lavaan: an R package for structural equation modeling and more Version 0.5-12 (BETA)

Yves Rosseel
Department of Data Analysis
Ghent University (Belgium)

December 19, 2012

Abstract

In this document, we illustrate the use of lavaan by providing several examples. If you are new to lavaan, this is the first document to read.

Contents

1 Before you start 2
2 Installation of the lavaan package 3
3 The model syntax 3
3.1 Entering the model syntax as a string literal 4
3.2 Reading the model syntax from an external file 4
4 Fitting latent variable models: two examples 4
4.1 A first example: confirmatory factor analysis (CFA) 4
4.2 A second example: a structural equation model (SEM) 7
5 Fixing parameters, starting values and equality constraints 10
5.1 Fixing parameters 10
5.2 Starting values 11
5.3 Parameter labels 11
5.4 Simple equality constraints 12
5.5 Nonlinear equality and inequality constraints 13
6 Mean structures and multiple groups 14
6.1 Bringing in the means 14
6.2 Multiple groups 16
6.2.1 Constraining a single parameter to be equal across groups 20
6.2.2 Constraining groups of parameters to be equal across groups 20
6.2.3 Measurement Invariance 22
7 Growth curve models 23
8 Using categorical variables 25
8.1 Exogenous categorical variables 25
8.2 Endogenous categorical variables 25
9 Additional information 26
9.1 Using a covariance matrix as input 26
9.2 Estimators, standard errors and missing values 27
9.2.1 Estimators 27
9.2.2 Missing values 28
9.2.3 Standard errors 28
9.2.4 Bootstrapping 28
9.2.5 Indirect effects and mediation analysis 28
9.3 Modification Indices 29
9.4 Extracting information from a fitted model 29
9.4.1 parameterEstimates 30
9.4.2 standardizedSolution 30
9.4.3 fitted.values 30
9.4.4 residuals 30
9.4.5 vcov 31
9.4.6 AIC and BIC 31
9.4.7 fitMeasures 31
9.4.8 inspect 31
A Examples from the Mplus User's Guide 32
A. 1 Chapter 3: Regression and Path Analysis 33
A. 2 Chapter 5: Confirmatory factor analysis and structural equation modeling 33
A. 3 Chapter 6: Growth modeling 36

1 Before you start

Before you start, please read these points carefully:

- First of all, you must have a recent version (2.14.0 or higher) of R installed. You can download the latest version of R from this page: http://cran.r-project.org/.
- The lavaan package is not finished yet. But it is already very useful for most users, or so we hope. However, some important features that are currently NOT available in lavaan are:
- support for hierarchical/multilevel datasets (multilevel cfa, multilevel sem)
- support for discrete latent variables (mixture models, latent classes)
- Bayesian estimation

We hope to add these features in the next (two?) year(s) or so.

- We consider the current version as 'beta' software. This does NOT mean that you can not trust the results. We believe the results are accurate. It does mean that things may change when new versions come out. For example, we may change the name of the arguments in function calls. And we change the internals of the source code constantly. However, the model syntax is fairly mature and has been stable for a while.
- We do not expect you to be an expert in R. In fact, the lavaan package is designed to be used by users that would normally never use R. Nevertheless, it may help to familiarize yourself a bit with R, just to be comfortable with it. Perhaps the most important skill that you may need to learn is how to import your own datasets (perhaps in an SPSS format) into R. There are many tutorials on the web to teach you just that. Once you have your data in R, you can start specifying your model. We have tried very hard to make it as easy as possible for users to fit their models. Of course, if you have suggestions on how we can improve things, please let us know.
- This document is written for first-time users (and beta-testers) of the lavaan package. It is not a reference manual, nor does it contain technical material on how things are done in the lavaan package. These documents are currently under preparation.
- The lavaan package is free open-source software. This means (among other things) that there is no warranty whatsoever.
- The numerical results of the lavaan package are typically very close, if not identical, to the results of the commercial package Mplus. If you wish to compare the results with those obtained by other SEM packages, you can use the optional argument mimic="EQS" when calling the cfa, sem or growth functions (see section 9.2).
- (New since 12 September 2012). If you need help, you can ask questions in the lavaan discussion group. Go to https://groups.google.com/d/forum/lavaan/ and join the group. Once you have joined the group, you can email your questions to lavaan@googlegroups.com If you think you have found a bug, or if you have a suggestion for improvement, you can open an issue on github (see https://github.com/yrosseel/lavaan/issues). If you open an issue to report a bug, it is always very useful to provide a reproducable example (a short R script and some data).
- This document is not up to date (as of 12 September 2012). We are working on a web-based user manual that will gradually replace this document. The 'lavaan paper' (http://www.jstatsoft.org/v48/i02/) is more up to date (at least up to version 0.4-14).

2 Installation of the lavaan package

Since May 2010, the lavaan package is available on CRAN. Therefore, to install lavaan, simply start up R, and type:

```
> install.packages("lavaan", dependencies=TRUE)
```

You can check if the installation was succesful by typing

```
> library(lavaan)
This is lavaan 0.5-12
lavaan is BETA software! Please report any bugs.
```

When the package is loaded, a startup message will be displayed showing the version number, and a reminder that this is beta software.

3 The model syntax

At the heart of the lavaan package is the 'model syntax'. The model syntax is a description of the model to be estimated. In this section, we briefly explain the elements of the lavaan model syntax. More details are given in the examples that follow.
In the R environment, a regression formula has the following form:

$$
y \sim x 1+x 2+x 3+x 4
$$

In this formula, the tilde sign ("~") is the regression operator. On the left-hand side of the operator, we have the dependent variable (y), and on the right-hand side, we have the independent variables, separated by the "+" operator. In lavaan, a typical model is simply a set (or system) of regression formulas, where some variables (starting with an ' f ' below) may be latent. For example:

```
y ~ f1 + f2 + x1 + x2
f1 ~ f2 + f3
f2 ~ f3 + x1 + x2
```

If we have latent variables in any of the regression formulas, we must 'define' them by listing their manifest indicators. We do this by using the special operator $"=\sim$ ", which can be read as is manifested by. For example, to define the three latent variabels $f 1, f 2$ and $f 3$, we can use something like:

```
f1 =~ y1 + y2 + y3
f2 =~ y4 + y5 + y6
f3 =~ y7 + y8 + y9 + y10
```

Furthermore, variances and covariances are specified using a 'double tilde' operator, for example:

```
y1 ~~ y1
y1 ~~ y2
f1 ~~ f2
```

And finally, intercepts for observed and latent variables are simple regression formulas with only an intercept (explicitly denoted by the number ' 1 ') as the only predictor:

```
y1 ~ 1
f1 ~ 1
```

Using these four formula types, a large variety of latent variable models can be described. But new formula types may be added in the future. The current set of formula types is summarized in the table below.

formula type	operator	mnemonic
latent variable definition	$=\sim$	is measured by
regression	\sim	is regressed on
(residual) (co)variance	$\sim \sim$	is correlated with
intercept	~ 1	intercept

3.1 Entering the model syntax as a string literal

If the model syntax is fairly short, you can specify it interactively at the R prompt by enclosing the formulas with single quotes. For example:

```
> myModel <- ' # regressions
    y1 + y2 ~ f1 + f2 + x1 + x2
        f1 ~ f2 + f3
        f2 ~ f3 + x1 + x2
    # latent variable definitions
    f1 =~ y1 + y2 + y3
    f2 =~ y4 + y5 + y6
    f3 =~ y7 + y8 +
                y9 + y10
    # variances and covariances
    yl ~~ yl
    y1 ~~ y2
    f1 ~~ f2
    # intercepts
    y1 ~ 1
    f1 ~ 1
```

Of course, instead of typing this interactively at the R prompt, you may prefer to type the whole model first in an external text editor, and when you are done, you can copy/paste it to the R console. This piece of code will produce a model syntax object, called myModel that can be used later when calling a function that actually estimates this model given a dataset. Note that formulas can be split over multiple lines, and you can use comments (starting with the \# character) and blank lines within the single quotes to improve readability of the model syntax.

3.2 Reading the model syntax from an external file

If your model syntax is rather long, or you need to reuse the model syntax over and over again, you may prefer to type it in a separate text file called, say, myModel.lav. This text file should be in a human readable format (not a Word document). Within R, you can then read the model syntax from the file as follows:

```
> myModel <- readLines("/mydirectory/myModel.lav")
```

The argument of readLines is the full path to the file containing the model syntax. Again, the model syntax object myModel can be used later to fit this model given a dataset.

4 Fitting latent variable models: two examples

4.1 A first example: confirmatory factor analysis (CFA)

We start with a simple example of confirmatory factor analysis, using the cfa function, which is a user-friendly function for fitting CFA models. The lavaan package contains a built-in dataset called HolzingerSwineford1939. See the help page for this dataset by typing
> ?HolzingerSwineford1939
at the R prompt. This is a 'classic' dataset that is used in many papers and books on Structural Equation Modeling (SEM), including some manuals of commercial SEM software packages. The data consists of mental ability test scores of seventh- and eighth-grade children from two different schools (Pasteur and Grant-White). In our version of the dataset, only 9 out of the original 26 tests are included. A CFA model that is often proposed for these 9 variables consists of three latent variables (or factors), each with three indicators:

- a visual factor measured by 3 variables: $\mathrm{x} 1, \mathrm{x} 2$ and x 3
- a textual factor measured by 3 variables: $\mathrm{x} 4, \mathrm{x} 5$ and x 6
- a speed factor measured by 3 variables: x 7 , x 8 and x 9

The left panel of the figure below contains a simplified graphical representation of the three-factor model. The right panel contains the corresponding lavaan syntax for specifying this model.


```
lavaan syntax
    visual =~ x1 + x2 + x3
    textual =~ x4 + x5 + x6
    speed =~ x7 + x8 + x9
```

In this example, the model syntax only contains three 'latent variable definitions'. Each formula has the following format:

```
latent variable =~ indicator1 + indicator2 + indicator3
```

We call these expressions latent variable definitions because they define how the latent variables are 'manifested by' a set of observed (or manifest) variables, often called 'indicators'. Note that the special "=~" operator in the middle consists of a sign ($"==$) character and a tilde ($" \sim$ ") character next to each other. The reason why this model syntax is so short, is that behind the scenes, the cfa function will take care of several things. First, by default, the factor loading of the first indicator of a latent variable is fixed to 1 , thereby fixing the scale of the latent variable. Second, residual variances are added automatically. And third, all exogenous latent variables are correlated by default. This way, the model syntax can be kept concise. On the other hand, the user remains in control, since all this 'default' behavior can be overriden and/or switched off.
We can enter the model syntax using the single quotes:

```
> HS.model <- '
    visual =~ x1 + x2 + x3
    textual =~ x4 + x5 + x6
    speed =~ x7 + x8 + x9
+ '
```

We can now fit the model as follows:

```
> fit <- cfa(HS.model, data=HolzingerSwinefordl939)
```

The lavaan function cfa is a dedicated function for fitting confirmatory factor analysis models. The first argument is the user-specified model. The second argument is the dataset that contains the observed variables. Once the model has been fitted, the summary method provides a nice summary of the fitted model:

> summary(fit, fit.measures=TRUE)	
lavaan (0.5-12) converged normally after	41 iterations
Number of observations	301
Estimator	ML
Minimum Function Test Statistic	85.306
Degrees of freedom	24
P-value (Chi-square)	0.000
Model test baseline model:	
Minimum Function Test Statistic	918.852
Degrees of freedom	36
P-value	

P-value
0.000

Full model versus baseline model:

