𝑋̂𝑡−Δ = 𝑥̂) − I𝑥̂(𝑦)

⃒⃒⃒
< +∞.
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Proof. We only prove the first inequality, the proof of the second inequality is entirely similar. To that end,
we fix any arbitrary ∆ ∈ R>0 and observe that

𝑃 (𝑋̂𝑡+Δ = 𝑦 | 𝑋̂𝑢 = 𝑥̂𝑢, 𝑋̂𝑡 = 𝑥̂) = 𝐸̂(I𝑦(𝑋̂𝑡+Δ) | 𝑋̂𝑢 = 𝑥̂𝑢, 𝑋̂𝑡 = 𝑥̂)

≥ min{𝐸([I𝑦 ∘ Λ](𝑋𝑡+Δ) |𝑋𝑡 = 𝑥) : 𝑥 ∈ 𝑥̂}
= min

{︀
𝐸(IΛ−1(𝑦)(𝑋𝑡+Δ) |𝑋𝑡 = 𝑥) : 𝑥 ∈ 𝑥̂

}︀
= min

{︂∑︁
𝑦∈𝑦

𝑃 (𝑋𝑡+Δ = 𝑦 |𝑋𝑡 = 𝑥) : 𝑥 ∈ 𝑥̂

}︂
,

where the inequality follows from Lemma 31 with 𝑣 = 𝑡 + ∆ and 𝑓 = I𝑦. Similarly, it follows from Lemma 31

with 𝑓 = −I𝑦 that

𝑃 (𝑋̂𝑡+Δ = 𝑦 | 𝑋̂𝑢 = 𝑥̂𝑢, 𝑋̂𝑡 = 𝑥̂) ≤ max

{︂∑︁
𝑦∈𝑦

𝑃 (𝑋𝑡+Δ = 𝑦 |𝑋𝑡 = 𝑥) : 𝑥 ∈ 𝑥̂

}︂
.

We combine these two inequalities, to yield

min

{︂∑︁
𝑦∈𝑦

𝑃 (𝑋𝑡+Δ = 𝑦 |𝑋𝑡 = 𝑥) : 𝑥 ∈ 𝑥̂

}︂
− I𝑥̂(𝑦) ≤ 𝑃 (𝑋̂𝑡+Δ = 𝑦 | 𝑋̂𝑢 = 𝑥̂𝑢, 𝑋̂𝑡 = 𝑥̂) − I𝑥̂(𝑦)

≤ max

{︂∑︁
𝑦∈𝑦

𝑃 (𝑋𝑡+Δ = 𝑦 |𝑋𝑡 = 𝑥) : 𝑥 ∈ 𝑥̂

}︂
− I𝑥̂(𝑦),

where we have subtracted I𝑥̂(𝑦) on both sides of the inequalities. To continue, we move I𝑥̂(𝑦) inside the
optimisations and use that I𝑥̂(𝑦) =

∑︀
𝑦∈𝑦 I𝑥 for all 𝑥 in 𝑥̂, to yield

min

{︂∑︁
𝑦∈𝑦

𝑃 (𝑋𝑡+Δ = 𝑦 |𝑋𝑡 = 𝑥) − I𝑥(𝑦) : 𝑥 ∈ 𝑥̂

}︂
≤ 𝑃 (𝑋̂𝑡+Δ = 𝑦 | 𝑋̂𝑢 = 𝑥̂𝑢, 𝑋̂𝑡 = 𝑥̂) − I𝑥̂(𝑦)

≤ max

{︂∑︁
𝑦∈𝑦

𝑃 (𝑋𝑡+Δ = 𝑦 |𝑋𝑡 = 𝑥) − I𝑥(𝑦) : 𝑥 ∈ 𝑥̂

}︂
.

Next, we take the absolute value and use that both the absolute value of a minimum and the absolute value
of a maximum are lower than the maximum of the absolute values, to yield

|𝑃 (𝑋̂𝑡+Δ = 𝑦 | 𝑋̂𝑢 = 𝑥̂, 𝑋̂𝑡 = 𝑥̂) − I𝑥̂(𝑦)| ≤ max

{︂⃒⃒⃒⃒∑︁
𝑦∈𝑦

𝑃 (𝑋𝑡+Δ = 𝑦 |𝑋𝑡 = 𝑥) − I𝑥(𝑦)

⃒⃒⃒⃒
: 𝑥 ∈ 𝑥̂

}︂
.

From this, it follows that

1

∆
|𝑃 (𝑋̂𝑡+Δ = 𝑦 | 𝑋̂𝑢 = 𝑥̂, 𝑋̂𝑡 = 𝑥̂) − I𝑥̂(𝑦)| ≤ max

{︂
1

∆

⃒⃒⃒⃒∑︁
𝑦∈𝑦

𝑃 (𝑋𝑡+Δ = 𝑦 |𝑋𝑡 = 𝑥) − I𝑥(𝑦)

⃒⃒⃒⃒
: 𝑥 ∈ 𝑥̂

}︂

≤ max

{︂∑︁
𝑦∈𝑦

1

∆
|𝑃 (𝑋𝑡+Δ = 𝑦 |𝑋𝑡 = 𝑥) − I𝑥(𝑦)| : 𝑥 ∈ 𝑥̂

}︂
.

The inequality that we set out to prove follows almost immediately from the above inequality:

lim sup
Δ→0+

1

∆
|𝑃 (𝑋̂𝑡+Δ = 𝑦 | 𝑋̂𝑢 = 𝑥̂, 𝑋̂𝑡 = 𝑥̂) − I𝑥̂(𝑦)|

≤ lim sup
Δ→0+

max

{︂∑︁
𝑦∈𝑦

1

∆
|𝑃 (𝑋𝑡+Δ = 𝑦 |𝑋𝑡 = 𝑥) − I𝑥(𝑦)| : 𝑥 ∈ 𝑥̂

}︂

= max

{︂
lim sup
Δ→0+

∑︁
𝑦∈𝑦

1

∆
|𝑃 (𝑋𝑡+Δ = 𝑦 |𝑋𝑡 = 𝑥) − I𝑥(𝑦)| : 𝑥 ∈ 𝑥̂

}︂
,
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where the equality holds because we may change the order of the supremum and the maximum and then
subsequently—since the maximum is taken over a finite set—of the limit and the maximum. Finally, we use
that the limit superior is sub-additive, to yield

lim sup
Δ→0+

1

∆
|𝑃 (𝑋̂𝑡+Δ = 𝑦 | 𝑋̂𝑢 = 𝑥̂, 𝑋̂𝑡 = 𝑥̂) − I𝑥̂(𝑦)|

≤ max

{︂∑︁
𝑦∈𝑦

lim sup
Δ→0+

1

∆
|𝑃 (𝑋𝑡+Δ = 𝑦 |𝑋𝑡 = 𝑥) − I𝑥(𝑦)| : 𝑥 ∈ 𝑥̂

}︂
< +∞,

where the final inequality holds because 𝑃 is well-behaved and the maximum is taken over a finite set.

Proposition 35. Consider a homogeneous Markov chain 𝑃 and a lumping map Λ: X → X̂ , and let 𝑃 be
a lumped stochastic process. Then for any 𝑡 in R≥0, 𝑢 ∈ U<𝑡 and 𝑥̂𝑢 in X̂𝑢,

𝜕𝑇 𝑠
𝑡,𝑥̂𝑢

⊆ Q̂,

where 𝜕𝑇 𝑠
𝑡,𝑥̂𝑢

denotes the outer partial derivative—as defined in [12, Definition 4.8]—of the history-dependent

transition matrix 𝑇 𝑠
𝑡,𝑥̂𝑢

—see [12, Definition 4.6]—that, for all 𝑠 in R≥0 with 𝑠 ≥ 𝑡, is defined by

𝑇 𝑠
𝑡,𝑥̂𝑢

(𝑥̂, 𝑦) := 𝑃 (𝑋̂𝑠 = 𝑦 | 𝑋̂𝑢 = 𝑥̂𝑢, 𝑋̂𝑡 = 𝑥̂) for all 𝑥̂, 𝑦 ∈ X̂ .

In our proof for Proposition 35, we need the following result.

