~5"
b

CHAPTER TWELVE

Longitudinal and Multigroup Modeling
with Missing Data

Werner Wothke
SmallWaters Corporation, Chicago

Missing data are almost always a problem in longitudinal research. Item non-
response, differential attrition, failure to obtain measurements at equal time 1ntervals,
and unbalanced panel designs used to be difficult to analyze at best and remain a
threat to the validity of a study. A related technical problem, customarily given lictle
importance but nevertheless strongly related to validity threars, 1s that most mulsi-
variate methods require complete data.

Incomplete data are often dealt with by listwisc or pairwise deletion methods,
which omit entire records, or pairs of variables, with missing values. Sometimes a re-
scarcher will substitute sample means for the missing values. All three approaches aim
to fix the data so that they can be analyzed by methods designed for complete data,
but are ad hoc and have little theoretical justification.

The method of full informanon maximum likelihood (FIML}, in contrast, has
long been known as a theory-based approach to the treatment of mussing data. FIML
assumes multivariate normality and maximizes the likelihood of the model given the
obscrved data. The theoretical advantages of this full information method are widcly
recognized and have been implemented in che Amos and Mx structural equatton
modeling programs.

Unfortunately, theory has not had much influence on practice in the trearment of
missing data. In part, the underutilization of maximum likelihood estmation 1o the
presence of missing data may be due to the unavailability of the method as a standard
option in packaged dara analysis programs. There may also exist a (rmustaken) belief
that the benefits of using maximum likelihood (ML} estumation rather than conven-
rienal missing data techmaues will in practice be small.




9 WOTHKE

This chapter prescnts several examples of tme-structured and multigroup
problems demonstrating the ease of FIML and its greater statisucal efficiency when
compared to mean imputation and listwise or patrwise deletton methods. Model
specifications for ehese problems and Visuat Basic code used in simulations are avail-
able on the World Wide Web at the locations:
heep:/Iwww.mpib-berlin. mpg.de/research_resourcesfindex.htral and
htep:/fwww.smallwaters.com/books/mpi_ modeling_code.hunl,

COMMON PRACTICE IN THE TREATMENT OF MISSING DATA

The most commonly practiced mechods for structural cquation modeling (SEM) with
missing data apply complete data ML esumarion to covariance matrices that have
been somehow correcred. Such corrections can be:

L. listwise deletion (LD), which excludes from the calculations all records witl
valucs on any of the variables,

parrwise deletton (PD), by which each sample covartance between two variables is
computed from pairwise-complete daca,
one or both of the varables, or

mean tmputatton (MI), which replaces the missing values of a variable by the me
of its observed values,

Brown (1983) studied LD, PD, ML, and FIML methods by Monte-Carlo simulation
in the factor analysts context, Brown (1994) studied the performance of LD, PD,
Mt by Monte-Carlo simulation tn the context of structural equation modeling, and
Little and Rubin (1987} reviewed all four methods 1n the general multivariate case.
All three studies are critical of mean imputation, listwise deletion, and pairwise deic-
tion methods, citing biased and/or inefficient estimates as well as the increased risk of

obtatning indefinite sample covarnance matrices. Brown {1983) quatified his com-
ments about LD, PD, and MI with respect to the fre
data.
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Model-based impurtation of mussing values is well known in the staristical [itera-
ture but rarefy used in SEM (Kim & Curry, 1977; Roth, 1994). In particuiar, the ex-
pectation maximuzation {EM) algorithm (Dempster, Laud, & Rubin, 1977}, which
implements the FIML approach by repeated imputation-estumation cycles, has been
discussed as a method for estimating means and covartance matrices from incomplete
data (Graham & Hofer, chap. 11, this volume; Graham, Hofer, Donaldson,
MacKinnon, & Schafer, 1997; Rovine, 1994; Verleye, 1996). However, the EM al-

gorithm, to my knowledge, has not been ncorporated in a generally available com-
puter program for SEM.
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MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE DATA
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Numeric Example

Consider the data set {see Table 12.1}:

TaBLE 12,1
Example Data Set

Case Vi Va2 V3
i 13 23 21
2 14 22 17
3 15 - il
4 16 18 -
5 17 17 12
6 - 20 8
7 - 20 15

. . . .
There are three variables (V 1--V3) and seven cases {1-7). Four of the possible 21 o

ast bol ifferent
servations are missing, as indicated by a dash (=) symbol. There are four di

MNISSINENess pateerns.
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There are four possible alternatives for estimating means,
ances from the incomplete data set,

Listwise Defetion. All cases with missing obscrv
compurtations. The complete data formuiae are then a
Table 12.2: cases i, 2, and 5). The estimates are:

ations are dropped from the
pplied to the compiete cases (in

) TABLE 12.2
Listwise Deletion Estimares
Covartance Vi V2 V3
Vi 4.33
V2 -6.67 10,33
V3 9.17 13.83 20.33
Means 14.67 20.67 16.67

_:. this example, the F_U method discards the records of four of the seven cascs from
caleulations. Obviously, LD does not make efficient use of the observed data.