Comparative Fit Index (CFI)	0.931
Tucker-Lewis Index (TLI)	0.896

Loglikelihood and Information Criteria:

Loglikelihood user model (H0)	-3737.745
Loglikelihood unrestricted model (H1)	-3695.092
	21
Number of free parameters	7517.490
Akaike (AIC)	7595.339
Bayesian (BIC)	7528.739

Root Mean Square Error of Approximation:

RMSEA		0.092
90 Percent Confidence Interval	0.071	0.114
P-value RMSEA $<=0.05$		0.001

Standardized Root Mean Square Residual:

SRMR
0.065

Parameter estimates:

| Information | | | Expected |
| :---: | :---: | :---: | :---: | :---: |
| Standard Errors | | | |
| Standard | | | |

x7	0.799	0.081
x8	0.488	0.074
x9	0.566	0.071
visual	0.809	0.145
textual	0.979	0.112
speed	0.384	0.086

The output should look familiar to users of other SEM software. If you find it confusing or esthetically unpleasing, again, please let us know, and we will try to improve it. To wrap up this first example, we summarize the code that was needed to fit this three-factor model:

```
R code
# load the lavaan package (only needed once per session)
library(lavaan)
# specify the model
HS.model <- ' visual =~ x1 + x2 + x3
    textual =~ x4 + x5 + x6
    speed =~ x7 + x8 + x9 '
# fit the model
fit <- cfa(HS.model, data=HolzingerSwineford1939)
# display summary output
summary(fit, fit.measures=TRUE)
```

Simply copying this code and pasting it in R should work. The syntax illustrates the typical workflow in the lavaan package:

1. Specify your model using the lavaan model syntax. In this example, only latent variable definitions have been used. In the following examples, other formula types will be used.
2. Fit the model. This requires a dataset containing the observed variables (or alternatively the sample covariance matrix and the number of observations; see section 9.1). In this example, we have used the cfa function. Other funcions in the lavaan package are sem and growth for fitting full structural equation models and growth curve models respectively. All three functions are so-called user-friendly functions, in the sense that they take care of many details automatically, so we can keep the model syntax simple and concise. If you wish to fit non-standard models or if you don't like the idea that things are done for you automatically, you can use the lower-level function lavaan, where you have full control.
3. Extract information from the fitted model. This can be a long verbose summary, or it can be a single number only (say, the RMSEA value). In the spirit of R, you only get what you asked for. We do not print out unnecessary information that you would ignore anyway.

4.2 A second example: a structural equation model (SEM)

In our second example, we will use the built-in PoliticalDemocracy dataset. This is a dataset that has been used by Bollen in his 1989 book on structural equation modeling (and elsewhere). To learn more about the dataset, see the help page and the references therein.
The left panel of the figure below contains a graphical representation of the model that we want to fit. The right panel contains the corresponding model syntax.

In this example, we use three different formula types: latent variabele definitions, regression formulas, and (co)variance formulas. The regression formulas are similar to ordinary formulas in R. The (co)variance formulas typically have the following form:

```
variable ~~ variable
```

The variables can be either observed or latent variables. If the two variable names are the same, the expression refers to the variance (or residual variance) of that variable. If the two variable names are different, the expression refers to the (residual) covariance among these two variables. The lavaan package automatically makes the distinction between variances and residual variances.
In our example, the expression y1 ~~ y5 allows the residual variances of the two observed variables to be correlated. This is sometimes done if it is believed that the two variables have something in common that is not captured by the latent variables. In this case, the two variables refer to identical scores, but measured in two different years (1960 and 1965, respectively). Note that the two expressions y2 $\sim \sim y 4$ and y2 $\sim \sim y 6$, can be combined into the expression y2 $\sim \sim y^{4}+y 6$. This is just a shorthand notation.
We enter the model syntax as follows:

```
> model <- ,
    # measurement model
        ind60 =~ x1 + x2 + x3
        dem60 =~ y1 + y2 + y3 + y4
        dem65 =~ y5 + y6 + y7 + y8
    # regressions
            dem60 ~ ind60
            dem65 ~ ind60 + dem60
    # residual correlations
        y1 ~~ y5
        y2 ~~ y4 + y6
        y3 ~~ y7
        y4 ~~ y8
        y6 ~~ y8
+ '
```

To fit the model and see the results we can type:

```
> fit <- sem(model, data=PoliticalDemocracy)
> summary(fit, standardized=TRUE)
lavaan (0.5-12) converged normally after 70 iterations
    Number of observations }7
    Estimator
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Minimum Function Test Statistic} & \multicolumn{4}{|c|}{38.125} \\
\hline \multicolumn{3}{|l|}{Degrees of freedom} & \multicolumn{4}{|c|}{35} \\
\hline \multicolumn{3}{|l|}{P-value (Chi-square)} & \multicolumn{4}{|c|}{0.329} \\
\hline \multicolumn{7}{|l|}{Parameter estimates:} \\
\hline \multicolumn{3}{|l|}{Information} & \multicolumn{4}{|c|}{Expected} \\
\hline \multicolumn{3}{|l|}{Standard Errors} & \multicolumn{4}{|c|}{Standard} \\
\hline & Estimate & Std.err & Z-value & \(P(>|z|)\) & Std.lv & Std.all \\
\hline \multicolumn{7}{|l|}{Latent variables:} \\
\hline \multicolumn{7}{|l|}{ind60 =~} \\
\hline x1 & 1.000 & & & & 0.670 & 0.920 \\
\hline x2 & 2.180 & 0.139 & 15.742 & 0.000 & 1.460 & 0.973 \\
\hline x3 & 1.819 & 0.152 & 11.967 & 0.000 & 1.218 & 0.872 \\
\hline \multicolumn{7}{|l|}{dem60 =~} \\
\hline y1 & 1.000 & & & & 2.223 & 0.850 \\
\hline y2 & 1.257 & 0.182 & 6.889 & 0.000 & 2.794 & 0.717 \\
\hline y 3 & 1.058 & 0.151 & 6.987 & 0.000 & 2.351 & 0.722 \\
\hline y 4 & 1.265 & 0.145 & 8.722 & 0.000 & 2.812 & 0.846 \\
\hline \multicolumn{7}{|l|}{dem65 =~} \\
\hline y5 & 1.000 & & & & 2.103 & 0.808 \\
\hline y6 & 1.186 & 0.169 & 7.024 & 0.000 & 2.493 & 0.746 \\
\hline y7 & 1.280 & 0.160 & 8.002 & 0.000 & 2.691 & 0.824 \\
\hline y8 & 1.266 & 0.158 & 8.007 & 0.000 & 2.662 & 0.828 \\
\hline \multicolumn{7}{|l|}{Regressions:} \\
\hline \multicolumn{7}{|l|}{dem60 ~} \\
\hline ind60 & 1.483 & 0.399 & 3.715 & 0.000 & 0.447 & 0.447 \\
\hline \multicolumn{7}{|l|}{dem65 ~} \\
\hline ind60 & 0.572 & 0.221 & 2.586 & 0.010 & 0.182 & 0.182 \\
\hline dem60 & 0.837 & 0.098 & 8.514 & 0.000 & 0.885 & 0.885 \\
\hline \multicolumn{7}{|l|}{Covariances:} \\
\hline \multicolumn{7}{|l|}{y1 ~~} \\
\hline y5 & 0.624 & 0.358 & 1.741 & 0.082 & 0.624 & 0.296 \\
\hline \multicolumn{7}{|l|}{y2 ~~} \\
\hline y 4 & 1.313 & 0.702 & 1.871 & 0.061 & 1.313 & 0.273 \\
\hline y6 & 2.153 & 0.734 & 2.934 & 0.003 & 2.153 & 0.356 \\
\hline \multicolumn{7}{|l|}{y3 ~~} \\
\hline y7 & 0.795 & 0.608 & 1.308 & 0.191 & 0.795 & 0.191 \\
\hline \multicolumn{7}{|l|}{y 4 ~~} \\
\hline y8 & 0.348 & 0.442 & 0.787 & 0.431 & 0.348 & 0.109 \\
\hline \multicolumn{7}{|l|}{y6 ~~} \\
\hline y8 & 1.356 & 0.568 & 2.386 & 0.017 & 1.356 & 0.338 \\
\hline \multicolumn{7}{|l|}{Variances:} \\
\hline x1 & 0.082 & 0.019 & & & 0.082 & 0.154 \\
\hline x2 & 0.120 & 0.070 & & & 0.120 & 0.053 \\
\hline \(\times 3\) & 0.467 & 0.090 & & & 0.467 & 0.239 \\
\hline y1 & 1.891 & 0.444 & & & 1.891 & 0.277 \\
\hline y 2 & 7.373 & 1.374 & & & 7.373 & 0.486 \\
\hline y 3 & 5.067 & 0.952 & & & 5.067 & 0.478 \\
\hline y 4 & 3.148 & 0.739 & & & 3.148 & 0.285 \\
\hline y5 & 2.351 & 0.480 & & & 2.351 & 0.347 \\
\hline y6 & 4.954 & 0.914 & & & 4.954 & 0.443 \\
\hline y7 & 3.431 & 0.713 & & & 3.431 & 0.322 \\
\hline y8 & 3.254 & 0.695 & & & 3.254 & 0.315 \\
\hline ind60 & 0.448 & 0.087 & & & 1.000 & 1.000 \\
\hline dem60 & 3.956 & 0.921 & & & 0.800 & 0.800 \\
\hline dem65 & 0.172 & 0.215 & & & 0.039 & 0.039 \\
\hline
\end{tabular}

The function sem is very similar to the cfa function. In fact, the two functions are currently almost identical, but this may change in the future. In the summary method, we omitted the fit.measures=TRUE argument. Therefore, you only get the basic chi-square statistic. The argument standardized=TRUE augments the output with standardized parameter values. Two extra columns of standardized parameter values are printed. In the first column (labeled Std.lv), only the latent variables are standardized. In the second column (labeled Std.all), both latent and observed variables are standardized. The latter is often called the 'completely standardized solution'.
The complete code to specify and fit this model is printed again below:
```

library(lavaan) \# only needed once per session
model <- '
\# measurement model
ind60 =~ x1 + x2 + x3
dem60 =~ y1 + y2 + y3 + y4
dem65 =~ y5 + y6 + y7 + y8
\# regressions
dem60 ~ ind60
dem65 ~ ind60 + dem60
\# residual correlations
y1 ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8
fit <- sem(model, data=PoliticalDemocracy)
summary(fit, standardized=TRUE)

```

\section*{5 Fixing parameters, starting values and equality constraints}

\subsection*{5.1 Fixing parameters}

Consider a simple one-factor model with 4 indicators. By default, lavaan will always fix the factor loading of the first indicator to 1 . The other three factor loadings are free, and their values are estimated by the model. But suppose that you have good reasons the fix all the factor loadings to 1 . The syntax below illustrates how this can be done:


In general, to fix a parameter in a lavaan formula, you need to pre-multiply the corresponding variable in the formula by a numerical value. This is called the pre-multiplication mechanism and will be used for many purposes. As another example, consider again the three-factor Holzinger and Swineford CFA model. Recall that, by default, all exogenous latent variables in a CFA model are correlated. But if you wish to fix the correlation (or covariance) between a pair of latent variables to zero, you need to explicity add a covarianceformula for this pair, and fix the parameter to zero. In the figure below, we allow the covariance between the latent variables visual and textual to be free, but the two other covariances are fixed to zero. In addition, we fix the variance of the speed factor to unity. Therefore, there is no need anymore to set the factor loading of its first indicator ( x 7 ) equal to one. To force this factor loading to be free, we pre-multiply it with NA, as a hint to lavaan that the value of this parameter is still unknown.