Lemma 36 (Theorem 2.1.1 in [19]). Let 𝑄 be a transition rate matrix. Then for all 𝑡, 𝑠 in R≥0 with 𝑡 ≤ 𝑠
and all 𝑥, 𝑦 in X ,

lim
Δ→0+

𝑇 𝑠+Δ
𝑡 (𝑥, 𝑦) − 𝑇 𝑠

𝑡 (𝑥, 𝑦)

∆
= [𝑄𝑇 𝑠

𝑡 ](𝑥, 𝑦)

and, if 𝑡 ̸= 0,

lim
Δ→0+

𝑇 𝑠
𝑡 (𝑥, 𝑦) − 𝑇 𝑠

𝑡−Δ(𝑥, 𝑦)

∆
= [𝑄𝑇 𝑠

𝑡 ](𝑥, 𝑦).

Proof. First, recall from Lemma 34 that 𝑃 is well-behaved. Hence, it follows from [12, Proposition 4.6] that

𝜕𝑇 𝑠
𝑡,𝑥̂𝑢

is a non-empty, bounded and closed subset of R(X̂ ). Therefore, we can fix an arbitrary element 𝑄̂⋆

of 𝜕𝑇 𝑠
𝑡,𝑥̂𝑢

. By definition of the outer partial derivative 𝜕, this implies that there is a monotonously decreasing
sequence {∆𝑛}𝑛∈N in R>0 with lim𝑛→+∞ ∆𝑖 = 0 such that either

lim
𝑛→+∞

𝑇 𝑡+Δ𝑛

𝑡,𝑥̂𝑢
− 𝐼

∆𝑛
= 𝑄̂⋆ or lim

𝑛→+∞

𝑇 𝑡
𝑡−Δ𝑛,𝑥̂𝑢

− 𝐼

∆𝑛
= 𝑄̂⋆. (D.1)

We now proceed our argument under the assumption that it is the left equality that holds. The argument for
the alternate case is entirely similar due to the homogeneity of 𝑃 .

Fix any arbitrary 𝑓 in L (X̂ ). Observe that as a consequence of Eqn. (D.1) and the equality [𝐼𝑓 ](𝑥̂) = 𝑓(𝑥̂),

lim
𝑛→+∞

[𝑇 𝑡+Δ𝑛

𝑡,𝑥̂𝑢
𝑓 ](𝑥̂) − 𝑓(𝑥̂)

∆𝑛
= [𝑄̂⋆𝑓 ](𝑥̂). (D.2)

Observe that, for all 𝑛 in N,

𝐸̂(𝑓(𝑋̂𝑡+Δ𝑛
) | 𝑋̂𝑢 = 𝑥̂𝑢, 𝑋̂𝑡 = 𝑥̂) =

∑︁
𝑦∈X̂

𝑓(𝑦)𝑃 (𝑋̂𝑡+Δ𝑛
= 𝑦 | 𝑋̂𝑢 = 𝑥̂𝑢, 𝑋̂𝑡 = 𝑥̂)

=
∑︁
𝑦∈X̂

𝑓(𝑦)𝑇 𝑡+Δ𝑛

𝑡,𝑥̂𝑢
(𝑥̂, 𝑦) = [𝑇 𝑡+Δ𝑛

𝑡,𝑥̂𝑢
𝑓 ](𝑥̂),
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where the final equality follows from the linearity of 𝑇 𝑡+Δ𝑛

𝑡,𝑥̂𝑢
. It follows from this equality, Corollary 32 and

the fact that [𝑓 ∘ Λ](𝑥) = 𝑓(Λ(𝑥)) = 𝑓(𝑥̂) for all 𝑥 ∈ 𝑥̂ that, for all 𝑛 in N,

min

{︃
[𝑇 𝑡+Δ𝑛

𝑡 (𝑓 ∘ Λ)](𝑥) − [𝑓 ∘ Λ](𝑥)

∆𝑛
: 𝑥 ∈ 𝑥̂

}︃
≤

[𝑇 𝑡+Δ𝑛

𝑡,𝑥̂𝑢
𝑓 ](𝑥̂) − 𝑓(𝑥̂)

∆𝑛
. (D.3)

Observe now that, for all 𝑛 in N and 𝑥 ∈ 𝑥̂,

[𝑇 𝑡+Δ𝑛
𝑡 (𝑓 ∘ Λ)](𝑥) − [𝑓 ∘ Λ](𝑥) =

∑︁
𝑦∈X

[𝑓 ∘ Λ](𝑦)
(︁
𝑇 𝑡+Δ𝑛
𝑡 (𝑥, 𝑦) − 𝑇 𝑡

𝑡 (𝑥, 𝑦)
)︁
,

where we have used that 𝑇 𝑡
𝑡 = 𝐼, and

[𝑄(𝑓 ∘ Λ)](𝑥) =
∑︁
𝑦∈X

[𝑓 ∘ Λ](𝑦)𝑄(𝑥, 𝑦) =
∑︁
𝑦∈X

[𝑓 ∘ Λ](𝑦)[𝑄𝑇 𝑡
𝑡 ](𝑥, 𝑦).

As the sequence {∆𝑛}𝑛∈N converges to 0, it follows from Lemma 36 and the previous two equalities that

lim
𝑛→+∞

[𝑇 𝑡+Δ𝑛
𝑡 (𝑓 ∘ Λ)](𝑥) − [𝑓 ∘ Λ](𝑥)

∆𝑛
=
∑︁
𝑦∈𝑦

[𝑓 ∘ Λ](𝑦) lim
𝑛→+∞

𝑇 𝑡+Δ𝑛
𝑡 (𝑥, 𝑦) − 𝑇 𝑡

𝑡 (𝑥, 𝑦)

∆𝑛

=
∑︁
𝑦∈𝑦

[𝑓 ∘ Λ](𝑦)[𝑄𝑇 𝑡
𝑡 ](𝑥, 𝑦) = [𝑄(𝑓 ∘ Λ)](𝑥).

Fix some 𝜖 in R>0. Due the previous equality, and also because Λ−1(𝑥̂) is finite, there is some 𝑁 in N such
that

(∀𝑛 ∈ N, 𝑛 ≥ 𝑁)(∀𝑥 ∈ 𝑥̂)

⃒⃒⃒⃒
⃒ [𝑇 𝑡+Δ𝑛

𝑡 (𝑓 ∘ Λ)](𝑥) − [𝑓 ∘ Λ](𝑥)

∆𝑛
− [𝑄(𝑓 ∘ Λ)](𝑥)

⃒⃒⃒⃒
⃒ ≤ 𝜖

We combine this inequality with Eqn. (D.3), to yield

(∀𝑛 ∈ N, 𝑛 ≥ 𝑁) min
{︀

[𝑄(𝑓 ∘ Λ)](𝑥) : 𝑥 ∈ 𝑥̂
}︀
− 𝜖 ≤

[𝑇 𝑡+Δ𝑛

𝑡,𝑥̂𝑢
𝑓 ](𝑥̂) − 𝑓(𝑥̂)

∆𝑛
.

We taken the limit for 𝑛 going to +∞ on both sides of this inequality and use Eqn. (D.2), to yield

min
{︀

[𝑄(𝑓 ∘ Λ)](𝑥) : 𝑥 ∈ 𝑥̂
}︀
− 𝜖 ≤ [𝑄̂⋆𝑓 ](𝑥̂),

which, since 𝜖 is an arbitrary positive real number, implies that min{[𝑄(𝑓 ∘Λ)](𝑥) : 𝑥 ∈ 𝑥̂} ≤ [𝑄̂⋆𝑓 ](𝑥̂). Recall
from Lemma 30 that

[𝑄(𝑓 ∘ Λ)](𝑥) =
∑︁
𝑦∈X

𝑄(𝑥, 𝑦)[𝑓 ∘ Λ](𝑦) =
∑︁
𝑦∈X̂

𝑓(𝑦)
∑︁
𝑦∈𝑦

𝑄(𝑥, 𝑦) ≥ [𝑄̂𝑓 ](𝑥̂)

for any 𝑥 ∈ 𝑥̂, such that [𝑄̂𝑓 ](𝑥̂) ≤ [𝑄̂⋆𝑓 ](𝑥̂). Because 𝑓 was an arbitrary real-valued function on X̂ , it

follows from this inequality and Eqn. (21) that 𝑄̂⋆ is contained in Q̂.

Theorem 6. Consider a homogeneous Markov chain 𝑃 and a lumping map Λ: X → X̂ . Then any
corresponding lumped stochastic process 𝑃 is contained in PW

Q̂,M̂
.

