Decide quicker with Total Choice functions

Arne Decadt

Arne.Decadt@UGent.be

Setting & Objective

We consider a vector space \mathscr{V} , which we also call the option space—things we can choose. The set \mathcal{Q} contains all *finite* sets of options. A choice function $C: \mathcal{Q} \to \mathcal{Q}$ is a function that chooses by mapping sets to their (not strict) subsets. With some values of the choice function $C(A_1), C(A_2), ...$ as information, we want to choose from a given set A in a way that is coherent with the previous choices.

A coherent choice function C is called total if $0 \notin C$ $C(\{0, u, -u\})$ for any $u \in \mathscr{V} \setminus \{0\}$ or equivalently if $\{u, -u\} \in K$ for it's corresponding SODOS *K*.

A coherent SODOS K is called mixing if for any $A \in K$, it follows from $B \subseteq A \subset \text{posi}(B)$ that $B \in K$.

E-admissibilit

choice function C chooses under E-If admissibility, then there exists a set of precise linear previsions \mathcal{P} such that

 $C(A) = \{ u \in A \colon (\exists P \in \mathscr{P}) (\forall v \in A) P(u) \ge P(v) \}.$

Foundations Lab for imprecise probabilities, Ghent University, Belgium

Coherence of choice functions

- We call a choice function C coherent if and only if we have for all $A, B \in \mathcal{Q}$:
- $C_1.A \neq \emptyset \Rightarrow C(A) \neq \emptyset;$
- $C_2.C(\{0,v\}) = \{v\} \text{ for all } v \in \mathscr{V}_{>0};$
- C₃. a. If $A \subseteq B$, then $C(B) \cap A \subseteq C(A)$; b. If $C(A) \subseteq B \subseteq A$, then C(A) = C(B);
- C₄. a. If $0 \in C(A \cup \{u\})$, then $0 \in C(A \cup \{\lambda u\})$; b. $C(A+B) \subseteq C(A) + C(B)$.

Minkowski addition: $A + B := \{a + b : a \in A, b \in B\}$ for all $A, B \in \mathcal{Q}$.

 K_1 . $\emptyset \notin K$;

E-admissibility \Rightarrow Totality

With E-admissibility, we can have that $\mathscr{P} = \{P\}$ and P(u) =P(-u) = P(0) for some $u \in \mathscr{V} \setminus$ $\{0\}$, such that $C(\{0, u, -u\}) =$ $\{0, u, -u\}.$

Å Archimedeanity

For any $A \in \mathcal{Q}$, if $A \in \text{Ex}\{B \varepsilon(B): B \in K$ for all $\varepsilon \in \mathbb{R}_{>0}^K$, then also $A \in K$.

Natural vs. total extension

of \mathscr{A} and go back using the equivalence. Without totality: $S \in Ex(\mathcal{A}) \Leftrightarrow$ $\mathscr{V}_{>0} \neq \emptyset$ or for every $(u_1, ..., u_n)$ $\times_{k=1}^{n} B_k$ there is some $s \in S \cup S$ and $\lambda_1 \geq 0, ..., \lambda_n \geq 0$, not all ze for which $\lambda_1 u_1 + \ldots + \lambda_n u_n \leq s$. Worstcase, we will have |S| lin programs per $(u_1, ..., u_n)$.

GHENT UNIVERSITY

Sets of desirable option sets

Every coherent choice function C has a corresponding coherent SODOS K and vice versa. They are linked by the equivalence $u \notin C(A) \Leftrightarrow A - u \in K$ for any $u \in A$ and $A \in \mathcal{Q}$. A SODOS $K \subseteq \mathcal{Q}$ is coherent if it satisfies the following axioms for all $A, B \in \mathcal{Q}$

 K_2 . {v} $\in K$ for all $v \in \mathscr{V}_{>0}$;

- K₃. a. If $A \in K$ and $A \subseteq B$, then $B \in K$;
 - b. If $A \in K$, then $A \setminus \{0\} \in K$;
- K₄. a. If $A \in K$ and $\lambda \in \mathbb{R}_{>0}$, then $(A \setminus \{u\}) \cup$ $\{\lambda u\} \in K;$
 - b. If $A, B \in K$, $u \in A$ and $v \in B$, then $(A \setminus \{u\}) \cup$ $(B \setminus \{v\}) \cup \{u+v\} \in K.$

The idea is to take the information—the assessment—we have and transform it into an assessment $\mathcal{A} = \{B_1, ..., B_n\} \subseteq \mathcal{Q}$ in terms of SODOS's. Then we can take the natural extension Ex and the total extension Ex_{tot}

$S\cap$	With totality: $S \setminus \{0\} = \{v_1,, v_m\}$
$) \in$	$S \in \operatorname{Ex}_{tot}(\mathcal{A}) \Leftrightarrow \text{ for every}$
$\{0\}$	$(u_1,,u_n) \in \times_{k=1}^n B_k$ there is
ero,	some $\lambda_1 \geq 0,, \lambda_{n+m} \geq 0$, not all
	zero, for which $\lambda_1 u_1 + + \lambda_n u_n \leq$
near	$\lambda_{n+1}v_1 + \ldots + \lambda_{n+m}v_m$. Only one
	linear program per $(u_1,, u_n)$.