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PREFACE

The term growth curve was originally used to describe a
graphic display of the physical stature (e.g., the height or
weight) of an individual over consecutive ages. Growth
curves have unique features: (a) The same entities are repeat-
edly observed, (b) the same procedures of measurement and
scaling of observations are used, and (c) the timing of the
observations is known. The term growth curve analysis
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denotes the processes of describing, testing hypotheses, and
making scientific inferences about the growth and change
patterns in a wide range of time-related phenomena. In this
sense, growth curve analyses are a specific form of the larger
set of developmental and longitudinal research methods, but
the unique features of growth data permit unique kinds of
analyses. ‘

Contemporary methods of growth curve analysis are con-
sidered here. Of course, the techniques to analyze growth
data are among the most widely studied and well-developed
mathematical and statistical techniques in all scientific
research—growth curve analyses have roots in the 17th- and
18th-century calculus of Newton and probability of Pascal—
but this chapter is concerned with more recent Historical de-
velopments. Techniques for the analysis of growth curves
were initiated in the physical sciences and were more fully
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developed in the biological sciences, where they were used in
studies of the size and health of plants, animals, and humans.
In the behavioral sciences, growth curve analyses have rou-
tinely been applied to a wide range of phenomena—from
experimental learning curves, to the growth and decline of
intellectual abilities and academic achievements, to changes
in other psychological traits over the full life span.

These formal models for the analysis of growth curves have
been developed in many different substantive domains, but all
share a common goal—to examine and uncover a fundamental
set of regularity conditions, or basic functions, responsible for
the manifest growth and change. The goals of these models
were organized in terms of five “objectives of longitudinal
research” and described by Baltes and Nesselroade (1979,
pp- 21-27) using the following enumeration:

1. The direct identification of intra- (within-) individual
change

2. The direct identification of infer- (between-) individual
differences in intra-individual change

3. The analysis of interrelationships in change

4. The analysis of causes (determinants) of intra-individual
change

5. The analysis of causes (determinants) of interindividual
differences in intra-individual change

In this chapter, growth curve analyses are related to these
objectives of longitudinal research. In current statistical
methodology, intra-individual is termed within-person and
interindividual is termed between-person, but these remain
the essential goals of most longitudinal data analyses (e.g.,
Campbell, 1988; McArdle & Bell, 2000).

This chapter is organized into the following sections:
(a) an introduction to growth curves, (b) linear models of
growth, (c) multiple groups in growth curve models, (d) as-
pects of dynamic theory for growth models, and (¢) multiple
variables in growth curve analyses. The chapter then con-
cludes with a discussion of future issues raised by the current
growth models. In all sections we try to preseént historical
perspective to illustrate different kinds of mathematical and
statistical issues for the analyses of these data.

The growth curve models are presented in basic algebraic
detail, but this presentation is not intended to be overly techni-
cal. Instead, we focus on the mathematical formulation, statis-

_ tical estimation, and substantive interpretation of latent growth

curve analyses. This focus allows us to show a range of new
models and examine why some classical data analysis prob-
lems, such as the calculation of difference scores or the unreli-
ability of errors of measurements, are no longer impediments

to development research. Other related techniques such as
time-series and dynamical systems analyses are briefly
discussed in the later sections of this chapter. All numerical
results are based on a single set of data (the longitudinal data of
Figure 18.6), and available computer software for these
analyses is described. We use these illustrations to highlight
both the benefits and limitations of contemporary growth
curve analyses.

INTRODUCTION

Classical Growth Curve Applications

The collection of growth curve data is nota new topic. The first
measurements classified as growth curve data appear to have
been collected by the French Count de Montbeillard (~1759)
and consist of semiannual measurements on the growth of the
height of his son over the course of nearly 18 years; these data
are plotted as the upper curve of Figure 18.1. As Scammon
(1927) reported, “It will be noted that the curve shows the
typical four phases which most modern students have
observed in the postnatal growth in stature of man, and which
are characteristic of the growth of so many parts of the body”
(p. 331). The first analysis of these data, by the naturalist
Buffon (~1799), “should be given full credit for the discovery
of seasonal differences in growth a full hundred years before
the modern investigation of this work”™ (p. 334). The lower
growth curve in Figure 18.1 is based on group averages of
physical growth obtained by Variot (~1908). As Scammon
(1927) suggests, “it is interesting to note that, while the ab-
solute values of the two series are quite different, the general
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Figure 18.1 The initial growth curves of human height data from
Scammon (1927, p. 334); the vertical (y) axis represents the height in cm and
the horizontal (x) axis represents the age in years from birth.
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Figure 18.2 Altemative velocity curves of physical stature from Tanner
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(1960, p. 22); (a) The change in height as a function of the change in time (y)

versus the age in years (x); (b) the same curves () plotted around the time of maximum change in scores (x) for each individual.

form of the curve is essentially the same in both instances”
(p- 335).

These early growth curves were precursors to the collec-
tion of an enormous body of biological data on growth and
change. More recent illustrations come from the important
work of Tanner and his colleagues (1955, 1960). In the indi-
vidual plots of height in Figure 18.2, (a) the velocity for rate
of change] is plotted at each age, and (b) these curves are
plotted against their own highest peak velocity. This display
demonstrated two interesting features of physical growth:
(a) Persons who start growth at the earliest ages also attain
the greatest height, but (b) all individuals share a remarkably
similar shape in the “adolescent growth spurt.” This relation-
ship between chronological time and what has been called
biological time remains an important substantive issue.

Experimental psychologists have routinely. collected dif-
ferent kinds of growth curves. Among the first here were the
classical forgetting curves collected by Ebbinghaus (~1880),
and this introduced the use of quantitative methods in the
study of learning and memory and stimulated many experi-
mental data collections. Other classic examples are found in
the animal learning curve experiments of Thorndike (~1911),
in which trial-and-error learning was defined by decreasing
response time, and the lack of smooth function over trials was
considered error. Thorndike used these growth (or decline)
curves to illustrate several classical principles of learning,
including the law of exercise and the law of effect (for review,
see Garrett, 1951; Estes, 1959). Other classic examples are
found in the acquisition curves presented by Estes (1959) and
reproduced here in Figure 18.3. The data collected here Gie.,
the dots) were measured over the same animals (rats) working

for consistent reward in a free operant Skinner box (a T-maze
learning experiment), and the four plots show different as-
pects of the behaviors (i.e., responses, reinforcements, trials,
time). These figures also show how the average probabilities
and changes in probabilities were well predicted using
mathematical models from statistical learning theory (Estes,
1959). The current emphasis on formal models for growth
and change has obvious roots in this kind of experimental
research.

Differential psychologists have also contributed growth
data in many different substantive areas. One good example
of this tradition is given in the plots of Figure 18.4 (from

" work of Bayley, 1956). Individual growth curves of mental

abilities from birth to age 25 are plotted for a selected set of
boys and girls from the well-known Berkeley Growth Study.
Because mental ability was not easily measured in exactly the
same way at each age, these individual curves were created
by adjusting the means and standard deviations of different
mental ability tests (i.e., Stanford-Binet, Terman-McNemar)
at different ages into a common metric. As Bayley says,

They are not in “absolute” units, but they do give a general
picture of growth relative to the status of this group at 16 years.
These curves, too, are less regular than the height curves, but
perhaps no less regular than the weight curves. One gets the
impression both of differences in rates of maturing and of differ-
ences in inherent capacity.” (p. 66)

This application of “linked” measurement scales created a
novel set of growth data, raised many issues about the com-
parability of measurement over time, and permitted the use of
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Figure 18.3 Selected acquisition curves of memory from statistical learning theory by Estes (1959).

growth. curve -analyses initially derived in other scientific
areas.

Early work in biological research was directed at charac-
terizing the parallel properties of different growth variables.
Models were originally developed to deal with the size of
two different organs, and early 19th-century work was
used by Huxley (~1924, 1932) to form a classical alometric
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model—twao variables having a constant ratio of growth rates
throughout the growth period-——and many physical processes
were found to grow in parallel, or in an ordered time-
sequence. A good example is found in the multivariate re-
search of Tanner (1955): Figure 18.5 is a plot of growth and
change in four physical variables that were found to follow a
fundamental pattern over time (i.e., a relatively invariant
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Figure 18.4 Growth curves of intellectual abilities in selected boys and girls from the Berkeley Growth Studies of Bayley (1956, p. 67);
age 16 D scores (y) plotted as a function of age at measurement (x) for (a) five boys and (b) five girls.
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Figure 18.5 Growth curves of tissues and different parts of the body from
Tanner (1955).

time-based sequence within an individual). As a result, these
physical variables were thought to be indicators of some
fundamental time-based dynamic processes. These basic
multivariate findings, and questions about the underlying dy-
namics of multiple growth processes, are still key features of
current research.