```

lavaan syntax

three-factor model

 visual =~ x1 + x2 + x3
 textual =~ x4 + x5 + x6
 speed =~ NA*x7 + x8 + x9

orthogonal factors

 visual ~~ 0*speed
 textual ~~ 0*speed

fix variance of speed factor

 speed ~~ 1*speed
    ```

If you need to constrain all covariances of the latent variables in a CFA model to be orthogonal, there is a shortcut. You can omit the covariance formulas in the model syntax and simply add an orthogonal=TRUE argument to the cfa function call:
```

> HS.model <- ' visual =~ x1 + x2 + x3

+ textual =~ x4 + x5 + x6
+ speed =~ x7 + x8 + x9 '
> fit.HS.ortho <- cfa(HS.model, data=HolzingerSwinefordl939, orthogonal=TRUE)

```

Similarly, if you want to fix the variances of all the latent variables in a CFA model to unity, there is again a shortcut. Simply add a std.lv=TRUE argument to the cfa function call:
```

> HS.model <- ' visual =~ x1 + x2 + x3

+ textual =~ x4 + x5 + x6
+ speed =~ x7 + x8 + x9 '
> fit <- cfa(HS.model, data=HolzingerSwineford1939, std.lv=TRUE)

```

If the std.lv=TRUE argument is used, the factor loadings of the first indicator of each latent variable will no longer be fixed to 1 .

\subsection*{5.2 Starting values}

The lavaan package automatically generates starting values for all free parameters. Normally, this works fine. But if you must provide your own starting values, you are free to do so. The way it works is based on the pre-multiplication mechanism that we discussed before. But the numeric constant is now the argument of a special function start (). An example will make this clear:

> lavaan syntax
```

visual =~ x1 + start(0.8)*x2 + start(1.2)*x3
textual =~ x4 + start (0.5)*x5 + start(1.0)*x6
speed =~ x7 + start (0.7)*x8 + start (1.8)*x9

```

The factor loadings of the first indicators ( \(\mathrm{x} 1, \mathrm{x} 4\) and x 7 ) are fixed, so no starting values are needed. But for all other factor loadings, starting values are provided in this example.

\subsection*{5.3 Parameter labels}

A nice property of the lavaan package is that all free parameters are automatically named according to a simple set of rules. This is convenient, for example, if equality constraints are needed (see the next subsection). To see how the naming mechanism works, we will use the model that we used for the Politcal Democracy data.
```

model <- '
\# latent variable definitions
ind60 =~ x1 + x2 + x3
dem60 =~ y1 + y2 + y3 + y4
dem65 =~ y5 + y6 + y7 + y8
\# regressions
dem60 ~ ind60
dem65 ~ ind60 + dem60
\# residual (co)variances
y1 ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8

+ '
> fit <- sem(model, data=PoliticalDemocracy)
coef(fit)
ind60=~x2
nd60=~x2 ind60=~x3
1.819 1.257 1.058 1.265
dem65=~y7 dem65=~y8 dem60~ind60 dem65~ind60 dem65~dem60 y1~~y5
1.280 1.266 1.483 0.572 0.837 0.624
y2~~y4 rrrrrern
1.313 2.153 0.795 0.348 0.082
x2~~x2 rrar~x3 y1~~y1
rrrrrrern

```
dem65~~dem65
        0.172

The coef function extracts the estimated values of the free parameters in the model, together with their names. Each name consists of three parts and reflects the part of the formula where the parameter was involved. The first part is the variable name that appears on the left-hand side of the formula. The middle part is the operator type of the formula, and the third part is the variable in the right-hand side of the formula that corresponds with the parameter.
If you want, you can provide custom parameter names or labels simply by pre-multiplying a variable name with that label. An example will make this clear:
```

> model <- '
\# latent variable definitions
ind60 =~ x1 + x2 + myLabel*x3
dem60 =~ y1 + y2 + y3 + y4
dem65 =~ y5 + y6 + y7 + y8
\# regressions
dem60 ~ ind60
dem65 ~ ind60 + dem60
\# residual (co)variances
yl ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8

+ '

```

It is important that labels start with a letter (a-zA-Z), and certainly not with a digit. For example '13bis' is not a valid label, and will confuse the lavaan syntax parser. Note: before version \(0.4-8\), it was necessary to use the label() modifier to specify a custom label. Although it is still supported, it is not recommended anymore. The only reason why it should be used in new syntax is if the label contains an operator like " " or "=".

\subsection*{5.4 Simple equality constraints}

In some applications, it is useful to impose equality constraints on one or more otherwise free parameters. Consider again the three-factor H\&S CFA model. Suppose a user has a priori reasons to believe that the factor loadings of the x 2 and x 3 indicators are equal to each other. Instead of estimating two free parameters, lavaan
should only estimate a single free parameter, and use that value for both factor loadings. The main mechanism to specify this type of (simple) equality constraints is by using labels: if two parameters have the same label, they will be considered to be the same, and only one value will be computed for them. This is illustrated in the following syntax:

> lavaan syntax
```

visual =~ x1 + v2*x2 + v2*x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

```

All parameters having the same label will be constrained to be equal.
An alternative approach is to use the equal() modifier. This is useful if no custom label has been specified, and one needs to refer to the automatic label. For example:

> lavaan syntax
```

visual =~ x1 + x2 + equal("visual=~x2")*x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

```

The parameter corresponding to the factor loading of the x 2 variable is (automatically) called "visual=~x2". By using the equal () modifier for x 3 , the corresponding parameter value will be set equal to the factor loading of x 2 .

\subsection*{5.5 Nonlinear equality and inequality constraints}

In version \(0.4-8\), initial support has been added for general nonlinear equality and inequality constraints. Consider for example the following regression:

> lavaan syntax
```

y ~ b1*x1 + b2*x2 + b 3*x3

```
where we have explicitly labeled the regression coefficients as b1, b2 and b3. We create a toy dataset containing these four variables and fit the regression model:
```

> set.seed(1234)
> Data <- data.frame(y = rnorm(100), x1 = rnorm(100), x2 = rnorm(100),

+ x3 = rnorm(100))
> model <- ' y ~ b1*x1 + b 2*x2 + b3*x3 '
> fit <- sem(model, data=Data)
> coef(fit)

| b 1 | b 2 | b 3 | $\mathrm{y} \sim \sim y$ |
| ---: | ---: | ---: | ---: |
| -0.052 | 0.084 | 0.139 | 0.970 |

```

Suppose that we need to impose the following two (nonlinear) constraints on \(b_{1}\) : \(b_{1}=\left(b_{2}+b_{3}\right)^{2}\) and \(b_{1} \geq \exp \left(b_{2}+b_{3}\right)\). The first constraint is an equality constraint. The second is an inequality constraint. To specify these constraints, you can use the following syntax:
lavaan syntax
```

model.constr <- ' \# model with labeled parameters
y ~ b1*x1 + b2*x2 + b3*x3
\# constraints
b1 == (b2 + b3)^2
b1 > exp (b2 + b3) '

```

To see the effect of the constraints, we refit the model:
```

> model.constr <- ' \# model with labeled parameters

+ y}~b1*x1+b2*x2+b3*x
+
constraints

+ b1 == (b2 + b3)^2
+ b1 > exp (b2 + b3) ,
> fit <- sem(model.constr, data=Data)
> coef(fit)
b1 rrre

```

The reader can verify that the constraints are indeed respected. The equality constraint holds exactly. The inequality constraint has resulted in an equality between the left-hand side \(\left(b_{1}\right)\) and the right-hand side \(\left(\exp \left(b_{2}+b_{3}\right)\right)\).

\section*{6 Mean structures and multiple groups}

\subsection*{6.1 Bringing in the means}

By and large, structural equation models are used to model the covariance matrix of the observed variables in a dataset. But in some applications, it is useful to bring in the means of the observed variables too. One way to do this is to explicitly refer to intercepts in the lavaan syntax. This can be done by including 'intercept formulas' in the model syntax. An intercept formula has the following form:
```

variable ~ 1

```

The left part of the expression contains the name of the observed or latent variable. The right part contains the number 1 , representing the intercept. For example, in the three-factor H\&S CFA model, we can add the intercepts of the observed variables as follows:
lavaan syntax
```


three-factor model

 visual =~ x1 + x2 + x3
 textual =~ x4 + x5 + x6
 speed =~ x7 + x8 + x9

intercepts

 x1 ~ 1
 x2 ~ 1
 x3 ~ 1
 x4 ~ 1
 x5 ~ 1
 x6 ~ 1
 x7 ~ 1
 x8 ~ 1
 x9 ~ 1
    ```

However, it is more convenient to omit the intercept formulas in the model syntax (unless you want to fix their values), and to add the meanstructure = TRUE argument in the cfa and sem function calls. For example, we can refit the three-factor \(\mathrm{H} \& \mathrm{~S}\) CFA model as follows:
```

> fit <- cfa(HS.model, data=HolzingerSwineford1939, meanstructure=TRUE)
> summary(fit)
lavaan (0.5-12) converged normally after 41 iterations
Number of observations
3 0 1
Estimator
Minimum Function Test Statistic 85.306
SM, 85
P-value (Chi-square) 0.000

```
```

Parameter estimates:

```
\begin{tabular}{lllll}
\begin{tabular}{l} 
Information \\
Standard Errors
\end{tabular} & & & \begin{tabular}{r} 
Expected \\
Standard
\end{tabular} \\
& Estimate & Std.err & Z-value & \(\mathrm{P}(>\mid \mathrm{zl})\)
\end{tabular}
\begin{tabular}{cllll}
\begin{tabular}{c} 
Covariances: \\
visual ~~ \\
textual
\end{tabular} & 0.408 & 0.074 & 5.552 & 0.000 \\
speed & 0.262 & 0.056 & 4.660 & 0.000 \\
textual ~~ & 0.173 & 0.049 & 3.518 & 0.000 \\
speed & & & & \\
Intercepts: & 4.936 & 0.067 & 73.473 & 0.000 \\
x1 & 6.088 & 0.068 & 89.855 & 0.000 \\
x2 & 2.250 & 0.065 & 34.579 & 0.000 \\
x3 & 3.061 & 0.067 & 45.694 & 0.000 \\
x4 & 4.341 & 0.074 & 58.452 & 0.000 \\
x5 & 2.186 & 0.063 & 34.667 & 0.000 \\
x6 & 4.186 & 0.063 & 66.766 & 0.000 \\
x7 & 5.527 & 0.058 & 94.854 & 0.000 \\
x8 & 5.374 & 0.058 & 92.546 & 0.000 \\
x9 & 0.000 & & & \\
visual & 0.000 & & & \\
textual & 0.000 & & & \\
speed & & & &
\end{tabular}
\begin{tabular}{cll} 
Variances: & & \\
x1 & 0.549 & 0.114 \\
x2 & 1.134 & 0.102 \\
x3 & 0.844 & 0.091 \\
x4 & 0.371 & 0.048 \\
x5 & 0.446 & 0.058 \\
x6 & 0.356 & 0.043 \\
x7 & 0.799 & 0.081 \\
x8 & 0.488 & 0.074 \\
x9 & 0.566 & 0.071 \\
visual & 0.809 & 0.145 \\
textual & 0.979 & 0.112 \\
speed & 0.384 & 0.086
\end{tabular}

As you can see in the output, the model includes intercept parameters for both the observed and latent variables. By default, the cfa and sem functions fix the latent variable intercepts (which in this case correspond to the latent means) to zero. Otherwise, the model would not be estimable. Note that the chi-square statistic and the number of degrees of freedom is the same as in the original model (without a mean structure). The reason is that we brought in some new data (a mean value for each of the 9 observed variables), but we also added 9 additional parameters to the model (an intercept for each of the 9 observed variables). The end result is an identical fit. In practice, the only reason why a user would add intercept-formulas in the model syntax, is because some constraints must be specified on them. For example, suppose that we wish to fix the intercepts of the variables \(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3\) and x 4 to, say, 0.5 . We would write the model syntax as follows:

\section*{lavaan syntax}
```


three-factor model

 visual =~ x1 + x2 + x3
 textual =~ x4 + x5 + x6
 speed =~ x7 + x8 + x9
    ```
```


intercepts with fixed values

 x1 + x2 + x3 + x4 ~ 0.5*1
    ```
where we have used the left-hand side of the formula to 'repeat' the right-hand side for each element of the left-hand side.

\subsection*{6.2 Multiple groups}

The lavaan package has full support for multiple groups. To request a multiple group analysis, you need to add the name of the group variable in your dataset to the group argument in the cfa and sem function calls. By default, the same model is fitted in all groups. In the following example, we fit the H\&S CFA model for the two schools (Pasteur and Grant-White).
```

