lavaan: an R package for structural equation modeling

Yves Rosseel Department of Data Analysis Ghent University – Belgium

Utrecht - April 24, 2012

Overview

- 1. software for SEM
- 2. what is lavaan? why do we need lavaan?
- 3. features of lavaan
- 4. lavaan and the (computational) history of SEM

Software for SEM (commercial)

The big four

- LISREL
- EQS
- AMOS
- MPLUS

Others

- CALIS/TCALIS (SAS/Stat)
- SEPATH (Statistica)
- RAMONA (Systat)
- Stata 12

^{• ...}

Software for SEM: non-commercial

- outside the R ecosystem: Mx, gllamm (Stata), ...
- three R packages:
 - 1. sem
 - developer: John Fox (since 2001)
 - for a long time the only option in R
 - 2. OpenMx
 - Mx reborn website: http://openmx.psyc.virginia.edu/
 - free, but the solver (NPSOL) is (currently) not open-source
 - 3. lavaan
 - first public release: May 2010 (version 0.3-1)
 - current version: 0.4-12
- interfaces between R and commercial packages:
 - REQS, MplusAutomation

What is lavaan?

- lavaan is an R package for latent variable analysis:
 - confirmatory factor analysis: function cfa()
 - structural equation modeling: function sem()
 - latent curve analysis / growth modeling: function growth ()
 - general mean/covariance structure modeling: function lavaan()
 - (item response theory (IRT) models)
 - (latent class + mixture models)
 - (multilevel models)
- the **lavaan** package is developed to provide useRs, researchers and teachers a free, open-source, but commercial-quality package for latent variable modeling
- the long-term goal of **lavaan** is to implement all the state-of-the-art capabilities that are currently available in commercial packages

Installing lavaan, finding documentation

• lavaan depends on the R project for statistical computing:

```
http://www.r-project.org
```

• to install lavaan, simply start up an R session and type:

```
> install.packages("lavaan")
```

• more information about lavaan:

```
http://lavaan.org
```

• journal paper:

Rosseel (2012). lavaan: an R package for structural equation modeling. *Journal of Statistical Software*, (??), ??–??.

• lavaan development:

```
https://github.com/yrosseel/lavaan
```

Why do we need lavaan?

- 1. lavaan is for statisticians working in the field of SEM
 - it seems unfortunate that new developments in this field are hindered by the lack of open source software that researchers can use to implement their newest ideas
- 2. lavaan is for teachers
 - teaching these techniques to students was often complicated by the forced choice for one of the commercial packages
- 3. lavaan is for applied researchers
 - keep it simple, provide all the features they need

Features of lavaan

lavaan is reliable and robust

- extensive testing before a 'public' release on CRAN
- no convergence problems (for admissible models)
- numerical results are very close (if not identical) to commercial packages:
 - Mplus (if mimic="Mplus", default)
 - EQS (if mimic="EQS")

the lavaan model syntax

lavaan output

lavaan (0.4-13) converged normally after 41 iterations

Number of observations	301
Estimator Minimum Function Chi-square Degrees of freedom P-value	ML 85.306 24 0.000
Chi-square test baseline model:	
Minimum Function Chi-square Degrees of freedom P-value	918.852 36 0.000
Full model versus baseline model:	
Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)	0.931 0.896
Loglikelihood and Information Criteria:	
Loglikelihood user model (H0) Loglikelihood unrestricted model (H1)	-3737.745 -3695.092
Number of free parameters	21

Akaike (AIC) Bayesian (BIC) Sample-size adju	isted Bayes	ian (BIC)		7517.490 7595.339 7528.739				
Root Mean Square Error of Approximation:								
RMSEA 90 Percent Confidence Interval P-value RMSEA <= 0.05			0.07	0.092 1 0.114 0.001				
Standardized Root Mean Square Residual:								
SRMR				0.065				
Parameter estimates:								
Information Standard Errors				Expected Standard				
Latent variables: visual =~	Estimate	Std.err	Z-value	P(> z)	Std.lv	Std.all		
x1	1.000				0.900	0.772		
x2	0.553	0.100	5.554	0.000	0.498	0.424		
x 3	0.729	0.109	6.685	0.000	0.656	0.581		
textual =~								
x4	1.000				0.990	0.852		
x 5	1.113	0.065	17.014	0.000	1.102	0.855		