Proof. Recall that 𝑃 is well-behaved by Lemma 34. Furthermore, 𝑃 is clearly consistent with M̂ and, by
Proposition 35, also consistent with Q̂. The stated now follows because, by definition, PW

Q̂,M̂
contains all

well-behaved stochastic processes that are consistent with Q̂ and M̂ .
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Appendix E. Extra material for and proofs of the results in Section 6

Our proof of Theorem 8 is split up into several intermediary results. First, we link the matrix exponential 𝑇 𝑠
𝑡

generated by the transition rate matrix 𝑄 with the non-linear transformation 𝑇 𝑠
𝑡 generated by the lumped

lower transition rate operator 𝑄̂.

Lemma 37. Consider a transition rate matrix 𝑄 and a lumping map Λ: X → X̂ . Then for any 𝛿 in R≥0

such that 𝛿‖𝑄‖ ≤ 2, 𝑛 in N0 and 𝑓 in L (X̂ ),

[(𝐼 + 𝛿𝑄̂)𝑛𝑓 ] ∘ Λ ≤ (𝐼 + 𝛿𝑄)𝑛(𝑓 ∘ Λ).

Proof. Observe that the stated holds trivially if 𝑛 = 0. Hence, without loss of generality, we assume that
𝑛 > 0. Fix some arbitrary 𝑔 in L (X̂ ). Recall from Lemma 30 that

(𝑄̂𝑔) ∘ Λ ≤ 𝑄(𝑔 ∘ Λ).

From this, it follows that

[(𝐼 + 𝛿𝑄̂)𝑔] ∘ Λ = 𝑔 ∘ Λ + 𝛿(𝑄̂𝑔) ∘ Λ ≤ 𝑔 ∘ Λ + 𝛿𝑄(𝑔 ∘ Λ) = (𝐼 + 𝛿𝑄)(𝑔 ∘ Λ). (E.1)

As 𝛿‖𝑄‖ ≤ 2, it follows from Corollary 28 that (𝐼 + 𝛿𝑄) is a transition matrix. Consequently, we find that

(𝐼 + 𝛿𝑄)𝑛(𝑓 ∘ Λ) = (𝐼 + 𝛿𝑄)𝑛−1(𝐼 + 𝛿𝑄)(𝑓 ∘ Λ) ≥ (𝐼 + 𝛿𝑄)𝑛−1[(𝐼 + 𝛿𝑄̂)𝑓 ] ∘ Λ,

where the inequality follows from (T6) for the transition matrix 𝑇 = (𝐼 + 𝛿𝑄)𝑛−1—that (𝐼 + 𝛿𝑄)𝑛−1 is a

transition matrix follows from (T4)—and the functions 𝑓 = [(𝐼 + 𝛿𝑄̂)𝑓 ] ∘ Λ and 𝑔 = (𝐼 + 𝛿𝑄)(𝑓 ∘ Λ), which
satisfy 𝑓 ≤ 𝑔 due to Eqn. (E.1). Repeated application of the same trick yields

(𝐼 + 𝛿𝑄)
𝑛
(𝑓 ∘ Λ) ≥ (𝐼 + 𝛿𝑄)

𝑛−1
[(𝐼 + 𝛿𝑄̂)𝑓 ] ∘ Λ ≥ (𝐼 + 𝛿𝑄)𝑛−2[(𝐼 + 𝛿𝑄̂)2𝑓 ] ∘ Λ

≥ · · · ≥ [(𝐼 + 𝛿𝑄̂)𝑛𝑓 ] ∘ Λ,

as required.

Lemma 38. Consider a transition rate matrix 𝑄 and a lumping map Λ: X → X̂ . Then for any 𝑡, 𝑠 in
R≥0 with 𝑡 ≤ 𝑠 and 𝑓 in L (X̂ ),

(𝑇 𝑠
𝑡𝑓) ∘ Λ ≤ 𝑇 𝑠

𝑡 (𝑓 ∘ Λ),

where 𝑇 𝑠
𝑡 is the lower transition operator generated by 𝑄̂ according to Eqn. (18).

Proof. For any 𝑛 in N such that 𝑛 ≥ (𝑠− 𝑡)‖𝑄‖/2, it follows from Lemma 37 that[︂(︂
𝐼 +

𝑠− 𝑡

𝑛
𝑄̂

)︂𝑛

𝑓

]︂
∘ Λ ≤

(︂
𝐼 +

𝑠− 𝑡

𝑛
𝑄

)︂𝑛

(𝑓 ∘ Λ).

The stated is obtained by taking the limit for 𝑛 going to +∞ on both sides of the inequality and substituting
Eqns. (7) and (18).

We can easily extend Lemma 38 to functions that depend on a finite number of time points. For this
result, we use the notational convention introduced in Appendix A.3 and Appendix C.2.

Lemma 39. Consider a transition rate matrix 𝑄 and a lumping map Λ: X → X̂ . Then for any 𝑢 =
𝑡1, . . . , 𝑡𝑛 and 𝑣 = 𝑠1, . . . , 𝑠𝑚 in U∅ with max𝑢 < min 𝑣 and any 𝑓 in L (X̂𝑢∪𝑣),(︁

𝑇 𝑠1
𝑡𝑛𝑇

𝑠2
𝑠1 · · ·𝑇

𝑠𝑚
𝑠𝑚−1

𝑓
)︁
∘ Λ ≤ 𝑇 𝑠1

𝑡𝑛 𝑇
𝑠2
𝑠1 · · ·𝑇 𝑠𝑚

𝑠𝑚−1
(𝑓 ∘ Λ).
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Proof. Our proof is one by induction. If 𝑚 = 1, then 𝑠1 = 𝑠𝑚 = 𝑠 and 𝑣 = 𝑠. Fix any 𝑥𝑢 in X𝑢 and let
𝑥̂𝑢 := Λ(𝑥𝑢). By Eqn. (A.7),

[𝑇 𝑠
𝑡𝑛(𝑓 ∘ Λ)](𝑥𝑢) = [𝑇 𝑠

𝑡𝑛(𝑓 ∘ Λ)𝑥𝑢
](𝑥𝑡𝑛), (E.2)

where (𝑓 ∘ Λ)𝑥𝑢
maps any 𝑥 in X to (𝑓 ∘ Λ)(𝑥𝑢, 𝑥) = 𝑓(𝑥̂𝑢,Λ(𝑥)). It follows from Lemma 38 that

𝑇 𝑠
𝑡𝑛(𝑓 ∘ Λ)𝑥𝑢

≥ (𝑇 𝑠
𝑡𝑛𝑓𝑥̂𝑢

) ∘ Λ, (E.3)

where 𝑓𝑥̂𝑢
maps any 𝑥̂ in X̂ to 𝑓(𝑥̂𝑢, 𝑥̂). Observe now that

[𝑇 𝑠
𝑡𝑛(𝑓 ∘ Λ)](𝑥𝑢) = [𝑇 𝑠

𝑡𝑛(𝑓 ∘ Λ)𝑥𝑢
](𝑥𝑡𝑛) ≥ [(𝑇 𝑠

𝑡𝑛𝑓𝑥̂𝑢
) ∘ Λ](𝑥𝑡𝑛) = [𝑇 𝑠

𝑡𝑛𝑓𝑥̂𝑢
](𝑥̂𝑡𝑛)

= [𝑇 𝑠
𝑡𝑛𝑓 ](𝑥̂𝑢) = [(𝑇 𝑠

𝑡𝑛𝑓) ∘ Λ](𝑥𝑢),

where the first equality follows from Eqn. (E.2), the inequality follows from (E.3) and the third equality
follows from Eqn. (C.1). Because 𝑥𝑢 was an arbitrary state instantiation in X𝑢, this inequality implies the
stated for 𝑚 = 1.

Next, we fix some 𝑚 in N such that 𝑚 ≥ 2, and assume that the stated holds for any sequence 𝑣 that
satisfies the conditions of the statement and has length 𝑚′ < 𝑚. We now show that this then implies the stated
for any sequence 𝑣 with length 𝑚. We apply the induction hypothesis with the sequences 𝑢′ := 𝑡1, . . . , 𝑡𝑛, 𝑠1
and 𝑣′ := 𝑠2, . . . , 𝑠𝑚, to yield(︁

𝑇 𝑠2
𝑠1𝑇

𝑠3
𝑠2 · · ·𝑇

𝑠𝑚
𝑠𝑚−1

𝑓
)︁
∘ Λ ≤ 𝑇 𝑠2

𝑠1 𝑇
𝑠3
𝑠2 · · ·𝑇 𝑠𝑚

𝑠𝑚−1
(𝑓 ∘ Λ). (E.4)

Observe that both sides of this inequality are functions on X𝑢′ = X𝑢∪{𝑠1}, and that the one on the left is
clearly lumpable. We write this inequality as 𝑔 ∘ Λ ≤ ℎ, where we let

𝑔 := 𝑇 𝑠2
𝑠1𝑇

𝑠3
𝑠2 · · ·𝑇

𝑠𝑚
𝑠𝑚−1

𝑓 and ℎ := 𝑇 𝑠2
𝑠1 𝑇

𝑠3
𝑠2 · · ·𝑇 𝑠𝑚

𝑠𝑚−1
(𝑓 ∘ Λ).