Pairw: . - i
Pairwise Deletion.  For each vanable (see Table 12.3), PD computes mean and
. ; e Tal :
mm:mm_ﬁn estimates m.oS the univariate complete data. For each parr of variables, PD
cal . 1 . :
culates the covariance estimates from all cases with complete observations on both

vari ; i t
.m:mEmm. for instance, the covariance estmate for vartables V1 and V2 would be
based on cases 1, 2, 4, and 5: ’

. TABLE £2.3
Pairwise Dieletton Estimates
Covartance Vi vz %]
Vi 2.50
V2 -5.33 5.20
V3 -(.58 7.95 21.60
Means 15.00 20.00 14.00

PR uvvmﬁ:z.«" uses more mformation from the data and should thus be a more cffi

cient _.:nn:na than LD. On the other hand, analysis of PD covanance m e
sents some known staustical problems that
of such a matrix can be based on

atrices pre-
1 are often overlooked. For ane, each entry
consdesabio o o besed a.nw_ M_Mmﬁ_n:m sample sizc, m:m. Hr.mm possibility 1mposes
ons : ing the jount statistical distribution of the entries
OF the covariance matrix. In particular, che joinc distribution of the elements ofaPh

variances, and covari-
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covariance matrix cannot usually be considered Wishart,! even when the matrix 1s
computed from multinormal data. As a consequence, it 1s not clear how the fit of a
model to a PP covariance marnx can be stanistically evaluated. A second often more
obvious 1ssue is that the clements of the covariance matrnx are estmated not just from
different sample sizes but more generally from different poruions of the data sct, and
this can lead to inconsistencies. For instance, the value of =5.33 for cov(V1,V2) cor-
responds to a correlation of r=—1.48, which 1s an inadmissible value. PD-based sam-
ple covarance matrices are a common source of indefiniteness problems 1n SEM

{Wothke, 1993).

Mean Imputation.  Each mussing value 1s replaced by the mean observed valuc of
the same variable (sce Table 12.4). In other words, MI is an atrempt to make the raw
data marrix complete. Afterwards, means and covariances can be calculated as if from
complere data:

TABLE 12.4
Mean Imputation Estimates

Covartance Vi V2 V3
V1 1.67
V2 —2.67 4,33
V3 -3.50 5.50 i8.00
Means 15.00 20.00 14.00

MI yields che same sample means as PD. Because MI's missing data replacements hap-
pen to be the P means, this should hardly be surprising. The variance estimates un-
der MI are cleariy smaller than those obtained under PD. This is a function of the MI
algorithm: Brown (1994) and Little and Rubin {1987) pointed out that variance ¢s-
umates under MI are generally negatively biased. The covartance estimates are also
different from cithet LD or PD. Depending on the pattern of missing data, Mi covar-
ance estimates may be systemancally targer or systematically smaller than those ob-
tained by LD or PD.

On the positive side, M1 does not share the indefinitencss problems encountcred
under P Covartance matrices computed under MI must be positive definite or
semidefinite.

! When coraplete data veetors are sampied from a mulsivaniate normal population, the joint distribu-
tion of the elemients in the resulting sample covarrance matrix follows a Wishart distribution (Johnson &
Koz, 1972).
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Full Information Maxinium Likelihood. The FIML {see Table 12.5) esumates of

the means and covariances are obrained by maximrzing Equation | with respect to
first and second moments:

i TABLE 12.5
Full Information Maximum Likelihood Estimaces

Covariance Vi V2 V3
12! IR
V2 -2.29 3.73
V3 -3.59 6.14 19.48
Mcans 14.98 19.98 13.31

H_:m FIML estimate uses all the iformation of the observed dara, wncluding informa-
tion about the mean and vanance of missing portions of a variable, given the observed
U.on:c:@ of other variables. Fven though the indefiniteness problem obscrved with
the PD> estimate may also occur with FIML estimation, it does not seem to be as fre-
quent a problem. In the present case, the FIML covariance matrix escimate 15 positive
definice.

‘ Obviously, the four methods of computing means and covariance matrices from
incomplete data can produce radically different solutions, even when the same dara
are used. These method differences depend on several factors, including the pro-

portion of data missing and the type of process{cs) causing the incompleteness of the
data.

MISSING DATA MECHANISMS

In order to state the advantages of ML estumation over MI, PD, and LD, 1t 1s necessary
to consider the mechanisms by which mussing data can atise. Rubin {1976) and Licde
and F:E.: (1987) distinguished the processes that generate the mrssing data with re-
spect to the information they provide about the unobserved data. Missing values of a
random vaniable Ycan be mussing completely at random (MCAR), missing at random
9\;3, or nonignorable. Under an MCAR process, the fact that a variable’s data are
obscrved or mussing 1s not thought to affect its distribution, that 15, P (¥'ly mussing)
= \a.ﬁ Y1y observed). In this chapter, MCAR is the most restrictive assumption consid-
Q.Q.A for missing data processes. MCAR can sometimes be established i behavioral
EE.. soctal surveys by randomiy assigning test booklets or blocks of survey questions
to different respondents.