Classical Growth Curve Analyses

Techniques for the analysis of growth curve analyses are not
novel. A classical paper by Wishart (1938) was one of the first
to deal with these growth curve analysis problems in an ex-
ploratory and empirical fashion. Here, Wishart extended the
classical analysis of variance (ANOVA) models to form a lin-
ear growth model with group and individual differences.
Wishart also showed how power polynomials could be used
to better fit the curvature apparent in growth data. The indi-
vidual growth curve (consisting of t = 1, T occasions) is
summarized into a small set of linear orthogonal. polynomial
coefficients based on a power-series of time (z, 2, £3, ... t?)
describing the general nonlinear shape of the growth curve,
In Wishart’s models, the basic shape of each individual’s
curve could be captured with a small number of fixed para-
meters and random variance components, and the average of
the individual parameters could represent the group growth
curve (see Cohen & Cohen, 1983; Joosens & Brems-Heynes,
1975). _

More complex forms of mathematical and statistical
analyses were developed to deal with growth curve data.
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In his initial growth curve analyses, Ebbinghaus (~1880)
described his forgetting curves using a form of the ¢lassic ex-
ponential growth model (see Figure 18.3) in which the rate of
change is defined as a linear function of the percentage of ini-
tial size (e.g., compound interest). The Velhurst (~1839)
curve of population growth, an S-shaped logistic curve, was
used by Pearl (~1925) for many forms of cognitive growth. In
related work, Thurstone (~1919) found that a hyperbolic
curve of learning best fit the norms of many different tests;
Peters (~1930) advocated an ogival curve of growth in
ideational learning; and Ettlinger (~1926) and Valentine
(~1930) demonstrated the relationships among these func-
tions (see Bock & Thissen, 1980; Seber & Wild, 1989).

A popular model for physical growth was initially pre-
sented by Gompertz (~1825), who described the derivative
(instantaneous rate of change) of the growth curve in terms of
two exponential accumulations of different rates toward dif-
ferent asymptotes. This flexible model was studied by Winsor
(~1932), used by Medwar (~1940) to study the growth of
chicken hearts, and used by Deming (~1957) for human
physical growth. Another popular growth model was intro-
duced by von Bertalanffy (1938, 1957) and proposed that the
individual’s change in a physical variable (e.g., weight) was
the direct result of the difference in opposing forces of an-
abolism and catabolism. Although the exact relationship
among these forces was not known, von Bertalanffy used a
fixed alliometric value (of y = 2/3) based on prior research.

In related work on nonlinear growth models, Richards
(1959) criticized and expanded the original von Bertalanffy
model by demonstrating how all prior models can be seen as
specific solutions of a “family” of deterministic differential
equations (i.e., specific restrictions led to the exponential,
logistic, Gompertz, and von Bertalanffy equations). This
work was extended by Nelder (1961) and Sandiand and
MacGhilcrest (1978; for reviews, see Sieber & Wild, 1989;
Zeger & Harlow, 1987). Attempts to fit a single growth model
to observations over a wide range of ages with a minimal set
of parameters led researchers to combine aspects of other
models. A recent expansion based on the logistic model was
developed by Preece and Baines (1978), who suggested that
all previous models could be written as a derivative based on
some predefined function of time and some asymptotic value.
This kind of model is related to the partial adjustment model
used in sociometrics (e.g., Coleman, 1968; Tuma & Hannan,
1984}, and has proven useful in recent studies of physical
growth (see Hauspie, Lindgren, Tanner, & Chrzastek-Spruch,
1991).

More complex linear (and nonlinear) models have been
used (o represent growth. Some of these share the common
feature of a piecewise model applied to different age or time
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segments. These kinds of segmented or composite models
have also been a mainstay of nonlinear modeling. One of the
first truly nonlinear composite forms was the Jenss curve (ot
normal exponential), in which a linear part (to fit the early
rapid-growth phase) was added at a particular age to an
exponential part (to fit negative acceleration of the later
slowing-down phase) by Jenss and Bayley (~1937). A more
complex composite model, the sum of multiple logistic
curves, was suggested by Robertson (~1908) and Burt
(~1937), but was not fully developed and made practical until
Bock and his colleagues did so (see Bock, 1991; Bock &
Thissen, 1980; Bock et al., 1973). These composite models
allowed for different dynamics at different ages and represent
a practically important innovation.

The logic of fitting model segments was also apparest in
more recent- extensions of Wishart’s (1938) polynomial
model. One model, based on the summations of latent curves,
was proposed simultaneously by both Rao (1958) and Tucker
(1958, 1966). In the early descriptions of this model, princi-
pal components analysis of the raw growth data led to the
sum of a small number of unspecified linear functions. In the
interpretation of these components, the shapes of the latent
curves are determined by the component loadings, and the in-
dividual curve parameters are the component scores. The
summation of latent curves has roots in the classical work of
Fourier (~1822), but the principal components representation
included individual differences. These kinds of linear growth
models can offer a relatively parsimonious organization of
individual differences, and we highlight these modeis in later
applications.

This brief historical perspective demonstrates that there
are many different approaches to the analysis of growth curve
data, We find a tendency to introduce more general and flexi-
ble forms of growth models, but these models are often com-
plex and each model has slightly different theoretical and
practical features. One common feature that does emerge is
that most growth models can be written explicitly as a set of
dynamic change equations, and we return to this issue later in
the chapter. Also, we consistently find efforts made to relate
the growth parameters to biologically or psychologically
meaningful concepts—this is a difficult but most useful goal
for any growth curve analysis.

Contemporary Issues in Statistical Data Analysis

Additional kinds of growth curve analyses are presented in
the next few sections. These models include classical linear
and nonlinear models as well as some newer models adapted
from multivariate analyses. Most of these growth models are
designed to deal with the practical issues involving (a) alter-

native models of change, (b) unequal intervals, (c) unequal
numbers of persons in different groups, (d) nonrandom attri-
tion, (e) the altering of measures over time, and (f) multiple
outcomes. ’

This contemporary, model-based description of change can
be used to clarify some problems inherent in observed rates of
change. The potential confounds in difference scores have .
been a key concern of previous methods using observed
change scores or rate-of-change scores (e.g., Beriter, 1963;
Burr & Nesselroade, 1992; Cronbach & Furby, 1970; Rogosa
& Willett, 1985; Willett, 1990). This research has shown that
when observed rates are used as outcomes in standard regres-
sion analyses, the results can be biased by several factors,
including residual error, measurement error, regression to
the mean, and regression from the mean (e.g., Allison, 1990;
Nesselroade & Bartsch, 1977; Nesselroade & Cable, 1974;
Nesselroade, Siegler, & Baltes, 1980; Raykov, 1999; Williams
& Zimmerman, 1996). These problems can be severe when
using standard linear regression with time-dependent vari-
ables (e.g., Boker & McArdle, 1995; Hamagami & McArdle,
2000).

One of the key reasons we present the contemporary mod-
eling approach is to move beyond these classical problems. -
Modern statistical procedures have been developed to mini-
mize some of these problems by fitting the model of an
implied trajectory over time directly to the observed scores.
Alternative mathematical forms of growth can be considered
using different statistical restrictions. From such formal as-
sumptions we can write the set of expectations for the means,
variances, and covariances for all observed scores, and
use these expectations to identify, estimate, and examine the
goodness-of-fit of latent variable models representing change
over time. Most of these models discussed here are based on
fitting observed raw-score longitudinal growth data to a theo-
retical model using likelihood-based techniques (as in Little &
Rubin, 1987; McArdle & Bell, 2000). In general, we find it
convenient to describe the data using the observed change
scores (defined as AY, /At), but we make inferences about the
underlying growth processes by directly estimating parame-
ters of the latent change scores (defined as Ay, /At).

In a recent and important innovation, Meredith and Tisak
{1990) showed how the Tuckerized curve models (so named in
recognition of Tucker’s contributions) could be represented
and fitted using structural equation modeling of common fac-
tors. These growth modeling results were important because
this made it possible to represent a wide range of alternative
growth models. This work also led to interest in methodologi-
cal and substantive studies of growth processes using struc-
tural equation modeling techniques (McArdle, 1986, 1997;
McArdle & Anderson, 1990; McArdle & Epstein, 1987;




McArdle & Hamagami, 1991, 1992). These latent growth
models have since been expanded upon and used by many oth-
ers (Duncan & Duncan, 1995; McArdle & Woodcock, 1997;
Metha & West, 2000; B. O. Muthen & Curran, 1997; Willett &
Sayer, 1994). The contemporary basis of latent growth curve
analyses can also be found in the recent developments of mul-
tilevel models (Bryk & Raudenbush, 1987, 1992; Goldstein,
1995) or mixed-effects models (Littell, Miliken, Stoup, &
Wolfinger, 1996; Singer, 1999). Perhaps most important is
that the work by Browne and du Toit (1991) showed how the
nonlinear dynamic models could be part of this same frame-
work (see Cudeck & du Toit, 2001; McArdle & Hamagami,
1996, 2001; Pinherio & Bates, 2000). For these reasons, the
term latent growth models seems appropriate for any tech-
nique that describes the underlying growth in terms of latent
changes using the classical assumptions.(e.g., independence
of residual errors).

The model-based fitting of structural assumptions about
the group and individual differences holds the key to later
substantive interpretations. These theoretical restrictions may
not hold exactly in the examination of real data, and this leads
to the general issues of model testing and goodness-of-fit.
Recent research has also produced a variety of new statistical
and computational procedures for the analysis of latent
growth curves, and their unique features are somewhat diffi-
cult to isolate. This means that the likelihood-based approach
to the estimation and fitting of growth curve analyses can be
accomplished using several widely available computer pack-
ages (e.g., SAS: Littell et al, 1996, Singer, 1998, and
Verneke & Molenberghs, 2000; SPlus: Pinherio & Bates,
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2000; MIXREG: Hedecker & Gibbons, 1996, 1997). A few
available computer programs (e.g., Mx: Neale, Boker, Xie, &
Maes, 1998; AMOS: Arbuckle & Wotke, 1999, and Mplus:
L. K. Muthen & Muthen, 1998), can be used to estimate the
parameters of all analyses described herein.

