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Abstract
We describe Monte Carlo methods for estimating lower
envelopes of expectations of real random variables. We
prove that the estimation bias is negative and that its
absolute value shrinks with increasing sample size. We
discuss fairly practical techniques for proving strong
consistency of the estimators and use these to prove
the consistency of an example in the literature. We also
provide an example where there is no consistency.
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1. Introduction

Monte Carlo simulation is a technique widely used for
obtaining numerical estimates for in principle anything
that can be represented as a sum or an integral. Multiple
research fields have proposed to extend the Monte Carlo
method towards solving optimisation problems. Both the
fields of stochastic optimisation and empirical processes
have for example studied the properties of such generalised
Monte Carlo estimators, including their bias [2], their con-
sistency and a version of the central limit theorem [13, 16]
for them. In the field of imprecise probabilities, Monte
Carlo based methods have also received considerable atten-
tion [4, 5, 7, 9, 11, 14, 17, 18], but with the exception of
the discussion in [14], the theoretical properties of the cor-
responding estimators have not been investigated in much
detail. We here address this by studying the bias and con-
sistency of a large class of imprecise Monte-Carlo based
estimators, including the important special case of impre-
cise Monte-Carlo estimators that are based on importance
sampling [5, 14, 17, 18].

The optimisation or extremum problem we typically en-
counter in the imprecise probabilities field is calculating
the lower expectation E( f (X))—or the upper expectation
E( f (X)) = −E(− f (X))—of a Borel measurable map f
of a real random variable X , whose distribution P is only

known to belong to a set P .1 To find this lower expectation

E( f (X)) = inf
P∈P

EP( f ),

we have to minimise the expected value EP( f )—a sum or
an integral that would typically be estimated using Monte
Carlo simulation—over a set of distributions P . A fairly
straightforward—but naive—method for estimating this
infimum consists in choosing a finite subset P ′ of P ,
taking independent samples for each probability measure
P ∈P ′, using them to get to a Monte Carlo estimate for
EP( f ), and finally finding the minimum of the Monte Carlo
estimates. The problem with this method is that the larger
the set of probabilities P ′, the larger the bias it will tend
to produce, as we argue in Section 2.2.

To reduce this bias, we would typically want to introduce
correlation between the estimates of EP( f ) for different
P ∈P . One way to do this is to sample from a single
distribution only, and to use these samples to calculate the
corresponding samples for the distributions in the set P .
We will therefore in this paper study estimators of the form

ÊP
n ( f ) = inf

t∈T

1
n

n

∑
k=1

ft(XP
k ), (1)

where we take independent samples XP
k from a single dis-

tribution P and transform the results into samples for other
distributions, parametrised by a set T —this transforma-
tion, as we shall see further on, accounts for the use of
the maps ft rather than the map f in the estimator (1). A
word on terminology is in order here. We will be careful
in this paper to distinguish between functions and maps
on some domain; maps are always defined on all of the
domain, whereas functions may, but need not be, defined
only on a part of the domain.

The decomposition of the problem into a classical ran-
dom variable XP and a parametric part T is essential for our
results, and is also present in the literature [1, 14]. We show
how to prove consistency for this fairly general type of es-
timators, and we give sufficient conditions for consistency
that are relatively easy to check.

1. More generally, X could be a real random vector, and f a vector-
valued map, but we will only consider the scalar case here.
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The plan of the paper is as follows. First, in Section 2,
we describe the theoretical setting of the discussion, and
explain in some detail why we use estimators of the general
form (1). We discuss two particular methods for generating
samples of sufficient generality, where the resulting estim-
ator has this general form. In Section 3 we study a number
of statistical properties of estimators of type (1): their bias
and consistency. To show that the results we derive are
practically useful, we include a discussion of two examples,
in Section 4. In the first example, we show how to actually
prove the consistency of an estimator encountered in the
literature [5]. The second example is a case where there is
no consistency, provably. In the Conclusion, we highlight
our main findings, and provide pointers to future work.

In order not to interrupt the flow of the discussion too
much, we have moved all proofs to the Appendix.

2. Monte Carlo Estimation

2.1. Notation and Theoretical Setting

Let us begin by sketching the theoretical background, and
fixing the basic notation.

We consider the measurable space (R,B), where B is
the Borel σ -field on the set R of all reals. For any given
probability measure P on (R,B), we denote by XP := id—
the identity map on R—the corresponding real random
variable on the probability space (R,B,P), and we say that
XP has distribution P. The real random variable XP has
a right-continuous cdf (cumulative distribution function)
F : R→ [0,1], defined by F(x) := P(X ≤ x) = P((−∞,x])
for all x ∈R. XP will be called continuous if its distribution
has a density—is absolutely continuous with respect to the
Lebesgue measure on the measurable space (R,B).

For the purposes of sampling, the single probability
space (R,B,P) is extended to the canonical (independ-
ent) product space (R∞,B∞,P∞), as for instance described
in [3, 16]. We now identify the countable infinity of real
random variables XP

k on (R∞,B∞,P∞), each of which is
the projection map from the Cartesian product R∞ to its k-
th component space R. The infinite sequence (XP

1 ,X
P
2 , . . .)

of real random variables XP
k is then also a random variable

on the probability space (R∞,B∞,P∞), and is also denoted
by XP

1:∞; a finite subsequence (XP
1 , . . . ,X

P
n ) is denoted by

XP
1:n. We denote by E∞ the expectation operator associated

with this product probability space.
We also consider a parameter set T that parametrises

a set of probability measures P := {Pt : t ∈ T} such that
each Pt leads to a probability space (R,B,Pt) with generic
real random variables XPt . The corresponding probabil-
ity space for its sequences of samples is (R∞,B∞,P∞

t ).
The product space for all these sequences together, so the
product of all the (R∞,B∞,P∞

t ) over all t ∈ T , is denoted
by (R∞

T ,B
∞
T ,P

∞
T ), with associated expectation operator E∞

T .

2.2. Imprecise Monte Carlo Estimation

As mentioned in the Introduction, in a so-called imprecise
Monte Carlo simulation we want to estimate the lower ex-
pectation E( f (X)) = infP∈P EP( f ) of some Borel measur-
able real-valued map f of a real random variable X , whose
distribution P is only known to belong to a set P .

To get some grip on this problem, let us first look at how
we would typically proceed in the so-called classical case,
where P = {P} is a singleton.

We now consider the real random variables XP
k . We also

consider an ‘P-integrable’ Borel measurable map f : R→
R, where ‘P-integrable’ means that EP(| f |) < +∞. We
define the sample mean estimator ÊP

n for the expectation
EP( f ) as the real random variable

ÊP
n ( f ) :=

1
n

n

∑
k=1

f (XP
k ).

This real random variable on (R∞,B∞,P∞) is clearly a
map of the real random variables XP

1 , . . . ,X
P
n , but we will

suppress their appearance in the notation for ÊP
n ( f ). It is a

classical result that ÊP
n is an unbiased estimator for EP( f ),

meaning that E∞
(
ÊP

n ( f )
)
= EP( f ).

In an imprecise probabilities setting, we consider a set of
probability measures P on the measurable space (R,B).
As explained in Section 2.1, we will typically use a set T to
index the probability measures in P , so P = {Pt : t ∈ T}.
Here too, the Borel measurable map f : R→ R will be
assumed throughout to be ‘P-integrable’, which we from
now on take to mean that EP(| f |) := supt∈T EPt (| f |)<+∞.
It is easy to see that this implies that f is then P-integrable
for every P ∈P , and that

−∞ < EP(−| f |)≤ EP( f )≤ EP( f )≤ EP(| f |)<+∞.

In a naive first attempt, one might consider the following
estimator for EP( f ):

ÊP,n
n ( f ) := inf

t∈T
ÊPt

n ( f ) = inf
t∈T

1
n

n

∑
k=1

f (XPt
k ). (2)

This is a(n extended) real map on a suitably defined product
space, such as for instance (R∞

T ,B
∞
T ,P

∞
T ). In practice, how-

ever, this type of estimator has a number of undesirable
properties. First of all, it is computationally inefficient.
Since all currently available sampling methods sample with
respect to a single distribution, taking an infimum would
mean that we need to take samples for each distribution
in at least a representative enough part of P . Suppose we
choose m probability measures in P , for each of which we
take a sample of size n, then we have to take mn samples
in total. If we increase the number of sampled distributions
in P by one, say, to get a better approximation, then the
number of samples to take will increase by n.

Secondly, adding new distributions in P to the sampling
procedure—in an attempt to get to a better approximation—
will not only increase the computational cost, but it can
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produce the adverse effect of increasing the absolute value
of the bias of the resulting estimator (2). To see why this is
so, we give an example for a simplified case. Consider a set
of probability measures P = {Pt : t ∈ T} that all associate
the same expectation with a given map f , so we can use
EP( f ) to denote this common expectation: EP( f ) = EPt ( f )
for all t ∈ T . Take two finite disjoint subsets H and ∆H of
T and let us consider the approximations—with obvious
notations—ÊH,n

n ( f ) and ÊH∪∆H,n
n ( f ) of ÊP,n

n ( f ), where we
clearly expect, conceptually, ÊH∪∆H,n

n ( f ) to be the better
approximation. However, this turns out not to be the case,
since, again with obvious notations,

ÊH∪∆H,n
n ( f ) = min

{
ÊH,n

n ( f ), Ê∆H,n
n ( f )

}
,

so it follows that2

E∞
T

(
ÊH∪∆H,n

n ( f )
)
6 E∞

T

(
ÊH,n

n ( f )
)

and, with a similar argument,

E∞
T

(
ÊH,n

n ( f )
)
6 inf

t∈H
E∞

T

(
ÊPt

n ( f )
)
= EP( f ) = EP( f ).

We see that the bias of our estimator, which is already
non-positive, can only become more negative.

The proposed solution to the computational efficiency
problem consists in sampling from a single distribution P
only, and then to reuse the samples (XP

1 , . . . ,X
P
n ) in some

way, and to transform them into the desired samples for
the distributions Pt , t ∈ T . This will typically also produce
correlation between the estimators ÊPt

n ( f ) for different t ∈
T , and so hopefully reduce the bias problem as well.