Fix some 𝑥𝑢 in X𝑢, and let 𝑥̂𝑢 := Λ(𝑥𝑢). From 𝑔 ∘ Λ ≤ ℎ, we infer that (𝑔 ∘ Λ)𝑥𝑢
≤ ℎ𝑥𝑢

. Therefore,

[𝑇 𝑠1
𝑡𝑛 (𝑔 ∘ Λ)](𝑥𝑢) = [𝑇 𝑠1

𝑡𝑛 (𝑔 ∘ Λ)𝑥𝑢
](𝑥𝑡𝑛) ≤ [𝑇 𝑠1

𝑡𝑛 ℎ𝑥𝑢
](𝑥𝑡𝑛) = [𝑇 𝑠1

𝑡𝑛 ℎ](𝑥𝑢), (E.5)

where the equalities follow from Eqn. (A.7) and the inequality holds due to (T6) and (𝑔 ∘ Λ)𝑥𝑢 ≤ ℎ𝑥𝑢 .
Furthermore, we observe that (𝑔 ∘ Λ)𝑥𝑢

= 𝑔𝑥̂𝑢
∘ Λ. Therefore, it follows from Lemma 38 that

[𝑇 𝑠1
𝑡𝑛 (𝑔 ∘ Λ)](𝑥𝑢) = [𝑇 𝑠1

𝑡𝑛 (𝑔 ∘ Λ)𝑥𝑢 ](𝑥𝑡𝑛) = [𝑇 𝑠1
𝑡𝑛 (𝑔𝑥̂𝑢 ∘ Λ)](𝑥𝑡𝑛)

≥ [𝑇 𝑠1
𝑡𝑛𝑔𝑥̂𝑢

](𝑥̂𝑡𝑛) = [𝑇 𝑠1
𝑡𝑛𝑔](𝑥̂𝑢) = [(𝑇 𝑠1

𝑡𝑛𝑔) ∘ Λ](𝑥𝑢), (E.6)

where the first equality follows from Eqn. (A.7) and the third equality follows from Eqn. (C.1). We now
combine Eqns. (E.5) and (E.6) and substitute the definitions of 𝑔 and ℎ, to yield

[(𝑇 𝑠1
𝑡𝑛𝑇

𝑠2
𝑠1𝑇

𝑠3
𝑠2 · · ·𝑇

𝑠𝑚
𝑠𝑚−1

𝑓) ∘ Λ](𝑥𝑢) ≤ [𝑇 𝑠1
𝑡𝑛 𝑇

𝑠2
𝑠1 𝑇

𝑠3
𝑠2 · · ·𝑇 𝑠𝑚

𝑠𝑚−1
(𝑓 ∘ Λ)](𝑥𝑢).

The induction step now follows from this inequality because 𝑥𝑢 was an arbitrary state instantiation in
X𝑢.

The last intermediary result that we need is a formalisation of Eqn. (22).

Lemma 40. Consider a lumping map Λ: X → X̂ . Then for any 𝑢 in U∅ and 𝑓 in L (X𝑢),

𝑓L ∘ Λ ≤ 𝑓 ≤ 𝑓U ∘ Λ.

If 𝑓 is furthermore lumpable with respect to Λ, then 𝑓L = 𝑓U = 𝑓 with 𝑓 = 𝑓 ∘ Λ.

Everything is now set up to prove the following main result.
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Theorem 8. Consider a homogeneous Markov chain 𝑃 and a lumping map Λ: X → X̂ . Then for all 𝑢 in
U , 𝑣 in U∅ with max𝑢 < min 𝑣, 𝑥𝑢 in X𝑢 and 𝑓 in L (X𝑢∪𝑣),

𝐸W
Q̂,M̂

(𝑓L(𝑋̂𝑢, 𝑋̂𝑣) | 𝑋̂𝑢 = 𝑥̂𝑢) ≤ 𝐸(𝑓(𝑋𝑢, 𝑋𝑣) |𝑋𝑢 = 𝑥𝑢) ≤ 𝐸
W

Q̂,M̂ (𝑓U(𝑋̂𝑢, 𝑋̂𝑣) | 𝑋̂𝑢 = 𝑥̂𝑢), (23)

where 𝑥̂𝑢 := Λ(𝑥𝑢).

Proof. We only need to prove the left inequality, as the right inequality is obtained by applying the left
inequality to 𝑔 := −𝑓 because 𝐸(𝑔(𝑋𝑢, 𝑋𝑣) |𝑋𝑢 = 𝑥𝑢) = −𝐸(𝑓(𝑋𝑢, 𝑋𝑣) |𝑋𝑢 = 𝑥𝑢) and 𝑔L = −𝑓U.

Observe that, as 𝐸 is monotonous, it follows from Lemma 40 that

𝐸(𝑓(𝑋𝑢, 𝑋𝑣) |𝑋𝑢 = 𝑥𝑢) ≥ 𝐸((𝑓L ∘ Λ)(𝑋𝑢, 𝑋𝑣) |𝑋𝑢 = 𝑥𝑢). (E.7)

We now distinguish between two cases.
First, we assume that 𝑢 = 𝑡1, . . . , 𝑡𝑛 is not equal to the empty sequence. In this case, it follows from

Eqn. (A.8) that

𝐸((𝑓L ∘ Λ)(𝑋𝑢, 𝑋𝑣) |𝑋𝑢 = 𝑥𝑢) = [𝑇 𝑠1
𝑡𝑛 𝑇

𝑠2
𝑠1 · · ·𝑇 𝑠𝑚

𝑠𝑚−1
(𝑓L ∘ Λ)](𝑥𝑢),

where 𝑣 = 𝑠1, . . . , 𝑠𝑚. We now use Lemma 39, to yield

𝐸((𝑓L ∘ Λ)(𝑋𝑢, 𝑋𝑣) |𝑋𝑢 = 𝑥𝑢) = [𝑇 𝑠1
𝑡𝑛 𝑇

𝑠2
𝑠1 · · ·𝑇 𝑠𝑚

𝑠𝑚−1
(𝑓L ∘ Λ)](𝑥𝑢)

≥ [𝑇 𝑠1
𝑡𝑛𝑇

𝑠2
𝑠1 · · ·𝑇

𝑠𝑚
𝑠𝑚−1

𝑓L](𝑥̂𝑢),

where 𝑥̂𝑢 := Λ(𝑥𝑢). Recall from Proposition 4 that Q̂ is non-empty, bounded and convex and has separately
specified rows. Therefore, it follows from Eqn. (C.2) and the above inequality that

𝐸((𝑓L ∘ Λ)(𝑋𝑢, 𝑋𝑣) |𝑋𝑢 = 𝑥𝑢) ≥ [𝑇 𝑠1
𝑡𝑛𝑇

𝑠2
𝑠1 · · ·𝑇

𝑠𝑚
𝑠𝑚−1

𝑓L](𝑥̂𝑢)

= 𝐸W
Q̂,M̂

(𝑓L(𝑋̂𝑢, 𝑋̂𝑣) | 𝑋̂𝑢 = 𝑥̂𝑢).