The Bradway-McArdle Longitudinal Growth Data

To illustrate many of the issues and models in this chapter, we
use some longitudinal growth data in Figure 18.6. These are
age-plots of data from a recent study of intellectual abilities—
the Bradway-McArdle Longitudinal study (see McArdle &
Hamagami, 1996; McArdle, Hamagami, Meredith, &
Bradway, in press). The persons in this study were first mea-
sured in 1931, when they were aged 2 to 7 years, as part of the
larger standardization sample of the Stanford-Binet test
(N = 212). They were measured again about 10 years later
by Katherine P. Bradway as part of her doctoral dissertation in
1944 (N = 138). Many of these same persons were measured
twice more by Bradway as adults at average ages of 30 and 42
using the Wechsler Adult Intelligence Scales (WAIS,
N = 111; for further details, see Bradway & Thompson,
1962; Kangas & Bradway, 1971). About half (n = 55) of the
adolescents tested in 1944 were measured again in 1984 at
ages 55 to 57, and between 1993 and 1997 at ages ranging
from 64 to 72; 34 were tested in 1993 through 1997 on the
WALIS (McArdle, Hamagami, et al., 2001).

These plots illustrate further complexity that needs to be
dealt with in longitudinal growth curve analyses. The first
plot (Panel A of Figure 18.6) gives individual growth curve
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Figure 18.6  Growth curves of verbal (Gc) and nonverbal (Gf) abilities in complete and incomplete data from the Bradway Longitudinal
Growth Study (see McArdle, Hamagami, Bradway & Meredith, 2001); Rasch scaled scores (y) plotted as a function of age at measure-
ment (x) for (a) N = 29 participants with complete data and (b) N = 82 participants with incomplete data.
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data for verbal ability (Rasch scaled) at each age at testing for
n =29 individuals who were measured at each time of test-
ing, and for the n = 82 persons who were measured at some
(but not all) ages of testing. The second plot of Figure 18.6
(Panel B) is a similar plot for data from nonverbal measure-
ments. The comparison of Panels A and B is informative, and
leads to important practical issues in subject recruitment and
attrition in longitudinal studies. Although not depicted here,
multiple variables from the Stanford-Binet and the WAIS
have been repeatedly measured, including separate measures
of verbal (or knowledge) ability, and of nonverbal (or reason-
ing) ability (for details, see McArdle, Hamagami, Hom, &
Bradway, 2002).

Table 18.1 is a listing of numerical information from this
study to be used in subsequent examples of growth curve
analyses. The overall subject participation is listed in Panel A
of Table 18.1, and here we can see the nearly continual loss of
participants over time. The means and standard deviations for

—

two composite variables are listed in Panel B, and here we
find early increases followed by less change in the later years.
The correlations of these measures over six occasions are
listed in Panel C, and here we find a complex pattern of
results, some correlations suggesting high stability of individ-
ual differences (e.g., 7 > .9) and others suggesting low stabil-
ity (r <.1). The summary information presented in Panels B
and C is limited to those n = 29 participants with complete
data at all six time points of measurement, but information on
N =111 available through adulthood is used in the growth
curve examples to follow.

As with any data-oriented study, the information in this
data set has some clear limitations (e.g., Pinneau, 1961).
Among these, the participants are all from one birth cohort
(~1928), in the same geographical area (San Francisco), of
one ethnicity (Caucasian), and come from volunteer families
with above-average socioeconomic status; moreover, most of
them score above average on most cognitive tasks. Whereas

TABLE 18.1 Description of the Bradway-McArdle Longitudinal Study Data

A. Subject Ascertainment History

Time 1 Time 2 Time 3 Timne 4 Time 5 Time 6
Age 2-7 Age 12-17  Age28-32 Aged0-43  Age 55-58 Age 63-66
Category N (%) N (%) N (%) N(%) N (%) N (%)
Tested 212(100.) 138 (65.) 111(80.) 48 (43.) 53 (48.) 51(46.)
Inaccessible 0(0) 0(0) 0(0.) 7(6.) 5¢5.) 6(5.)
Deceased 0(0) 0(0) 0(0.) 2(2) 9(8.) 19(17)
Refused testing 0(0.) 0(0.) 0(0.) 7(6.) 1(1.) 12(11)
Not located 0(0) 74 (35.) 27(20.) 47 (42) 43(39.) 2321
B. Means and Standard Deviations (¥ = 29)
Time | Time 2 Time 3 Time 4 Time S Time 6
Variables Age 4 Age 14 Age 30 Age 42 Age 57 Age 65
Nonverbal mean 25.55 70.40 80.06 82.99 80.60 78.64
(nonverbal S.D.) (12.61) (5.89) (7.87) (7.84) (1.53) (7.80)
Verbal means 2222 65.84 75.65 78.76 80.70 71.97
(verbal S.DD.) (8.80) (1.37) {9.20) (8.23) T (7.86) (7.59)
C. Correlations of Nonverbal and Verbal Scores (¥ = 29)
NV, 4 N VM N V30 NV, 4?2 NVS7 NV, 65 Vl VI( VJO V42 VS7 V65
NV, 100
NV, 12 100
NV, 10 37 100
NV, -—04 .19 81 100
NV, —.02 20 .85 82  1.00
NV .02 .25 78 85 83 1.00
A 92 16 —-03 08 03 02 1.00
Ve 28 68 I8 05 03 .16 36 1.00
Ve —02 25 56 45 41 .57 09 43 {00
Vo 07 .26 53 ey 42 S50 24 27 .83 100
Vi —.01 21 50 37 36 44 s .38 91 89 1.00
Vs .02 24 .52 46 41 .56 10 35 .85 a7 90 1.00




the longitudinal age span and the number of measures taken
are large, the number of occasions of measurement was lim-
ited by practical concerns (e.g., cooperation, fatigue, and
practice effects). The benefits and limitations of these classic
longitudinal data make it possible to examine both the bene-
fits and limitations of the new models for the growth and
change discussed in this chapter.

THE BASIC STRUCTURE OF GROWTH MODELS

Growth Models of Within-Person Changes’

Growth curve data are characterized as having multiple
observations based on longitudinal or repeated measures.
Assume we observe variable Y at multiple occasions (in
brackets, t = 1 to T) on some persons (in subscripts, # = 1 to
N), and we write

Y[t =JYon +A[t]ys.n +eltl, (18.1)
where the yg are scores representing an individual’s initial
level (e.g., intercept); the y are scores representing the indi-
vidual linear change over time (e.g., slopes); the set of A[f]
are termed basis weights, which define the timing or shape of
the change over time for the group (e.g., age at testing); and
the e{¢] are error scores at each measurement.

The latent-change model is constant within an individual
but it is not assumed to be the same between individuals (with
subscripts n). The unobserved variables that presumably do
not change over time are written in lowercase (o, ys) are
similar to the predicted (i.e., nonerror) scores in a standard
regression equation. We can write

Yoo =g +en and yon=p,+ea, (182)
where the group means (jrg, 1) are fixed effects for the in-
tercept and the slopes and the new scores are deviations
(0. €5) around these means. We can define additional fea-
tures of these scores using standard expected value (E{y})
notation. First we presume the means of all deviations scores
are zero (i.e., E{e} = 0). Next, we define the nonzero vari-
ance and covariance terms as
Eles, e5) = O,SZ’

E(e()v eo) = 0-02a E{eﬂy es} = Ops, and

Efelt], e[t]} = o2, (18.3)
so these individual differences around the means are termed

random effects ((r%, 0'52, ogs). In many applications we as-
sume only one random error variance ((rﬁ) at all occasions of
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Figure 18.7 The basic latent growth structural model as a path diagram
from McArdle & Epstein (1987) and McArdle & Hamagami (1992).

measurement. As in classical regression analyses, the validity
of the interpretations is are limited by the most basic model
assumptions—for example, linearity, additivity, indepen-
dence of residuals, independence of other effects, no interac-
tions, and so on.

In order to clarify growth models, we can use a path
diagram such as the one displayed as Figure 18.7. These
kinds of diagrams were originally only used with regression
models, but more recently have been used in the context of
growth and change (e.g., see McArdle, 1986; McArdle &
Aber, 1990; Wright, 1921). In this representation the ob-
served variables are drawn as squares, the unobserved vari-
ables are drawn as circles, and the implied unit constant (i.e.,
scores of | before the intercept parameter in Equation 18.1) is
included as a triangle. Model parameters representing fixed
or group coefficients are drawn as one-headed arrows, while
random or individual features are drawn as two-headed ar-
rows. The observed variables (Y[¢]) are seen to be produced
by latent intercepts (yo) with unit weights, by the latent
slopes (ys) with weights (A[f] = [a[1], «2), ... a{T]]), and
by an individual error terin (e[¢]).

Following Equations 18.2 and 18.3, the initial level and
slopes are often assumed to be random variables with fixed
means (jrg, i) but random variances (o'g, 0'3) and covari-
ances (0g5). The standard deviations (g, o) are sometimes
drawn in the picture to permit the direct representation of the
covariances as scaled correlations (py ). The error terms are
assumed to be distributed with a mean of zero, a single vari-
ance ((rg), and no correlation with any of the other latent
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scores (further statistical tests may assume these errors
follow a normal distribution as well). These formal structural
assumptions distinguish these latent growth models from the
other kinds of analyses of growth data.