‘ H.S>z is a more relaxed condition, assumung only that missing and observed diseri-
butions of Yare identical, conditional on a sct of predictor or stratifying variables X,
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that s, 7 (¥ly mussing, X) = P (¥'|y observed, X). One way 1o establish MAR processes
15 to include completely observed vartables X that are highly predicuve of Y. For in-
stance, inasmuch as past behavior 1s an cffecave predictor of future behavior, 1nitial
{(complete) measurement(s) in longitudinal destgns can be a good choice of X.

The performance of the four methods under different types of missing data pro-
cesses 1s summarized by Little and Schenker (1995). For data that are MCAR, PD and
LI} cstumates are consiseent, although not efficient. MI is consistent 1n the first mo-
ments, but yields biased variance and covariance estimates. If che data arc only MAR,
then PD and LD esumates may also yield biased results, ML estimates, on the other
hand, are already both consistent and effictent when the data are only MAR. In addi-
tion, some authors have suggested that ML estimates will tend to show less bias than
estimates based on MI, LD, or PD, even when the data deviate from MAR (Little &
Rubin, 1989; Muthén et al., 1987}. As final shortcomungs, PD does not provide stan-
dard errors of parameter estumates or tests of model fit, whereas MI can produce stan-
dard error estumates and fit statistics that are far too opumistic.

APPLICATION: GROWTH CURVE MODELING
Simulation 1: MCAR Data

To demonstrate the efficiency of ML estimation relative to M1, LD, and PD for a
single, fairly fypical estumacion problem with MCAR data, a small Monte-Catlo sim-
ulation was undertaken. The variable names and parameter values are taken from a
reanalysis of STEP science data collected by Hilton and Beaton (1971, pp. 343-344).
To keep things simple, the Monte-Carlo simulation uses a multivanate normal dis-
tiburton, with structural parameters provided by the path model shown in Figurc
12.1. Suppose that the STEP science test was admirustered to the same students on
four occasions—1n 1961, 1963, 1965, and 1967. The substantive interest 15 to gauge
the growth of the science scores over the four test occasions. However, this task 15
somewhat complicated by the measurement error 1n the test scores.

The model of Figure 12.1 1s essentially the MANOVA approach to growth-curve
modeling (Bock, 1975). Each test score 1s composed of a constant term, a slope, and
a residual. The constant and slope terms are modeled as correlated random compe-
nents, summarizing the individual differences of both nitial level and subscquent im-
provement of the students’ science knowledge. The constant term, with mean 254.92
and variance 98.98, 1s connected to the observed variables wich fixed weights of uniey.
In addition, the constant term makes the only systematic conrribution to the 1961
science knowledge test scares, Thus, the mean (254.92) of the constant term gives the
mean of the 1961 scores 1n science knowledge, whereas its vartance (98.98) describes
the systematic dispersion of 1961 science knowledge amaong the group of students.
The residual variance of 46.71 provides an estimate of the measurement error of the
STEP sctence test.
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FIGURE 12.1
Parameters of a Linear Growth Modei
(from STEP Science Test, students with high school cducated fachers)
3, 406.71 0, 46,71 46.71 0, 46.71

0,
1
0

1.00

254.92, 98.98

The tour paths pointing from the slope term to the four observed variables have
their cocfficients fixed to a lincar trend (0, 2, 4, 6). Thesc fixed coefficients reflect the
number of years since the first measurement (in 1961). Hence, the siope mean of 4.38
shows the average growth n science scores pet year, and its variance of 0.80 quantifies
the interindividual vanation of the veatly slope. Constant and siope have somewiiag
of a negative correlation {r=-0.21), ._Ev_.ﬁ:m that students who start out wich high
1961 scores have smaller subsequent gains than students wich lower initial scores.

The Monte-Cario simulation employed 400 random data scts of sampie size 500,
generated from 2 muluvaniace normal distribution wich the parameters of Figurc
12.1. The four variables had some of their vaiues deleted completely at random. Miss-
ing dara probabilitics were 0% (nonc) for 1961, 10% for 1963, 20% for 1965, and
30% for 1967. Multivaniate normal quast-random numbers were generated by the
RANLIB.C routtnes (Brown & Lovato, 1994) tmplementing the algorithms by
L'Ecuyer and Cété (1991) and Ahrens and Dieter (1973).

Realized missing data rates varied somewhat within samples, because the MCAR
process was exccuted independentiy on each individual observed vaiue, The growth
model of Figure 12.1 was fitted to each Monte-Carlo sample using MI, ML, LD, and
P> methods. Altogether, the simulation comprised 1,600 attempts to fit the modcl.?

This task was automated by calling the open programming AmosEngine interface
from a Visual Basic routine.

