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Good afternoon everyone. My name is Arne and my promotors are Gert and
Jasper. And I want to tell you about how you can use Monte Carlo simulation in
the context of imprecise probabilities.
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SettingLike the title says, we combine Classical Monte Carlo and Imprecise probability
For a Monte Carlo part, we want to proceed analogous and take a sequence of
samples, compute their function values and then take the average. For the Im-
precise probability part, well instead of estimating for a single probability meas-
ure, we look at a set of probability measures which we will parameterise by
parameter t, and then try to calculate the corresponding lower expectation.
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Estimators for lower expectationsNow if there are two probability measures, it is possible to do two independent

Monte Carlo simulations and pick the lowest one and almost trivially – by the

law of large numbers – this will converge to the right value.
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Estimators for lower expectationsSo the problem arises when you have an infinite set of probability measures. If

you try the same independent sampling, you encounter many problems. First of

all, you can’t do Monte Carlo for all points, so you would have to define a grid.

Secondly, if you have a lot of simulations, the probability will be higher that one

of them is an outlier that skews your estimate and thirdly, if you try get a higher

accuracy, you need to make your grid finer, but for each new grid point you have

to start over. So that is not what they do in practice.
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1. Fix sampling P

2. Find ft such that EP (ft) = EPt (f )

→ Importance Sampling

EP(f )
?≈ inf
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Estimators for lower expectationsIn practice, they will fix a sampling probability measure, not necessarily in our
set of probability measures. And then for every parameter t we find functions ft
that have this property. Probably the most popular way to do it – if the probabil-
ity measures have densities – is importance sampling. This is popular, because
often the function f is hard to compute and this technique makes that the func-
tion evaluation only has to be calculated once, as Thomas Fetz also discussed
yesterday.
There are other ways to choose these functions when the probability measures
do not have densities.

But now the question is again, can we approximate the lower expectation by

taking the infimum of the expectations? Well we have looked at the properties

of this estimator, the bias and the consistency.
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BiasSo what is the bias of this lower expectation estimator? Well it underestimates

the real value. This is a good thing, as the estimate will be conservative. Now

how the bias vary with the sample size? Well it appears that can only get closer

to the lower expectation. So it is bounded above and increasing; that sounds

like a theorem from calculus; so it has a limit. But is it the right one? Is the

estimator asymptotically unbiased? The answer is "not necessarily". And we

investigated a stronger notion than asymptotically unbiased, because what we

prefer in practice is consistency. It’s not the expectation that should go to the

right value, we want that our own simulation goes to the right value.
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consistencyWhen you say consistency, you should specify which consistency, convergence

in probability or convergence almost surely. The second one is stronger so we

chose this one. The first one should not be forgotten though, as it is often easier

and is practical to estimate the rate of convergence.
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Consistency



Consistency

When is this the case?

• restrictions on size of T
• continuity conditions for ft

finite T

Rn ⊃ T compact
pt(x) cont. diff. in (x; t)

EP (supt∈T pt) < +∞

Rn ⊃ T bounded
‖∇tpt(x)‖ < F (x)

for all › > 0 : T has a finite ›-cover
|pt(x)− ps(x)| 6 d(s; t)F (x)

easier but more restrictive more general but more complex
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Practical Example

q
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“
I{g(X)>0}

”

Fetz, T., & Oberguggenberger, M. (2016). Imprecise random variables, random sets, and
Monte Carlo simulation.
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