Considering Alternative Growth Models

As in any form of data analysis, a growth model can be eval-
uated only in relation to other possibilities. A first set of
alternative models might be based on simplifications of
the previous model parameters. In this kind of trajectory
equation, the Y[¢] is formed for each group and individual
from the A[t] basis coefficients. These coefficients also deter-
mine the metric or scaling and interpretation of these scores,
so alterations of A{t] can lead to many different models.

As a simple example, suppose we require all A{¢] = 0, and
effectively eliminate all slope parameters. This leads to a
simple additive model

Y[t]n =JYon + e[t]n- (184)
where only the intercept y, and the e{f] error terms are
included. As later shown, this model is termed a baseline or
no-growth alternative because it is consistent with observa-
tions only where there is no change over time in the means,
variances, or correlations.

Other simple growth curve analyses. are based on simple
mathematical functions, and the fitting of a straight line to a
set of measures is a standard procedure in scientific research.
So, as a next example, let us assume there are T = 4 time
points and we have set the basis A[f] = [0, 1, 2, 3]. Follow-
ing Equation 18.1, this leads to a set of linear equations
where

Y11, = yo.n + 050 +e(l]a,
Y[2]n = yo,o + 1ys,a + €[2ln,
Y(3la = yon + 2ysn+ €3y, and
Y[4la = Yon + 3ys,0 + (4],

(18.5)

At the first time point the specific coefficient a[1] = 0, so the
slope term drops out of the expression and the score at
the first time point is composed of only the intercept plus an
error. At the second time point, a{2] = 1, so the score is the
sum of the intercept (yq) plus a change over time (y;) plus a
new error score (€[2]). At the third time point, a[3] = 2, so
the score is the sum of the intercept ( yo) plus 2 times the prior
change over time (2y,) plus a new error (e[3}). At the fourth
time point, a[4] = 3, so the score is the sum of the intercept

(yo) plus three times the prior change over time (3ys) plus a
new error (e[4]). Each additional score would add another
weighted change and a new error term. The basic interpreta-
tion would change only slightly if we altered the linear
basis to be A[f] ={1,2,3,4], because now the intercept
(where ¢ = 0) is presumably prior to the first time point. A
different change of the linear basis to be A[t] = [0.00, 0.33,
0.67, 1.00}, would have the effect of shifting the units of the
slope to units to be a proportion of the entire range of time but
we would still be considering straight-line change.

In contrast, other alterations of the basis coefficients can
alter the interpretation of the shape of the changes. For exam-
ple, if we redefine Aj¢] = [1,2,2, 1], then the model does not
represent straight-line change—instead, the basis represents
a curve that starts up (1 to 2), flattens out (2 to 2), and then
goes back down (2 to 1). Other, more complex alterations of
the basis will lead to more complex trajectory models.

As in all linear models, the set of loadings (A[f]) defines
the shape of the group curve over time. In a latent basis
model approach (Meredith & Tisak, 1990), we allow the
curve basis to take on a shape based on the empirical data. We
fit a factor model based on the standard linear model (Equa-
tion 18.1) as before, with two common factor scores, an
intercept (y,) with unit loadings, a linear slope (ys),. and in-
dependent unique factor scores (e[£]); but the factor loadings
(Alt]) are now estimated from the data. The two common
factor scores account for the means and covariances, and the
estimated factor loadings each describe a weight or satura-
tion of the slope at a specific time of measurement. The A[r]
are estimated as factor loadings and have the usual mathe-
matical and statistical identification problems of any factor
analysis. This means we fit the latent basis model as

Y(1]n = yo.n 4 Oysn + e(1]n,

Y(2]a = yon + 1ys0 +€(2]n,

Y(3la = Yon + @[3]ysn +e[3ln, and
Y[4], = you + a[4lysa + e[4]a.

(18.6)

In the typical case, at least one entry of the Af¢] will be
fixed as, say, a[1] = 1, to provide a reference point for the
other model parameters. If a nonzero covariance (oos)
among common factors is allowed, then two fixed values
(e.g., a[1] = 0 and a{2] = 1), can be used to distinguish the

factor scores and assure overall model identification (as in

McArdle & Cattell, 1994). The other parameters are allowed
1o be freely estimated (e.g., Greek notation for the estimated
parameters 3} and «{4]), so we obtain what should be an
optimal shape for the group curve. Change from any one time




to another (Ay, /A¢) is a function of the slope score ( ¥,) and
the change in the factor loadings (AA[¢]).

We may now consider a variety of more complex models.
One simple version of a quadratic polynomial growth model
can be written as

Yl = oo +Allyin + AW 20 + el (187)
where the A[f] are fixed at known values, and a new com-
ponent (y,) is introduced to represent the change in the
change (i.e., the acceleration). This implies the expected
growth curve may turn direction at least once in a nonlinear
(i.e., parabolic) fashion, The additional latent score (yy) is
allowed to have a mean (,) and a variance (02) and to be
correlated with the other latent scores (Po2: P12). Any set
of growth data might require a second-order (quadratic),
third-order (cubic), or even higher order polynomial model.
In each of these alternatives, however, more complexity is
added because any pth-order model includes p latent
means, p + 1 latent variances and p(p — 1)/2 covariance
terms for the group and individual differences across all
observations.

A variety of other growth models can now be studied
using this general linear framework. For example, the linear
polynomial model (Equation 18.7) could be fitted with or-
thogonal polynomial constraints, or in an alternative form
(e.g., Stimpson, Carmines, & Zeller, 1978), or even with a
latent basis (i.e., «ff] and %a[t]z). Also, in each model listed
previously, it is possible to add assumptions about the struc-
ture of the relationships among the residual terms (eft]). We
can consider specific-factor terms and consider alternative
mechanisms for their construction (e.g., autoregressive, in-
creasing over time, etc.). These structured residual models
are valuable in statistical efforts to improve the precision, fit,
and forecasts of the model, but they do not provide the sub-
stantive information we use here (but see Cnaan, Laird, &
Slasor, 1997; Littell et al., 1996).

Expectations and Estimation in Linear
Growth Models

‘The parameters of any growth model lead to a set of expecta-
tions for the observed data, and these expectations will be
used in subscquent model fitting. The previous assumptions
can be combined to form the expected trajectories over time.
This can be calculated from the algebra of expectations (with
sums of average cross-products symbolized as E {YX'}) or
from the tracing rules of path analysis (see McArdle & Aber,
1990; Wright, 1934). Using either approach, the observed
mean at any occasion can be written in terms of the linear
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model parameters as

rg = E(VIAL) = o +AlB,  (1838)
(where the constant vector 1 is again used). This implies the
mean at any time (py) is the initial-level mean (p,) plus
the slope mean (g,) weighted by the specific basis coefficient
(A[¢]) that is either fixed or estimated. This also implies that
changes in the basis weights determine all changes in the
mean trajectory.

The expectation of the observed score variance at any
occasion can be written as

b = BV - py)?) = 0F + 0%, + 0
= 0} + (A[162A[f] + Altlos + 00,A[t]) + 0.

(18.9)

This implies the observed variance at any time (af,m) is the
sum of the initial- Ievel variance (o-o) plus the variance of the
latent changes (o2 0 With lowercase y) plus the error vari-
ance (0’2) Again we find changes in the basis weights ac-
count for all the changes in the variance over time. Following
this same logic, we can write the expected values for the
covariances among the same variable at two occasions, Y[i]

and Y{j], as
Oy = E((Y1i] — py) (Y] — )} = 02 + 0y

= 0 + (Alilo?ALj] + Aliloe + 00A[f]) .
(18.10)

This implies the observed covariance at any time (ovig)
is the sum of the initial-level variance (o2) plus the covari-
ance of the latent changes (oyj;); changes in the basis
weights account for all changes in the covariances over time.
Each of these Equations 18.8 through 18.10 can be traced in
the diagram (e.g., Equation 18.9 is from any Yf] back to
itself).

These growth model expectations are useful because they
can be compared to the observed growth statistics for the es-
timation of model parameters and the evaluation of goodness-
of-fit. Whereas the summary statistics form the basis of the
expectations, recent computational techniques can be used to
estimate the model parameters directly from the entire collec-
tion of raw data. Following standard theory in this area (e.g.,
Lange,Westlake, & Spence, 1976; Lindsey, 1993), the multi-
variate normal model for an observed vector Y[¢] is used
to define the maximum likelihood estimates (MLEs) of the
parameters, and a single numerical value termed the model
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likelihood (L) can be calculated to index the misfir of the
model expectations to the observed data.

Assuming we have one or more alternative models (see
next section), we can compare these models using the differ-
ences in log-likelihood (AL = L — L,) and the difference
in the numbers of parameters estimated (ANP = NP, —
NP,). Under standard normal theory assumptions about the
distribution of the errars, we can cohxpare model differences
to a chi-square distribution (AL ~ x%, ANP ~ df) and
determine the accuracy (i.e., significance) of our comparison.
To index the multivariate effect sizes, we can calculate a
noncentrality index and provide the statistical power
(P=1-p) for all likelihood-based comparisons (e.g.,
based on a = .01 test size). These likelihood-based calcula-
tions can answer basic questions phrased as To what degree
do the data conform to the model expectations? We can also
use this same likelihood approach to answer more complex
questions, such as Which is the best model for our data and
Do the fit statistics indicate that the same dynamic patterns
exist in different sub-groups? Although we do not need to
make a rigorous use of probability tests, we do provide infor-
mation to calculate alternative indices of fit, including test
statistics for perfect or close fit (e.g., Browne & Cudeck,
1983; Burnham & Anderson, 1998; McArdle, Prescott,
Hamagami, & Horn, 1998).

