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We estimate lower expectations EP( f ) = inft∈T EPt( f ) for some set of probability measures P = {Pt : t ∈ T} and
do this using the technique of Monte Carlo. In the classical case, Monte Carlo says that for large sample sizes n
we have EP( f ) ≈ ∑

n
k=1 f (XP

k ) = ÊP( f ). We consider imprecise extensions of such estimators. In this poster we will
use an example where f (x) = cos(2x), T = [−2,2], Pt ∼ N(t,1). For this example it can be calculated exactly that
EP( f ) = −e−2 = E

Pπ
2 ( f ) = E

P−π
2 ( f ).

Problem Statement

A straightforward attempt at an
estimator is to take a repre-
sentative finite subset T ′ of T
and do independent classical
Monte Carlo simulations for ev-
ery one of them and take their
minimum.

ÊP( f ) = min
t∈T ′

ÊPt( f )

Let m be the number of ele-
ments in T ′. For m > 1, we can
choose T ′ equidistant from −2
to 2.

Naive Method

We consider estimators of the form

ÊP
n ( f ) = inf

t∈T

1
n

n

∑
k=1

ft(XP
k ),

for chosen functions ft for which EP( ft) = EPt( f ).

We give two examples of such functions:

1. Inverse transform sampling: P is the uniform distribution on (0,1). Con-
sider the quantile function F†

Pt
(the pseudo-inverse of the cdf). Now if

ft = f ◦F†
Pt

on (0,1), then we have the desired property.

2. Importance sampling: Suppose the probability measures P and Pt have
densities p and pt respectively for every t ∈ T , and for every t ∈ T : supp p⊃
supp pt. If ft = f · pt

p on supp p, then we have the desired property.

Transform Method

q
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Thomas Fetz and Michael Oberguggen-
berger used importance sampling to es-
timate the upper failure probability of a
beam on a spring of unknown stiffness X .
They assume X distributed normally with
with mean and standard deviation (µ ,σ)
in [µ , µ ]× [σ ,σ ].

The objective can be rephrased in our
context of lower expectations as

P(g(X) 6 0) = 1−EP
(
Ig(X)>0

)
.

Our method proves that their estima-
tor is consistent.

Example from Literature

1. The bias is negative and the absolute bias
decreases with n:

E
(

ÊP
n−1( f )

)
6 E

(
ÊP

n ( f )
)
6 EP( f ).

2. Observation: the absolute bias increases
with the size of T .

In the paper we prove slightly more gen-
eral results for estimators that are not
measurable.

Bias

Intuitively, consistency can be guaranteed when T is ‘small’ enough and if ft is ‘smooth’ enough. In
the paper we have conditions for the general setting, but here we will – for brevity and simplicity – only
discuss the case of importance sampling. In the following we assume that EP(F) < +∞ and for some theo-
rems pt are required to have an extension to values of t outside of T . For the exact theorems, we refer to the paper.

T is finite
Rn ⊃ T compact

pt(x) cont. diff. in (x, t)
EP(supt∈T |pt|) <+∞

Rn ⊃ T bounded
‖∇t pt(x)‖< F(x)

T has a finite ε-cover for all ε > 0
|pt(x)− ps(x)|6 d(s, t)F(x)

easier but more restrictive more general but more complex

Consistency

For the importance sampling P ∼ N(0,1).
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Naive Simulations m=10
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Importance Sampling Simulations
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Example Simulations

We will look at an importance sampling estimator with central density p = 1
2I[0,1] and a countable set of densities{ 2k

∑
`=1

a`I[`−1
k ,`k

] : k ∈ N and (a1, . . . ,a2k) is a binary sequence with the same number of zeros and ones
}

.

For a sample of size n it is always possible to choose a binary sequence of at most size 2n, such that the corresponding
density is zero on the sampled values.
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Example of No Consistency