> HS.model <- ' visual =~ x1 + x2 + x3

+ textual =~ x4 + x5 + x6
+ speed =~ x7 + x8 + x9 '
> fit <- cfa(HS.model, data=HolzingerSwineford1939, group="school")
> summary(fit)
lavaan (0.5-12) converged normally after 63 iterations
Number of observations per group
Pasteur 156
Grant-White 145
Estimator
Minimum Function Test Statistic
Degrees of freedom
P-value (Chi-square)
Chi-square for each group:
Pasteur 64.309
Grant-White 51.542
Parameter estimates:
Information
Group 1 [Pasteur]:

	Estimate	Std.err	Z-value	$P(>\|z\|)$
Latent variables: visual =~				
x1	1.000			
x2	0.394	0.122	3.220	0.001
x3	0.570	0.140	4.076	0.000
textual =~				
x4	1.000			
x5	1.183	0.102	11.613	0.000
x6	0.875	0.077	11.421	0.000
speed =~				
$\times 7$	1.000			
x8	1.125	0.277	4.057	0.000
x9	0.922	0.225	4.104	0.000

Covariances:
visual ~~
textual 0.479 0.106 4.531 0.000
lllll
textual ~~
speed 0.182 0.069 2.628 0.009
Intercepts:

x 1	4.941	0.095	52.249	0.000
x 2	5.984	0.098	60.949	0.000
x 3	2.487	0.093	26.778	0.000
x 4	2.823	0.092	30.689	0.000

```
\begin{tabular}{lllll} 
x5 & 3.995 & 0.105 & 38.183 & 0.000 \\
x6 & 1.922 & 0.079 & 24.321 & 0.000 \\
x7 & 4.432 & 0.087 & 51.181 & 0.000 \\
x8 & 5.563 & 0.078 & 71.214 & 0.000 \\
x9 & 5.418 & 0.079 & 68.440 & 0.000 \\
visual & 0.000 & & & \\
textual & 0.000 & & \\
speed & 0.000 & & \\
Variances: & & & \\
x1 & 0.298 & 0.232 & & \\
x2 & 1.334 & 0.158 & \\
x3 & 0.989 & 0.136 & & \\
x4 & 0.425 & 0.069 & & \\
x5 & 0.456 & 0.086 & & \\
x6 & 0.290 & 0.050 & & \\
x7 & 0.820 & 0.125 & & \\
x8 & 0.510 & 0.116 & & \\
x9 & 0.680 & 0.104 & & \\
visual & 1.097 & 0.276 & & \\
textual & 0.894 & 0.150 & & \\
speed & 0.350 & 0.126 & &
\end{tabular}

Group 2 [Grant-White]:
\begin{tabular}{ccccc}
\begin{tabular}{l} 
Latent variables: \\
visual \(=\sim\)
\end{tabular} & Estimate & Std.err & Z-value & \(P(>|z|)\) \\
x1 & 1.000 & & & \\
x2 & 0.736 & 0.155 & 4.760 & 0.000 \\
x3 & 0.925 & 0.166 & 5.583 & 0.000 \\
textual =~ & & & & \\
x4 & 1.000 & & & \\
x5 & 0.990 & 0.087 & 11.418 & 0.000 \\
x6 & 0.963 & 0.085 & 11.377 & 0.000 \\
speed \(=\sim\) & 1.000 & & & \\
x7 & 1.226 & 0.187 & 6.569 & 0.000 \\
x8 & 1.058 & 0.165 & 6.429 & 0.000
\end{tabular}
\begin{tabular}{ccccc}
\begin{tabular}{c} 
Covariances: \\
visual ~~ \\
textual
\end{tabular} & 0.408 & 0.098 & 4.153 & 0.000 \\
speed & 0.276 & 0.076 & 3.639 & 0.000 \\
textual ~~ & 0.222 & 0.073 & 3.022 & 0.003 \\
speed & & & & \\
Intercepts: & 4.930 & 0.095 & 51.696 & 0.000 \\
x1 & 6.200 & 0.092 & 67.416 & 0.000 \\
x2 & 1.996 & 0.086 & 23.195 & 0.000 \\
x3 & 3.317 & 0.093 & 35.625 & 0.000 \\
x4 & 4.712 & 0.096 & 48.986 & 0.000 \\
x5 & 2.469 & 0.094 & 26.277 & 0.000 \\
x6 & 3.921 & 0.086 & 45.819 & 0.000 \\
x7 & 5.488 & 0.087 & 63.174 & 0.000 \\
x8 & 5.327 & 0.085 & 62.571 & 0.000 \\
x9 & 0.000 & & &
\end{tabular}
\[
\begin{array}{lll}
\text { speed } & 0.461 & 0.118
\end{array}
\]

If you want to fix parameters, or provide starting values, you can use the same pre-multiplication techniques, but the single argument is now replaced by a vector of arguments, one for each group. If you use a single element instead of a vector, that element will be applied for all groups (note: this is NOT true for labels, since this would imply equality constraints). For example:
```

 lavaan syntax
 HS.model <- ' visual =~ x1 + 0.5*x2 + c(0.6, 0.8)*x3
textual =~ x4 + start(c(1.2, 0.6))*x5 + a*x6
speed =~ x7 + x8 + x9 '

```

In the definition of the latent factor visual, we have fixed the factor loading of the x 3 indicator to the value ' 0.6 ' in the first group, and to the value ' 0.8 ' in the second group, while the factor loading of the x 2 indicator is fixed to the value ' 0.5 ' in both groups. In the definition of the textual factor, two different starting values are provided for the x5 indicator; one for each group. In addition, we have labeled the factor loading of the x 6 indicator as ' \(a\) ', but this label is only given to the parameter of the first group. If you want to provide labels to each of the two groups, you can write something like \(c(a 1, a 2) * x 6\). Be careful: if you write \(c(a, a) * x 6\), both parameters (in the first and second) group will get the same label, and hence they will be treated as a single parameter. To verify the effects of these modifiers, we refit the model:
```

> fit <- cfa(HS.model, data=HolzingerSwineford1939, group="school")
> summary(fit)
lavaan (0.5-12) converged normally after 58 iterations
Number of observations per group
Pasteur 156
Grant-White 145
Estimator ML
Minimum Function Test Statistic 118.976
Degrees of freedom
P-value (Chi-square)
0.000
Chi-square for each group:
Pasteur 64.901
Grant-White }54.07
Parameter estimates:
Information Expected
Standard Errors Standard
Group 1 [Pasteur]:

| | Estimate | Std.err | Z-value | P(>\|z|) |
| :---: | :---: | :---: | :---: | :---: |
| Latent variables: visual =~ | | | | |
| x1 | 1.000 | | | |
| x2 | 0.500 | | | |
| x3 | 0.600 | | | |
| textual =~ | | | | |
| x4 | 1.000 | | | |
| x 5 | 1.185 | 0.102 | 11.598 | 0.000 |
| $x 6$ (a) | 0.876 | 0.077 | 11.409 | 0.000 |
| speed =~ | | | | |
| $\times 7$ | 1.000 | | | |
| x8 | 1.129 | 0.279 | 4.055 | 0.000 |
| x9 | 0.931 | 0.227 | 4.103 | 0.000 |

Covariances:
visual ~~
textual 0.460 0.103 4.479 0.000
cllll
0.181 0.069 2.625
0.009

```
\begin{tabular}{ccccc} 
Intercepts: & & & & \\
x1 & 4.941 & 0.094 & 52.379 & 0.000 \\
x2 & 5.984 & 0.100 & 59.945 & 0.000 \\
x3 & 2.487 & 0.092 & 26.983 & 0.000 \\
x4 & 2.823 & 0.092 & 30.689 & 0.000 \\
x5 & 3.995 & 0.105 & 38.183 & 0.000 \\
x6 & 1.922 & 0.079 & 24.321 & 0.000 \\
x7 & 4.432 & 0.087 & 51.181 & 0.000 \\
x8 & 5.563 & 0.078 & 71.214 & 0.000 \\
x9 & 5.418 & 0.079 & 68.440 & 0.000 \\
visual & 0.000 & & & \\
textual & 0.000 & & & \\
speed & 0.000 & & & \\
& & & & \\
Variances: & 0.388 & 0.129 & & \\
x1 & 1.304 & 0.155 & & \\
x2 & 0.965 & 0.120 & & \\
x3 & 0.427 & 0.069 & & \\
x4 & 0.454 & 0.086 & & \\
x5 & 0.289 & 0.050 & & \\
x6 & 0.824 & 0.124 & & \\
x7 & 0.510 & 0.116 & & \\
x8 & 0.677 & 0.105 & & \\
x9 & 1.001 & 0.172 & & \\
visual & 0.892 & 0.150 & & \\
textual & 0.346 & 0.125 & & \\
speed & & & &
\end{tabular}

Group 2 [Grant-White]:

Latent variables:
visual =~
\begin{tabular}{ll}
x 1 & 1.000 \\
x 2 & 0.500 \\
x 3 & 0.800
\end{tabular}
textual \(=\sim\)
\begin{tabular}{lllll} 
x4 & 1.000 & & & \\
x5 & 0.990 & 0.087 & 11.425 & 0.000 \\
x6 & 0.963 & 0.085 & 11.374 & 0.000 \\
peed \(=\sim\) & & & & \\
x7 & 1.000 & & & \\
x8 & 1.228 & 0.188 & 6.539 & 0.000 \\
\(\times 9\) & 1.081 & 0.168 & 6.417 & 0.000
\end{tabular}

Covariances:
visual ~
speed
textual ~~
speed
0.454
0.315
0.099
0.073
3.049
0.002

Intercepts:
\begin{tabular}{lllll}
x 1 & 4.930 & 0.097 & 50.688 & 0.000 \\
x 2 & 6.200 & 0.089 & 69.616 & 0.000 \\
x 3 & 1.996 & 0.086 & 23.223 & 0.000 \\
x4 & 3.317 & 0.093 & 35.625 & 0.000 \\
x5 & 4.712 & 0.096 & 48.986 & 0.000 \\
x6 & 2.469 & 0.094 & 26.277 & 0.000 \\
x7 & 3.921 & 0.086 & 45.819 & 0.000 \\
x9 & 5.488 & 0.087 & 63.174 & 0.000 \\
x & 5.327 & 0.085 & 62.571 & 0.000
\end{tabular}
textual 0.000
speed 0.000

Variances:
\begin{tabular}{lll}
x 1 & 0.637 & 0.115 \\
x2 & 0.966 & 0.120 \\
x3 & 0.601 & 0.091 \\
x4 & 0.316 & 0.065 \\
x6 & 0.418 & 0.072 \\
& 0.407 & 0.069
\end{tabular}
\begin{tabular}{lll} 
x7 & 0.609 & 0.091 \\
x8 & 0.411 & 0.094 \\
x9 & 0.522 & 0.089 \\
visual & 0.735 & 0.132 \\
textual & 0.942 & 0.152 \\
speed & 0.453 & 0.117
\end{tabular}

\subsection*{6.2.1 Constraining a single parameter to be equal across groups}

If you want to constrain one or more parameters to be equal across groups, you need to give them the same label. For example, to constrain the factor loading of the x 3 indicator to be equal across (two) groups, you can write:
```