The resulting parameter estimates allow us to form ex-
pected group growth curves for both the observed and true
scores (for details, see McArdle, 1986, 2001; McArdle &
Woodcock, 1997). We can also characterize the relative size
of these parameters by calcutating time-specific ratios of the
estimated variances

2 2 2 2 2
Wy = (0% — 03) /oYy = 05y /0hy,  and

Any = iy — iy (18.11)

These growth-reliability ratios can be useful in investigat-
ing the changes in the true score variance ((rfm) and changes
in the reliability of the variable at different points in time (for
examples, see McArdle & Woodcock, 1997; Tisak & Tisak,
1996). These simple formulas also suggest that the parame-
ters of the changes are difficult to consider in isolation—that
is, the variance of the changes is not equal to the changes in
the variance. In the same way, the expectations of the ob-
served correlations over time Py, j1) can be calculated from
the basic expressions (the ratio of Equation 18.10 to a func-
tion of Equation 18.9), but the resulting expected correlations
are usually a complex ratio of the more fundamenial parame-

ters. In many growth models, it is complicated to express

patterns of change using only correlations. In general, the

growth pattern depends on basic model parameters that may
have no isolated interpretation.

Initial Results From Fitting Linear Growth Models

The complete and incomplete data from the ' six-occasion
Bradway-McArdle longitudinal study (Figure 18.6) have
been fitted and reported in McArdle & Hamagami (1996) and
McArdle et al. (McArdle, Hamagami, et al., in press, 2002).
A selected set of these results is presented for illustration
here. On a computational note, the standard HLM, MLn,
VARCL, MX, and SAS PROC MIXED programs produced
similar results for all models with a fixed basis. The models
with estimated factor loadings (A[f]) were fitted using the
general Mx unbalanced raw data option (e.g., the variable
length approach) and with SAS PROC NLMIXED and
the results are similar. All of these programs follow the same
general procedures, so we will consider these as equivalent
procedures unless otherwise stated.

The first model (labeled MO) was a no-growth model
(Equation 18.4) fitted to the nonverbal scores of the Bradway-
McArdle data. This simple model was fitted estimated with
only three parameters, and we obtained a baseline for fit -
(L = 4,440). The parameters estimated include an initial-
level mean (pry = 46.4), a small initial-level standard devia-
tion (og = 0.01), and a large error deviation (o, = 49.8).

The second model fitted was a linear growth model (M/)
with a fixed basis (Equation 18.5) and six free parameters.
This basis was first formed by using the actual age of the per-
sons at the time of measurement A[t] = [4, 14, 30, 42, 56,
64]. Estimates were obtained yielded a fit (L = 4,169) that
represented a clear improvemeant over the baseline (x? = 271
on df = 3) model, and the error variance has been reduced
substantially (to o {M1} = 18.1). The resulting parameters
lead to a straight line of expected means that increases
rapidly over age; ult] = [45.4, 52.9, 64.7, 74.1, 84.7, 90.6].
The variance estimates of the intercept and slope parameters
were small, so we refit the model with a simpler basis: That
is, Alf] = [(Age[t] — 4)/56] = [0.00, 0.19, 0.49, 0.73, 1.00,
1.15], so the weights are proportional to the range of data be-
tween the early age of 4 and the middle age of 56. This re-
sulted in identical mean expectations, but the latent variances
were still too small to interpret.

This latent basis model (M2) was fitted next. For the pur-
poses of estimation, the A[1] = 0 (at Age = 4) and A[5] = 1
(at Age = 56) were fixed (as proportions) but the four other
coefficients were estimated from the data. This resulted in a
likelihood (L = 3,346) which is substantially better than
the baseline model (x?* = 1,094 on df=7) and the linear
model (x* = 823 on df = 4), and the error variance has been
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Figure 18.8 Alternative latent growth curve modei expectations for the av-
erage growth curve of nonverbal abilities fitted to the complete and incom-
plete data from the Bradway-McArdle data (see Figure 18.7; see McArdle &
Hamagami, 1996).

substantially reduced (from a.{M1} = 18.1 to o (M2} =
5.1). The estimated basis coefficients were A[t] = [=0,0.93,
1.01, 1.06, =1, .97], and the estimated latent means were
ity = 23.8 and o5 = 52.8. This leads to a group trajectory
1l = [23.8, 69.2,76.6, 80.8, 76.6, 75.0] that rises quickly’
between ages 4 and 14, peaks at age 42, and starts a small de-
cline at ages 56 to 65. This group curve is plotted as a dashed
line in Figure 18.8 and it is very similar to the general fea-
tures of the raw data in Figure 18.6. The individual differ-
ences in this model are not seen in the means but in the large
variances for - the level (op =10.1) and the slope
(0 = 12.3) parameters, and the latent level and slope scores
have a high correlation (p,, = —0.82).

The improved fit of this latent basis compared to the linear
basis model suggests the need for some form of a nonlinear
curve. To explore the addition of fixed higher-order growth
components, the quadratic polynomial model (M3, Equa-
tion '18‘10) was fitted to these data using the same pro-
cedures. The goodness-of-fit was slightly improved over the
linear (x*> =7 on df =4, a.{M3} = 18.0). Although the
latent basis (M2) and quadratic basis (M3) models are not
nested, the quadratic model did not seem as useful as the la-
tent basis model did. Also, problems arose in the estimation
of all variance terms, so the polynomial approach was not
considered further.
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ADDING GROUP INFORMATION TO GROWTH
CURVE ANALYSES

Latent Path and Mixed-Effects Models

We next consider analyses which include more detailed in-
formation about group differences. In the basic growth model
(Equations 18.1-18.4), the latent variance terms in the model
tell us about the size of the between group differences at each
age (Equation 18.11), but this does not tell us the sources of
this variation. To further explore the differences between per-
sons, we can expand the basic growth model. Let us assume
a variable termed X indicates some measurable characteristic
of the person (e.g., sex, educational level, etc.). If we measure
this variable at one occasion we might like to examine its
influence in the context of a growth model for ¥[t}. One pop-
ular model is written

Yitly = youn + Altlern + 0 X, +eft], (18.12)

where the w are fixed (group) coefficients with the same-
sized effect on the measured Y[t] scores at all occasions, and
the X is an independent observed (or assigned) predictor
variable. It is useful to recognize that this model implies the
latent score change over time is independent of the X vari-
able(s). That is, the other growth parameters (., Pey, Tox,
Osx, Ogsx) are conditional on the expected values of the
measured X variable, This use of adjusted growth parameters
is popularly represented in the techniques of the analysis of
covariance, and the reduction of error variance from one
model to the next (07 — 02,) is often considered as a way to
understand the impact (see Snyders & Boskers, 1995).

An alternative but increasingly popular way to add another
variable to a growth model is to write expressions in which
the X variable has a direct effect on the individual differences
scores of the growth curve. This can be stated as

Y[tlh = you + Altly,, +elf], with

Yon :vOo-i-V(kX,, + egn,  and (1813)

Ysn = V5o + v Xy + €4y,

where the regression of the latent variables (¥ ¥s) on X in-
cludes intercepts (vgg, vs9) and slopes (vgx, ¥sx). We can
rewrite this model into a compact reduced form,

Ylt], = [veo + Var Xo + €0n] + Alt]{v,o + Var Xa + €54
+ elt],
= ¥g0 + Vor X + €0n +A[t]v:0 +A[t]vsxsxn
+ Altle,, + €[],
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Figure 18.9 Latent growth as a path diagram with mixed-effects or multi-
level predictors (from McArdle & Epstein, 1987; McArdle, 1989).

= [voo + Altlv,g + voc X + At Xal '
+ leon + Altleg, + elt]a], (18.14)

and this separates the fixed-effects (first four terms) from the
random components (last three terms). This model is drawn
as a path diagram in Figure 18.9. This diagram is the same as
Figure 18.7, except here we have included the X as a predic-
tor of the levels and slope components. This diagram gives
the basic idea of external variable models, and other more
complex alternatives are considered in later sections.

In this simple latent growth model, as in more complex
models to follow, we can always add other predictors X for
the intercepts and the slopes because these models are
simply latent growth models with “extension variables”
(e.g., McArdle & Epstein, 1987). This kind of model
(Equation 18.13 or 18.14) can also be seen as having two
levels—a first-level equation for the observed scores, and a
second-level equation for the intercepts and slopes. For
these reasons, such models have been termed random-
coefficients or multilevel models, slopes as outcomes, or
mixed-effects models (Bryk & Raudenbush, 1987, 1992;
Littell et al., 1996). Variations on these models can be com-
pared for goodness-of-fit indices, and we can examine
changes in the model variance explained at both the first
and second levels (see Snyders & Boskers, 1995). In any
terminology, the between-group differences in the within-
group changes can be represented by the parameters in the
model of Figure 18.9.