We now combine this inequality with Eqn. (E.7) to obtain the stated.
Next, we assume that 𝑢 = ∅. Then

𝐸((𝑓L ∘ Λ)(𝑋𝑣) |𝑋𝑢 = 𝑥𝑢) = 𝐸((𝑓L ∘ Λ)(𝑋𝑣) |𝑋∅ = 𝑥∅) = 𝐸((𝑓L ∘ Λ)(𝑋𝑣)),

where without loss of generality we have dropped the first argument 𝑋𝑢 of 𝑓L ∘ Λ. Let 𝑣 = 𝑠1, . . . , 𝑠𝑚. If
min 𝑣 = 𝑠1 > 0, then we let 𝑣⋆ := 0, 𝑠1, . . . , 𝑠𝑚 = {0}∪𝑣 and let 𝑓⋆ be the extension of 𝑓 to X𝑣⋆ , as explained
in Appendix A.3. If min 𝑣 = 𝑠1 = 0, then we simply let 𝑣⋆ := 𝑣 and 𝑓⋆ := 𝑓 . This way, we have

𝐸((𝑓L ∘ Λ)(𝑋𝑣)) = 𝐸((𝑓⋆
L ∘ Λ)(𝑋𝑣⋆)) = 𝐸𝜋0

(𝑇 𝑠1
0 · · ·𝑇 𝑠𝑚

𝑠𝑚−1
(𝑓⋆

L ∘ Λ)),

where the second equality follows from Eqn. (A.9). Note that in this expression, 𝑇 𝑠1
0 is interpreted differently

depending on 𝑠1. If 𝑠1 > 0, then 𝑇 𝑠1
0 is the operator on X{0,𝑠1} as defined by Eqn. (A.7). If 𝑠1 = 0, then 𝑇 𝑠1

0

is not needed in the expression, but we can leave it anyway as 𝑇 𝑠1
0 = 𝑇 0

0 = 𝐼. Observe now that

𝐸((𝑓L ∘ Λ)(𝑋𝑣) |𝑋𝑢 = 𝑥𝑢) = 𝐸𝜋0
(𝑇 𝑠1

0 · · ·𝑇 𝑠𝑚
𝑠𝑚−1

(𝑓⋆
L ∘ Λ))

= ⟨𝜋0, 𝑇
𝑠1
0 · · ·𝑇 𝑠𝑚

𝑠𝑚−1
(𝑓⋆

L ∘ Λ)⟩ =
∑︁
𝑥∈X

𝜋0(𝑥)[𝑇 𝑠1
0 · · ·𝑇 𝑠𝑚

𝑠𝑚−1
(𝑓⋆

L ∘ Λ)](𝑥)

≥
∑︁
𝑥∈X

𝜋0(𝑥)[𝑇 𝑠1
0 · · ·𝑇 𝑠𝑚

𝑠𝑚−1
𝑓⋆
L](Λ(𝑥)) =

∑︁
𝑥̂∈X̂

[𝑇 𝑠1
0 · · ·𝑇 𝑠𝑚

𝑠𝑚−1
𝑓⋆
L](𝑥̂)

∑︁
𝑥∈𝑥̂

𝜋0(𝑥)

=
∑︁
𝑥̂∈X̂

[𝑇 𝑠1
0 · · ·𝑇 𝑠𝑚

𝑠𝑚−1
𝑓⋆
L](𝑥̂)𝜋̂0(𝑥̂) = ⟨𝜋0, 𝑇

𝑠1
0 · · ·𝑇 𝑠𝑚

𝑠𝑚−1
𝑓⋆
L⟩

= 𝐸𝜋̂0
(𝑇 𝑠1

0 · · ·𝑇 𝑠𝑚
𝑠𝑚−1

𝑓⋆
L) = 𝐸M̂ (𝑇 𝑠1

0 · · ·𝑇 𝑠𝑚
𝑠𝑚−1

𝑓⋆
L)

= 𝐸W
Q̂,M̂

(𝑓⋆
L(𝑋̂𝑣⋆)) = 𝐸W

Q̂,M̂
(𝑓L(𝑋̂𝑣)) = 𝐸W

Q̂,M̂
(𝑓L(𝑋̂𝑣) | 𝑋̂𝑢 = 𝑥̂𝑢),
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where the inequality follows from Lemma 38 and, if 𝑠1 = 0, the fact that 𝑇 𝑠1
0 = 𝑇 0

0 = 𝐼, and where the
penultimate equality follows from Eqn. (C.3). The stated is now immediately obtained by combining (E.7)
with the above inequality.

Appendix F. Extra material for and proofs of the results in Section 7

Appendix F.1. Ergodicity and irreducibility

The following three results are essentially well-known, but we did not find a good reference for them.

Proposition 9. A transition rate matrix 𝑄 is ergodic if and only if

Xtop := {𝑥 ∈ X : (∀𝑦 ∈ X ) 𝑦  𝑥} ≠ ∅.

Proof. First, we observe that Definition 2 is just a specialisation of Definition 7 further on—the definition of
ergodicity for a lower transition rate operator—to transition rate matrices. Next, we observe that for the
transition rate matrix 𝑄, the upper reachability relation ·� ·—see Appendix F.2 further on—is equivalent
to our accessibility relation · ·. This upper reachability relation ·� · is essential to the necessary and
sufficient condition for ergodicity of a lower transition rate operator established in [13, Theorem 19]. The
condition exists of two parts: top class regularity and top class absorption. The transition rate matrix 𝑄
satisfies top class regularity if and only Xtop ̸= ∅. We now claim that in this case, 𝑄 also satisfies top class
absorption. More specifically, the top class Xtop is lower reachable—in the sense of [13, Definition 8]—from
any state 𝑥 not in this top class. If this claim is true, then it follows from [13, Theorem 19] that 𝑄 is ergodic
if and only if

Xtop = {𝑥 ∈ X : (∀𝑦 ∈ X ) 𝑦  𝑥} ≠ ∅,

as we had to prove.
We now set out to verify our claim about top class absorption. By [13, Definition 8], this claim is verified

if we can prove that X ∖ Xtop ⊆ 𝐴𝑛, where the non-decreasing sequence 𝐴0, 𝐴1, . . . is defined by the initial
condition 𝐴0 := Xtop and, for all 𝑘 in N0, the recursive relation

𝐴𝑘+1 := 𝐴𝑘 ∪ {𝑧 ∈ X ∖𝐴𝑘 : [𝑄I𝐴𝑘
](𝑧) > 0},

and where 𝑛 is the first index such that 𝐴𝑛 = 𝐴𝑛+1. To prove this, we fix some 𝑥 in X ∖Xtop and 𝑦 in Xtop.
Observe that 𝑥 𝑦 as 𝑦 belongs to the top class Xtop; hence, there is a sequence 𝑥 = 𝑥0, 𝑥1 . . . , 𝑥𝑚 = 𝑦 in
X such that, for all 𝑖 in {1, . . . ,𝑚}, [𝑄I𝑥𝑖

](𝑥𝑖−1) = 𝑄(𝑥𝑖−1, 𝑥𝑖) > 0.
Observe that, for all 𝑘 in N0, 𝑧1 in X ∖ 𝐴𝑘 and 𝑧2 in 𝐴𝑘, 𝑄(𝑧1, 𝑧2) ≥ 0 because 𝑧1 ̸= 𝑧2 and 𝑄 is a

transition rate matrix. Hence,

[𝑄I𝐴𝑘
](𝑧1) =

∑︁
𝑧2∈𝐴𝑘

𝑄(𝑧1, 𝑧2) > 0 ⇔ (∃𝑧⋆ ∈ 𝐴𝑘) 𝑄(𝑧1, 𝑧
⋆) > 0. (F.1)

We now claim that 𝑥𝑚−1 belongs to 𝐴1. This claim is trivially verified if 𝑥𝑚−1 ∈ 𝐴0, as 𝐴0 ⊆ 𝐴1

by definition. If 𝑥𝑚−1 /∈ 𝐴0, then because 𝑦 belongs to 𝐴0 = Xtop and 𝑄(𝑥𝑚−1, 𝑦) > 0, it follows from
Eqn. (F.1)—with 𝑘 = 0, 𝑧1 = 𝑥 and 𝑧⋆ = 𝑦—that [𝑄I𝐴0

](𝑥𝑚−1) > 0, which verifies our claim in this case.
Next, we verify that 𝑥𝑚−2 belongs to 𝐴2. We again distinguish two cases. If 𝑥𝑚−2 ∈ 𝐴1, then this

claim is trivially true because 𝐴1 ⊆ 𝐴2 by construction. If 𝑥𝑚−2 /∈ 𝐴1, then because 𝑥𝑚−1 belongs to
𝐴1 and 𝑄(𝑥𝑚−2, 𝑥𝑚−1) > 0, it follows from Eqn. (F.1)—with 𝑘 = 1, 𝑧1 = 𝑥𝑚−2 and 𝑧⋆ = 𝑥𝑚−1—that
[𝑄I𝐴1 ](𝑥𝑚−2) > 0, from which we infer the veracity of our claim.