> HS.model <- ' visual =~ x1 + x2 + c(v3,v3)*x3

+ textual =~ x4 + x5 + x6
+ speed =~ x7 + x8 + x9 '

```

Again, identical labels imply identical parameters, Both within and across groups.

\subsection*{6.2.2 Constraining groups of parameters to be equal across groups}

Although providing identical labels is a very flexible method to specify equality constraints for a few parameters, there is a more convenient way to impose equality constraints on a whole set of parameters (for example: all factor loadings, or all intercepts). We call these type of constraints group equality constraints and they can be specified by the group. equal argument in the cfa or sem function calls. For example, to constrain (all) the factor loadings to be equal across groups, you can proceed as follows:
```

> HS.model <- ' visual =~ x1 + x2 + x3

+ textual =~ x4 + x5 + x6
+ speed =~ x7 + x8 + x9 '
> fit <- cfa(HS.model, data=HolzingerSwineford1939, group="school",
+ group.equal=c("loadings"))
> summary(fit)
lavaan (0.5-12) converged normally after 46 iterations
Number of observations per group
Pasteur 156
Grant-White 145
Estimator ML
Minimum Function Test Statistic 124.044
Degrees of freedom
54
P-value (Chi-square)
0.000
Chi-square for each group:
Pasteur 68.825
Grant-White 55.219
Parameter estimates:
Information Expected
Standard Errors Standard
Group 1 [Pasteur]:

Latent variables:	Estimate	Std.err	Z-value	$P(>\|z\|)$
visual $=\sim$				
x1	1.000			
x2	0.599	0.100	5.979	0.000
x3	0.784	0.108	7.267	0.000
textual =~				
x4	1.000			
x5	1.083	0.067	16.049	0.000
x6	0.912	0.058	15.785	0.000
speed $=\sim$	1.000			
x7	1.201	0.155	7.738	0.000
x8	1.038	0.136	7.629	0.000

```
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Covariances: \\
visual ~~
\end{tabular}} \\
\hline textual & 0.416 & 0.097 & 4.271 & 0.000 \\
\hline speed & 0.169 & 0.064 & 2.643 & 0.008 \\
\hline textual ~~ speed & 0.176 & 0.061 & 2.882 & 0.004 \\
\hline \multicolumn{5}{|l|}{Intercepts:} \\
\hline x1 & 4.941 & 0.093 & 52.991 & 0.000 \\
\hline \(x 2\) & 5.984 & 0.100 & 60.096 & 0.000 \\
\hline x3 & 2.487 & 0.094 & 26.465 & 0.000 \\
\hline \(\times 4\) & 2.823 & 0.093 & 30.371 & 0.000 \\
\hline x5 & 3.995 & 0.101 & 39.714 & 0.000 \\
\hline x6 & 1.922 & 0.081 & 23.711 & 0.000 \\
\hline \(\times 7\) & 4.432 & 0.086 & 51.540 & 0.000 \\
\hline x8 & 5.563 & 0.078 & 71.087 & 0.000 \\
\hline x9 & 5.418 & 0.079 & 68.153 & 0.000 \\
\hline visual & 0.000 & & & \\
\hline textual & 0.000 & & & \\
\hline speed & 0.000 & & & \\
\hline \multicolumn{5}{|l|}{Variances:} \\
\hline x 1 & 0.551 & 0.137 & & \\
\hline x2 & 1.258 & 0.155 & & \\
\hline x3 & 0.882 & 0.128 & & \\
\hline \(\times 4\) & 0.434 & 0.070 & & \\
\hline x5 & 0.508 & 0.082 & & \\
\hline \(\times 6\) & 0.266 & 0.050 & & \\
\hline \(\times 7\) & 0.849 & 0.114 & & \\
\hline x8 & 0.515 & 0.095 & & \\
\hline x9 & 0.658 & 0.096 & & \\
\hline visual & 0.805 & 0.171 & & \\
\hline textual & 0.913 & 0.137 & & \\
\hline speed & 0.305 & 0.078 & & \\
\hline
\end{tabular}

Group 2 [Grant-White]:

Estimate Std.err Z-value \(P(>|z|)\)
Latent variables: visual =~
\begin{tabular}{cllll} 
x1 & 1.000 & & & \\
x2 & 0.599 & 0.100 & 5.979 & 0.000 \\
x3 & 0.784 & 0.108 & 7.267 & 0.000 \\
textual =~ & & & & \\
x4 & 1.000 & & & \\
x5 & 1.083 & 0.067 & 16.049 & 0.000 \\
x6 & 0.912 & 0.058 & 15.785 & 0.000 \\
speed \(=\sim\) & & 1.000 & & \\
x7 & 1.201 & 0.155 & 7.738 & 0.000 \\
x8 & 1.038 & 0.136 & 7.629 & 0.000
\end{tabular}

Covariances:
visual ~~
\begin{tabular}{lllll} 
textual & 0.437 & 0.099 & 4.423 & 0.000
\end{tabular}
\begin{tabular}{lllll} 
speed & 0.314 & 0.079 & 3.958 & 0.000
\end{tabular}
textual ~~
speed
0.226
0.072
3.144
0.002

Intercepts:
\begin{tabular}{lllll} 
x1 & 4.930 & 0.097 & 50.763 & 0.000 \\
x2 & 6.200 & 0.091 & 68.379 & 0.000 \\
x3 & 1.996 & 0.085 & 23.455 & 0.000 \\
x4 & 3.317 & 0.092 & 35.950 & 0.000 \\
x5 & 4.712 & 0.100 & 47.173 & 0.000 \\
x6 & 2.469 & 0.091 & 27.248 & 0.000 \\
x7 & 3.921 & 0.086 & 45.555 & 0.000 \\
x8 & 5.488 & 0.087 & 63.257 & 0.000 \\
x9 & 5.327 & 0.085 & 62.786 & 0.000 \\
visual & 0.000 & & & \\
textual & 0.000 & & & \\
speed & 0.000 & & &
\end{tabular}
\begin{tabular}{cll} 
Variances: & & \\
x1 & 0.645 & 0.127 \\
x2 & 0.933 & 0.121 \\
x3 & 0.605 & 0.096 \\
x4 & 0.329 & 0.062 \\
x5 & 0.384 & 0.073 \\
x6 & 0.437 & 0.067 \\
x7 & 0.599 & 0.090 \\
x8 & 0.406 & 0.089 \\
x9 & 0.532 & 0.086 \\
visual & 0.722 & 0.161 \\
textual & 0.906 & 0.136 \\
speed & 0.475 & 0.109
\end{tabular}

More 'group equality constraints' can be added. In addition to the factor loadings, the following keywords are currently supported:
- "intercepts": the intercepts of the observed variables
- "means": the intercepts/means of the latent variables
- "residuals": the residual variances of the observed variables
- "residual.covariances": the residual covariances of the observed variables
- "lv.variances": the (residual) variances of the latent variables
- "lv.covariances": the (residual) covariances of the latent varibles
- "regressions": all regression coefficients in the model

If you omit the group.equal arguments, all parameters are freely estimated in each group (but the model structure is the same).

But what if you want to constrain a whole group of parameters (say all factor loadings and intercepts) across groups, except for one or two parameters that need to stay free in all groups. For this scenario, you can use the argument group.partial, containing the names of those parameters that need to remain free. For example:
```

> fit <- cfa(HS.model, data=HolzingerSwineford1939, group="school",

+ group.equal=c("loadings", "intercepts"),
+ group.partial=c("visual=~x2", "x7~1"))

```

\subsection*{6.2.3 Measurement Invariance}

If you are interested in testing the measurement invariance of a CFA model across several groups, you can use the measurementInvariance function which performs a number of multiple group analyses in a particular sequence, with increasingly more restrictions on the parameters. (Note: from the 0.5 series onwards, the measurementInvariance() function has been moved to the semTools package) Each model is compared to the baseline model and the previous model using chi-square difference tests. In addition, the difference in the cfi fit measure is also shown. Although the current implementation of the function is still a bit primitive, it does illustrate how the various components of the lavaan package can be used as building blocks for constructing higher level functions (such as the measurementInvariance function), something that is often very hard to accomplish with commercial software.
```

> library(semTools)
> measurementInvariance(HS.model, data=HolzingerSwinefordl939, group="school")
Measurement invariance tests:
Model 1: configural invariance:
chisq df pvalue cfi rmsea bic
115.851 48.000 0.000 0.923 0.097 7706.822
Model 2: weak invariance (equal loadings):
chisq df pvalue cfi rmsea bic
[Model 1 versus model 2]
delta.chisq delta.df delta.p.value delta.cfi

```


By adding the group.partial argument, you can test for partial measurement invariance by allowing a few parameters to remain free.

\section*{7 Growth curve models}

Another important type of latent variable models are latent growth curve models. Growth modeling is often used to analyze longitudinal or developmental data. In this type of data, an outcome measure is measured on several occasions, and we want to study the change over time. In many cases, the trajectory over time can be modeled as a simple linear or quadratic curve. Random effects are used to capture individual differences. The random effects are conveniently represented by (continuous) latent variables, often called growth factors. In the example below, we use an artifical dataset called Demo. growth where a score (say, a standardized score on a reading ability scale) is measured on 4 time points. To fit a linear growth model for these four time points, we need to specify a model with two latent variables: a random intercept, and a random slope:
lavaan syntax
```


linear growth model with 4 timepoints

intercept and slope with fixed coefficients

i =~ 1*t1 + 1*t2 + 1*t 3 + 1*t4
s =~ 0*t1 + 1*t2 + 2*t 3 + 3*t4

```

In this model, we have fixed all the coefficients of the growth functions. To fit this model, the lavaan package provides a special growth function:
```

> model <- ' i =~ 1*t1 + 1*t 2 + 1*t 3 + 1*t4

+ s=~ 0*t1 + 1*t 2 + 2*t 3 + 3*t4 '
> fit <- growth(model, data=Demo.growth)
> summary(fit)
lavaan (0.5-12) converged normally after 44 iterations
Number of observations 400
Estimator ML
Minimum Function Test Statistic 8.069
Degrees of freedom 5
P-value (Chi-square) 0.152
Parameter estimates:
Information
Expected
Standard Errors Standard

```
\begin{tabular}{|c|c|c|c|c|}
\hline & Estimate & Std.err & Z-value & P ( \(>|z|\) ) \\
\hline \multicolumn{5}{|l|}{Latent variables:} \\
\hline \multicolumn{5}{|l|}{i \(=\sim\)} \\
\hline t1 & 1.000 & & & \\
\hline t2 & 1.000 & & & \\
\hline t3 & 1.000 & & & \\
\hline t4 & 1.000 & & & \\
\hline \multicolumn{5}{|l|}{s =~} \\
\hline t1 & 0.000 & & & \\
\hline t2 & 1.000 & & & \\
\hline t3 & 2.000 & & & \\
\hline t4 & 3.000 & & & \\
\hline \multicolumn{5}{|l|}{Covariances:} \\
\hline i ~~ & & & & \\
\hline s & 0.618 & 0.071 & 8.686 & 0.000 \\
\hline \multicolumn{5}{|l|}{Intercepts:} \\
\hline t1 & 0.000 & & & \\
\hline t2 & 0.000 & & & \\
\hline t3 & 0.000 & & & \\
\hline t4 & 0.000 & & & \\
\hline i & 0.615 & 0.077 & 8.007 & 0.000 \\
\hline s & 1.006 & 0.042 & 24.076 & 0.000 \\
\hline \multicolumn{5}{|l|}{Variances:} \\
\hline t1 & 0.595 & 0.086 & & \\
\hline t2 & 0.676 & 0.061 & & \\
\hline t3 & 0.635 & 0.072 & & \\
\hline t4 & 0.508 & 0.124 & & \\
\hline i & 1.932 & 0.173 & & \\
\hline s & 0.587 & 0.052 & & \\
\hline
\end{tabular}

Technically, the growth function is almost identical to the sem function. But a mean structure is automatically assumed, and the observed intercepts are fixed to zero by default, while the latent variable intercepts/means are freely estimated. A slightly more complex model adds two regressors ( x 1 and x 2 ) that influence the latent growth factors. In addition, a time-varying covariate that influences the outcome measure at the four time points has been added to the model. A graphical representation of this model together with the corresponding lavaan syntax is presented below.