Group Differences in Growth Using Multiple
Group Models

The previous models used the idea of having a measured
variable X characterizing the group differences and then ex-
amining the effect of X on the model parameters. However,
this method is limiting in‘a number of important ways. For
example, some of the classical forms of growth processes,
such as examining different amplitudes and phase shifts (e.g.,
Figure 18.2) are not easy to account for within the single-
group latent growth framework. A more advanced treatment
of the group problem model uses concepts derived from
multiple-group factor analysis (e.g., Joreskog & Sorbom,
1999; Honr & McArdle, 1992; McArdle & Cattell, 1994). In
these kinds of models, each group, g = 1 to'G, is assumed to
follow some kind of latent growth model, such as

YIOP =y, +ASyE, + (P

forg =1t0G, (18.15)
with basis parameters A[t]® defined by the application.
Figure 18.10 gives a path diagram representing several kinds
of multiple-group growth models (McArdle, 1991; McArdle
& Epstein, 1987; McArdle & Hamagami, 1992). The per-
sons in the groups are assumed to be independent, so this
kind of grouping can only be done for observed categorical
variables (i.e., sex). The first two groups in Figure 18.10 can
be considered as data separated into males or females (or
experimentals and controls). Although not necessary, in
Figure 18.10 we assume some of the Y[t] occasions were
considered incomplete, possibly to represent a collection
gathered at unequal intervals of time. In structural modeling
diagrams (and programs), the unbalanced data for Y[3] and
Y[5] are simply included as latent variables (see McArdle &
Aber, 1990). In any case, this multiple-group model now
allows us the opportunity to examine a variety of invariance
hypotheses.

The multiple-group growth model permits the examina-
tion of the presumed invariance of the latent basis functions,

Al = AP = . AP = ... A[]©. (18.16)

The rejection of these constraints (based on x2/df) implies
that some independent groups have a different basic shape
of the growth curve. This is one kind of model that is not easy
to represent using standard mixed-effects or multilevel mod-
els (Equation 18.13). If a reasonable level of invariance is
found, we can further examine a sequence of other group
differences. For example, we may examine the equality of the



Adding Group Information to Growth Curve Analyses 461

Figure 18.10 A path diagram of a multiple-group latent growth model (Groups 1 and 2) and the inclusion of with patterns of incomplete data {Groups 3

and 4; from McArdle & Hamagami, 1991, 1992).

variances of the latent levels and slopes by writing

O _ Q) _ ® __ (G)
Ty =a, =...0) =...0,

(18.17)

o® =o® = . .o® = . 0O

Other model combinations could include the error devia-
tions (¢® ), the total slope variance and covariances, and
functions of all the other parameters. We may still consider
the typical mixed-effects group difference parameters when
we examine the invariance of the latent means for initial
levels and slopes. If we assume invariance of latent shapes

(Equation 18.16) and latent variances (Equation 18.17), we

can meaningfully examine

Ow_,o_ ®_  ©
""‘) ""2 o "‘(’G (18.18)
pV=p@ = . p® = pO.

Group differences in the fixed effects can even be coded in
the same way as in the typical mixed-effects analyses. Each
of these multiple-group hypotheses represent a nonlinearity
that may not be possible to examine using a standard mixed-
effects approach.

. Multiple-group models can be a useful way to express
problems of incomplete data, Longitudinal data collections
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often include different numbers of data points for different
people and different variables, and one good way to deal with
these kinds of statistical problems is to include multiple-
group models that permit different numbers of data points on
each person (e.g., Little & Rubin, 1987; McArdle, 1994). The
third and fourth groups of Figure 18.10 represent persons
with incomplete data on some occasions. In other cases, the
data from any one age may not overlap very much with those
of another group of another age. In order to uniquely identify
and estimate the model parameters from this collection of
data (all four groups), all parameters are forced to be invari-
ant over all groups. This kind of multiple-group model can
be symbolized as

Yith = ) (F®{yon+yiadltl +elth)). (18.19)

g=1G

where the F'® is a binary filter-matrix for each group that de-
fines the pattemn of complete (1) and incomplete (0) data en-
tries (for further details, see McArdle & Anderson, 1990;
McArdle & Hamagami, 1992). This multiple-group incom-
plete patterning approach is identical to the statistical models
in which we fit structural models to the raw score information
for each person on each variable at each time. The available
information for any subject on any data point (i.e., data at any
occasion) is used to build up a likelihood function, and the
numerical routine is used to optimize the model parameters
with respect to the available data (Neale et al,, 1999;
" Hamagami & McArdle, 2001).

This method assumes the invariance of all growth para-
meters across different patterns of data is a rigid form of
“longitudinal convergence” (after Bell, 1954; see McArdle &
Bell, 2000). Although invariance is a reasonable goal in many
studies, it is not necessarily a hypothesis that can be tested
with all incomplete patterns (McArdle & Anderson, 1990;
Miyazaki & Raudenbush, 2000; Willet & Sayer, 1995). One
key assumption in our use of these MLE-based techniques is

" that the incomplete data are missing at random (MAR; Little
& Rubin, 1987). This assumption does not require the data to
be missing completely at random (MCAR), but MAR does as-
sume there is some observed information that allows us to ac-
count for and remove the bias in the model estimates created
by the lack of complete data (e.g., Hedecker & Gibbons,
1997; McArdle, 1994; McArdle & Hamagami, 1992). In
many cases, this MAR assumption is a convenient starting
point, and allows us to use all the available information in
one analysis. In other cases, invariance of some parameters
may fail for a number of reasons and it is important to evalu-
ate the adequacy of this helpful MAR assumption whenever
possible (e.g., Hedecker & Gibbons, 1997; McArdle, 1994).

——

Latent Groups Based on Growth-Mixture Models

Another fundamental problem is the discrimination of
(a) models of multiple curves for a single group of subjects
from (b) models of multiple groups of subjects with different
curves. For example, we could have two clusters of people,
each with a distinct growth curve, but when we summarize
over all the people we end up with poor fit because we need
multiple slope factors. One clue to this separation is based on
the higher-order distribution of the factor scores—groups are
defined by multiple peaked distributions in the latent factor
scores. In standard linear structural modeling, these higher-
order moments are not immediately accessible, so the
multiple-factor versus multiple-group discrimination is not
easy. These and other kinds of problems require an a priori
definition of the groups before we can effectively use the
standard multigroup approach.

These practical problems set the stage for a new and im-
portant variation on this multiple-group model-—models that
test hypotheses about growth curves between latent groups.
The recent series of models termed growth mixture models
have been developed for this purpose (L. K. Muthen &
Muthen, 1998; Nagin, 1999). In these kinds of analyses, the
distribution of the latent parameters is assumed to come from
a mixture of two or more overlapping distributions. Current
techniques in mixture models have largely been developed
under the assumption of a small number of discrete or proba-
bilistic “classes of persons” (e.g., two classes), often based
on mixtures of multivariate normal distributions. More
formally, we can write this kind of a model as a weighted
sum of curves

Vit = 3 (Pleal - (g + ALY, +el0)),

e=1.C (18.20)

with Y (Plea)) = 1,

c=1,C

where P{c,} is constrained to sum to unity so that it acts as
a probability of class membership for the personinc =1 to
C classes. ,
Using growth-mixture models we can estimate the most
likely threshold parameter for each latent distribution (7, for
the pth parameter) while simultaneously estimating the sepa-
rate model parameters for the resulting latent groups. The
concept of an unknown or latent grouping can be based on a
succession of invariance hypotheses about the growth para-
meters. We can initially separate latent level means and vari-
ances, then separate latent slope means and variances, then
both the level and slope, then on the basis loadings, and so
on. The resulting maximum likelihood estimates yield a fit
that can be compared to the results obtained from more



restrictive single class models, so the concept of a mixture
distribution of multiple classes can be treated as a hypothesis
to be investigated.

In essence, this growth-mixture model provides a test of
the invariance of growth model parameters without requiring
exact knowledge of the group membership .of each individ-
ual. It follows that, as we do in standard discriminant or
logistic analysis, we can also estimate the probability of as-
signment of individuals to each class in the mixture, and
this estimation of a different kind of latent trait can be a
practically useful device. A variety of new program scripts
(e.g., Nagin, 1999) and computer programs (e.g., Mplus, by
L. K. Muthen & Muthen, 1998) permit this analysis.

Results From Fitting Group Growth Models

We have studied a variety of mixed-effect or multilevel mod-
els of the Bradway data. To allow some flexibility here, we
used the same latent basis curve model (M2) but now we add
a few additional variables as predictors. These variables in-
cluded various aspects of demographic (e.g., gender, educa-
tional “attainment by age 56, etc.), self-reported health
behaviors (e.g., smoking, drinking, physical exercise, etc.),
health problems (e.g., general health, illness, medical proce-
dures, etc.), and personality measures (e.g., 16 PF factors).
As one example, in a mixed-effects model (see Figure 18.9),
we added gender as an effect-coded variable (i.e., females =
—0.5 and males = +0.5). The results obtained for nonverbal
scales included the latent basis A{t] =[=0, 0.93, 1.01,
1.06, =1, .97] as before, But now, in the same model, we
found the males start at slightly lower initial levels
(vox == —0.06) but had larger positive changes over time
(vsx = 0.30). The addition of gender does not produce large
changes in fit (x2 = 10 on df = 4), so all gender mean differ-
ences may be accounted for using the latent variables, but
gender does not account for much the variance of the latent
scores (.03, .05). To account for more of this variance we pro-
ceed using basic principles of multiple regression: In a third
model we added educational attainment, in a fourth model we
added both gender and education, and in a fifth model we
added an interaction of sex and education.