A first way to achieve this is the method of inverse trans-
form sampling, introduced in Section 2.3, where we take
samples from a uniform distribution on the open real unit
interval (0,1), then use the quantile functions of the distri-
butions Pt , t ∈ T to transform these samples into samples
for the real random variables XPt , and use these transformed
samples to approximate the lower expectation. A second
implementation of this same idea is importance sampling,
discussed in Section 2.4, and used often when the real
random variables are continuous. Here, the reuse is imple-
mented by using weight factors, dependent on the Pt , to
rescale the terms in the sample mean.

Interestingly, the exact form of the estimator does not
matter much for the theoretical analysis further on, as long
as there is a sample XP

1:∞ taken from some probability meas-
ure P, and Borel measurable maps ft : R→ R such that
EPt ( f ) = EP( ft) and also EPt (| f |) = EP(| ft |), for every
t ∈ T . Since it follows from its assumed P-integrability
that f is also Pt -integrable for all t ∈ T , this implies that ft
is P-integrable for all t ∈ T . We will show in the following

2. The expectation E∞
T is taken in a suitable product space, such as

(R∞
T ,B

∞
T ,P

∞
T ).

sections how to find these measurable maps ft in both of
the above-mentioned cases.

The estimator for the lower expectation can then be writ-
ten as

ÊP
n ( f ) := inf

t∈T

1
n

n

∑
k=1

ft(XP
k ) = inf

t∈T
ÊP

n ( ft). (3)

This estimator is an extended real-valued map on R∞ that,
due to the presence of the infimum, is not necessarily meas-
urable with respect to the σ -field B∞. If T is a compact
subset of Rn and the maps ft are continuous in t, measur-
ability will still be guaranteed. This is the case considered
by Troffaes in [14]. One of the aims of the present paper is
to go beyond this special case, and to allow for the fact that
ÊP

n ( f ) need not be measurable in general. In order to deal
with this complication mathematically, we need to extend
the expectation operator E∞ associated with the probability
measure P∞—and defined on the measurable maps—to its
(inner and) outer expectation(s) [16] defined on arbitrary
extended real-valued maps h:3

E∞
(h) :=

inf{E∞(g) : h 6 g ∈ RR∞

measurable and E∞(g) exists},

where RR∞

denotes the set of all maps from R∞ to R, where
‘E∞(g) exists’ is taken to mean that at least one of E∞(g+)
and E∞(g−) is finite, and where we introduced the notations
g+ := max{g,0} and g− := max{−g,0}. The set R :=R∪
{−∞,+∞} is the set of the extended real numbers. The
inner expectation E∞ is defined by E∞(h) := −E∞

(−h).
Interestingly, the following lemma guarantees the existence
of a so-called minimal measurable cover, which we will
denote with a superscript star.4

Lemma 1 ([16, Lemma 1.2.1]) For any map f : R∞→R,
there is a measurable map f ∗ : R∞→ R with

(i) f ∗ > f ;

(ii) for any measurable g : R∞→ R such that g > f , it
holds that g > f ∗ a.s.

For any such f ∗ it holds that E∞
( f ) = E∞( f ∗) provided

that E∞( f ∗) exists, which is certainly true if E∞
( f )<+∞ .

2.3. Inverse Transform Sampling

For univariate distributions, the problem of sampling from
a given distribution has many known solutions. One of
the most commonly used techniques is inverse transform
sampling, which we now briefly describe. Many known
algorithms can generate pseudo-random numbers in the

3. See also [6, 15] for similar ideas.
4. The formulation in [16, Lemma 1.2.1] is slightly off, as a simple

check of the proof attests: the ‘g > f a.s.’ there must be replaced by
‘g > f ’, as we do here.

3
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open real unit interval (0,1), i.e. produce samples from
the uniform distribution P on (0,1). We use the generic
notation U for a real random variable that is uniformly
distributed on (0,1). We define the quantile function, or
pseudo-inverse, F† : [0,1]→ R, of a given cdf F : R→
[0,1] by

F†(x) := inf{y ∈ R : x 6 F(y)}, x ∈ [0,1]. (4)

We prove in the Appendix that F†(U) is a real random
variable with cdf F . This means we can use samples from
the uniform distribution on (0,1) to generate samples from
a distribution with cdf F .5 This is exactly what we need
to find the maps ft in the previous section. Indeed, let
FPt denote the cdf of the distribution Pt , t ∈ T , then with
samples U1:∞ from the uniform distribution P on (0,1) we
can construct the following estimator:

ÊP,U
n ( f ) := inf

t∈T

1
n

n

∑
k=1

f (F†
Pt
(Uk)). (5)

For every t ∈ T , we now consider the function ft := f ◦F†
Pt

,
which is strictly speaking only defined—and therefore a
map—on the open real unit interval (0,1). But since this
interval has measure one for the uniform distribution P
on (0,1), there is a collection of Borel measurable real
maps that extend ft to all of R and that are all almost
surely equal with respect to the uniform distribution P
on (0,1). We will pick one such member of this collection,
and also denote it by ft . This is the measurable map ft
that we promised to identify for Eq. (3): it indeed follows
from the discussion above that EU ( ft) = EPt ( f ), and since
| ft |= | f | ◦F†

Pt
, that also EU (| ft |) = EPt (| f |). The estimator

in Eqs. (3) and (5) does not depend on the actual choice of
the extension ft , as all extensions coincide on (0,1).

2.4. Importance sampling

We now give a very brief account of Troffaes’s [14] dis-
cussion on how to use importance sampling to do Monte
Carlo simulations of lower expectations in an imprecise
probabilities setting. We consider a set P of probability
measures that are absolutely continuous with respect to the
Lebesgue measure. For every probability measure Pt ∈P ,
we denote its corresponding density by pt . For importance
sampling we also need (another), so-called central, probab-
ility measure P that is also absolutely continuous, and has
density p. This P need not be a member of P , but we do
assume that its support supp p is a superset of the supports
supp pt for all Pt ∈P . Importance sampling is based on

5. This technique can be extended to the independent multivariate case
by simple repetition. The dependent case is more involved, but still
feasible.

the fact that the lower expectation can then be written as6

EP( f ) = inf
t∈T

∫
supp p

f (x)
pt(x)
p(x)

p(x)dx.

Inspired by the classical Monte Carlo estimator, we define
the importance sampling estimator, as

ÊP/P
n ( f ) := inf

t∈T

1
n

n

∑
k=1

f (XP
k )

pt(XP
k )

p(XP
k )

= inf
t∈T

1
n

n

∑
k=1

ft(XP
k ),

(6)
where we defined, for any t ∈ T , the real function ft by

ft := f
pt

p
. (7)

Observe that ft is only defined on the measurable set supp p,
which has measure one for the central distribution P. Here
too, ft can be extended to a collection of Borel measurable
real maps defined on all of R that are all almost surely
equal with respect to P. We will again pick one member of
this equivalence class, and also denote it by ft . Then indeed
also here

EPt ( f ) =
∫

supp pt

f (x)pt(x)dx

=
∫

supp p
f (x)

pt(x)
p(x)

p(x)dx = EP( ft).

A similar argument shows that also EPt (| f |) = EP(| ft |). Ob-
serve that the estimator in Eqs. (3) and (6) does not depend
on the actual choice of the extension ft , as all extensions
coincide on the range of the XP

k .
In general, finding a good central probability measure P

is an important but difficult problem. Troffaes [14] proposes
to use iterated importance sampling as a potential solution.

3. Estimator Properties
Now that the most important concepts have been intro-
duced, we investigate the properties of the estimators in the
standard form (3); specialisations to the case of importance
sampling with be discussed in more detail in Section 3.3.
For all theorems and definitions below we consider the
measurable space (R,B) and a set of probability meas-
ures P = {Pt : t ∈ T} such that, for every t ∈ T , (R,B,Pt)
constitutes a probability space. We also consider a prob-
ability measure P on (R,B) that is not necessarily in P
but does constitute a probability space (R,B,P), as well
as some P-integrable Borel measurable map f : R→ R.
This implies that EP

(| f |) < +∞ and therefore, that f
is Pt-integrable for all t ∈ T . On the product probability
space (R∞,B∞,P∞), we define the sequence of real ran-
dom variables XP

1:∞. Finally, we consider a class of Borel

6. Here and in what follows, we use
∫

A h(x)dx to denote the Lebesgue in-
tegral of the measurable map h associated with the Lebesgue measure
on the measurable subset A of the reals.

4
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measurable maps F := { ft ∈ RR : t ∈ T}, such that for
every t ∈ T , maps of the type ft ◦XP

k are measurable. Al-
ternatively and equivalently, we can consider the single
map fT : R×T → R : (x, t) 7→ ft(x). We assume that the
maps ft are chosen in such a way that EP( ft) = EPt ( f ) and
EP(| ft |) = EPt (| f |) for all t ∈ T , so as a consequence, ft is
P-integrable for all t ∈ T . Finally, n and m will typically
denote positive integers.

3.1. Bias

Troffaes [14] correctly states that the literature on imprecise
probabilities has paid little attention to the bias of imprecise
Monte Carlo estimators. Fortunately, much more can be
found in the literature on stochastic programs. The follow-
ing result is, for instance, similar to Theorems 1 and 2 in [8].
The difference is that our estimators involve infima, rather
than minima, so we need to use inner and outer expectations
in the formulation. Our result generalises the lower bound
of [14, Theorem 1] and can also be regarded as an exten-
sion (from 1 sample to n samples) of the one-dimensional
version of [1, Theorem 3].

Theorem 2 (Bias)
Assume that −∞ < E∞

(
inft∈T ft ◦XP

1
)
,7 then

E∞

(
ÊP

n−1( f )
)
6 E∞

(
ÊP

n ( f )
)
6 E∞

(
ÊP

n ( f )
)
6 EP( f ).

This result already guarantees that the bias

E∞

(
ÊP

n ( f )−EP( f )
)

with respect to E∞ converges as n→+∞, since then

E∞

(
ÊP

n−1( f )−EP( f )
)
6 E∞

(
ÊP

n ( f )−EP( f )
)
6 0,

so the bias is non-decreasing and bounded above by zero.
Also the bias

E∞
(

ÊP
n ( f )−EP( f )

)
6 0

with respect to E∞ is bounded from above by zero. Next,
we turn to conditions that guarantee that our estimator is
consistent, and therefore also asymptotically unbiased.