```

lavaan syntax
\# intercept and slope
\# with fixed coefficients
i =~ 1*t1 + 1*t2 + 1*t 3 + 1*t4
s =~ 0*t1 + 1*t2 + 2*t 3 + 3*t4
\# regressions
i ~ x1 + x2
s ~ x1 + x2
\# time-varying covariates
t1 ~ c1
t2 ~ c2
t3 ~ c3
t4 ~ c4

```

For ease of copy/pasting, the complete R code needed to specify and fit this linear growth model with a timevarying covariate is printed again below:
```


a linear growth model with a time-varying covariate

model <- '
\# intercept and slope with fixed coefficients
i =~ 1*t1 + 1*t2 + 1*t3 + 1*t4
s =~ 0*t1 + 1*t2 + 2*t3 + 3*t4
\# regressions
i ~ x1 + x2
s ~ x1 + x2
\# time-varying covariates
t1 ~ c1
t2 ~ c2
t3 ~ c3
t4 ~ c4
'
fit <- growth(model, data=Demo.growth)
summary(fit)

```

\section*{8 Using categorical variables}

Binary, ordinal and nominal variables are considered categorical (not continuous). It makes a big difference if these categorical variables are exogenous (independent) or endogenous (dependent) in the model.

\subsection*{8.1 Exogenous categorical variables}

If you have a binary exogenous covariate (say, gender), all you need to do is to recode it as a dummy ( \(0 / 1\) ) variable. Just like you would do in a classic regression model. If you have an exogenous ordinal variable, you can use a coding scheme reflecting the order (say, \(1,2,3, \ldots\) ) and treat it as any other (numeric) covariate. If you have a nominal categorical variable with \(K>2\) levels, you need to replace it by a set of \(K-1\) dummy variables, again, just like you would do in classical regression.

\subsection*{8.2 Endogenous categorical variables}

The lavaan 0.5 series can deal with binary and ordinal (but not nominal) endogenous variables. Only the three-stage WLS approach is currently supported, including some 'robust' variants. To use binary/ordinal data, you have two choices:
1. declare them as 'ordered' (using the ordered() function, which is part of base R) in your data.frame before you run the analysis; for example, if you need to declare four variables (say, item1, item2, item3, item3) as ordinal in your data.frame (called 'Data'), you can use something like:
```

> Data[,c("item1","item2","item3","item4")] <-

+ lapply(Data[,c("item1","item2","item3","item4")], ordered)

```
2. used the ordered= argument when using one of the fitting functions (cfa/sem/growth/lavaan), for example, if you have four binary or ordinal variables (say, item1, item2, item3, item4), you can use:
```

> fit <- cfa(myModel, data=myData, ordered=c("item1","item2","item3","item4"))

```

In both cases, lavaan will automatically switch to the WLSMV estimator: it will use diagonally weighted least squares (DWLS) to estimate the model parameters, but it will use the full weight matrix to compute robust standard errors, and a mean- and variance-adjusted test stastistic.
A few examples (including a multiple group example) are shown in the Appendix.

\section*{9 Additional information}

\subsection*{9.1 Using a covariance matrix as input}

If you have no full dataset, but you do have a sample covariance matrix, you can still fit your model. If you wish to add a mean structure, you need to provide a mean vector too. Importantly, if only sample statistics are provided, you must specify the number of observations that were used to compute the sample moments. The following example illustrates the use of a sample covariance matrix as input:
```

> lower <- '

+ 11.834
+ 6.947 9.364
+ 6.819 5.091 12.532

4.783 5.028 7.495 9.986

+ -3.839 -3.889 -3.841 -3.625 9.610
-21.899 -18.831 -21.748 -18.775 35.522 450.288 '

classic wheaton et al model

wheaton.cov <- getCov(lower, names=c("anomia67", "powerless67", "anomia71",
"powerless71", "education", "sei"))
wheaton.model <- '
\# latent variables
ses =~ education + sei
alien67 =~ anomia67 + powerless67
alien71 =~ anomia71 + powerless71
\# regressions
alien71 ~ alien67 + ses
alien67 ~ ses
\# correlated residuals
anomia67 ~~ anomia71
powerless67 ~ ~ powerless71

+ '
> fit <- sem(wheaton.model, sample.cov=wheaton.cov, sample.nobs=932)
> summary(fit, standardized=TRUE)
lavaan (0.5-12) converged normally after 82 iterations
Number of observations
932
Estimator ML
Minimum Function Test Statistic 4.735
Degrees of freedom
4
P-value (Chi-square) 0.316
Parameter estimates:

```
\begin{tabular}{ll} 
Information & Expected \\
Standard Errors & Standard
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Estimate & Std.err & Z-value & \(P(>|z|)\) & Std.lv & Std.all \\
\hline \multicolumn{7}{|l|}{Latent variables:} \\
\hline \multicolumn{7}{|l|}{ses =~} \\
\hline education & 1.000 & & & & 2.607 & 0.842 \\
\hline sei & 5.219 & 0.422 & 12.364 & 0.000 & 13.609 & 0.642 \\
\hline \multicolumn{7}{|l|}{alien67 =~} \\
\hline anomia67 & 1.000 & & & & 2.663 & 0.774 \\
\hline powerless67 & 0.979 & 0.062 & 15.895 & 0.000 & 2.606 & 0.852 \\
\hline \multicolumn{7}{|l|}{alien71 =~} \\
\hline anomia71 & 1.000 & & & & 2.850 & 0.805 \\
\hline powerless71 & 0.922 & 0.059 & 15.498 & 0.000 & 2.628 & 0.832 \\
\hline
\end{tabular}
Regressions:
    alien71 ~
\begin{tabular}{lrlllrr} 
alien67 & 0.607 & 0.051 & 11.898 & 0.000 & 0.567 & 0.567 \\
ses & -0.227 & 0.052 & -4.334 & 0.000 & -0.207 & -0.207 \\
lien \(67 \sim\) & -0.575 & 0.056 & -10.195 & 0.000 & -0.563 & -0.563
\end{tabular}
Covariances:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline anomia67 ~~ anomia71 & 1.623 & 0.314 & 5.176 & 0.000 & 1.623 & 0.356 \\
\hline powerless67 ~~ powerless71 & 0.339 & 0.261 & 1.298 & 0.194 & 0.339 & 0.121 \\
\hline \multicolumn{7}{|l|}{Variances:} \\
\hline education & 2.801 & 0.507 & & & 2.801 & 0.292 \\
\hline sei & 264.597 & 18.126 & & & 264.597 & 0.588 \\
\hline anomia67 & 4.731 & 0.453 & & & 4.731 & 0.400 \\
\hline powerless67 & 2.563 & 0.403 & & & 2.563 & 0.274 \\
\hline anomia71 & 4.399 & 0.515 & & & 4.399 & 0.351 \\
\hline powerless71 & 3.070 & 0.434 & & & 3.070 & 0.308 \\
\hline ses & 6.798 & 0.649 & & & 1.000 & 1.000 \\
\hline alien67 & 4.841 & 0.467 & & & 0.683 & 0.683 \\
\hline alien71 & 4.083 & 0.404 & & & 0.503 & 0.503 \\
\hline
\end{tabular}

The getCov() function makes it easy to create a full covariance matrix (including variable names) if you only have the lower-half elements (perhaps pasted from a textbook or a paper). Note that the lower-half elements are written between two single quotes. Therefore, you have some additional flexibility. You can add comments, and blank lines. If the numbers are separated by a comma, or a semi-colon, that is fine too. For more information about the \(\operatorname{get} \operatorname{Cov}()\), see the online manual page.

If you have multiple groups, the sample.cov argument must be a list containing the sample variance-covariance matrix of each group as a separate element in the list. If a mean structure is needed, the sample.mean argument must be a list containing the sample means of each group. Finally, the sample.nobs argument can be either a list or a integer vector containing the number of observations for each group.

\subsection*{9.2 Estimators, standard errors and missing values}

\subsection*{9.2.1 Estimators}

The default estimator in the lavaan package is maximum likelihood (estimator = "ML"). Alternative estimators currently available in lavaan are:
- "GLS" for generalized least squares. For complete data only.
- "WLS" for weighted least squares (sometimes called ADF estimation). For complete data only.
- "MLM" for maximum likelihood estimation with robust standard errors and a Satorra-Bentler scaled test statistic. For complete data only.
- "MLF" for maximum likelihood estimation with standard errors based on the first-order derivatives, and a conventional test statistic. For both complete and incomplete data.
- "MLR" maximum likelihood estimation with robust (Huber-White) standard errors and a scaled test statistic that is (asymptotically) equal to the Yuan-Bentler test statistic. For both complete and incomplete data.
If maximum likelihood estimation is used ("ML", "MLM", "MLF" or "MLR"), the default behavior of lavaan is to base the analysis on the so-called biased sample covariance matrix, where the elements are divided by \(n\) instead of \(n-1\). This is done internally, and should not be done by the user. In addition, the chi-square statistic is computed by multiplying the minimum function value with a factor \(n\) (instead of \(n-1\) ). This is similar to the Mplus program. If you prefer to use an unbiased covariance, and \(n-1\) as the multiplier to compute the chi-square statistic, you need to specify the likelihood="wishart" argument when calling the fitting functions. For example:
```