It is clear that we can repeat the same argument to verify that 𝑥𝑚−3 belongs to 𝐴3, and so on. If we
continue this way, we eventually obtain that 𝑥 = 𝑥0 is an element of 𝐴𝑚. This implies that 𝑥 is an element of
𝐴𝑛 as well because 𝐴0 ⊆ 𝐴1 ⊆ · · · ⊆ 𝐴𝑚 and 𝐴𝑛 = 𝐴𝑛+𝑘 for all 𝑘 in N. Because 𝑥 was an arbitrary element
of X ∖ Xtop, we infer from this that X ∖ Xtop ⊆ 𝐴𝑛, as required.
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Proposition 10. Let 𝑄 be an ergodic transition rate matrix. Then the matrix 𝑄′ on L (Xtop), defined by

𝑄′(𝑥, 𝑦) := 𝑄(𝑥, 𝑦) for all 𝑥, 𝑦 in Xtop,

is an irreducible transition rate matrix. Furthermore, for all 𝑓 in L (X ), ⟨𝜋∞, 𝑓⟩ = ⟨𝜋′
∞, 𝑓 ′⟩, where 𝜋′

∞ is
the limit distribution of 𝑄′ and 𝑓 ′ is the restriction of 𝑓 to Xtop.

Proof. Our proof hinges on the following claim:

𝑄(𝑥, 𝑦) = 0 for all 𝑥 ∈ Xtop and 𝑦 ∈ X ∖ Xtop (F.2)

To verify this claim, we fix any such 𝑥 and 𝑦, and assume ex-absurdo that 𝑄(𝑥, 𝑦) ̸= 0. As 𝑥 ̸= 𝑦, this
is equivalent to 𝑄(𝑥, 𝑦) > 0 because 𝑄(𝑥, 𝑦) ≥ 0 since 𝑄 is a transition rate matrix. Fix any arbitrary
𝑧 in X . As 𝑥 is a state in the top class, we know that 𝑧  𝑥, or equivalently, that there is a sequence
𝑧 = 𝑥0, . . . , 𝑥𝑛 = 𝑥 such that 𝑄(𝑥𝑖−1, 𝑥𝑖) > 0 for all 𝑖 in {1, . . . , 𝑛}. If we let 𝑥𝑛+1 := 𝑦, then clearly
𝑄(𝑥𝑖−1, 𝑥𝑖) > 0 for all 𝑖 in {1, . . . , 𝑛 + 1}; hence, 𝑧  𝑦. As 𝑧 was an arbitrary state, this implies that 𝑦 is a
state in the top class Xtop, which contradicts our initial assumption.

We now use Eqn. (F.2) to verify that 𝑄′ is an irreducible transition rate matrix. That 𝑄′ is a transition
rate matrix—that is, that it has non-negative off-diagonal elements and rows that sum up to zero—follows
almost immediately from Eqn. (F.2) and the same properties for 𝑄. Hence, we focus on verifying that 𝑄′

is irreducible. To verify this, we need to show that for any arbitrary 𝑥 and 𝑦 in Xtop, there is a sequence
𝑥 = 𝑥0, . . . , 𝑥𝑛 = 𝑦 in Xtop such that 𝑄′(𝑥𝑖−1, 𝑥𝑖) > 0 for all 𝑖 in {1, . . . , 𝑛}. To that end, we fix any arbitrary
𝑥 and 𝑦 in Xtop. Because 𝑦 belongs to the top class Xtop, there is a sequence 𝑥 = 𝑥0, . . . , 𝑥𝑛 = 𝑦 in X
such that 𝑄(𝑥𝑖−1, 𝑥𝑖) > 0 for all 𝑖 in {1, . . . , 𝑛}. As 𝑥0 is in the top class and 𝑄(𝑥0, 𝑥1) > 0, it follows
from Eqn. (F.2) that 𝑥1 belongs to the top class Xtop. Repeating this argument, we obtain that the entire
sequence 𝑥1, . . . , 𝑥𝑛 belongs to the top class Xtop. Consequently, 𝑄′(𝑥𝑖−1, 𝑥𝑖) = 𝑄(𝑥𝑖−1, 𝑥𝑖) > 0 for all 𝑖 in
{1, . . . , 𝑛}, as required.

To prove the second part of the stated, we recall from Section 7.3 that as 𝑄′ is irreducible, it has a unique
limit distribution 𝜋′

∞ that satisfies the equilibrium condition

(∀𝑦 ∈ Xtop)
∑︁

𝑥∈Xtop

𝜋′
∞(𝑥)𝑄′(𝑥, 𝑦) = 0.

Observe that, for all 𝑦 in Xtop,

0 =
∑︁

𝑥∈Xtop

𝜋′
∞(𝑥)𝑄(𝑥, 𝑦) =

∑︁
𝑥∈X

𝜋⋆(𝑥)𝑄(𝑥, 𝑦), (F.3)

where we let 𝜋⋆ be the distribution on X given for all 𝑥 in X by 𝜋⋆(𝑥) := 𝜋′
∞(𝑥) if 𝑥 is in Xtop and

𝜋⋆(𝑥) := 0 otherwise. Furthermore, it now follows from Eqn. (F.2) and our definition of 𝜋⋆ that∑︁
𝑥∈X

𝜋⋆(𝑥)𝑄(𝑥, 𝑦) = 0 for all 𝑦 ∈ X ∖ Xtop.

The above equality and Eqn. (F.3) imply that 𝜋⋆ satisfies the equilibrium condition for 𝑄. As the only
distribution that satisfies this equilibrium condition is the limit distribution 𝜋∞ of 𝑄, we have proven that
𝜋⋆ = 𝜋∞. To obtain the second part of the stated, we observe that ⟨𝜋∞, 𝑓⟩ = ⟨𝜋⋆, 𝑓⟩ = ⟨𝜋′, 𝑓 ′⟩, where the
second equality holds because 𝜋⋆(𝑥) = 0 for all 𝑥 in X ∖ Xtop.

Lemma 41. Let 𝑄 be a transition rate matrix and 𝛿 in R>0 such that 𝛿‖𝑄‖ < 2. If 𝑄 is ergodic, then
(𝐼 + 𝛿𝑄) is ergodic in the sense of [27, Definition 4.7].

Proof. Fix any 𝛿 in R>0 such that 𝛿‖𝑄‖ < 2. By Lemma 28, 𝑇 := (𝐼 + 𝛿𝑄) is a transition matrix. That 𝑇 is
ergodic if 𝑄 is ergodic follows from several other results. It follows from [25, Theorem 8], [28, Proposition 7]
and [28, Definition 2] that for all 𝑓 in L (X ), lim𝑛→+∞⟨𝜋0, 𝑇

𝑛𝑓⟩ exists and does not depend on the initial
distribution 𝜋0 in D(X ). Because this is clearly equivalent to the condition in [27, Definition 4.7], we have
proven the stated.
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Appendix F.2. Ergodicity and irreducibility in the imprecise case

Just like precise Markov chains, their imprecise counterparts also have some nice ergodic properties. For
a detailed exposition of these properties, we refer the interested reader to our previous work [13, 25]. We
here only mention the definitions and results that we will need in the remainder.

Definition 7 (Definition 6 in [13]). The lower transition rate operator 𝑄 is ergodic if, for any 𝑓 ∈ L (X ),
lim𝑡→+∞ 𝑇 𝑡

0𝑓 is a constant function.

Note the similarity between Definition 2 and Definition 7. In fact, the former is just the precise version of
the latter. Therefore, it should not come as a surprise that the accessibility relation · · has an imprecise
counterpart. Following [13, Definition 7], we say that a state 𝑥 is upper reachable from the state 𝑦, denoted
by 𝑦� 𝑥, if there is a sequence 𝑦 = 𝑥0, . . . , 𝑥𝑛 = 𝑥 in X such that [𝑄I𝑥𝑖

](𝑥𝑖−1) = −[𝑄(−I𝑥𝑖
)](𝑥𝑖−1) > 0 for

all 𝑖 in {1, . . . , 𝑛}.

Definition 8. The lower transition rate operator 𝑄 is called irreducible if

Xtop := {𝑥 ∈ X : (∀𝑦 ∈ X ) 𝑦� 𝑥} = X .

Corollary 42. If the lower transition rate operator 𝑄 is irreducible, then it is ergodic.

Proof. This is an immediate consequence of [13, Theorem 19].

Note that Corollary 42 resembles Proposition 9, although the latter establishes a necessary and sufficient
condition for the ergodicity of a transition rate matrix 𝑄 while the former only establishes a sufficient
condition for the ergodicity of a lower transition rate operator 𝑄. Similarly, the following result resembles
Proposition 11, in the sense that it establishes the convergence of (𝐼 + 𝛿𝑄)𝑛𝑓 .

Corollary 43. If the lower transition rate operator 𝑄 is ergodic, then for any 𝑓 in L (X ) and 𝛿 in R>0

with 𝛿‖𝑄‖ < 2, (𝐼 + 𝛿𝑄)𝑛𝑓 converges to a constant function in the limit for 𝑛 → +∞.