3.2. Consistency

To prove consistency we need to specify the way in which
we want our estimator to converge. We denote almost sure
convergence to zero of a sequence of measurable maps
gn : R∞→ R with respect to the probability measure P∞ as
gn

a.s.−−→ 0. Because the estimator ÊP
n in (3) is not necessar-

ily measurable, due to the presence of an infimum in its
definition, we need to extend the definition of almost sure
convergence to non-measurable maps.

7. It would make sense, for any map h : R→ R, to use the notation
EP(h) := E∞

(
h◦XP

1
)
. The condition could then also be rewritten as

−∞ < EP(inft∈T ft).

Definition 3 ([16, Definition 1.9.1]) A sequence of maps
hn : R∞ → R is said to converge (outer) almost surely to
zero if, for any natural n ∈ N there is some measurable
cover |hn|∗ of |hn| such that |h|∗n

a.s.−−→ 0, meaning that

P∞

(
lim

n→+∞
|hn|∗ = 0

)
= 1.

Troffaes [14] proves that if the class of measurable maps
F = { ft : t ∈ T}, for which EP( ft)=EPt ( f ), is a Glivenko–
Cantelli class for P, then the estimator (3) is consistent. We
will derive a similar, but slightly stronger, result, using a
more general definition of a Glivenko–Cantelli class, in
order to deal with potential non-measurability.

Definition 4 ([16, Section 2.1]) A class Φ of Borel meas-
urable and P-integrable maps φ is called a (strong)
Glivenko–Cantelli class for the probability measure P
whenever (

sup
φ∈Φ

∣∣∣ÊP
n (φ)−EP(φ)

∣∣∣)∗ a.s.−−→ 0. (8)

Our next result then generalises Theorem 6 in [14].

Theorem 5 (Consistency) If F is a (strong) Glivenko–
Cantelli class for the probability measure P, then the estim-
ator ÊP( f ) for EP( f ), as defined in Eq. (3), is (strongly)
consistent, meaning that∣∣∣ÊP

n ( f )−EP( f )
∣∣∣∗ a.s.−−→ 0.

It is not easy to check the criterion in Definition 4 in prac-
tice. Pollard [10] provides sufficient conditions for being
a Glivenko–Cantelli class that may still not be practically
useful immediately, but do constitute the starting point for
more useful tools. Let us take a look at his more direct
approach to proving that a set is a Glivenko–Cantelli set,
using the technique called bracketing.

Theorem 6 ([10, II.2 Thm. 2]) Consider, for each ε >
0, a class Φε := {(φ

ε
,φ ε) : φ ∈ Φ} containing lower

and upper bounds—brackets—for each φ ∈ Φ, where
φ

ε
,φ ε : R→ R are Borel measurable maps and

φ
ε
6 φ 6 φ ε and EP(

φ ε −φ
ε

)
< ε for all φ ∈Φ.

If we can make sure that all Φε , ε > 0 are finite, then Φ is
a Glivenko–Cantelli class for P.

Intuitively, F , and as a consequence P , cannot be too large
or contain too many ‘very different’ maps, as this would
tend to make the number of brackets infinite. To formalise
this intuition, we first define the L1-seminorm ‖·‖P,1 on the
Borel measurable real-valued maps, corresponding to our
probability measure P:

‖·‖P,1 := EP(|·|),

5
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Then we introduce a so-called bracketing number that meas-
ures how large the set F is. Our definition adapts the one
in [16, Definition 2.1.6] to suit our present needs:

Definition 7 Let Φ be a subset of a seminormed space
(N ,‖·‖) of real maps. Given two maps ` and u in N ,
the bracket [`,u] is the set of all maps φ ∈ Φ such that
`6 φ 6 u. An ε-bracket is a bracket [`,u] with ‖u−`‖< ε .
The bracketing number N[](ε,Φ,‖·‖) is the smallest number
of ε-brackets needed to cover Φ, meaning that Φ is a subset
of their union.

In this definition, the upper and lower bounds u and ` of
the brackets need not belong to Φ themselves, but do have
finite seminorm as a consequence of ‖u− `‖< ε .

Using the bracketing number, we can restate Theorem 6
as the statement that a set F is a (strong) Glivenko–Cantelli
class for P if

N[](ε,F ,‖·‖P,1)<+∞, for every ε > 0.

This is how it is also stated in [16, Thm. 2.4.1]. If a class of
maps can be covered by a finite collection of ε-brackets—
which are classes of maps not more than ε apart—then it is
a (strong) Glivenko–Cantelli class. This bracketing number
condition looks for a finite cover of the set F of maps ft
themselves, but we may wonder whether trying to find a
finite cover for the parameter set T itself does not make
things easier. This is what we now set out to discover.

We consider a number of special cases, beginning with
the simplest of all: when T is finite.

Proposition 8 If the index set T is finite, then ÊP( f ) is a
strongly consistent estimator.

Infinite sets T are hard to deal with in general, but we
can say a few useful things in a number of special cases. To
begin, we need a way to express that the index set T can be
covered by a finite number of ‘balls’ of some maximum size.
In order to do this, we need to assume that we can measure
distances in T , so T must be metrisable. The following
definition of a covering number proves instrumental in
measuring the size of a metrisable parameter set.

Definition 9 ([16, Definition 2.2.3]) Let (T,d) be a met-
ric space. Then the covering number N(ε,T,d) is the smal-
lest number of balls of radius ε > 0 needed to cover T ,
meaning that T is a subset of the union of these balls.

A useful theorem for connecting the bracketing number
to the covering number relies on the Lipschitz continuity of
the class of maps considered. Our following result borrows
the essential arguments in [16, Thm. 2.7.11] to apply them
to our present context. It guarantees that a finite cover of
the parameter set T implies the existence of a finite cover
for the class of maps F .

Theorem 10 Let F be a subset of a seminormed space
(N ,‖·‖) of real maps. Assume that

| fs(x)− ft(x)|6 d(s, t)F(x) for all x ∈ R and s, t ∈ T ,
(9)

for some metric d on the index set T , and some F in N .
Then N[](2ε‖F‖,F ,‖·‖)6 N(ε,T,d).

For maps fT that are Lipschitz continuous in their para-
meter, as expressed by Eq. (9), this reduces the problem of
proving that a set of maps has finite bracketing number to
the problem of proving that a set of parameters has finite
covering number.

In practice, the parameter space T will often be some
part of a finite-dimensional vector space, and then we can
borrow the following simple result to further simplify the
sufficient conditions for being a Glivenko–Cantelli class.

Proposition 11 ([12, Example 27.1]) Consider a posit-
ive integer m, a norm ‖·‖ on Rm and a bounded subset
T ⊂ Rm. Let c := supt∈T‖t‖, then

N(ε,T,‖·‖)6
(

2c
√

m
ε

)m

.

Theorems 5, 6 and 10 and Proposition 11 now combine into
one straightforward theorem.

Theorem 12 Suppose that the set T that indexes P
is a bounded subset of Rm and consider a norm ‖·‖
on Rm. If there is some Borel measurable map F : R→ R
with ‖F‖P,1 <+∞ for which we have the inequality

| fs(x)− ft(x)|6 ‖s− t‖F(x) for all s, t ∈ T and x ∈ R,

then ÊP
n ( f ) is a strongly consistent estimator of EP( f ).

Because even Lipschitz continuity can sometimes be
hard to check, we may be able to replace it with a condition
that is stronger, but more easily checked. We will assume
that the map fT can be extended to a Borel measurable
map fTc on R×Tc, where Tc is some open set that includes
the convex hull of T . Furthermore, we will assume that for
every t ∈ T it holds that ft = fTc(·, t) and therefore also
EPt ( f (·)) = EP( fTc(·, t)).

Theorem 13 Suppose that the set T that indexes P is a
bounded subset of Rm for a norm ‖·‖ on Rm, and that fTc

is differentiable with respect to its second argument t on all
of Tc. If there is some Borel measurable map F : R→ R
such that

‖∇t fTc(x, t)‖6 F(x) for all x ∈ R and t ∈ Tc,
8

with ‖F‖P,1 < +∞, then ÊP
n ( f ) is a strongly consistent

estimator of EP( f ).

8. The symbol ∇t denotes the gradient
(

∂

∂ t1
, ∂

∂ t2
, ..., ∂

∂ tm

)
with respect

to the argument vector t = (t1, t2, .., tm) ∈ Rm.

6
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Finally, when the parameter set T is a compact subset of
a finite-dimensional vector space, the sufficient conditions
can be simplified even further. Observe, by the way, that
the supremum supt∈T | ft | below is measurable because a
compact subset of a finite-dimensional space is separable,
which allows us to reduce the supremum to a countable
one, due to the continuity of fT . For the theorem below
we assume that the map fT can be extended to a Borel
measurable map fTo on R×To, where To is some open set
that includes T . Furthermore, we assume that for every t ∈
T it holds that ft = fTo(·, t) and therefore also EPt ( f (·)) =
EP( fTo(·, t)).

Theorem 14 Suppose that the set T that indexes P is a
compact subset of Rm and To is an open set that includes T .
Assume that fTo is continuously differentiable in both argu-
ments (x, t) on all of R×To, and that EP

(
supt∈T | ft |

)
<+∞.

Then ÊP( f ) is a strongly consistent estimator of EP( f ).

3.3. Consistency for Importance Sampling

In the special case of importance sampling, Theorems 12
to 14 can be further simplified. In what follows we assume
that all the assumptions made in Section 2.4, where we
introduced importance sampling, are satisfied.

Theorem 15 Suppose that the set T that indexes P is
a bounded subset of Rm. Consider any norm ‖·‖ on Rm.
If there is some Borel measurable map F : R→ R such
that

∫
R| f (x)|F(x)dx <+∞ and

|ps(x)− pt(x)|6 ‖s− t‖F(x) for all s, t ∈ T and x ∈ R,

then ÊP/P
n ( f ) is a strongly consistent estimator of EP( f ).

For the following theorem, we assume that there is some
open set Tc that includes the convex hull of T and some
Borel measurable map pTc : R× Tc → R such that pt =
pTc(·, t) for every t ∈ T .