> fit <- cfa(HS.model, data=HolzingerSwinefordl939, likelihood="wishart")
> fit
lavaan (0.5-12) converged normally after 41 iterations
Number of observations 301
Estimator ML
Minimum Function Test Statistic 85.022
Degrees of freedom 24
P-value (Chi-square) 0.000

```

The value of the test statistic will be closer to the value reported by programs like EQS, LISREL or AMOS, since they all use the 'Wishart' approach when using the maximum likelihood estimator. The program Mplus, on the other hand, uses the 'normal' approach to maximum likelihood estimation.

\subsection*{9.2.2 Missing values}

If the data contain missing values, the default behavior is listwise deletion. If the missing mechanism is MCAR (missing completely at random) or MAR (missing at random), the lavaan package provides case-wise (or 'full information') maximum likelihood estimation. You can turn this feature on, by using the argument missing="ml" when calling the fitting function. An unrestricted (h1) model will automatically be estimated, so that all common fit indices are available.

\subsection*{9.2.3 Standard errors}

Standard errors are (by default) based on the expected information matrix. The only exception is when data are missing and full information ML is used (via missing \(=\) " \(\mathrm{ml} "\) ). In this case, the observed information matrix is used to compute the standard errors. The user can change this behavior by using the information argument, which can be set to "expected" or "observed". If the estimator is simply "ML", you request robust standard errors by using the se argument, which can be set to "robust.mlm", "robust.mlr" or "first.order". Or simply to "none" if you don't need them. This will not affect the test statistic. In fact, you can choose the test statistic independently by using the "test" argument, which can be set to "standard", "Satorra-Bentler" or "Yuan-Bentler".

\subsection*{9.2.4 Bootstrapping}

There are two ways for using the bootstrap in lavaan. Either you can set se="boot" or test="boot" when fitting the model (and you will get bootstrap standard errors, and/or a bootstrap based p-value respectively), or you can you the bootstrapLavaan() function, which needs an already fitted lavaan object.

\subsection*{9.2.5 Indirect effects and mediation analysis}

Consider a classical mediation setup with three variables: Y is the dependent variable, X is the predictor, and M is a mediator. For illustration, we create a toy dataset containing these three variables, and fit a path analysis model that includes the direct effect of X on Y and the indirect effect of X on Y via M .
```

set.seed(1234)
X <- rnorm(100)
M<-0.5*X + rnorm(100)
Y <- 0.7*M + rnorm(100)
Data <- data.frame (X = X, Y = Y, M = M)
model <- ' \# direct effect
Y ~ c*X
\# mediator
M~a*X
Y ~ b*M
\# indirect effect (a*b)
ab := a*b
\# total effect
total :=c + (a*b)
fit <- sem(model, data=Data)
summary(fit)
lavaan (0.5-12) converged normally after 13 iterations
Number of observations 100
Estimator ML
Minimum Function Test Statistic 0.000
Degrees of freedom 0
P-value (Chi-square) 0.000
Parameter estimates:
Information Expected
Standard Errors Standard

Regressions: Y \sim		Estimate	Std.err	Z-value	$P(>\|z\|)$
X	(c)	0.036	0.104	0.348	0.728

```
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{M ~} \\
\hline X (a) & 0.474 & 0.103 & 4.613 & 0.000 \\
\hline \multicolumn{5}{|l|}{Y} \\
\hline M (b) & 0.788 & 0.092 & 8.539 & 0.000 \\
\hline \multicolumn{5}{|l|}{Variances:} \\
\hline Y & 0.898 & 0.127 & & \\
\hline M & 1.054 & 0.149 & & \\
\hline \multicolumn{5}{|l|}{Defined parameters:} \\
\hline ab & 0.374 & 0.092 & 4.059 & 0.000 \\
\hline total & 0.410 & 0.125 & 3.287 & 0.001 \\
\hline
\end{tabular}

The example illustrates the use of the ":=" operator in the lavaan model syntax. This operator 'defines' new parameters which take on values that are an arbitrary function of the original model parameters. The function, however, must be specified in terms of the parameter labels that are explicitly mentioned in the model syntax. By default, the standard errors for these defined parameters are computed using the Delta method. As with other models, bootstrap standard errors can be requested simply by specifying se="bootstrap" in the fitting function.

\subsection*{9.3 Modification Indices}

Modification indices can be requested by adding the modindices=TRUE argument in the summary call, or by calling the modindices function directly. The modindices function returns a data frame. For example, to see only the modification indices for the factor loadings, you can use something like this:


Modification indices are printed out for each nonfree (or nonredundant) parameter. The modification indices are supplemented by the expected parameter change values (column epc). The last two columns contain the standardized, and completely standardized EPC values, respectively.

\subsection*{9.4 Extracting information from a fitted model}

The summary function gives a nice overview of a fitted model, but is for display only. If you need the actual numbers for further processing, you may prefer to use one of several 'extractor' functions. We have already seen the coef function which extracts the estimated parameters of a fitted model. Other extractor functions are discussed below.

\subsection*{9.4.1 parameterEstimates}

The parameterEstimates function extracts not only the values of the estimated parameters, but also the standard errors, the z-values, the standardized parameter values, as a convenient data frame. For example
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & lhs op & rhs & est & se & z & pvalue & ci.lower & ci.upper \\
\hline 1 & visual & x1 & 1.000 & 0.000 & NA & NA & 1.000 & 1.000 \\
\hline 2 & visual = & x2 & 0.553 & 0.100 & 5.554 & 0 & 0.358 & 0.749 \\
\hline 3 & visual & x3 & 0.729 & 0.109 & 6.685 & 0 & 0.516 & 0.943 \\
\hline 4 & textual & x4 & 1.000 & 0.000 & NA & NA & 1.000 & 1.000 \\
\hline 5 & textual & x5 & 1.113 & 0.065 & 17.014 & 0 & 0.985 & 1.241 \\
\hline 6 & textual = & x6 & 0.926 & 0.055 & 16.703 & 0 & 0.817 & 1.035 \\
\hline 7 & speed & \(x 7\) & 1.000 & 0.000 & NA & NA & 1.000 & 1.000 \\
\hline 8 & speed & x8 & 1.180 & 0.165 & 7.152 & 0 & 0.857 & 1.503 \\
\hline 9 & speed & x9 & 1.082 & 0.151 & 7.155 & 0 & 0.785 & 1.378 \\
\hline 10 & x 1 & x1 & 0.549 & 0.114 & 4.833 & 0 & 0.326 & 0.772 \\
\hline 11 & x2 & x2 & 1.134 & 0.102 & 11.146 & 0 & 0.934 & 1.333 \\
\hline 12 & x3 & x3 & 0.844 & 0.091 & 9.317 & 0 & 0.667 & 1.022 \\
\hline 13 & x4 & \(x 4\) & 0.371 & 0.048 & 7.779 & 0 & 0.278 & 0.465 \\
\hline 14 & x5 & x5 & 0.446 & 0.058 & 7.642 & 0 & 0.332 & 0.561 \\
\hline 15 & x6 & x6 & 0.356 & 0.043 & 8.277 & 0 & 0.272 & 0.441 \\
\hline 16 & \(\times 7\) & \(\times 7\) & 0.799 & 0.081 & 9.823 & 0 & 0.640 & 0.959 \\
\hline 17 & \(\times 8\) & \(x 8\) & 0.488 & 0.074 & 6.573 & 0 & 0.342 & 0.633 \\
\hline 18 & \(\times 9\) & x9 & 0.566 & 0.071 & 8.003 & 0 & 0.427 & 0.705 \\
\hline 19 & visual & visual & 0.809 & 0.145 & 5.564 & 0 & 0.524 & 1.094 \\
\hline 20 & textual & textual & 0.979 & 0.112 & 8.737 & 0 & 0.760 & 1.199 \\
\hline 21 & speed ~~ & speed & 0.384 & 0.086 & 4.451 & 0 & 0.215 & 0.553 \\
\hline 22 & visual ~~ & textual & 0.408 & 0.074 & 5.552 & 0 & 0.264 & 0.552 \\
\hline 23 & visual ~~ & speed & 0.262 & 0.056 & 4.660 & 0 & 0.152 & 0.373 \\
\hline 24 & textual ~~ & speed & 0.173 & 0.049 & 3.518 & 0 & 0.077 & 0.270 \\
\hline
\end{tabular}

\subsection*{9.4.2 standardizedSolution}

The standardizedSolution function is similar to the parameterEstimates function, but only shows the unstandardized and standardized parameter estimates.

\subsection*{9.4.3 fitted.values}

The fitted and fitted.values functions return the implied (fitted) covariance matrix (and mean vector) of a fitted model.
```

> fit <- cfa(HS.model, data=HolzingerSwineford1939)
> fitted(fit)
\$cov
x1 x2 x3 x4 x5 x6 x7 x8 x9
x1 1.358
x2 0.448 1.382
x3 0.590 0.327 1.275
x4 0.408 0.226 0.298 1.351
x5 0.454 0.252 0.331 1.090 1.660
x6 0.378 0.209 0.276 0.907 1.010 1.196
x7 0.262 0.145 0.191 0.173 0.193 0.161 1.183
x8 0.309 0.171 0.226 0.205 0.228 0.190 0.453 1.022
x9 0.284 0.157 0.207 0.188 0.209 0.174 0.415 0.490 1.015
\$mean
x1 x2 x3 x4 x5 x6 x7 x8 x9

```

\subsection*{9.4.4 residuals}

The resid or residuals functions return (unstandardized) residuals of a fitted model. This is simply the difference between the observed and implied covariance matrix and mean vector. If the estimator is maximum likelihood, it is also possible to obtain the normalized and the standardized residuals.
```

> fit <- cfa(HS.model, data=HolzingerSwineford1939)
> resid(fit, type="standardized")

```


\subsection*{9.4.5 vcov}

The vcov function returns the estimated covariance matrix of the parameter estimates.

\subsection*{9.4.6 AIC and BIC}

The AIC and BIC functions return the AIC and BIC values of a fitted model.

\subsection*{9.4.7 fitMeasures}

The fitMeasures function returns all the fit measures computed by lavaan as a named numeric vector. If you only want the value of a single fit measure, say, the CFI, you give the name (in lower case) as the second argument:
```

> fit <- cfa(HS.model, data=HolzingerSwinefordl939)
> fitMeasures(fit, "Cfi")
cfi
0.931

```

\subsection*{9.4.8 inspect}

If you want to peek inside a fitted lavaan object (the object that is returned by a call to cfa, sem or growth), you can use the inspect function, with a variety of options. By default, calling inspect on a fitted lavaan object returns a list of the model matrices that are used internally to represent the model. The free parameters are nonzero integers.

```

visual 16
textual 19 17
speed 20 21 18

```

To see the starting values of parameters in each model matrix, type
```

> inspect(fit, what="start")
\$lambda
visual textul speed
x1 1.000 0.000 0.000
x2 0.778 0.000 0.000
x3 1.107 0.000 0.000
x4 0.000 1.000 0.000
x5 0.000 1.133 0.000
x6 0.000 0.924 0.000
x7 0.000 0.000 1.000
x8 0.000 0.000 1.225
x9 0.000 0.000 0.854
\$theta
x1 x2 x3 x4 x5 x6 x7 x8 x9
x1 0.679
x2 0.000 0.691
x3 0.000 0.000 0.637
x4 0.000 0.000 0.000 0.675
x5 0.000 0.000 0.000 0.000 0.830
x6 0.000 0.000 0.000 0.000 0.000 0.598
x7 0.000 0.000 0.000 0.000 0.000 0.000 0.592
x8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.511
x9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.508
\$psi
visual textul speed
visual 0.05
textual 0.00 0.05
speed 0.00 0.00 0.05

```

To see how lavaan internally represents a model, you can type


For more inspect options, see the help page for the lavaan class which you can find by typing the following:
```