Group differences in the Bradway-McArdle data were
also studied using multiple-group growth curves. In a general
model the latent means, deviations, and basis shape of the
changes were considered different for the males and the fe-
males. The key results for males and females show a lack of
invariance for the initial basis hypothesis (A[t]™ = A[t]®,
x? =40 ondf=5). The separate group results show that the
females have a higher basis function, and this implies more
growth over time (e.g., McArdle & Epstein, 1987). This last
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result does not deal only with mean differences, but rather
includes both mean and covariance differences, and it may be
worth pursuing, '

Multiple-group growth models have been used in all
prior analyses described here to. fit the complete and
incomplete subsets of the Bradway-McArdle data (Fig-
ure 18.6). We compared the numerical results for the com-
plete data (Figure 18.6, Panel A) versus the complete and
incomplete data together (Figure 18.6, Panel A plus Panel
B), and the parameters remain the same. As a statistical test
for parameter invariance over these groups, we calculated
from the difference in the model likelihoods, and these dif-
ferences were trivial (x? < 20 on df = 20). This suggests
that selective dropout or subject attrition can be considered
random with respect to the nonverbal abilities. This last re-
sult allows us to combine the complete and incomplete data
sets in the hopes for a more accurate, powerful, and unbi-
ased analysis.

In our final set of multiple-group models, we used the la-
tent mixture approach to estimate latent groupings of models
results for the nonverbal scores, and some results are graphed
in Figure 18.11. The latent growth model using all the data
was fitted with free basis coefficients and the same fits as
were reported earlier (M2). In a first latent mixture model, we
allowed the additional possibility of two latent classes
(C = 2) with different parameters for the latent means and
variance but assuming the same growth basis. The two-class
growth model (Figure 18.11, Panel A) assumed the same free
basis coefficients as previously, smaller latent variances, and
an estimated class threshold (z = 2.48) separating (a) Class 1
with 92% of the people with high latent means
(g = 25, p = 58), from (b) Class 2 with 8% of the people
with lower latent means (ng == 16, p, = 53). This two-class
model yielded an likelihood that (assuming these two models
are nested) represents a substantial change in fit (x? = 30 on
df = 3). This result suggests that a small group of the
Bradway persons may have started at a lower average score
with a smaller change. A sequence of parameters were com-
pared under the assumption of two classes, and the final result
is presented in Figure 18.11, Panel B. The two-class growth
model yielded an estimated class threshold (z = —0.72) sep-
arating two classes with 33% and 67% of the people. The first
class seems to have a higher starting point and lower vari-
ability, but the plots of Figure 18.11b seem to show the two
curves converge in adulthood. Although this is an interesting
possibility, this complete two-class growth-mixture model
yielded only a small improvement in fit (L = —1628,
x? = 34, on df = 12), so we conclude that only one class of
persons is needed to account for the basic growth curves un-
derlying these data.
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Figure 18.11 Bradway-McArdle verbal score expectations from latent growth-mixture models; Model 1 includes two
classes with free means and covariances, and Model 2 is the same with adds four free basis coefficients.

GROWTH CURVE MODELS FROM A
DYNAMIC PERSPECTIVE

Growth Models Based on Dynamic Theory

The linear models previously presented can be used to de-
scribe a variety of nonlinear shapes, but other models have
explicitly included nonlinear functions of the parameters. The
development of many of these nonlinear models was based on
differential equations as an expression of changes as a func-
tion of time: that is, dynamic changes. For example, we can
write an exponential growth model (see Figure 18.3) as

dy/dt = mwy[t] so y[t] =y[0] +exp(—mnt). (18.21)
where the instantaneous derivative (dy /df) of the score (y) is
a proportional function (7v) of the current size of the score
(y[t]). This change model leads to the integral equation with
change over time in the score based on an initial starting
point (y[0], sometimes set to zero) with an exponential accu-
mulation (exp) based directly on the growth rate parameter
(). In classical forms of this model, the rate of change is de-
fined as a linear function of the percentage of initial size (e.g.,
compound interest).

In contemporary nonlinear model fitting, we can add indi-
vidual differences to this model in several ways. One ap-
proach that is consistent with our previous growth models is
to simply rewrite the derivative and integral equations as

s0  Y[tly = yo.u + Altlysn +e[tln
(18.22)

dy,,/dt = my[t],
with A[t] =1 — exp(—mf).

In this approach, the classic nonlinear exponential model
(Equation 18.21) is now in the form of a latent growth curve
with structured loadings (as in Browne & duToit, 1991;
McArdle & Hamagami, 1996). Individual trajectories start at
different initial levels, but then rise or fall in exponential
fashion towards some asymptotic values. In this approach,
the group curve is based on the latent means and is not based
on an averaging of exponential functions (cf. Keats; 1983;
Tucker, 1966). This common factor approach allows us to use
current computing techniques to examine the empirical fit of
this nonlinear model.

A related approach has been used with a form of the von
Bertalanffy model,

dy/dt = (anglthy) — (By — dItIY), so
Y(tla = Yo,n + [exp(—at) — exp(—Bt)]ysn + e[t]n, (18.23)

where a = the rate of growth, # = the rate of decline, and
¥ = some relationship between the two components. In this
simplified form (i.e., ¥y = 1), there is only one slope (y,) and
one nonlinear set of A[t], but we interpret this as separate
growth and decline phases of an underlying continuous latent
process. The parameters also yield estimated score peaks
(dy/dt = 0) and valleys (d%y/df* = 0) with individual differ-
ences (e.g., McArdle, Ferrer-Caja, Hamagami, & Woodcock,
in press; Simonton, 1989).

Several alternative growth curve models have been devel-
oped from dynamic change equations with more parameters.
A logistic curve can be written as

dyn/dt = (ln)’[t]n(Bn '—y[t]n) SO

Y[tlh = yo.n + aa/[1 +exp{B, — v,t}] +e[tls (18.24)




with a = the asymptote, B = an influence on the slope (i.e.,

the slope is a8 /4), and y = the location of maximum veloc-

ity. The expression allows for three individual differences
terms with structured loadings (see Browne & du Toit, 1991).
A related model is the Gompertz growth curve, written as

dy,/dt = a, y[tl,exp(B, — y[tla) so

Y[tla = yon + agexp(—B,exp{(t — 1]y,}) + e[t]n,
(18.25)

with o = the asymptote, B = the distance from the asymptote
on the first trial, and y = the rate of change. Browne and duToit
(1991) clearly showed how this model could be rewritten as a
latent growth curve with structured loadings, including inter-
pretations of individual differences in the rates of growth.

The Preece-Baines family of models start with a deriva-
tive based.on some predefined function of t ( f{t}) and some
asymptotic. value (y[0]). To obtain logistic models (Equa-
tion 18.24), the functional form used a proportional distance
from the starting point (f{t} = ¥{yo.» — y[t]}). In other mod-
els, this function was the simple rate parameter f(f] = 1, so

dy, /dt = w{y[t], — y[8]} so

) (18.26)
Y[tla = Yo.n + (exp{—(t — Dw}))y(0], + eltl,

where the amount of change is a function of the distance from
the asymptote. This approach allows us to obtain a form of
the partial adjustment model of Coleman (1968; McArdle &
Hamagami, 1996). These models seem to have practical
features for the description of individual changes over long
periods of time (see Hauspie et al., 1991; Nesselroade &
Boker, 1994).

Growth Curve Medels Using Connected Segments

Complex linear and nonlinear models can be used to repre-
sent growth. Some models share the common feature of
a piecewise analysis applied to different age or time
segments—that is, the model considers the possibility that a
specific dynamic process does not hold over all time periods.
In the simplest cases, we may assume that growth is linear
over specific periods of time, and these times are connected
by a critical knot point—ihis leads to a conjoined or linear
spline model (e.g., Bryk & Raudenbush, 1992; Smith, 1979).
If we assume one specific cutoff time (r = C), we can write

if (t = C), then Y[t], =Yg, +elt], but
if (t < C), then Y[t], =Y, +Alltly, . +e[t], but
if (t > C), then Y[t], =y,, + A2(tly,, +elt],. (18.27)
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where the latent growth basis is different before (A1[t]) and
after (A2[t]) the cut point. This piecewise linear model as-
sumes the first component (y,) is the score at the cutoff, the
second component (y,) is the slope score before the cutoff,
and the third component (y,) is the slope score after the cut
point. As before, the fixed effects (means pg, p,, ;) de-
scribe the group curve, but the random coefficients (yg, ¥, ¥,)
have variances and covariance and account for the individual
differences in curves across all observations.

In some growth data sets, it is possible to estimate optimal
cut points (f = C,) as an operationally independent random
component (see Cudeck, 1996). Unless the cut points are es-
timated, this model may require a relatively large number of
fixed and random parameters to achieve adequate fit. In a re-

_ cent mixed-effects analysis, Cudeck & du Toit (2001) fol-

lowed previous work (e.g., Seber & Wild, 1989) and used a
“segmented polynomial” nonlinear mixed model based on an
individual a latent transition point for each individual. This
model can be written in our notation as

Y(tly = Yon + V1.0 ALt] + y2.4(Alt] — y3,.)% + elt],
|Alt] <y3. and (18.28)
Y[t],, =Yon +y1,nA[t] + e[t]m [A[t] > Yin

where the parameter y, is the value of A[t] when the polyno-
mial of the first phase changes to the linear component of the
second phase. Important practical suggestions about fitting
multilevel nonlinear curves were presented by Cudeck and
DuToit (2001).