Theorem 16 Suppose that the set T that indexes P is
a bounded subset of Rm, and assume that pTc is differ-
entiable with respect to its second argument t. Consider
any norm ‖·‖ on Rm. If there is some Borel measurable
map F : R→ R such that

∫
R| f (x)|F(x)dx <+∞ and

‖∇t pTc(x, t)‖6 F(x) for all x ∈ R and t ∈ Tc,

then ÊP/P
n ( f ) is a strongly consistent estimator of EP( f ).

Next, similarly to the previous section, we assume that
there is some open set To that includes T and some Borel
measurable map pTo : R× To → R such that pTo(x, t) :=
pt(x) for all x ∈ R and t ∈ T .

q

X

L

Figure 1: A beam bedded on a spring.

Theorem 17 Suppose that the set T that indexes P
is a compact subset of Rm, assume that pTo is con-
tinuously differentiable in both its arguments (x, t),
that

∫
R supt∈T pt(x)dx < +∞, and that f is bounded.

Then ÊP/P( f ) is a strongly consistent estimator of EP( f ).

4. Examples

4.1. Consistency in a Practical Example

As a first illustration, we prove the convergence of im-
portance sampling for an example by Fetz [5] involving a
beam bedded on a spring; see Fig. 1. The aim is to calcu-
late the upper failure probability in the form P(g(X)6 0)
for a given map g : R → R and a normally distributed
real random variable X with parameters (µ,σ) ∈ T :=
[µ,µ]× [σ ,σ ]. The map g is given by

g(x) := Myield−
qL2

4
max

{
(1− c(x))2

2
,c(x)− 1

2

}
,

with

c(x) :=
5x

384 EI
L3 +8x

,

with beam length L, a uniformly distributed load q, elastic
moment Myield and beam rigidity EI, see [5] for more de-
tails.

In our context we can rewrite the failure probability as
P(g(X) 6 0) = 1−EP(I{g(X)>0}),9 for which we want to
find the maximal value over the available distributions. This
can be rephrased as finding the lower expectation

inf
(µ,σ)∈T

EP(µ,σ)
(
Ig(X)>0

)
,

and then subtract that from 1. We want to do import-
ance sampling to find this lower expectation, and take
the central distribution to be normally distributed with
parameters (µo,σo) with µo ∈ R and 0 < σo. With Po we

9. The notation IA represents the indicator of a set A.

7
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denote the probability measure of this distribution. Ob-
serve that this pair of parameters (µo,σo) need not be con-
tained in the parameter set [µ,µ]× [σ ,σ ]. For importance
sampling, we define our set of Borel measurable maps as
F = { f(µ,σ) : (µ,σ) ∈ T} where, by Eq. (7):

f(µ,σ) : R→ R :

x 7→ I{y : g(y)>0}(x)
σo

σ
exp
(
− (x−µ)2

2σ2 +
(x−µo)

2

2σ2
o

)
.

To prove consistency, we will show how multiple theorems
can be used in decreasing complexity. We will start with
Theorem 13. We are lucky, since T is already convex. The
map f(µ,σ) is measurable in its argument x since it is a
product of the indicator of a level set of a measurable map
and another measurable map. Furthermore, it is clearly
differentiable in the parameters µ and σ > 0. We verify
in the Appendix that a map that can serve as the F in
Theorem 13 is given by

F(x)

=
σo

σ2



( (x−µ)2

σ2 +1
)

e
(x−µo)2

2σ2o
− (x−µ)2

2σ2 x < µ

( (µ−µ)2

σ2 +1
)

e
(x−µo)2

2σ2o µ 6 x < µ

( (x−µ)2

σ2 +1
)

e
(x−µo)2

2σ2o
− (x−µ)2

2σ2
µ 6 x.

We can conclude that the estimator is consistent.
Alternatively, we can use Theorem 16. We are again

lucky, since T is still convex. The map p(µ,σ) is also meas-
urable in its argument x and clearly differentiable in the
parameters µ and σ > 0. Using a similar argument as above,
we verify in the Appendix that the following map can serve
as the F in Theorem 16:

F(x)

=
1√

2πσ2



( (x−µ)2

σ2 +1
)

e−
(x−µ)2

2σ2 x < µ

(µ−µ)2

σ2 +1 µ 6 x < µ

( (x−µ)2

σ2 +1
)

e−
(x−µ)2

2σ2 µ 6 x.

Finally we will use Theorem 17. The set T is a compact
subset of R2 because it is closed and bounded and since
f is an indicator, it is a bounded map. Furthermore, p(µ,σ)

is clearly continuously differentiable in the parameters µ

and σ > 0. We show in the Appendix that∫
R

sup
t∈T

pt(x)dx 6
1
σ

(
σ +

1√
2π

(µ−µ)

)
<+∞,

0.5 1 1.5 2
0
1

a = (0,1,1,0,0,1,1,0)
a = (0,1,1,0)

Figure 2: Some examples of densities in D.

from which we can conclude consistency of the estimator
by Theorem 17.

4.2. An Example of No Consistency

Next, we look at a theoretical example where the import-
ance sampling estimator does not converge—shows no
consistency. We consider a map f that is greater than one
everywhere, and a central uniform distribution P on [0,2],
with density p := 1

2 I[0,2]. We will construct a countably
infinite set of distributions for which the technique of im-
portance sampling does not work. First, we define the set
Bi of all finite binary sequences of even length with the
same number of zeroes and ones. Using this set, we define
the countable set of densities

D :=
{ 2k

∑
`=1

a`I[ `−1
k , `k ]

: k ∈ N and (a1, . . . ,a2k) ∈ Bi
}
,

and we denote the corresponding set of probability meas-
ures by PD. In Fig. 2, two examples of densities in D are
plotted. The importance sampling method will not work
in this example, because for every finite observed sample
x1,x2,x3, ...,xn there is a binary sequence of size 2n that
corresponds to a density that is zero on all the sampled val-
ues. Consequently, the estimate ÊPD( f ) will be identically
zero, yet the real lower expectation must be positive since
the map f is.

However, the importance sampling estimator will be con-
sistent for lower expectations associated with finite subsets
of D, by Proposition 8.

So we find that, in contrast with finite sets of maps F ,
countable sets can break the consistency of the importance
sampling estimator. The reason that this happens is that
there are only a finite number of samples. If the set F of
maps ft is countably infinite, then it is possible that some
differences between two such maps remain ‘unexplored’
by finite sampling.

In summary then, the reason why consistency breaks in
our example is because the sample is finite. In particular,
the set D, or equivalently, the set Bi is then large enough
to make sure that there is always at least one density pa for
some a∈Bi that is zero in the sample. But when we restrict
ourselves to some finite subset of D, and if the sample is

8
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sufficiently large, then this finite set of densities will no
longer be large enough to make sure that it will have at
least one member that is zero in the sample.

5. Conclusion
We have studied Monte Carlo estimators in the context of
imprecise probabilities. We have given a practical general
form of an estimator of the lower expectation and two ex-
plicit constructions that lead to an estimator of this form:
inverse transform sampling and importance sampling. For
this general form, we have investigated bias and consistency.
Under fairly non-restrictive assumptions, the estimator bias
was proved to be negative and non-decreasing, or in other
words, conservative and shrinking in absolute value with
increasing sample size. Consistency, on the other hand,
cannot be proved in general: as we have shown in one of
our examples, the estimator can remain inconsistent even
for a countable set of distributions. But we have invest-
igated tools that can be used to prove consistency of our
estimator. For instance, we showed that the case where the
‘distributions’ are Lipschitz continuous over a bounded set
of parameters leads to consistent estimators. For compact
parameter sets, we further simplified this continuity con-
dition. In our first example, we showed how consistency
can be proven for the importance sampling estimator used
in [5], in multiple ways. The second example showed how
consistency can fail even in the case of a countable set of
of parameters.

Future work will deal with other limit laws for the Monte
Carlo estimator (3) for lower expectations, and extension
of these methods to an imprecise version of the Markov
Chain Monte Carlo estimator.
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Appendix A. Proofs of Various Results in the Paper
A.1. Inverse Transform Sampling

Lemma 18 For any cdf F and its pseudo-inverse F† defined as in Eq. (4), the following statements are true:

(i) In Eq. (4), if x ∈ (0,1) then the infimum is real and achieved;

(ii) (∀x ∈ R)F†(F(x))6 x;

(iii) (∀x ∈ (0,1))F(F†(x))> x;

(iv) (∀x ∈ R)(∀u ∈ (0,1))u 6 F(x)⇔ F†(u)6 x.

Proof For (i) and (iii), fix x∈ (0,1) and let A(x) := {y∈R : x6F(y)}. We will first prove that infA(x)∈R by contradiction,
by deriving a contradiction for the two other cases: infA(x) = +∞ and infA(x) =−∞.

As a first case, suppose that infA(x) = +∞. Since A(x) is a set of real numbers, this is only true if A(x) is the empty
set. Since x ∈ (0,1), we know that we can we can write x = 1− ε for some ε > 0. From the property of cdf’s that
limy→+∞ F(y) = 1, it follows, by the definition of limits, that there is some real number R such that 1−F(y)< ε for all
y > R. So x = 1− ε < F(y) for all y > R, so all y > R are included in the set A(x), which means that it cannot be empty, a
contradiction.

As a second case, suppose that infA(x) = −∞. Since x ∈ (0,1), we know that x > 0. From the property of cdf’s that
limy→−∞ F(y) = 0, it follows, by the definition of limits, that there is some real number R such that if y < R then F(y)< x,
or equivalently, if F(y)≥ x then y≥ R. This tells us that R is a real lower bound of the set A(x), whence infA(x)≥ R, a
contradiction.

Since F is non-decreasing, A(x) is an up-set, meaning that y1 ∈ A(x) and y1 6 y2 implies that y2 ∈ A(x). Hence, since
A(x) is a proper non-empty subset of R, it is of the form [F†(x),+∞) or (F†(x),+∞), where F†(x) = infA(x) is real, as we
have just shown. If follows from the definition of an infimum that there is a non-increasing sequence yn of elements of A(x)
that converges to F†(x), so yn ↓ F†(x) and therefore also F(yn) ↓ F(F†(x)), since F†(x) is real and F is right-continuous
and non-decreasing. Hence, F(F†(x)) = limn→+∞ F(yn)> x, and therefore F†(x) ∈ A(x) proving (iii), and also (i).