% 1n 25% 1o 37% of these simulation runs, Amos indicated some convergenee problems. However, this
did not seem to make a difference in resuits, Solutions from"converged” and “non-converged” runs were
statistically andistinguishable, chus all results from all simulatrons were inctuded in the staustical reports,
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FIGURE 12.2 ]
Distribution of » {Constant) Estimates, MCAR With FIML (Var = 74.13}
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FIGURE 12.3 .
Diseribution of v {Canstant) Estimates, MCAR With MI (Var = 73.02)
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The performance of a single estmation method {say, ML) (ﬁrf..m.&nmmnm in H:m” MMM
fowing way. First, the method was applied to estumaie the anma_ for cach o
Monte-Carlo samples, then the accuracy of the estimates éu,m,_ccmon_ g comparing
them to the bootsirap population parameters 1n Figure ‘_N._. The question s which,
it any, of the four methods reproduces the parameter values most n_o,mn:\.. N

Figures 12.2 to 12.5 display the distributions A.um::u variance estimacs mow n:n/vo%n_.
stant term, with che parameter value of 98.98 indicated by a vertical aozom __Jn. ith
the excepuon of the MI esumate, which 1s biased downward by .m.Qo. the m_mm:r:n:.u:m
arc centered on the parameter value within the margins o,nmm_:_.m_:m error. Estimation
bias for this paramcter thus appears to be negligible :san_.‘ ihe FIML, PD, m:&mﬁ@
methods, although the data indicate some difference precision {or nmw_n_n:né o nw.....
amatton, The refative sampling variance can be used to estmare relative gains in om.
ficiency. Under asymptotic theory, the sampling variances of mcans, regression mOn -
Acienis, and vanances are mversely related to sampile size (Kendall & vEn.:n. 1977,
p. 258). Thus, when csumating the variance of the constant term, switching *.2.:.:
FIML to LD nearly doubles its sampling variance {1.80 = _mm.:\w&._wv. According
to this asymptocic rule, the sampic size for 1.1 would have 1o be increased by approx-
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o FIGURE 12.4
Distribution of v (Constant) Esumares, MCAR With PD (Var - 78.67)
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o Ficure 12.5
Distribution of {Constant) Esctmates, MCAR Wich LD {Var = 133.17)
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Parameter: 98,98,

mmately 80% (i.c., to NV = 900 d hi 1
oy DI S 900) 1 order to achieve the degree of preasion provided
It has to be stressed that chis reiative §

Irh . gure of 80% 1s specific to a singl :
a single sample size, e 126 showe

: z¢, and a parucular choice of mussing data rates. Table 12.6 shows
means and empirical standard errors for af] SIX parameters tn the m

tics are mmwn.nﬂnm by an undetermined amount of sampling crror
broad trends are apparent. As expected with MCAR, the FIML 1.
are m_: c:_&mmna. The MI method, although unbiased in Bmazw
ased variance and covariance estimates, Amon sed
FIML yrelds the most efficient estimates-—stan

moves ?05 .H.._:Sr estimation to PD, and then to LD, The size of the overall ch

In precision s difficuir to gauge, however, as it depends on charactenstics of the _m:Mo
el, complete-case population mean and covarlance structure, sample size ,:asm -
quency of mussing data. Simulacion work by Arbuckle (1996), Graham mn.uw .: oom-

and .<n196 (1996) suggests that the relative efficiency of FIML increases
1ng data rate increases. .

odel. These statis-

Nevertheless, some
D, and LD estimates
: ‘ produces notably bi-
g the unbiased estrmatton methods,
dard errors mn:nB_:\ increase as ohe

as the miss-
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TABLE 12.6
Model Estimates Under Simulated MCAR

Constant Slope
Estimatian type Statrstic Mean var cov Mean var ve
FIML mean 254,95 98.99 -1.91 4.37 .80 46.56
se .51 8.61 1.21 .09 .28 2.47
Ml mean 25495 96.00 -5.74 4.357 73 51.43
5.0 S5t 8.58 i26 N 24 2.36
PD rmean 254.95 99.24 -1.93 4.37 .80 46.71
ie 51 8.87 .30 A0 .28 2.55
LD mean 254.94 99.53 -2.00 4.37 81 46.59
se. 76 11.54 1.54 i .32 2,90
Parameter vaiuc 254,92 98.98 -1.88 4.38 .80 46.71

Simuiation 2: A Case of MAR Data

A second Monte-Catlo simulation? was performed to illustrate the benefits of ML
with data thar are MAR but not MCAR. The structural model of Figure 12.1 was used
agan for this simulation. The sample size was 500, exceprt that the MAR process was
set up to simulate a selective dropout mechanism in three stages. First, 80% of the
cases with a 1961 knowledge score of less than 246 had their 1963-1967 measure-
ments deleted. Second, of the remaining cases, 80% of those with a 1963 score of less
than 255 had both their 1965 and 1967 scores set to missing. Finally, 80% of the
remaining cases with 1965 scores of less than 263 had their 1967 values sex to miss-
ing. The realized missing data rates were 0% 1n 1961, 16%-20% 1n 1963, 25%--33%
in 1965, and 30%—40% m 1967, with differences in these proportions becausc of
sampling vananon.

This type of MAR process emulates the situation 1n which a person participates 1in
a study for some time and then drops out after showing 2 low score and encountering
other, presumably random, condinons, 1t is partcularly easy to see how Mi and LD
wotuld lead to biased estimates in this situation, as selectively removing records with
low scores or substituting the means of the remaining higher scores would affect both
means and covartances of the remaining sample. The effect of the missing dara pat-
tern on PD 15 not so clear-cut. We have already observed the supenor cfficiency of
FIML estimates 1n the MCAR simulation where PID and LD esumartes were known to
be unbiased. By contrast, because the present dara arc only MAR, estimation bias 1s
now of central concern with all estimates.