x6	0.926	0.055	16.703	0.000	0.917	0.838
speed =~						
x 7	1.000				0.619	0.570
x 8	1.180	0.165	7.152	0.000	0.731	0.723
x 9	1.082	0.151	7.155	0.000	0.670	0.665
Covariances:						
visual ~~						
textual	0.408	0.074	5.552	0.000	0.459	0.459
speed	0.262	0.056	4.660	0.000	0.471	0.471
textual ~~						
speed	0.173	0.049	3.518	0.000	0.283	0.283
Variances:						
x 1	0.549	0.114			0.549	0.404
x 2	1.134	0.102			1.134	0.821
x 3	0.844	0.091			0.844	0.662
x4	0.371	0.048			0.371	0.275
x 5	0.446	0.058			0.446	0.269
x 6	0.356	0.043			0.356	0.298
x 7	0.799	0.081			0.799	0.676
x 8	0.488	0.074			0.488	0.477
x 9	0.566	0.071			0.566	0.558
visual	0.809	0.145			1.000	1.000
textual	0.979	0.112			1.000	1.000
speed	0.384	0.086			1.000	1.000

lavaan model syntax (2)

lavaan features (0.4)

support for non-normal continuous data

- asymptotically distribution-free (ADF) estimation (Browne 1984)
- Satorra-Bentler scaled test statistic and robust standard errors
- Yuan-Bentler scaled test statistic and robust standard errors when data are both non-normal and missing (at random)
- bootstrapping: the naïve bootstrap and the Bollen-Stine bootstrap

support for missing data (fiml)

multiple groups and measurement invariance

linear and nonlinear equality and inequality constraints

defined parameters and mediation analysis

bootstrapping

what to expect in lavaan 0.5

- expected release: 11 May 2012
- support for categorical data (three-step/WLS approach)
- modularity + access to all lavaan internals

what to expect in lavaan 0.6-0.7

- Bayesian estimation
- support for multilevel data
- speed!
- ...
- technical documentation

The history of SEM, from a computational point of view

- several traditions in the SEM (software) world:
 - LISREL (Karl Jöreskog)
 - EQS (Peter Bentler)
 - Mplus (Bengt Muthén)
 - RAM-based approaches (AMOS, Mx, sem, OpenMx, ...)
- superficially, all SEM software packages produce the same results
- there are some subtle (and less subtle) differences in the output
- looking deeper, there are many computational differences

some differences

- matrix representation
 - standard number of matrices: LISREL: 8; Mplus: 4, EQS: 3, RAM: 2
- optimization algorithm
 - quasi-Newton, gradient-only + quasi-Newton, Gauss-Newton, ...
- variances constrained (strictly positive) versus unrestricted
- constrained optimization algorithm
 - mostly undocumented
 - a Lagrangian-multiplier variant, simple slacks, ...
- normal likelihood versus Wishart likelihood, ML versus GLS-ML (RLS)
 - N versus N-1
 - GLS-ML based chi-square test statistic influences fit measures (CFI!)

some differences (2)

- Satorra-Bentler/Yuan-Bentler scaled test statistic
 - each program seems to use a different implementation
 - often asymptotically equivalent; but large differences in small samples
- categorical data using the limited information approach
 - Muthén 1984; Jöreskog 1994; Lee, Poon, Bentler (1992)
 - many ways to compute the asymptotic covariance matrix (needed for WLS)
- naive bootstrapping, Bollen-Stine bootstrapping
 - mostly undocumented; one-iteration bootstrap?
 - Bollen-Stine with missing data

. . .

lavaan and the history of SEM

- lavaan is in many areas still trying to catch up with commercial software; but instead of trying to implement one tradition (based on one program), lavaan tries to implement several traditions
- all fitting functions in lavaan have a mimic argument which can be set to "EQS" or "Mplus" respectively; "LISREL" is under development
- this was originally intended to convince users that lavaan could produce 'identical' results as the (commercial) competition
- it is now one of the main design goals of lavaan

lavaan and the future of SEM?

- we need to (re)evaluate old/new/unexplored computational methods in many areas (optimization, constrained inference, Bayesian techniques, limited information estimation, ...)
- lavaan should 'by default' implement best practices in all areas

End of part I