For (ii), the definition of F† implies that, indeed, F†(F(x)) = inf{y ∈ R : F(x)6 F(y)}6 x.
Finally, for (iv), observe that

u 6 F(x)⇔ x ∈ A(u)⇔ F†(u)6 x,

where the first equivalence follows from the definition of A(u) above, and the second from (i) — which guarantees that
F†(u) = minA(u) — and the fact that A(u) is an up-set.

Theorem 19 Consider a cdf F : R→ R and a uniformly distributed real random variable Uon the unit interval (0,1). If
we define F† as in Eq. (4), then the real random variable X := F†(U) has cdf F.

Proof The cdf of X is given by, for any x ∈ R:

FX (x) := P(X 6 x) = P(F†(U)6 x)

= λ ({u ∈ (0,1) : F†(u)6 x}) = λ ({u ∈ (0,1) : u 6 F(x)}) = λ ((0,F(x)])

= F(x),

where λ is the Lebesgue measure relative to (0,1), and the fourth equality follows from Lemma 18(iv).

A.2. Estimator Properties

In the main body of the paper we only needed the outer cover f ∗ of a map f : R∞→ R. For the following results however,
we will also need inner covers, which we define as f∗ :=−(− f )∗ in the corresponding probability space.

Lemma 20 (Super-additivity of inner expectations) Consider two maps f ,g : R∞ → R∪ {−∞} for which E∞( f ) +
E∞(g) is well-defined, meaning that E∞( f ) < +∞ or E∞(g) > −∞, and E∞( f ) > −∞ or E∞(g) < +∞. Then f + g is
well-defined and assumes values in R∪{−∞}, and E∞( f )+E∞(g)6 E∞( f +g).

11
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Proof
The first statement is immediate, so we turn to the proof of the inequality. We consider two cases: for the first case

we assume that both E∞( f )>−∞ and E∞(g)>−∞ and for the second case we assume, without loss of generality, that
E∞( f ) =−∞.

For the first case, we infer from the assumption that E∞( f ) > −∞ and E∞(g) > −∞, and the relation between the
inner and the outer expectation, that E∞

(− f )<+∞ and E∞
(−g)<+∞. Lemma 1 then tells us that (− f ) and (−g) have

respective outer measurable covers (− f )∗ and (−g)∗, and that E∞
(− f ) = E∞((− f )∗) and E∞

(−g) = E∞((−g)∗).
We will now prove that− f −g has a measurable cover (− f −g)∗ for which E∞

(− f −g) = E∞((− f −g)∗). By Lemma 1
suffices to show that E∞

(− f −g)<+∞, where

E∞
(− f −g) = inf

{
E∞(h) : − f −g 6 h ∈ RR∞

measurable and E∞(h) exists
}
.

(− f )∗+(−g)∗ is measurable and, by definition − f 6 (− f )∗ and −g 6 (−g)∗, so − f − g 6 (− f )∗+(−g)∗. Further-
more, since E∞((− f )∗) = E∞

(− f ) < +∞ and E∞((−g)∗) = E∞
(−g) < +∞, the expectation E∞(((− f )∗+(−g)∗)+) 6

E∞(((− f )∗)+)+E∞(((−g)∗)+)<+∞,10 so E∞((− f )∗+(−g)∗) exists. We can conclude that

E∞((− f )∗+(−g)∗) ∈ {E∞(h) : − f −g 6 h ∈ RR∞

measurable and E∞(h) exists},

and therefore
E∞

(− f −g)6 E∞((− f )∗+(−g)∗) = E∞((− f )∗)+E∞((−g)∗)<+∞,

as needed. So, indeed, − f −g has a measurable cover (− f −g)∗, for which E∞
(− f −g) = E∞((− f −g)∗).

We can now apply Lemma 1.2.2(i) in [16] to (− f ) and (−g) to find that (− f )∗+(−g)∗ > (− f −g)∗ a.s., and therefore
also −(− f )∗− (−g)∗ 6−(− f −g)∗ a.s., so after taking the expectation on both sides, we get

E∞(−(− f )∗− (−g)∗)6 E∞(−(− f −g)∗)

and therefore also
E∞((− f −g)∗)6 E∞((− f )∗+(−g)∗) = E∞((− f )∗)+E∞((−g)∗),

where the equality, as before, follows from the linearity of expectations, and E∞((− f )∗) =E∞
(− f )<+∞ and E∞((−g)∗) =

E∞
(−g) < +∞. Since, by definition, E∞( f ) = −E∞

(− f ) = −E∞((− f )∗), and similarly for the other expectations, this
indeed leads to the desired inequality E∞( f )+E∞(g)6 E∞( f +g).

For the second case, we infer from the assumption that E∞( f ) = −∞ and that E∞( f )+E∞(g) is well-defined, that
E∞(g)<+∞. Hence, E∞( f )+E∞(g) =−∞, and the desired inequality is trivially true.

A.2.1. PROOF OF THEOREM 2

Proof of Theorem 2 Later in this proof we will want to calculate inner and outer expectations of, and apply Lemma 20
to, combinations of the maps ÊP

n ( f ) for any positive integer n—for the sake of simplicity, we will use the notation
gn = g(XP

1:n) := ÊP
n ( f ). In order to be allowed to do this, we want to show here that −∞ < E∞(gn), because this guarantees

the existence of a measurable inner cover (gn)∗ such that E∞(gn) = E∞((gn)∗), by Lemma 1. We give a proof by induction.
First of all, it follows from our assumption that −∞ < E∞(inft∈T ft) = E∞(g1), that the statement holds for n = 1. Next, we
assume that the statement holds for n = k, and we show that it then also holds for n = k+1. So suppose that −∞ < E∞(gk),
then we are guaranteed that gk has a measurable inner cover (gk)∗, and that E∞(gk) = E∞((gk)∗). Similarly, by the
construction of the underlying probability space, it follows that −∞ < E∞(g1(XP

1 )) = E∞(g1(XP
k+1)) and this guarantees

that g1(XP
k+1) has a measurable inner cover (g1)∗, and that E∞(g1(XP

k+1)) = E∞((g1)∗). Then hk+1 := 1
k+1 (g1)∗+

k
k+1 (gk)∗

is a measurable map, and

E∞(hk+1) = E∞

(
1

k+1
(g1)∗+

k
k+1

(gk)∗

)
>

1
k+1

E∞((g1)∗)+
k

k+1
E∞((gk)∗)>−∞.

Moreover, it follows from the definition of a measurable inner cover that

hk+1 6
1

k+1
inf
t∈T

ft(XP
k+1)+

k
k+1

ÊP
k ( f ) =

1
k+1

inf
t∈T

ft(XP
k+1)+

k
k+1

inf
t∈T

1
k

k

∑
`=1

ft(XP
` )

10. . . . since for all r,s ∈ RR∞

, (r+ s)+ = max{r+ s,0}6 max{r,0}+max{s,0}= r++ s+

12
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6 inf
t∈T

1
k+1

(
ft(XP

k+1)+
k

∑
`=1

ft(XP
` )

)
= gk+1(XP

1:k+1),

which implies that, indeed, E∞(gk+1)> E∞(hk+1)>−∞, and that, therefore, gk+1 also has a measurable inner cover.
We are now ready for the proof of the theorem. First, we prove that

E∞

(
ÊP

n ( f )
)
> E∞

(
ÊP

n−1( f )
)
.

We rewrite

ÊP
n ( f ) = inf

t∈T

1
n

n

∑
k=1

ft(XP
k ) = inf

t∈T

1
n

n

∑
k=1

1
n−1

n

∑
j=1
j 6=k

ft(XP
j )>

1
n

n

∑
k=1

inf
t∈T

1
n−1

n

∑
j=1
j 6=k

ft(XP
j ).

Now we take the lower expectation E∞ of both sides of the inequality to get11

E∞

(
ÊP

n ( f )
)
> E∞

(
1
n

n

∑
k=1

inf
t∈T

1
n−1

n

∑
j=1
j 6=k

ft(XP
j )

)
>

1
n

n

∑
k=1

E∞

(
inf
t∈T

1
n−1

n

∑
j=1
j 6=k

ft(XP
j )

)

=
1
n

n

∑
k=1

E∞

(
ÊP

n−1( f )
)
= E∞

(
ÊP

n−1( f )
)
,

where the second inequality follows from Lemma 20 and the first equality from the fact that the underlying probability
space is an independent product space.

Secondly, we want to prove that

E∞

(
ÊP

n ( f )
)
6 E∞

(
ÊP

n ( f )
)
.

We distinguish between two cases. The first case is where E∞(ÊP
n ( f )

)
= +∞ and then the inequality holds trivially.

In the second case, where E∞(ÊP
n ( f )

)
< +∞, we are guaranteed the existence of a measurable outer cover (gn)

∗ for
which E∞

(gn) = E∞((gn)
∗). Since ÊP

n ( f ) was proved above to also have a measurable inner cover (gn)∗, we can use their
definitions to find

(gn)∗ 6 gn 6 (gn)
∗,

and by taking the expectation on both measurable sides, we find that, indeed,

E∞

(
ÊP

n ( f )
)
= E∞((gn)∗)6 E∞((gn)

∗) = E∞
(

ÊP
n ( f )

)
.

Thirdly, we prove that

E∞
(

ÊP
n ( f )

)
6 EP( f ).

We start again from the left-hand side:

E∞
(

ÊP
n ( f )

)
= E∞

(
inf
t∈T

1
n

n

∑
k=1

ft(XP
k )

)
6 inf

t∈T
E∞

(
1
n

n

∑
k=1

ft(XP
k )

)
= inf

t∈T
E∞

(
1
n

n

∑
k=1

ft(XP
k )

)
= inf

t∈T
EP( ft) = inf

t∈T
EPt ( f ) = EP( f ),

where the first inequality follows from the monotonicity of the upper expectation.12

11. It is clear from their definitions near the end of Section 2.2 that both the upper and lower expectations are monotone.
12. See also footnote 11.

13
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A.2.2. PROOF OF THEOREM 5

First, we prove an auxiliary lemma.

Lemma 21 Consider a non-empty set A and two maps φ ,ψ : A→ R, at least one of which is bounded below. Then∣∣∣∣ inf
a∈A

φ(a)− inf
a∈A

ψ(a)
∣∣∣∣6 sup

a∈A
|φ(a)−ψ(a)|.