¥ Convergence prablems were also indicated with MAR simulation, but aga they did not appear to
h_,*.‘.n,ﬂ ___ﬁ. n;.ﬂH:: ﬂﬁ.m:_nw.
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TABLE 12.7
Model Estimates Uneler Simulated MAR

Constant Slape
—— -

Estrmation type Statistic Mean var cov Mean var ve
FIML nmean 254.95 98.53 -1.93 4.38 .80 46.53

5.6 53 4.81 149 A 30 254
MI mean 255.33 78.57 —8.62 5.13 1.59 51.24

s W57 6.40¢ 119 Al 24 217
PD mcan 255.33 91.58 -5.87 5.13 .22 50.75

56 a1 8.38 147 A7 34 269
1.D mean 260,57 46.93 -.79 4.24 .80 42,02

s 47 6.30 1.00 029 .26 2.38
Parameter vaiue 254,92 98.98 -1.88 4.38 .80 46.71

Examples of method-specific estimation bias with MAR data are shown in Figures
12.6 to 12.9. Although the FIML varance estunate of che constane 15 neatly centered
ar the parameter value—perhaps with a somewhat large sampling variance—the Mi,
PD, and LD estimates ali show negatve bias. PD estimares are biased downwards by
a moderate degree (approximately 7.59%), but the sampling distributions of MI and
LI estimates do not even appear to mclude the paramerer value. Parucularly, the LI
estimates are all located below 70. Note that the sampling variance under M and LD
1s at keast 40% smalfer than under FIML. One might summarize char Ml and LD yield
very precise estimates of exactly the WIONg parameter.

Table 12.7 shows the means and standard errors of the six parametct cstifates
computed by the four estrmation methods averaged across 400 sampies of size 500,
For almost every parameter, FIML provides the estimate with the jeast bias. Because
the mussing data process is MAR 1nstead of MCAR, the M1, PD, and LD methods arc
not only biased in variances and covariances but also in the mean paramerters of the
constant and slope terms. For severai parameters, estmaton is dramaucally beteer
with FIML than with PD and LD,

Summary

It 15 impossible to put a single figure on the gam m accuracy of estimation to be had
by abandoning MI, PD, and LD 1 favor of FIML.. It 15 hard to imagine a situation,
however, in which FIML would yvield worse results than MI, PD, or LD. The advan-
tage of FIML depends on the missing data rate, the covariance scructure of the data,
and the size of the sample, and it ditfers from one parameter to another. Nevertheless,
the two sinulations demonstrate that FIML can be supertor to PD, and superior to
Ml and LD by a wide margin,

FiGure 12.6 ) o
Distribution of » (Constant) Estimares, MCAR With FIML {Var = 77.62)
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FIGURE 12.7 . 46.24)
Distribution of v {Constant) Esamates, MCAR With M1 (Var = 46.
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FIGURE 12.8 ) X
Distribution of # (Constant) Estimates, MCAR With PD (Var = 70.22)
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FIGURE 12.9 FiGURE 12.10 .
Distribution of » (Constant) Estumates, MCAR With LD (Var = 39.69) Time-Dependent Process—Meodel Specification
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APPLICATION: AUTOREGRESSIVE PROCESS

A series of tme-dependent autoregression and Markov models (] dreskog, [977a) dem-
onstratcs the case of analyzing incomplete longttudinal data and of testing all models
simultancously agarnst an artificia sample. James Arbuckle first presented chis example
at the 1996 Mecting of the American Educational Research Association. The Amos
Graphics specification of the most general model appears in Figure 12.10. There arc
four time-dependent variables, Q1, Q2, Q3, and Q4, which can be thoughr of as four
consccutive measurements of the same variable or quanary. Each observed variable 1s
modcled as a linear function of the earlier variables, plus a random shock o residual
term,

The three-equation model is just-identified. ¢ has zero degrees of freedom and
cannot be rejected by a global test of fit. Note that the path diagram shows nine pa-
rameters with the distincr labels 12, b1 3, bi4, b23, b24, b34, v2, v3, and v4. These
labels may be used in constraincs defining submodels thac can be tested against the
data. Three submodels might be considered interesting 1n chis type of longrtudinal
application:

1. Saturated model This 1s tie model of Figure 12.10 without any constratnts, Lc is a
descriptive account of a four-occasion longrtudinal design. The measurement at a
given occaston s a linear funcuon of the preceding measurements. Although che
model itself cannot be tested, the parameter estimates and their approximate stan-
dard errors may be of exploratory value.

Markov model. In a Markov model, the vaiues of 2 oime-dependent variable are de-
pendent only on the values of the previous occasion. In other words, there are ner-
ther fag-2 nor lag-3 effects. A (linear} Markov maodel can be defined by the three
constraints: b13 = b14 = b24 = 0. Assuming normality, model fit can be assessed
by a 2 test with threc degrecs of frcedom.

