Monte Carlo Estimation for Imprecise Probabilities: Basic Properties

Arne Decadt, Gert de Cooman, Jasper De Bock

{Arne.Decadt,Gert.deCooman,Jasper.DeBock}@UGent.be

FLip, Belgium

Let *m* be the number of elements in T' . For $m > 1$, we can choose T' equidistant from -2 to 2.

Problem Statement

We estimate lower expectations $\underline{\mathrm{E}}^{\mathscr{P}}(f)=\inf_{t\in T}\mathrm{E}^{P_t}(f)$ for some set of probability measures $\mathscr{P}=\{P_t\colon t\in T\}$ and do this using the technique of Monte Carlo. In the classical case, Monte Carlo says that for large sample sizes *n* we have $\operatorname{E}^P(f) \approx \sum_k^n$ $_{k=1}^{n} f(X_k^P)$ $\hat{R}_k^P)=\hat{\mathrm{E}}^P(f).$ We consider imprecise extensions of such estimators. In this poster we will use an example where $f(x) = cos(2x)$, $T = [-2, 2]$, $P_t \sim N(t, 1)$. For this example it can be calculated exactly that $\underline{\mathrm{E}}^{\mathscr{P}}(f) = -\mathrm{e}^{-2} = \mathrm{E}$ *P*^π $\frac{\pi}{2}(f) = \mathrm{E}$ *P*− $\frac{\pi}{2}(f)$.

A straightforward attempt at an estimator is to take a representative finite subset T' of T and do independent classical Monte Carlo simulations for every one of them and take their minimum.

> $\underline{\hat{\mathrm{E}}}^{\mathscr{P}}(f) = \min_{\underline{\cdot}}% \mathbb{E}_{\underline{\cdot}}% \mathbb{E}_{\underline{\cdot}}% \mu(\underline{\cdot},\underline{\cdot})$ $t \in T'$ $\hat{\mathrm{E}}^{P_t}(f)$

berger used importance sampling to estimate the upper failure probability of a beam on a spring of unknown stiffness *X*. They assume *X* distributed normally with with mean and standard deviation (μ, σ) in $[\mu,\overline{\mu}]\times[\underline{\sigma},\overline{\sigma}].$

The objective can be rephrased in our context of lower expectations as $\overline{P}(g(X) \leqslant 0) = 1 - \underline{\mathrm{E}}^{\mathscr{P}}\big(\mathbb{I}_{g(X)>0}\big).$

We consider estimators of the form

 $\hat{\mathrm{E}}_{n}^{\mathscr{P}}$ $\frac{p}{n}(f) = \inf_{t \in T}$ *t*∈*T* 1 *n n* ∑ *k*=1 $f_t(X_k^P$ $\binom{P}{k}$,

for chosen functions f_t for which $E^P(f_t) = E^{P_t}(f)$.

We give two examples of such functions:

E $\sqrt{ }$ $\hat{\mathrm{E}}_{n-}^{\mathscr{P}}$ *n*−1 (*f*) $\Big) \leqslant E \Big($ $\hat{\mathrm{E}}_{n}^{\mathscr{P}}$ $_{n}^{\mathscr{P}}(f)$ $\Big) \leqslant \underline{\mathrm{E}}^{\mathscr{P}}(f).$

Consistency

- 1. Inverse transform sampling: *P* is the uniform distribution on (0, 1). Consider the quantile function *F* † *Pt* (the pseudo-inverse of the cdf). Now if $f_t = f \circ F_P^\dagger$ *Pt* on $(0, 1)$, then we have the desired property.
- 2. Importance sampling: Suppose the probability measures *P* and *P^t* have densities p and p_t respectively for every $t \in T$, and for every $t \in T$: supp $p \supset T$ supp p_t . If $f_t = f \cdot \frac{p_t}{p}$ *p* on supp *p*, then we have the desired property.

Thomas Fetz and Michael Oberguggen-

Our method proves that their estimator is consistent.

1. The bias is negative and the absolute bias decreases with *n*:

In the paper we prove slightly more general results for estimators that are not measurable.

Intuitively, consistency can be guaranteed when *T* is 'small' enough and if *f^t* is 'smooth' enough. In the paper we have conditions for the general setting, but here we will – for brevity and simplicity – only discuss the case of importance sampling. In the following we assume that $\mathrm{E}^P(F)<+\infty$ and for some theorems *p^t* are required to have an extension to values of *t* outside of *T*. For the exact theorems, we refer to the paper.

For the importance sampling $P \sim N(0, 1)$.

Bias

Example Simulations

For a sample of size *n* it is always possible to choose a binary sequence of at most size 2*n*, such that the corresponding density is zero on the sampled values.

Example of No Consistency

We will look at an importance sampling estimator with central density $p = \frac{1}{2}$ $\frac{1}{2} \mathbb{I}_{[0,1]}$ and a countable set of densities

 $\int \frac{2k}{\sqrt{2k}}$ ∑ $\ell=1$ $a_\ell \mathbb{I}_{\lceil \frac{\ell-1}{2} \rceil}$ $\frac{-1}{k}, \frac{\ell}{k}$ *k* $i_0: k \in \mathbb{N}$ and (a_1, \ldots, a_{2k}) is a binary sequence with the same number of zeros and ones $\bigg\}$.