Proof We will look at two cases. The first where one of the infima infa∈A φ(a) and infa∈A ψ(a) is −∞ and the other where
none of them are. In the first case, we may assume without loss of generality infa∈A φ(a) =−∞, and so it follows from
the assumptions that −∞ < infa∈A ψ(a). It follows from infa∈A φ(a) =−∞ that there is some sequence an in A such that
φ(an) ↓ −∞. Hence, there is some positive integer N such that for every integer n≥ N it holds that φ(an)< infa∈A ψ(a).
If we consider the sequence bn := aN+n, then it follows that limn→∞|φ(bn)−ψ(bn)| = limn→∞(ψ(bn)− φ(bn)) = +∞.
This implies that supa∈A|φ(a)−ψ(a)|=+∞, and since the left-hand side of the desired inequality is well-defined — an
extended real number — because of the theorem’s assumptions, the desired inequality holds trivially.

In the second case, both −∞ < infa∈A φ(a) and −∞ < infa∈A ψ(a), so both infima are real numbers. Then∣∣∣∣ inf
a∈A

φ(a)− inf
a∈A

ψ(a)
∣∣∣∣= max

{
inf
a∈A

φ(a)− inf
a∈A

ψ(a), inf
a∈A

ψ(a)− inf
a∈A

φ(a)
}

= max
{
− inf

a∈A

(
ψ(a)− inf

b∈A
φ(b)

)
,− inf

a∈A

(
φ(a)− inf

b∈A
ψ(b)

)}
= max

{
sup
a∈A

(
inf
b∈A

φ(b)−ψ(a)
)
,sup

a∈A

(
inf
b∈A

ψ(b)−φ(a)
)}

= sup
a∈A

max
{

inf
b∈A

φ(b)−ψ(a), inf
b∈A

ψ(b)−φ(a)
}

6 sup
a∈A

max{φ(a)−ψ(a),ψ(a)−φ(a)}= sup
a∈A
|φ(a)−ψ(a)|,

which completes the proof.

We are now ready to prove Theorem 5.
Proof of Theorem 5 That F is a (strong) Glivenko–Cantelli class for P means that

P∞

(
lim

n→+∞

(
sup
t∈T

∣∣ÊP
n ( ft)−EP( ft)

∣∣)∗ = 0
)
= 1. (10)

Fix any n ∈ N. By the P-integrability assumption for f and the definition of the ft , we have that

−∞ <−EP
(| f |) = EP(−| f |)≤ EP( f ) = inf

t∈T
EPt ( f ) = inf

t∈T
EP( ft).

Hence, we can apply Lemma 21, and find

sup
t∈T

∣∣ÊP
n ( ft)−EP( ft)

∣∣> ∣∣∣∣inf
t∈T

ÊP
n ( ft)− inf

t∈T
EP( ft)

∣∣∣∣= ∣∣∣∣ÊP
n ( f )− inf

t∈T
EPt ( f )

∣∣∣∣= ∣∣ÊP
n ( f )−EP( f )

∣∣> 0,

where the first equality follows from Eq. (3) and the definition of the ft . The first part of the definition of a minimal
measurable cover now implies that(

sup
t∈T

∣∣ÊP
n ( ft)−EP( ft)

∣∣)∗ > sup
t∈T

∣∣ÊP
n ( ft)−EP( ft)

∣∣> ∣∣ÊP
n ( f )−EP( f )

∣∣.
Since the left-hand side of this inequality is measurable, the second part of the definition of a minimal measurable cover
implies that (

sup
t∈T

∣∣ÊP
n ( ft)−EP( ft)

∣∣)∗ > ∣∣ÊP
n ( f )−EP( f )

∣∣∗ almost surely.

Combined with Eq. (10), we find that

P∞

(
lim

n→+∞

∣∣ÊP
n ( f )−EP( f )

∣∣∗ = 0
)
= 1,

because a countable union of null sets is still null.

14
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A.2.3. PROOF OF THEOREM 6

The following proof relies directly on ideas in the proof of [16, Thm. 2.4.1].
Proof of Theorem 6 Fix any ε > 0. Choose finitely many brackets (φ

ε,i
,φ ε,i)

13, with i a positive integer index, such that

their union contains Φ and EP(φ ε,i−φ
ε,i
) < ε . Then, for every φ ∈ Φ, there is a bracket (φ

ε,i
,φ ε,i) such that for every

positive integer n

ÊP
n (φ)−EP(φ)6 ÊP

n (φ ε,i)−EP(φ ε,i)+EP(φ ε,i−φ)6 ÊP
n (φ ε,i)−EP(φ ε,i)+ ε.

As a consequence,

sup
φ∈Φ

(
ÊP

n (φ)−EP(φ)
)
6 max

i

(
ÊP

n (φ ε,i)−EP(φ ε,i)
)
+ ε 6 max

i

∣∣ÊP
n (φ ε,i)−EP(φ ε,i)

∣∣+ ε.

By Corollary 22, the right-hand side converges to ε . Using a similar argument we find that

ÊP
n (φ)−EP(φ)> ÊP

n (φ ε,i
)−EP(φ

ε,i
)−EP(φ −φ

ε,i
)> ÊP

n (φ ε,i)−EP(φ ε,i)− ε

and therefore

inf
φ∈Φ

(
ÊP

n (φ)−EP(φ)
)
> min

i

(
ÊP

n (φ ε,i
)−EP(φ

ε,i
)
)
− ε >−max

i

∣∣∣ÊP
n (φ ε,i

)−EP(φ
ε,i
)
∣∣∣− ε.

The right-hand side converges to −ε by the same corollary. Taken together, these two arguments imply that
limsupn supφ∈Φ

∣∣ÊP
n (φ)−EP(φ)

∣∣∗ 6 ε almost surely, for every ε > 0. Hence the limsup must actually be zero almost
surely.

A.2.4. PROOF OF PROPOSITION 8

Proof of Proposition 8 Consider the sets St := {ω ∈ R∞ : limn→∞ ÊP
n ( ft)(ω) = EP( ft)}, t ∈ T . Each St has measure one

by the strong law of large numbers, and so does, therefore, their finite intersection S :=
⋂

t∈T St . Fix any ω in S. For any
ε > 0 and t ∈ T there is some natural Nε,t such that |ÊP

n ( ft)(ω)−EP( ft)|< ε for all n≥ Nε,t , and therefore∣∣∣ÊP
n ( f )(ω)−EP( f )

∣∣∣= ∣∣∣∣min
t∈T

ÊP
n ( ft)(ω)−min

t∈T
EP( ft)

∣∣∣∣≤max
t∈T

∣∣∣ÊP
n ( ft)(ω)−EP( ft)

∣∣∣< ε for all n≥ Nε := max
t∈T

Nε,t ,

where the first inequality follows from Lemma 21. This tells us that ÊP
n ( f )(ω)→ EP( f ) for all ω ∈ S, so, indeed, ÊP

n ( f )
is a strongly consistent estimator, because S has measure one.

Notice how we proved the following corollary in the previous proof:

Corollary 22 Suppose that T is finite, then limn→∞ maxt∈T

∣∣∣ÊP
n ( ft)−EP( ft)

∣∣∣= 0 almost surely.

A.2.5. PROOF OF THEOREM 10

The following proof relies directly on ideas in the proof of [16, Thm. 2.7.11].
Proof of Theorem 10 It follows from the definition of N(ε,T,d) that there are N(ε,T,d) ε-balls in T , whose centres we
will denote by tk for k ∈ {1, . . . ,N(ε,T,d)}, that cover the set T for d. We are done if we can prove that the corresponding
brackets [ ftk − εF, ftk + εF ] for k ∈ {1, . . . ,N(ε,T,d)} cover F . By assumption, we have that for any s ∈ T there is some
ks ∈ {1, . . . ,N(ε,T,d)} such that s is contained in the ε-ball with centre tks , implying that d(s, tks) < ε . Because of the
Lipschitz condition, we then have that for all x ∈ R

| fs(x)− ftks
(x)|6 d(s, tks)F(x)6 εF(x),

or equivalently
ftks

(x)− εF(x)6 fs(x)6 ftks
(x)+ εF(x).

This means that fs is in the [ ftks
− εF, ftks

+ εF ]-bracket, which is of size 2ε‖F‖.

13. Brackets are defined in Theorem 7.
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A.2.6. PROOF OF THEOREM 13

We begin by proving, for the sake of completeness, a well-known lemma, which states that all norms on a finite-dimensional
space are equivalent with the L2-norm.

Lemma 23 For any integer m > 0 and any norm ‖·‖ and L2-norm ‖·‖2 on Rm there are constants a,b > 0 such that

(∀v ∈ Rm)a‖v‖6 ‖v‖2 6 b‖v‖

Proof Let {e1,e2, . . . ,em} be any basis for Rm. Then for any v ∈ Rm there exist constants x1,x2, . . . ,xm ∈ R such that
v = ∑

m
k=1 xkek. By the triangle inequality and the scaling property of norms

‖v‖6
m

∑
k=1
|xk|‖ek‖.

We can view this sum as an inner product and apply the Cauchy-Schwarz inequality to find that

m

∑
k=1
|xk|‖ek‖6

( m

∑
k=1

x2
k

) 1
2
( m

∑
k=1
‖ek‖2

) 1
2
.

If we now let a :=
(
∑

m
k=1‖ek‖2

)− 1
2 , we get that, indeed

a‖v‖6 ‖v‖2. (11)

For the other inequality, first observe that if v = 0 then the theorem is true for any b > 0, so we can ignore this case. We
endow Rm with the topology induced by the L2-norm. We first prove that the map r : Rm→ R>0 : v 7→ ‖v‖ is continuous
for this topology, meaning that for all v ∈ Rm and for any ε > 0 there is some δ > 0 such that for all v1 ∈ Rm for which
‖v− v1‖2 < δ it holds that |‖v‖−‖v1‖|< ε . Indeed, by the reverse triangle inequality and Eq. (11),

|‖v‖−‖v1‖|6 ‖v− v1‖6
1
a
‖v− v1‖2,

so we can choose δ := aε . The set J := {v ∈ Rm : ‖v‖2 = 1} is compact since it is closed and bounded, so the continuous r
will achieve a minimum c > 0 on J. Hence, v/‖v‖2 ≥ c for all v ∈ Rm \{0}, and if we therefore let b := c−1, then indeed
‖v‖2 6 b‖v‖.