™

3. Statsonary Markov model. A Markov model with :Eo-_ua..m:.m:n prediction equa-
uons 15 called stationary. Ignoring intercept rerms, two wn:w:@ CONSUTAINES AAC re-
quired to make the regression weights stationary: b12 = b23 = b34. Two addition-
al constraints are needed to render the residual vanance terms stationary as sa.zn
v2 = v3 = v4. The stationary Markov model can be tested :Jmn_. normality by the
%2 fit staustic with seven degrees of freedom. Incremental change of m.,: from the
general Markov model can be assessed by the likelihood ratio 2 test with four de-
grees of frecdom. N o .

The 1nput data for esuumatng the three models may look like the .m_a fragment shown

1n Table 12.8. Amos handles several popular data formats with &_mmn.‘ni conventions

for coding missing values. In many spreadsheet-type data formats, mussing data are
sttply coded as blank entnies, as in Table 12.8. For instance, case 2 15 nussing the

value of Q4; case 37 Is mussing 1, 3, and Q4; MSL case w.o Is missing .0_.

When Amos encounters nussing values among the modeled data, &n program
switches automatically from its default moment-based maximum likelihood algo-
rithm to the casewise formuia 1n Equation i. The Amos user must request estimation
of mean and intercept parameters because, with incomplete data, their concribution
to the likelihood 1s no longer independent of varance and covariance terms. The
most general model is specified as the input-path diagram of Figure 12.10. The three
submodels are defined within the Amos 4 Model Manager. N .

Table 12.9 presents a short list of the more than twenty* fit statistics ﬁwoSana by
Amos 4 with incomplete data. To evaluate the fit of a working model mn. z.:... missing
data case, Amos must fit both working and saturated models. Assuming both models

4 Some fit indices, such as the GFl and RMR, are defined only for complete data. Other fix E‘n__“nnm.
el _&._nm the BIC and CAIC, were devised only for m“:ﬁ_n group analyses without mean structures. These
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conveige 1o global solutions,® the ¥2 fie-statistic is obtained as the difference in func-
tion of the log likelihood (1) values between the working and saturated models. The
(positive) difference in number of paramerers beeween modeis gives the associated de-
grees of freedom. The 2 fit statistics appear 1n the CMIN column of Table 12.9. The
first three lines display the fit of the specified Saturated, Markov, and Stacronary
Markov submodels. With our artifictal data, the fit of the Markov mode would ap-
pear quite reasonable (¥? = 3.8; df= 3; p = .28), whercas the large y? of the Stationary
Markov model (32 = 31.4; df= 7; p = .00) would indicate misspecification of that
model. The bottom panci of Table 12.9 shows the Markov model with the smallest
AlC and BCC statistics—smaller even than the Saturated model. According 1o Alaike
(1987), the model with the smallest AIC has the best fie. Akaike's ruie would pick the
Markov model over cither Stattonary Markov or Saturated models,

TABLE 12.8
Inpur Data for Autoregressive Process

Case Qi Q2 Q3 Q4

1 19 i4 15 i7
2 19 16 17
3 18 20 18 17
- many more sumilar records .
37 7
38 12 12 18 17
39 19 15 15
TABLE 12.9
Model Fic
Sumimary of models
Model NPAR  CMIN  df p CMINWf — AIC BCC
Sawurated i4 0.000 0 28.000 32.242
Markov 11 3.822 3 0.281 1.274 25.822 29,155
Stattonary Markov 7 31.36G4 7 0.000 4.481 45.364 47.485
Sacurated model 14 0.000 0 28.000 32,242
Null model 8 424.405 6 0.000 70.734 440.405 442.829

3 Unless the number of obscrved variables becormes large relative to number of cases and observed data
rates, both working and saturared models usually converge 1o global maxima, This -

statistic can usually
be computed whenever the saturated model has a globai solution.

TABLE 12.10 .
Incremental Fit Statistics

7 p— Ip-2
Model comparisons ar CMIN P NFI&—1 [FI6-2 RFfp-t TLIp

Assuning model satwrated to be correce
gﬁr% 3 3.822 0.281 0.009 0.009

Staionary Markov 7 31.364 0.000 0.074 0.074

Assumang mndel Markov to be correce

Sranonary Markov 4 27.542 0.000 0.065 0.065 0.045 0.046

TaBLE 1201
Parameter Esumates of the Markov Model

Estrmate S.E. CR Label
fegemor %ﬁmf-...@ 0.857 0.137 6.261 b12
Qe Q2 0.452 0.152 2.972 b
Qéde----Q3 0.167 0.072 2.311 b3
Moo Q1 15.059 0.636 23.692
pereert Qz 2.475 2.126 :_QN
Q3 7.714 2.433 _W.mwo
Q4 13.584 1,100 .
Variances 3.478 4191
576 .
b _N i 2.287 4,057 v2
o 14128 3.632 3.890 v
Mm_ M..muo 0.637 3,498 vi
fied Il variables) covariances
implied (for all w o - " o
Ql 14.576
Q2 12,490 19.982
Q3 5.639 9.022 18.202
Q4 0.941 1505 3.037 2.736
ficd (for all variables) means
1rplicd {for 4 o o o o
15.059 15.380 14.658 16.030
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Because the three modeis are hierarchically nested, thetr relative discrepancies can
be tested by the likelithood rato y? scaustic. Table 12,10 summarizes these incrementat
fir stanistics. Companing the Markov and Stationary Markov models is particularly 1n-
teresting. The large 4 of 27.542 (df= 4) is a strong rejection of the stationarity assum p-
tion: The residual varances and lag-1 regression wetghts do vary over time.