> class?lavaan

```

\section*{A Examples from the Mplus User's Guide}

Below, we provide some examples of lavaan model syntax to mimic the examples in the Mplus User's guide. The datafiles can be downloaded from http://www.statmodel.com/ugexcerpts.shtml.

\section*{A. 1 Chapter 3: Regression and Path Analysis}
```


ex3.1

Data <- read.table("ex3.1.dat")
names(Data) <- c("y1","x1","x2")
model.ex3.1 <- ' y1 ~ x1 + x2 '
fit <- sem(model.ex3.1, data=Data)
summary(fit, standardized=TRUE, fit.measures=TRUE)

ex3.4

Data <- read.table("ex3.4.dat")
names(Data) <- c("u1", "x1", "x3")
Data$u1 <- ordered(Data$u1)
model <- ' u1 ~ x1 + x3 '
fit <- sem(model, data=Data)
summary(fit, fit.measures=TRUE)

ex3.11

Data <- read.table("ex3.11.dat")
names(Data) <- c("y1","y2","y3",
"x1","x2", "x3")
model.ex3.11 <- ' y1 + y2 ~ x1 + x2 + x3
y3 ~ y1 + y2 + x2 '
fit <- sem(model.ex3.11, data=Data)
summary(fit, standardized=TRUE, fit.measures=TRUE)

ex3.12

Data <- read.table("ex3.12.dat")
names(Data) <- c("u1","u2","u3","x1","x2","x3")
Data$u1 <- ordered(Data$u1)
Data$u2 <- ordered(Data$u2)
Data$u3 <- ordered(Data$u3)
model <- ' u1 + u2 ~ x1 + x2 + x3
u3 ~ u1 + u2 + x2 '
fit <- sem(model, data=Data)
summary(fit, fit.measures=TRUE)

Mplus example 3.14

Data <- read.table("ex3.14.dat")
names(Data) <- c("y1","y2","u1","x1","x2","x3")
Data$u1 <- ordered(Data$u1)
model <- ' y1 + y2 ~ x1 + x2 + x3
u1 ~ y1 + y2 + x2 '
fit <- sem(model, data=Data)
summary(fit, fit.measures=TRUE)

```
A. 2 Chapter 5: Confirmatory factor analysis and structural equation modeling
\# ex5.1
Data <- read.table("ex5.1.dat")
names(Data) <- paste("y", 1:6, sep="")
model.ex5.1 <- ' f1 =~ y1 + y2 + y3
    \(\mathrm{f} 2=\sim \mathrm{y}^{4}+\mathrm{y}^{5}+\mathrm{y}^{6}\) '
fit <- cfa(model.ex5.1, data=Data)
summary(fit, standardized=TRUE, fit.measures=TRUE)
\# ex5.2
Data <- read.table("ex5.2.dat")
names (Data) <- c("u1", "u2", "u3", "u4", "u5", "u6")
\# declare all variables as 'ordered factors':
Data <- as.data.frame(lapply(Data, ordered))
model <- ' f1 =~ u1 + u2 + u3; f2 =~ u4 + u5 + u6 '
fit <- cfa(model, data=Data)
summary(fit, fit.measures=TRUE)
\# ex5.3
Data <- read.table("ex5.3.dat")
names (Data) <- c("u1","u2", "u3", "y4", "y5", "y6")
Data\$u1 <- ordered(Data\$u1)
Data\$u2 <- ordered(Data\$u2)
Data\$u3 <- ordered(Data\$u3)
model <- ' f1 =~ u1 + u2 + u3
\(\mathrm{f} 2=\sim \mathrm{y} 4+\mathrm{y} 5+\mathrm{y}^{6}\)
fit <- cfa(model, data=Data)
summary(fit, fit.measures=TRUE)
\# ex5.6
Data <- read.table("ex5.6.dat")
names (Data) <- paste("y", 1:12, sep="")
model.ex5.6 <- ' f1 =~ y1 + y2 + y3
\(f 2=\sim y^{4}+y^{5}+y^{6}\)
\(\mathrm{f} 3=\sim \mathrm{y} 7+\mathrm{y} 8+\mathrm{y} 9\)
\(\mathrm{f} 4=\sim \mathrm{y} 10+\mathrm{y} 11+\mathrm{y} 12\)
\(\mathrm{f} 5=\sim \mathrm{f} 1+\mathrm{f} 2+\mathrm{f} 3+\mathrm{f} 4{ }^{\prime}\)
fit <- cfa(model.ex5.6, data=Data, estimator="ML")
summary (fit, standardized=TRUE, fit.measures=TRUE)
```


ex5.8

Data <- read.table("ex5.8.dat")
names(Data) <- c(paste("y", 1:6, sep=""), paste("x", 1:3, sep=""))
model.ex5.8 <- ' f1 =~ y1 + y2 + y3
f2 =~ y4 + y5 + y6
f1 + f2 ~ x1 + x2 + x3 '
fit <- cfa(model.ex5.8, data=Data, estimator="ML")
summary(fit, standardized=TRUE, fit.measures=TRUE)

ex5.9

Data <- read.table("ex5.9.dat")
names(Data) <- c("y1a","y1b","y1c","y2a","y2b","y2c")
model.ex5.9 <- ' f1 =~ 1*yla + 1*y1b + 1*ylc
f2 =~ 1*y2a + 1*y2b + 1*y2c
y1a + y1b + y1c ~ i1*1
y2a + y2b + y2c ~ i2*1 '
fit <- cfa(model.ex5.9, data=Data)
summary(fit, standardized=TRUE, fit.measures=TRUE)

```
```

Data <- read.table("ex5.11.dat")
names(Data) <- paste("y", 1:12, sep="")
model.ex5.11 <- ' f1 =~ y1 + y2 + y3
f2 =~ y4 + y5 + y6
f3 =~ y7 + y8 + y9
f4 =~ y10 + y11 + y12
f3 ~ f1 + f2
f4 ~ f3'
fit <- sem(model.ex5.11, data=Data, estimator="ML")
summary(fit, standardized=TRUE, fit.measures=TRUE)

ex5.14

Data <- read.table("ex5.14.dat")
names(Data) <- c("y1","y2","y3","y4","y5","y6", "x1","x2","x3", "g")
model.ex5.14 <- 'f1 =~ y1 + y2 + y3
f2 =~ y4 + y5 + y6
f1 + f2 ~ x1 + x2 + x3'
fit <- cfa(model.ex5.14, data=Data, group="g", meanstructure=FALSE,
group.equal=c("loadings"), group.partial=c("f1=~y3"))
summary(fit, standardized=TRUE, fit.measures=TRUE)

ex5.15

Data <- read.table("ex5.15.dat")
names(Data) <- c("y1","y2","y3","y4","y5","y6", "x1","x2","x3", "g")
model.ex5.15 <- ' f1 =~ y1 + y2 + y3
f2 =~ y4 + y5 + y6
f1 +f2~ x1 + x2 + x3 '
fit <- cfa(model.ex5.15, data=Data, group="g", meanstructure=TRUE,
group.equal=c("loadings", "intercepts"),
group.partial=c("f1=~y3", "y3~1"))
summary(fit, standardized=TRUE, fit.measures=TRUE)

ex5.16

Data <- read.table("ex5.16.dat")
names(Data) <- c("u1","u2","u3","u4","u5","u6","x1","x2","x3","g")
Data$u1 <- ordered(Data$u1)
Data$u2 <- ordered(Data$u2)
Data$u3 <- ordered(Data$u3)
Data$u4 <- ordered(Data$u4)
Data$u5 <- ordered(Data$u5)
Data$u6 <- ordered(Data$u6)
model <- ' f1 =~ u1 + u2 + c(l3,l3b) *u3
f2 =~ u4 + u5 + u6
\# mimic
f1 + f2 ~ x1 + x2 + x3
\# equal thresholds, but free u3|1 in second group
u3 | c(u3,u3b)*t1
\# fix scale of u3* to 1 in second group
u3 ~*~ c (1,1) *u3
fit <- cfa(model, data=Data, group="g", group.equal=c("loadings","thresholds"))
summary(fit, fit.measures=TRUE)

ex5.20

Data <- read.table("ex5.20.dat")
names(Data) <- paste("y", 1:6, sep="")

```
```

model.ex5.20 <- ' f1 =~ y1 + lam2*y2 + lam3*y3
f2 =~ y4 + lam5*y5 + lam6*y6
f1 ~~ vf1*f1 + start(1.0)*f1 \#\# otherwise, neg vf2
f2 ~~ vf2*f2 + start(1.0)*f2 \#\#
y1 ~~ ve1*y1
y2 ~~ ve2*y2
y3 ~~ ve3*y3
y4 ~~ ve4*y4
y5 ~~ ve5*y5
y6 ~~ ve6*y6
\# constraints
lam2^2*vf1/(lam2^2*vf1 + ve2) ==
lam5^2*vf2/(lam5^2*vf2 + ve5)
lam3*sqrt(vf1)/sqrt(lam3^2*vf1 + ve3) ==
lam6*sqrt(vf2)/sqrt(lam6^2*vf2 + ve6)
ve2 > ve5
ve4 > 0
fit <- cfa(model.ex5.20, data=Data, estimator="ML")
summary(fit, standardized=TRUE, fit.measures=TRUE)

```

\section*{A. 3 Chapter 6: Growth modeling}
```


ex6.1

Data <- read.table("ex6.1.dat")
names(Data) <- c("y11","y12","y13", "y14")
model.ex6.1 <- ' i =~ 1*y11 + 1*y12 + 1*y13 + 1*y14
s =~ 0*y11 + 1*y12 + 2*y13 + 3*y14 '

```
fit <- growth(model.ex6.1, data=Data)
summary(fit, standardized=TRUE, fit.measures=TRUE)
\# ex6. 8
Data <- read.table("ex6.8.dat")
names (Data) <- c("y11", "y12", "Y13", "y14")
model.ex6.8 <- ' i =~ \(1 * y 11+1 * y 12+1 * y 13+1 * y 14\)
    \(\mathrm{s}=\sim 0 \star \mathrm{y} 11+1 \star \mathrm{y} 12+\operatorname{start}(2) \star \mathrm{y} 13+\operatorname{start}(3) \star \mathrm{y} 14 \quad\),
fit <- growth(model.ex6.8, data=Data)
summary(fit, standardized=TRUE, fit.measures=TRUE)
\# ex6.9
Data <- read.table("ex6.9.dat")
names (Data) <- c("y11", "y12", "y13", "y14")
model.ex6.9 <- ' i =~ 1 *y11 + 1 *y \(12+1\) *y \(13+1\) *y14
    \(s=\sim 0 * y 11+1 * y 12+2 * y 13+3 * y 14\)
    \(\mathrm{q}=\sim 0 * \mathrm{y} 11+1 * \mathrm{y} 12+4 * \mathrm{y} 13+9 * y 14\) '
fit <- growth(model.ex6.9, data=Data)
summary(fit, standardized=TRUE, fit.measures=TRUE)
\# ex6. 10
Data <- read.table("ex6.10.dat")
names (Data) <- c("y11","y12", "y13", "y14","x1","x2","a31","a32","a33","a34")
model.ex6.10 <- ' i =~ \(1 * y 11+1 * y 12+1 * y 13+1 * y 14\)
```

s =~ 0*y11 + 1*y12 + 2*y13 + 3*y14
i + s ~ x1 + x2
y11 ~ a31
y12 ~ a32
y13 ~ a33
y14 ~ a34 '

```
fit <- growth (model.ex6.10, data=Data)
summary(fit, standardized=TRUE, fit.measures=TRUE)
\# ex6.11
Data <- read.table("ex6.11.dat")
names (Data) <- c("y1","y2","y3","y4","y5")
modelex6.11 <- ' i \(=\sim 1 * y 1+1 * y 2+1 * y 3+1 * y 4+1 * y 5\)
    \(\mathrm{s} 1=\sim 0 * y 1+1 * y 2+2 * y 3+2 * y 4+2 * y 5\)
    \(\mathrm{s} 2=\sim 0 * \mathrm{y} 1+0 * \mathrm{y} 2+0 * \mathrm{y} 3+1 * \mathrm{y} 4+2 * \mathrm{y} 5\) '
fit <- growth(modelex6.11, data=Data)
summary(fit, standardized=TRUE, fit.measures=TRUE)```