We are now ready to prove the theorem.
Proof of Theorem 13 If we start from the result of Theorem 12, then it is enough to prove that the statements (i) that
for all x ∈ R and s, t ∈ T , ‖∇t f (x, t)‖ 6 F(x) and (ii) that EP(F) < +∞, imply the existence of some F̃ : R→ R for
which | f (x,s)− f (x, t)|6 ‖s− t‖F̃(x) and EP(F̃)<+∞. By the fundamental theorem of calculus and the definition of the
directional derivative, we can write

f (x,s)− f (x, t) =
∫ 1

0

d
dr

f (x, t + r(s− t))dr =
∫ 1

0
∇u f (x,u)

∣∣
u=t+r(s−t) · (s− t)dr,

where ∇u represents the gradient with respect to u∈ Tc. To bound the absolute value we use the Cauchy-Schwartz inequality:

| f (x,s)− f (x, t)|=
∣∣∣∣∫ 1

0
∇u f (x,u)

∣∣
u=t+r(s−t) · (s− t)dr

∣∣∣∣6 ∫ 1

0

∣∣∣∇u f (x,u)
∣∣
u=t+r(s−t) · (s− t)

∣∣∣dr

6
∫ 1

0

∥∥∥∇u f (x,u)
∣∣
u=t+r(s−t)

∥∥∥
2
‖s− t‖2 dr.

By Lemma 23, there is some b > 0 such that∥∥∥∇u f (x,u)
∣∣
u=t+r(s−t)

∥∥∥
2
6 b
∥∥∥∇u f (x,u)

∣∣
u=t+r(s−t)

∥∥∥6 bF(x),

where we have also used (i). Similarly, ‖s− t‖2 6 b‖s− t‖, and therefore

| f (x,s)− f (x, t)|6
∫ 1

0
b2F(x)‖s− t‖dr = b2F(x)‖s− t‖,

If we let F̃ := b2F then | f (x,s)− f (x, t)|6 ‖s− t‖F̃(x) and EP(F̃) = b2EP(F)<+∞.

16
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A.2.7. PROOF OF THEOREM 14

Proof of Theorem 14 Fix any real ε > 0. Let g1(X1) := supt∈T | ft(X1)|. The (Lebesque) integral associated with EP(g1)
can be written as

EP(g1) =
∫
R

g1(x)dPX1(x),

where PX1 is the probability distribution of the random variable X1. The monotone convergence theorem now guarantees
that

EP(g1) = lim
c→+∞

∫
R
I[−c,c](x)g1(x)dPX1(x) =:

∫ c

−c
g1(x)dPX1(x),

so there is some C > 0 such that∣∣∣∣∫ C

−C
g1(x)dPX1(x)−EP(g1)

∣∣∣∣= ∫
(−∞,−C]∪[C,+∞)

g1(x)dPX1(x)<
ε

4
.

Since ft(x) is continuously differentiable in (x, t) on an open set that contains the compact set [−C,C]×T , the norm of
the gradient will be bounded in [−C,C]×T . Because this norm of the gradient is bounded in this set, ft(x) will also be
Lipschitz continuous on this set, meaning that there is some constant K for which

| ft1(x1)− ft2(x2)|6 K‖(x1− x2, t1− t2)‖2 for all x1,x2 ∈ [−C,C] and t1, t2 ∈ T .

If we choose x = x1 = x2, then we find in particular that

| ft1(x)− ft2(x)|6 K‖t1− t2‖2 for all x ∈ [−C,C] and t1, t2 ∈ T .

Let δ := ε

4KPX1 ([−C,C]) and define open balls in T with centre t ∈ T as Bδ (t) := {t1 ∈ T : ‖t1− t‖2 < δ}. Consider the

cover {Bδ (t) : t ∈ T} of T with δ -balls for every t ∈ T . Because T is compact, there is a finite sub-cover, so there is some
finite set of centres τδ ⊆ T such that T ⊆

⋃
tc∈τδ

Bδ (tc).
For any tc ∈ τ , we now define

φ [tc]
ε

: R→ R : x 7→ inf
t∈Bδ (tc)

ft(x)

and
φ [tc]ε : R→ R : x 7→ sup

t∈Bδ (tc)
ft(x).

By construction, all maps in { ft : t ∈ Bδ (tc)} are inside the bracket (φ [tc]
ε
,φ [tc]ε). Hence, since T ⊆

⋃
tc∈τ Bδ (tc), each ft

belongs to at least one bracket. Now observe that

EP
(

φ [tc]ε −φ [tc]
ε

)
=
∫
R

(
sup

t∈Bδ (tc)
ft(x)− inf

t∈Bδ (tc)
ft(x)

)
dPX1(x) =

∫
R

sup
s,t∈Bδ (tc)

| ft(x)− fs(x)|dPX1(x),

where we can take the absolute value on the right-hand side since the supremum of the difference will certainly be positive,
because, by symmetry, we could swap s and t to flip the sign. Splitting off the tails leads to:∫

R
sup

s,t∈Bδ (tc)
| ft(x)− fs(x)|dPX1(x)6

∫ C

−C
sup

s,t∈Bδ (tc)
| ft(x)− fs(x)|dPX1(x)+

∫
(−∞,−C]∪[C,+∞)

sup
s,t∈Bδ (tc)

| ft(x)− fs(x)|dPX1(x).

We will now bound both terms. For the first term, we get:∫ C

−C
sup

s,t∈Bδ (tc)
| ft(x)− fs(x)|dPX1(x)6 K sup

s,t∈Bδ (tc)
‖s− t‖2

∫ C

−C
dPX1(x)6 2KδPX1([−C,C]) =

ε

2
.

The second term can be bounded using the results in the first part of the proof. By the triangle inequality we obtain∫
(−∞,−C]∪[C,+∞)

sup
s,t∈Bδ (tc)

| ft(x)− fs(x)|dPX1(x)6 2
∫
(−∞,−C]∪[C,+∞)

sup
t∈Bδ (tc)

| ft(x)|dPX1(x)

6 2
∫
(−∞,−C]∪[C,+∞)

sup
t∈T
| ft(x)|dPX1(x)<

ε

2
.

We find that EP(φ [tc]ε −φ [tc]
ε
)< ε . We conclude that for every real ε > 0, we can construct a finite set of brackets that

satisfies the conditions of Theorem 6. Theorem 6 therefore guarantees the (strong) consistency of the estimator.
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A.2.8. PROOF OF THEOREM 15

Proof of Theorem 15 Consider the Borel measurable map F̃ : R→ R defined by

F̃(x) :=

{
F(x) | f (x)|p(x) if p(x)> 0

0 if p(x) = 0
for all x ∈ R.

We extend the domain of the ft in Eq. (7) by letting

ft(x) :=

{
f (x) pt (x)

p(x) if p(x)> 0

0 if p(x) = 0
for all x ∈ R.

It follows from the assumptions that

|ps(x)− pt(x)|6 ‖s− t‖F(x) for all s, t ∈ T and x ∈ R,

and if we multiply both sides by | f (x)|p(x) , then we get for all s, t ∈ T that

| f (x)|
p(x)

|ps(x)− pt(x)|6 ‖s− t‖F̃(x) for all real x such that p(x)> 0,

and taking into account the definitions of F̃ , fs and ft above, this leads to

| fs(x)− ft(x)|6 ‖s− t‖F̃(x) for all s, t ∈ T and x ∈ R.

Furthermore, it follows from the assumptions that

EP(F̃) =
∫
R

F̃(x)p(x)dx 6
∫
R
| f (x)|F(x)dx <+∞.

These last two inequalities show that F̃ is a map that satisfies the requirements of the map F of Theorem 12. Applying this
theorem yields the required result.

A.2.9. PROOF OF THEOREM 16

Proof of Theorem 16 Consider the Borel measurable map F̃ : R→ R defined by

F̃(x) :=

{
F(x) | f (x)|p(x) if p(x)> 0

0 if p(x) = 0
for all x ∈ R.

We want to apply Theorem 13, and to this end define fTc as

fTc(x) :=

{
f (x) pTc (x)

p(x) if p(x)> 0

0 if p(x) = 0
for all x ∈ R.

It follows from the assumptions that

‖∇t pTc(x, t)‖6 F(x) for all x ∈ R and t ∈ Tc,

so, if we multiply both sides of this inequality by | f (x)|p(x) , we get

‖∇t fTc(x, t)‖2 =
| f (x)|
p(x)

‖∇t pTc(x, t)‖2 6 F̃(x) for all t ∈ Tc and all real x for which p(x)> 0,

and, taking into account the definitions of fTc and F̃ given above, this finally leads to

‖∇t fTc(x, t)‖2 6 F̃(x) for all t ∈ Tc and all real x.

Furthermore,
EP(F̃) =

∫
R

F̃(x)p(x)dx 6
∫
R
| f (x)|F(x)dx <+∞.

These last two inequalities show that F̃ is a map that satisfies the requirements of the map F of Theorem 13. Applying this
theorem yields the required result.
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A.2.10. PROOF OF THEOREM 17

Proof of Theorem 17 Fix any real ε > 0. Since f is bounded, there is some M > 0 such that (∀x ∈ R)| f (x)| < M. We
start from the integral condition in the assumptions:∫

R
sup
t∈T

pt(x)dx <+∞.

The monotone convergence theorem now guarantees that∫
R

sup
t∈T

pt(x)dx = lim
c→+∞

∫
R
I[−c,c](x)sup

t∈T
pt(x)dx =: lim

c→+∞

∫ c

−c
sup
t∈T

pt(x)dx,

so there is some real C > 0 such that∣∣∣∣∫ C

−C
sup
t∈T

pt(x)dx−
∫
R

sup
t∈T

pt(x)dx
∣∣∣∣= ∫

(−∞,−C]∪[C,+∞)
sup
t∈T

pt(x)dx <
ε

4M
.

Since pTc(x, t) is continuously differentiable in (x, t) on a set that includes [−C,C]×T , a compact set, it will also be
Lipschitz continuous on this set, meaning that there is a constant K such that

|pt1(x1)− pt2(x2)|6 K‖(x1− x2, t1− t2)‖2 for all x1,x2 ∈ [−C,C] and t1, t2 ∈ T .