Parameter estimates and approximate standard errors of the general Markov mod-
el appear tn Table 12.11. The standard etrors are an implicit and convenient by-prod-
uct of the FIMLalgorithm employed by Amos. Therr primary usc 15 to gauge the likely
ranges of the parameter estmates under replication. A common rule of thumb (based
on the asymptotic normality of the estimates) assumes a 95% confidence 1nterval ar
* 2 standard errors from the estumate. According o this rule, the size of the lag-]
autoregression weights appears to decline over time. 1n addition, the residual varianc-
es at occastons 2, 3, and 4 come out heterogeneous. Both findings corroborate the
carlier decision aganst the Stationary Markov model.

Note the mmplied covariance matrix and mean vector at the bottom of Table
12.11. Thesc first and second moments derive from the estumated parameters of the

Markov modcl and are thus a function of the observed data as well as the working
model.

Summary

Model specification and estimation with mussing data follow the same strategles as in
the complete data scenario. Except for specifying a missing daea code, the FIML im-
plementation of the Amos and Mx programs does not complicate the model secup.
In return, FIML delivers parameter estimates unbiased under MAR and scandard ec-
rors estimates based on asymprotic normal theory. For model testeng, fit 2 staustcs
are usually available whenever the Saturated model has a FIML solution. In addition,
when competing models are hierarchically nested, the likelihood ratio chi-square test
provides a powerful tool for detectng sources of musfit.

APPLICATION: MULTIPLE GROUPS WITH MISSING DATA

The first pracucal maximum likelihood implementation of incomplete data mod-
cling tn the SEM framework used a multiple-group approach (Allison, 1987). The ex-
ample in this section 1s based on one presented in Allison’s onginal paper, but has
been modified to show how latent variables are conceptually che same as missing data
(cf. Dempster et al., 1977).

Bielby, Hauser, and Featherman (1977) studied the relationship between indica-
tors of occupational status and educacional attainment in a sample of 2,020 African
Amecrnican fathers. Using a single indicator for each construct, Bielby et al. estimated
the correlation between occupational status and educational attamnment as 7 = 0.43
for the entrre sampie. Realizing thar measurement crror and remporal msrabili
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their single indicators would likely attenuate the non.ﬂn_msos esumate, m.mn_g et al. re-
interviewed a random subsample of 348 study participants mwwaovn.ﬂamﬂn? three ﬁ..nmw.w_
after the first interview. For this subgroup, they obtained a second mnn.n.m Onnznm:onu_
status and educational attainment indicators that can be used for estimaung the sizc
of the measusement error. The data were reported (Allison, 1987) as two subsamples:
(a) Biclby ec al. (1977) complete data (n = 348; sec Table 12.12):

Tapir 1212 .
Bielby et al, Complete Data Subsamyple

Covarances FAQC ¢ FAQUC £2 FAED i FAED 2

FAQC 1 180.90

FAQC 12 126.77 217.56

FAED_ti 23.96 30.20 16.24

FAED_t2 22.86 30.47 14.36 15.13
Means 16.62 17.39 6.65 6.75

(L) Biclby et al. (1977) incomplete data (N = 1,672); unobserved means and (co-)
variances indicated by dashes (see Table 12.13):

TABLE 12.13 ) ]
Bielby et al. incomplere Data Subsample

Covariances FAOC ¢i FAOC 12 FAED 1 FAED 12
FAOC_ul 217.27

FAOC 12 - -

FAELD t: 25.97 - 16.16

FAEDD 12 — - - -
Means 16.98 - 6.83 -

The two-group factor model of Figures 12.11 and 12.12 proposes a simple way to
separate stable (or systematic) measurcment components m.mB anMEaBm:ﬁ error
and to estimate the disattenuated correlation. Figure 12.11 shows the confirmatory
factor modcl for the compiete data subsampic. Father's onnc.cm:o_._m_ status has two
observed indicators, FAOC_ti and FAOC_t2, with independent error terms ¢l and
¢2. Father's educational atrainment has two observed _:&nmno? .EHO;: and
FAED_t2, agam with independent error terms €3 and e4. The hypothetically error-
free occuparional status and educational atrainment vaniables are correlated. The
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FiGure 12.11
Measurement Model for the Complete Subsampic