Proof. Fix any 𝛿 in R>0 such that 𝛿‖𝑄‖ < 2 and let 𝑇 := (𝐼 + 𝛿𝑄). Then by [25, Proposition 3], 𝑇 is a
lower transition operator. Furthermore, since 𝑄 is ergodic, it follows from [25, Theorem 8] and either [28,
Proposition 7] or [29, Theorem 21] that the lower transition operator 𝑇 is also ergodic, meaning that, for all
𝑓 in L (X ), lim𝑛→+∞ 𝑇𝑛𝑓 = lim𝑛→+∞(𝐼 + 𝛿𝑄)𝑛𝑓 exists and is a constant function.

Appendix F.3. Bounding limit expectations

Lemma 44. Let 𝑄 be a transition rate matrix and Λ: X → X̂ a lumping map. If 𝑄 is irreducible, then 𝑄̂
is irreducible as well.

Proof. To prove that 𝑄̂ is irreducible, we need to verify that 𝑥̂ � 𝑦 for all 𝑥̂, 𝑦 in X̂ . Observe that, by

definition, 𝑥̂� 𝑥̂ for all 𝑥̂ in X̂ . Hence, we now consider any 𝑥̂, 𝑦 in X̂ such that 𝑥̂ ̸= 𝑦, and verify that
indeed 𝑥̂� 𝑦.

Fix any 𝑥 in Λ−1(𝑥̂) and 𝑦 in Λ−1(𝑦). Then as 𝑄 is irreducible, it follows from Proposition 9 that there is
a sequence 𝑥 = 𝑥0, . . . , 𝑥𝑛 = 𝑦 in X such that 𝑄(𝑥𝑖−1, 𝑥𝑖) > 0 for all 𝑖 in {1, . . . , 𝑛}. If for all 𝑖 in {0, . . . , 𝑛}
we let 𝑥̂𝑖 := Λ(𝑥𝑖), then 𝑥̂0, . . . , 𝑥̂𝑛 is obviously a sequence in X̂ such that 𝑥̂0 = 𝑥̂ and 𝑥̂𝑛 = 𝑦. It may occur
for several indices 𝑗 in {0, . . . , 𝑛 − 1} that there are consecutive entries 𝑥̂𝑗 , 𝑥̂𝑗+1, . . . that are all equal to
𝑥̂𝑗 . For each of those indices 𝑗 we delete these consecutive entries 𝑥̂𝑗+1, . . . from the sequence; this way,

we end up with the shorter sequence 𝑥̂𝑖0 , . . . , 𝑥̂𝑖𝑚 in X̂ , where {𝑖0, . . . , 𝑖𝑚} is an increasing subsequence of
{1, . . . , 𝑛}. Note that by construction 𝑥̂𝑖0 = 𝑥̂, 𝑥̂𝑖𝑚 = 𝑦 and 𝑥̂𝑖(𝑘−1)

̸= 𝑥̂𝑖𝑘 for all 𝑘 in {1, . . . ,𝑚}.
Fix now any 𝑘 in {1, . . . ,𝑚}. Unfortunately, it does not necessarily hold that 𝑄(𝑥𝑖(𝑘−1)

, 𝑥𝑖𝑘) > 0. However,
we have removed the consecutive entries in such a way that 𝑄(𝑥𝑖𝑘−1, 𝑥𝑖𝑘) > 0. Because clearly 𝑥𝑖𝑘−1 ∈ 𝑥̂𝑖(𝑘−1)
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and 𝑥𝑖𝑘 ∈ 𝑥̂𝑖𝑘 , it now follows that

[𝑄̂I𝑥̂𝑖𝑘
](𝑥̂𝑖(𝑘−1)

) = −[𝑄̂(−I𝑥̂𝑖𝑘
)](𝑥̂𝑖(𝑘−1)

)

= −min

⎧⎨⎩−
∑︁
𝑦∈X̂

I𝑥̂𝑖𝑘
(𝑦)
∑︁
𝑦∈𝑦

𝑄(𝑥, 𝑦) : 𝑥 ∈ 𝑥̂𝑖(𝑘−1)

⎫⎬⎭
= max

⎧⎨⎩∑︁
𝑦∈X̂

I𝑥̂𝑖𝑘
(𝑦)
∑︁
𝑦∈𝑦

𝑄(𝑥, 𝑦) : 𝑥 ∈ 𝑥̂𝑖(𝑘−1)

⎫⎬⎭ = max

⎧⎨⎩ ∑︁
𝑦∈𝑥̂𝑖𝑘

𝑄(𝑥, 𝑦) : 𝑥 ∈ 𝑥̂𝑖(𝑘−1)

⎫⎬⎭
≥
∑︁

𝑦∈𝑥̂𝑖𝑘

𝑄(𝑥𝑖𝑘−1, 𝑦) ≥ 𝑄(𝑥𝑖𝑘−1, 𝑥𝑖𝑘) > 0,

where the second inequality holds because 𝑥̂𝑖(𝑘−1)
̸= 𝑥̂𝑖𝑘 implies that 𝑥𝑖𝑘−1 ≠ 𝑦 for all 𝑦 in Λ−1(𝑥̂𝑖𝑘).

Consequently, 𝑦� 𝑥̂, as desired.

Proposition 11. If 𝑄 is an ergodic transition rate matrix, then for all 𝑓 in L (X ), 𝛿 in R>0 with 𝛿‖𝑄‖ < 2,
and 𝑛 in N0,

min(𝐼 + 𝛿𝑄)𝑛𝑓 ≤ ⟨𝜋∞, 𝑓⟩ ≤ max(𝐼 + 𝛿𝑄)𝑛𝑓.

Furthermore, the lower and upper bounds in this expression become monotonously tighter with increasing 𝑛,
and converge to ⟨𝜋∞, 𝑓⟩ as 𝑛 approaches +∞.

Proof. Fix any 𝛿 in R>0 such that 𝛿‖𝑄‖ < 2, and let 𝑇 := 𝐼 + 𝛿𝑄. We recall from Lemma 41 that 𝑇 is an
ergodic transition matrix. For all 𝑓 in L (X ),

⟨𝜋∞, 𝑇 𝑓⟩ = 𝐸𝜋∞(𝑇𝑓) = 𝐸𝜋∞((𝐼 + 𝛿𝑄)𝑓) = 𝐸𝜋∞(𝑓) + 𝛿𝐸𝜋∞(𝑄𝑓) = ⟨𝜋∞, 𝑓⟩ + 𝛿⟨𝜋∞, 𝑄𝑓⟩ = ⟨𝜋∞, 𝑓⟩,

where the third equality follows from the linearity of the expectation 𝐸𝜋∞ and the final equality holds because
⟨𝜋∞, 𝑄𝑓⟩ = 0 due to the equilibrium condition for 𝑄. This equality is exactly the equilibrium condition
for the ergodic transition matrix 𝑇 . As 𝜋∞ satisfies this condition, it follows from [27, Definition 4.7 and
Theorem 4.5] that lim𝑛→+∞[𝑇𝑛𝑓 ](𝑥) = ⟨𝜋∞, 𝑓⟩ for all 𝑓 in L (X ) and 𝑥 in X .

Fix now any 𝑓 in L (X ) and consider the sequence

{min(𝐼 + 𝛿𝑄)𝑛𝑓}𝑛∈N0 = {min𝑇𝑛𝑓}𝑛∈N0 .

From the previous, we know that this sequence converges to ⟨𝜋∞, 𝑓⟩ in the limit for 𝑛 → +∞. Since 𝑇 is a
transition matrix—that is, has non-negative elements and rows that sum up to one—min 𝑔 ≤ min𝑇𝑔 for all
𝑔 in L (X ). It now follows from repeated application of this inequality that the sequence {min𝑇𝑛𝑓}𝑛∈N0 is
non-decreasing. A similar argument shows that the sequence {max𝑇𝑛𝑓}𝑛∈N0

is non-increasing and converges
to ⟨𝜋∞, 𝑓⟩ as well.

Theorem 12. Consider an ergodic transition rate matrix 𝑄 and a lumping map Λ: X → X̂ . Then for all
𝑓 in L (X ), 𝛿 in R>0 with 𝛿‖𝑄‖ < 2, and 𝑛 in N0,

min(𝐼 + 𝛿𝑄̂)𝑛𝑓L ≤ ⟨𝜋∞, 𝑓⟩ ≤ max(𝐼 + 𝛿𝑄̂)𝑛𝑓U.