If we choose x = x1 = x2, then we find in particular that

|pt1(x)− pt2(x)|6 K‖t1− t2‖2 for all x ∈ [−C,C] and t1, t2 ∈ T .

Let δ := ε

4CKM and define open balls in T with centre t ∈ T as Bδ (t) := {t1 ∈ T : ‖t − t1‖2 < δ}. Consider the
cover {Bδ (t) : t ∈ T} of T with δ -balls for every t ∈ T . Because T is compact, there is a finite sub-cover, so there
is a finite set of centres τδ ⊆ T such that T ⊆

⋃
tc∈τδ

Bδ (tc).
For any tc ∈ τδ , we now define

φ [tc]
ε

: R→ R : x 7→ inf
t∈Bδ (tc)

f (x)
pt(x)
p(x)

and

φ [tc]ε : R→ R : x 7→ sup
t∈Bδ (tc)

f (x)
pt(x)
p(x)

.

By construction, all maps in { ft : t ∈ Bδ (tc)} are inside the bracket (φ [tc]
ε
,φ [tc]ε). Hence, since T ⊆

⋃
tc∈τ Bδ (tc), each ft

belongs to at least one bracket. Now observe that

EP
(

φ [tc]ε −φ [tc]
ε

)
=
∫
R

(
sup

t∈Bδ (tc)
f (x)

pt(x)
p(x)

− inf
t∈Bδ (tc)

f (x)
pt(x)
p(x)

)
p(x)dx =

∫
R
| f (x)| sup

s,t∈Bδ (tc)
|pt(x)− ps(x)|dx,

where we can take the absolute value on the right-hand side since the supremum of the difference will certainly be positive,
because, by symmetry, we could swap s and t to flip the sign. Splitting off the tails leads to:∫
R
| f (x)| sup

s,t∈Bδ (tc)
|pt(x)− ps(x)|dx6

∫ C

−C
| f (x)| sup

s,t∈Bδ (tc)
|pt(x)− ps(x)|dx+

∫
(−∞,−C]∪[C,+∞)

| f (x)| sup
s,t∈Bδ (tc)

|pt(x)− ps(x)|dx.

We will bound both terms. The first term can be bounded by∫ C

−C
| f (x)| sup

s,t∈Bδ (tc)
|pt(x)− ps(x)|dx 6 KM sup

s,t∈Bδ (tc)
‖s− t‖2

∫ C

−C
dx 6 2CKMδ =

ε

2
.

The second term can be bounded using the results in the first part of the proof. By the triangle inequality we obtain∫
(−∞,−C]∪[C,+∞)

| f (x)| sup
s,t∈Bδ (tc)

|pt(x)− ps(x)|dx 6 2M
∫
(−∞,−C]∪[C,+∞)

sup
t∈Bδ (tc)

|pt(x)|dx <
ε

2
.

Hence, EP(φ [tc]ε −φ [tc]
ε
)< ε . We conclude that for every real ε > 0, we can construct a finite set of brackets that satisfies

the conditions of Theorem 6. Theorem 6 therefore guarantees consistency of the estimator.
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A.2.11. THE MAP F FOR THE FIRST EXAMPLE USING THEOREM 13

First of all, we let z := x−µ

σ
. We have to find an upper bound F(x) for all µ and σ for

∥∥∇(µ,σ) f(µ,σ)(x)
∥∥

2. We find that

∂

∂ µ
f(µ,σ)(x) =

(x−µ)

σ2 I{y : g(y)<0}(x)
σo

σ
exp
(
− (x−µ)2

2σ2 +
(x−µo)

2

2σ2
o

)
=

z
σ

fµ,σ (x)

∂

∂σ
f(µ,σ)(x) =

( (x−µ)2

σ3 − 1
σ

)
I{y : g(y)<0}(x)

σo

σ
exp
(
− (x−µ)2

2σ2 +
(x−µo)

2

2σ2
o

)
=

(z2−1)
σ

fµ,σ (x).

Taking the norm results in∥∥∇(µ,σ) f(µ,σ)(x)
∥∥

2 =
1
σ

√
z2 +(z2−1)2 fµ,σ (x) =

1
σ

fµ,σ (x)
√

z4− z2 +1.

Now we can bound each factor separately:

1
σ

6
1
σ

fµ,σ (x) = I{y : g(y)>0}(x)
σo

σ
exp
(
− (x−µ)2

2σ2 +
(x−µo)

2

2σ2
o

)
6

σo

σ


exp
(
− (x−µ)2

2σ
2 + (x−µo)

2

2σ2
o

)
x < µ

exp
(
(x−µo)

2

2σ2
o

)
µ 6 x < µ

exp
(
− (x−µ)2

2σ
2 + (x−µo)

2

2σ2
o

)
µ 6 x

√
z4− z2 +1 6

√
z4 +2z2 +1 = z2 +1 =

(x−µ

σ

)2
+1 6


(x−µ)2

σ2 +1 x < µ

(µ−µ)2

σ2 +1 µ 6 x < µ

(x−µ)2

σ2 +1 µ 6 x.

So we suggest

F(x) =
σo

σ2


(
(x−µ)2

σ2 +1
)

exp
(
− (x−µ)2

2σ
2 + (x−µo)

2

2σ2
o

)
x < µ(

(µ−µ)2

σ2 +1
)

exp
(
(x−µo)

2

2σ2
o

)
µ 6 x < µ(

(x−µ)2

σ2 +1
)

exp
(
− (x−µ)2

2σ
2 + (x−µo)

2

2σ2
o

)
µ 6 x.

Now we check whether EPo(|F |)<+∞.

EPo(|F |) =
∫
R
|F(x)| 1√

2πσo
exp
(
− (x−µo)

2

2σ2
o

)
dx

=
1√

2πσ2

{∫
µ

−∞

(
(x−µ)2

σ2 +1
)

exp
(
−
(x−µ)2

2σ
2

)
dx+

∫
µ

µ

(
(µ−µ)2

σ2 +1
)

dx

+
∫ +∞

µ

(
(x−µ)2

σ2 +1
)

exp
(
− (x−µ)2

2σ
2

)
dx
}

6
σ

σ2 EP(µ,σ)

(
(X−µ)2

σ2 +1
)
+

1√
2πσ2

(
(µ−µ)2

σ2 +1
)(

µ−µ
)
+

σ

σ2 EP(µ,σ)

(
(X−µ)2

σ2 +1
)
.

Since the expectations are taken over polynomials, and normal distributions have finite moments, we know that this will be
finite.

A.2.12. THE MAP F FOR THE FIRST EXAMPLE USING THEOREM 16

This derivation is similar to the previous derivation. First of all, we let z := x−µ

σ
. We have to find an upper bound F(x) for

all µ and σ for
∥∥∇(µ,σ)p(µ,σ)(x)

∥∥
2. We find that

∂

∂ µ
p(µ,σ)(x) =

(x−µ)

σ2
1√

2πσ
exp
(
− (x−µ)2

2σ2

)
=

z
σ

pµ,σ (x)
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∂

∂σ
p(µ,σ)(x) =

( (x−µ)2

σ3 − 1
σ

) 1√
2πσ

exp
(
− (x−µ)2

2σ2

)
=

(z2−1)
σ

pµ,σ (x).

Taking the norm results in∥∥∇(µ,σ)p(µ,σ)(x)
∥∥

2 =
1
σ

√
z2 +(z2−1)2 pµ,σ (x) =

1
σ

pµ,σ (x)
√

z4− z2 +1.

Now we can bound each factor separately:

1
σ

6
1
σ

pµ,σ (x) =
1√

2πσ
exp
(
− (x−µ)2

2σ2

)
6

1√
2πσ


exp
(
− (x−µ)2

2σ
2

)
x < µ

1 µ 6 x < µ

exp
(
− (x−µ)2

2σ
2

)
µ 6 x

√
z4− z2 +1 6

√
z4 +2z2 +1 = z2 +1 =

(x−µ

σ

)2
+1 6


(x−µ)2

σ2 +1 x < µ

(µ−µ)2

σ2 +1 µ 6 x < µ

(x−µ)2

σ2 +1 µ 6 x.

So we suggest

F(x) =
1√

2πσ2


(
(x−µ)2

σ2 +1
)

exp
(
− (x−µ)2

2σ
2

)
x < µ

(µ−µ)2

σ2 +1 µ 6 x < µ(
(x−µ)2

σ2 +1
)

exp
(
− (x−µ)2

2σ
2

)
µ 6 x.

Now we check whether
∫
R| f (x)|F(x)dx <+∞. Since | f (x)|6 1, it is sufficient to prove that

∫
R F(x)dx <+∞.

∫
R
| f (x)|F(x)6

1√
2πσ2

{∫
µ

−∞

(
(x−µ)2

σ2 +1
)

exp
(
−
(x−µ)2

2σ
2

)
dx+

∫
µ

µ

(
(µ−µ)2

σ2 +1
)

dx

+
∫ +∞

µ

(
(x−µ)2

σ2 +1
)

exp
(
− (x−µ)2

2σ
2

)
dx
}

6
σ

σ2 EP(µ,σ)

(
(X−µ)2

σ2 +1
)
+

1√
2πσ2

(
(µ−µ)2

σ2 +1
)(

µ−µ
)
+

σ

σ2 EP(µ,σ)

(
(X−µ)2

σ2 +1
)
.

Since the expectations are taken over polynomials, and normal distributions have finite moments, we know that this will be
finite.

A.2.13. THE FIRST EXAMPLE FOR A COMPACT SET OF PARAMETERS USING THEOREM 17

∫
R

sup
(µ,σ)∈[µ,µ]×[σ ,σ ]

p(µ,σ)(x)dx 6
1√

2πσ

∫
R

sup
µ∈[µ,µ]

e−
(x−µ)2

2σ2 dx

=
1√

2πσ

(∫
µ

−∞

e−
(x−µ)2

2σ2 dx+
∫

µ

µ

1dx+
∫ +∞

µ

e−
(x−µ)2

2σ2 dx

)

=
1
σ

(
σ +

1√
2π

(µ−µ)

)
<+∞.
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