0, v_faoc il 0, vi
FAOC 1 A.J@
i2 0, v2
1
s FAOC_t2 A|®
P
3 0, v_faed i3 0, v3
FAED_t1 A|_l®
Father
educacion i4 0, vd
FAED 2 A_|°
FIGURE 12.12
Measurement Model for the Incomplete Subsampic
0, v_faoc ii 0, vl
L EAOC Aé
b2 i2 0, v2
- —()
[v]
=]
i
] 0, v_faed i3 . 0, v3
FAED 11 [ H )
Father
cducatton i4 0, v4
- ; h v

model has 13 free parameters, all labeled: one factor covariance {cov_oe), two factor
variances (v_faoc and v_faed), two regression wetghts (b2 and b4}, moclu. intercepts (il
12,13, and i4), and four specific variance terms (v1, v2, v3, and v4). u

‘ Figure 12.12 uses the same measurement model for the incomplete subsample, in-
.n:_n::m parameter labels. In Amos’s notation, two parameters that sharc the same
label are automatically equal-valued. In other words, using the same label for a pa-
rameter throughout all groups makes that parameter group-tnvariant. All correspond-
Em.?nn parameters 1 panels of Figure 12.11 are shown with group-invariant labels
and mm._ fixed parameters have the same value in both groups. This means the Q:_S_
Enan_ 15 group-invanant and implies that the missing data process 1s MCAR. The
o::w%mmn_.n:nn 15 that the model in Figure 12.12 accommodates the mussing variables.
Placing .~U>Oﬂiﬁm and FAED_t2 1n ellipses in the second group declarcs these vari-
ables as latent or unobserved—in other words, missing.
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The analysts estimates the disactenuated correlation between occupational status
and cducational attainment as 7 = 0.623 (s.e. = 0.029). The overall fit of the two-
group model is quite acceptable (¥2=7.8, df=0), supporting the implied assumpuion
that the data are MCAR .6 This esumate is quite different from the corrclanion of 0.43
between the observed variables FAOC_ti and FAED_tl.

Summary

Allison’s (1987) multigroup impiemcneation can also be accommodated within

Amos. The setup is similar to other contemporary SEM programs, except that Amos

permits additional simplifications. The mulugroup setup for missing data analysis in-

volves these steps: .

i. Draw a model for compicte data and label all free parameters. Select mean-level
analysis.

2. Turn the single group specificanon into a multigroup analysis, declaring one
“aroup” for each pattern of missing data. Issue Amos’ Heterogencous Groups com-
mand. Connect each group with its dara file. The Heterogeneous Groups command
removes the necessity of having the same model and the same vartables in all
groups. Lt also allows different groups to usc different numbers of variables.

3. In cach group’s path diagram, usc the Toggle Observed/Unobserved ool to mark the
missing varables as latent (or unobserved).

Allison’s multigroup approach may be regarded as an alternative to Amos’ cascwise
(default) FIML estimation with mcomplere dara. There are some obvious trade-offs
to using Allison’s multigroup setups. As mentioned previously, model specification
by the mulugroup approach is both more laborious and only feasible with a small
number of missing data patterns. On the other hand, all fic staustics, modification
indices, and residual analyses normally available with complete data arc provided
when the multigroup setup 1s employed. In addition, the group-specific means and
varances of the exogenous vanables are under the modeler’s control, permitting de-
tailed tests of MCAR, MAR and other assumpuions.

DISCUSSION

Masamum likelihood (FIML) estimation with incomplete data s a feasible method,
now available in the Amos and Mx SEM programs. FIML 15 more efficient and less
biased than listwise and pairwise deletion and mean imputation methods. In the case
of MAR data, FIML can be dramatically less biased than listwise delction and mcan

6 The MAR assumpuion can be incorporated into multigroup missing data approach by letting means
and covanances of the exogenous ohserved variables vaty frecly across groups. Such an MAR analysis 15 pos-
sible when missing dara eccur only ameny endogenous variables, but not exogenous ongs.
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sumputatton methods. This is why FIML should be the preferred method of treating
missing data when the aiternative 1s pairwise or lisowise delction O Imean Imputation.

Maximum likelihood’s lack of reliance on the MCAR requirement 1s a feature that
remains to be fully exploited. Unbiasedness under MAR and higher efficiency under
MCAR make maximum likelihood the method of choice in situations with incom-
plete multinormal data.

Feasible alternatives to the FIML approach of Amos and Mx are the EMCOV and
NORM approaches {Graham & Hofer, chap. 11, this volume), which use EM and
dara augmentation methods based on the saturaced model for impunng values of the
mussing data. The completed data matrices would subsequently be analyzed by tradi-
tional SEM methods,

With the FIML approach of Amos and Mx, in contrast, 1t 15 not necessary either
to impute values for missing data or to estimate the population moments as a pre-
requistte to model fitting by ML. These are optionat steps, which—if performed ar
all—are best done after the model is fitted (sec the Technical Appendix on htep://
€§<.EE_u-_uolm:.&n...nnmnm_‘nrinnmoﬁnam:zﬁ_nx.rﬁ:c_ not before. Most structural
modeling programs report estimates of population means, vaniances, and covariances,
calculated from parameter estimates under the assumprion of a correct model.

It should not be overlooked that structural modeling with the Amos program can
also be used to solve mussing data problems that arise in conventional analyses, such
as regression with observed variables or the stmple esttmation of means and variances,