Moreover, for fixed 𝛿, the lower and upper bounds in this expression become monotonously tighter with
increasing 𝑛, and each converges to a—possibly different—limit as 𝑛 approaches +∞. If 𝑄 is furthermore
irreducible, (𝐼 + 𝛿𝑄̂)𝑛𝑓L and (𝐼 + 𝛿𝑄̂)𝑛𝑓U both converge to a—possibly different—constant function as 𝑛
approaches +∞.
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Proof. As we have seen multiple times before, it suffices to prove the stated for the lower bound, as the
stated for the upper bound follows from applying the stated for the lower bound to 𝑔 := −𝑓 , because
⟨𝜋∞, 𝑔⟩ = −⟨𝜋∞, 𝑓⟩ and 𝑔L = −𝑓U.

We now set out to prove the statement for the lower bound. As the expectation operator 𝐸𝜋∞ defined by
the limit distribution 𝜋∞ is monotonous, Lemma 40 implies that

⟨𝜋∞, 𝑓⟩ = 𝐸𝜋∞(𝑓) ≥ 𝐸𝜋∞(𝑓L ∘ Λ) = ⟨𝜋∞, 𝑓L ∘ Λ⟩. (F.4)

Observe now that

⟨𝜋∞, 𝑓⟩ ≥ ⟨𝜋∞, 𝑓L ∘ Λ⟩ ≥ min(𝐼 + 𝛿𝑄)𝑛(𝑓L ∘ Λ) ≥ min[(𝐼 + 𝛿𝑄̂)𝑛𝑓L ∘ Λ] = min(𝐼 + 𝛿𝑄̂)𝑛𝑓L,

where the second inequality follows from Proposition 11 and the third inequality follows from Lemma 37.
We end this proof by verifying the statement concerning the monotonous convergence of the lower bound.

To that end, we first prove that
‖𝑄̂‖ ≤ ‖𝑄‖. (F.5)

By [25, Proposition 4],

‖𝑄̂‖ = 2 max{−[𝑄̂I𝑥̂](𝑥̂) : 𝑥̂ ∈ X̂ }.
We now use some properties of the transition rate matrix 𝑄 and execute some straightforward manipulations,
to yield Eqn. (F.5):

‖𝑄̂‖ = 2 max

⎧⎨⎩−min

⎧⎨⎩∑︁
𝑦∈X̂

I𝑥̂(𝑦)
∑︁
𝑦∈𝑦

𝑄(𝑥, 𝑦) : 𝑥 ∈ 𝑥̂

⎫⎬⎭ : 𝑥̂ ∈ X̂

⎫⎬⎭
= 2 max

⎧⎨⎩−min

⎧⎨⎩∑︁
𝑦∈𝑥̂

𝑄(𝑥, 𝑦) : 𝑥 ∈ 𝑥̂

⎫⎬⎭ : 𝑥̂ ∈ X̂

⎫⎬⎭
= 2 max

⎧⎨⎩max

⎧⎨⎩−
∑︁
𝑦∈𝑥̂

𝑄(𝑥, 𝑦) : 𝑥 ∈ 𝑥̂

⎫⎬⎭ : 𝑥̂ ∈ X̂

⎫⎬⎭
≤ 2 max

{︁
max{−𝑄(𝑥, 𝑥) : 𝑥 ∈ 𝑥̂} : 𝑥̂ ∈ X̂

}︁
= 2 max{−𝑄(𝑥, 𝑥) : 𝑥 ∈ X } = ‖𝑄‖.

Since 𝛿‖𝑄‖ < 2, it follows from Eqn. (F.5) that 𝛿‖𝑄̂‖ < 2. Therefore, (𝐼 + 𝛿𝑄̂) is a lower transition

operator by Lemma 26. Recall from (LT5) that min 𝑔 ≤ min(𝐼 + 𝛿𝑄̂) ≤ max(𝐼 + 𝛿𝑄̂)𝑔 ≤ max 𝑔 for all 𝑔 in

L (X̂ ). By repeatedly applying these inequalities, we obtain for all 𝑛 in N0 that

min 𝑓L ≤ min(𝐼 + 𝛿𝑄̂)𝑛𝑓L ≤ min(𝐼 + 𝛿𝑄̂)𝑛+1𝑓L ≤ max(𝐼 + 𝛿𝑄̂)𝑛+1𝑓L ≤ max(𝐼 + 𝛿𝑄̂)𝑛𝑓L ≤ max 𝑓L.

From this, we infer that {min(𝐼 + 𝛿𝑄̂)𝑛𝑓L}𝑛∈N0
is a bounded, non-decreasing sequence of real numbers, and

therefore this sequence converges to some real number by the Monotonous Convergence Theorem. If 𝑄 is
furthermore irreducible, then it follows immediately from Lemma 44 and Corollary 43 that (𝐼 + 𝛿𝑄̂)𝑛𝑓L
converges to a constant function as 𝑛 approaches +∞.

Theorem 13. Consider an ergodic transition rate matrix 𝑄 and a lumping map Λ: X → X̂ . Then for all
𝒜 ⊆ 𝒫(X̂ )6 and 𝑓 in L (X ),

min{⟨𝜋̂, 𝑓L⟩ : 𝜋̂ ∈ D𝒜} ≤ ⟨𝜋∞, 𝑓⟩ ≤ max{⟨𝜋̂, 𝑓𝑈 ⟩ : 𝜋̂ ∈ D𝒜}

with
D𝒜 := {𝜋̂ ∈ D(X̂ ) : (∀𝐴 ∈ 𝒜) ⟨𝜋̂, 𝑄̂I𝐴⟩ ≤ 0}.

6Here and in the remainder, we denote the power set of the set 𝑆 by 𝒫(𝑆).
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Proof. Recall from the beginning of the proof of Theorem 12 that we only need to prove the left inequality
of the stated. Furthermore, recall from Eqn. (F.4) that

⟨𝜋∞, 𝑓⟩ ≥ ⟨𝜋∞, 𝑓L ∘ Λ⟩.

Note that

⟨𝜋∞, 𝑓L ∘ Λ⟩ =
∑︁
𝑥∈X

𝑓L(Λ(𝑥))𝜋∞(𝑥) =
∑︁
𝑥̂∈X̂

𝑓L(𝑥̂)
∑︁
𝑥∈𝑥̂

𝜋∞(𝑥) =
∑︁
𝑥̂∈X̂

𝑓L(𝑥̂)𝜋̂∞(𝑥̂) = ⟨𝜋̂∞, 𝑓L⟩,

where 𝜋̂∞ : X̂ → R : 𝑥̂ ↦→
∑︀

𝑥∈𝑥̂ 𝜋∞(𝑥). Combining the previously obtained inequality with the above
equality yields

⟨𝜋̂∞, 𝑓L⟩ ≤ ⟨𝜋∞, 𝑓⟩.

Hence, the stated follows if 𝜋̂∞ is contained in D̂𝒜.
We now set out to prove this using the equilibrium condition of Eqn. (24). To that end, we observe that

it suffices to verify that for all 𝐴 in 𝒜,
⟨𝜋̂∞, 𝑄̂I𝐴⟩ ≤ 0.

Therefore, we fix an arbitrary 𝐴 in 𝒜. By repeatedly applying Eqn. (24), we obtain

0 =
∑︁
𝑥̂∈𝐴

∑︁
𝑥∈𝑥̂

∑︁
𝑦∈X

𝜋∞(𝑦)𝑄(𝑦, 𝑥).

We now reorder the summations, to yield

0 =
∑︁
𝑦∈X

𝜋∞(𝑦)
∑︁
𝑥̂∈𝐴

∑︁
𝑥∈𝑥̂

𝑄(𝑦, 𝑥) =
∑︁
𝑦∈X

𝜋∞(𝑦)
∑︁
𝑥∈X

𝑄(𝑦, 𝑥)[I𝐴 ∘ Λ](𝑥) =
∑︁
𝑦∈X

𝜋∞(𝑦)[𝑄(I𝐴 ∘ Λ)](𝑦)

≥
∑︁
𝑦∈X

𝜋∞(𝑦)[𝑄̂I𝐴](Λ(𝑦)) =
∑︁
𝑦∈X̂

[𝑄̂I𝐴](𝑦)
∑︁
𝑦∈𝑦

𝜋∞(𝑦) =
∑︁
𝑦∈X̂

[𝑄̂I𝐴](𝑦)𝜋̂∞(𝑦)

= ⟨𝜋̂∞, 𝑄̂I𝐴⟩,

where the inequality follows from Lemma 30.
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