These segmented or composite models have also been a
mainstay of nonlinear modeling. For example, the segmented
logistic model (see Bock, 1975; Bock & Thissen, 1980) can
be written as a trajectory where

Yith = 3 (oa/(1+exp{Bin — Hnt)] +elty
KK (18.29)

is the sum of k = 1 to K logistic age-segments. Within each
segment, oy = the asymptote, B, = an influence on the slope
(i.e., the slope is o By /4), v, = the location of maximum ve-
locity, and no intercept is fitted. Within each segment, the rate
of growth exhibits early intcreases, reaches a maximum (peak
growth velocity), and decreases towards the asymptote; the
final value of one segment is used as the starting value of the
next segment. While each segment has a simple logistic
curve, the overall curve fitted (e.g., over the full life span) has
a particularly complex nonlinear form. These composite
models allow for different dynamics at different ages, and
this represents an important innovation.
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Growth Models Based on Latent Difference Scores

The complexities of fitting and extending the previous dy-
namic models have limited their practical utility. In recent re-
search we have considered some ways to retain the basic
dynamic change interpretations but use conventional analytic
techniques. This has led us to recast the previous growth
models using latent difference scores (see McArdle, 2001).
This approach is not identical to that represented by the dif-
ferential equations considered earlier (e.g., Arminger, 1987;
Coleman, 1968), but it offers a practical approximation that
can add clear dynamic interpretations to traditional linear
growth models.

In the latent difference approach, we first assume we have
a pair of observed scores Y[t] and Y{t — 1] measured over a
defined interval of time (At = 1), and we write

Yitl, = yith +eltl,, Y[t — 1], =y[t—1], +eft—1],
and y[t], = y[t — 1], + Ay[t], (18.30)
with corresponding latent scores y(t] and y{t — 1}, and error

of measurements e[t} and e[t — 1]. It follows that by simple
algebraic rearrangement, we can define

Ytle =y[t — 1], + Ay{tl, so
Ay[t]n = (y[t]n —)’[t - lln)

(18.31)

where the additional latent variable is directly interpreted as
a latent difference score. This simple algebraic device allows
us to generally define the trajectory equation as

Y[l =yon + (Z Ay[i]..) +elt]l, (1832)

f=1,1

where the summation (};_, ,) or accumulation of the latent
changes (Ay[t]) up to time ¢ is included. In this latent differ-
ence score approach, we do not directly define the A[t] coef-
ficients, but instead we directly define changes as an
accumulation of the first differences among latent variables.

This latent difference score (Ay{t],) of Equation 18.31 is
not the same as an observed difference score (AY{t],) be-
cause the latent score is considered after the removal of
the model-based error component. Although this differ-
ence Ay[tl, is a theoretical score, it has practical value
because now we can write any structural model for the latent
change scores without immediate concern about the resulting
trajectory (as in McArdle, 2001; McArdle & Hamagami,
2001; McArdle & Nesselroade, 1994). For example, Coleman

(1968) suggests we write a change model for consecutive
time points as

Ayltls = T(Yan — Y[t — 1), (18.33)

where y, is a latent asymptote score that is constant over time,
and the v describes the proportional change based on the cur-
rent distance from the asymptote (i.e., partial adjustment; see
Equation 18.26). A slightly more general change expression
model is written as

Ay(tla = aysn + Bylt — 1], (18.34)

where the y, is a latent slope score that is constant over time,
and the e and B are coefficients describing the change. This
second expression (Equation 18.34) is more general because
we can add restrictions (o = 7, B = —r) and obtain the first
expression (Equation 18.33). We refer to this as a dual
change score (DCS) model because it permits both a system-
atic constant change (a) and a systematic proportional
change (B) over time, and no stochastic residual is added
(i.e., z[t}; see McArdle, 2001). This is an interesting linear
model because the expectations lead to a mixed-effects
model trajectory with a distinct nonlinear form (e.g., A[t] in
Equation 18.22), but the corresponding accumulation of dif-
ferences (Equation 18.32) remains unchanged.

One advantage of this approach is that this dynamic model
can fitted using standard structural modeling software. The
structural path diagram in Figure 18.12 illustrates how the la-
tent change score model (Equations 18.30-18.34) can be
directly represented using standard longitudinal structural
equation models. This set of equations is drawn in Fig-
ure 18.12 by using (a) unit-valued regression weights among
variables by fixed nonzero constraints {(as in McArdle &
Nesselroade, 1994), (b) a constant time lag by using
additional latent variables as placeholders (as in Horn &
McArdle, 1980), (c) each latent change score as the focal
outcome variable, and (d) a repetition (by equality con-
straints) of the a and B structural coefficients. Fotlowing the
standard linear growth models, we assume the unobserved
initial-level component (y,) has a mean and variance (i.e., ptq
and 0(2,), while the error of measurement has mean zero, has
coustant variance @2 > 0), and is uncorrelated with every
other component. As in the linear change model of Figure
18.7, the constant change component (y,) has a nonzero mean
(i.e., g, the average of the latent change scores), a nonzero
variance (i.e., o2, the variability of the latent change scores),
and a nonzero correlation with the latent initial levels (i.e.,
Pos)- As in other latent growth models, the numerical values
of the parameters o and B can now be combined to form
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Figure 18.12 A reinterpretation and extension of the latent growth model as a latent
difference score structural model, including both additive (@) and proportional (B) change

parameters (see McArdle, 2001).

many different kinds of individual and group trajectories over
age or time, including the addition of covariates. All these
features are apparent without directly writing or specifying a
model for the full trajectory over time.

Results From Fitting Dynamic Growth Models

To illustrate some of these dynamic growth models, the
Bradway-McArdle Non-Verbal data were fitted (using Mx
and NLMIXED). A new model (M4) based on the partial ad-
justment model (as described in Equation 18.26) required
four free parameters with individual differences in the initial-
level variance (an asymptote) and in the latent slope (the dis-
tance from asymptote) parameters. This model requires all
loadings to have be an exponential function formed from a
single rate parameter (estimated at 7t = —0.16), and the
resulting expected trajectory is drawn as the solid line in Fig-
ure 18.9. In contrast to the shape of previous latent basis
model, this is an exponential shape that rises rapidly and then
stays fairly constant at the asymptote (or equilibrium point)
from age 42 to age 65.

This model fit was not as good as that of the latent basis
model, but the difference is relatively small compared to
the difference in degrees of freedom (x% = 59 on df = 3),
the error variance is similar (from o (M2} =5.1 to
o.{M4} = 6.5). Unlike the latent basis model, this negative
exponential model makes explicit predictions at all ages (e.g.,
Equation 18.26 for w[22] = 82.7). A second model was fit
allowing individual stochastic differences (random coeffi-
cients) in the rate parameter (). The resulting fitted curves
show only a small change in the average rate (w = —0.15),
the random variance of these rates is very small (o < .01),
and the fit is not much better than that of the simpler partial
adjustment model (x? = 14, df =4, o (M5} = 5.8).

The comparison of the latent basis (M2) and the partial ad-
Jjustment models (M4 or M5) suggests that the decline in non-
verbal intellectual abilities by age 65 is relatively small. The
expectations from these two models yield only minor depar-
tures of the exploratory latent basis model (M2) from the par-
tial adjustment model (M4). The further comparison of the
stochastic adjustment (M5) and the partial adjustment (M4)
model suggests that the same shape of change in nonverbal
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intellectual abilities call be applied to all persons. Although
these analyses illustrate only a limited set of substantive
hypotheses about dynamic growth processes, these are key
questions in aging research.
An example of the segmented models fitted to the Bradway-
" McArdle datahas been published by Cudeck & DuToit (2001).
Using data from persons who had data on at least one of the last
three occasions (N = 74), these authors fit a nonlinear mixed
model based on Equation 18.32 and found an estimated transi-
" tion age (B; = 18.6, o3 = 0.60) where the polynomial of the
first phase changes to the linear decline component (B, =
-.141, o3 = 0.05; §, = —.571) of the second phase. The es~
timated mean response shows a growth curve with rapid
increases and gradual decline (after Age[t] = 18.6). The vari-
ability of these estimated parameters allows for a variety of
different curves, and some of these are drawn in Figure 18.13.
“Although the trend is decreasing overall, a few individuals
actually exhibit increases, while for others the response is es-
sentially constant into old age. . . . The two individuals in Fig-
ure (A) had large differences in intercepts, B, (70.8 versus
91.9); those in Figure (B) had large differences in slopes, B
(.32 versus 0.04); those in Figure (C) had large differences in
transition age, B;; (14.1 versus 23.6)” (Cudeck & duToit,
2001; p. 13). The addition of individual differences in transi-
tion points contributes to our understanding of these growth
curves.

Four alternative latent difference score models (Fig-
ure 18.12) were fitted to the nonverbal scores (Figure 18.6). To
facilitate computer programming (e.g.; Mx) the original data
were rescaled into 5-year age segments (i.e., 30 to 35, 35 to 40,
etc.). A baseline no-change model (NCS) was fitted with only
three parameters and the results using this approach were com-
parable to those of the baseline growth model (M0). This was
also true for a constant change score (CCS; « only) model, and
the resuit was identical to that of the linear basis model (M1).
The proportional change model (PCS; B only), not fit earlier,
shows a minor improvement in fit (x> = Sondf = 1).

To fit the dual change model (Equation 18.34), the addi-
tive slope coefficient was fixed for identification purposes
(a = 1}, but the mean of the slopes was allowed to be free
(1s). This allowed estimation of the effects for nonverbal
with (a) inertial effects (8 = —1.38), (b) initial-level means
(o = 32) at Age = 5, and (c) a linear slope mean (., = 81)
for each 5-year period after Age = 5. The goodness-of-fit of
the DCS model can be compared to that of every other nested
alternative, and these comparisons show the best fit was
achieved using this model (x? = 785 on df = 2; x? = 485
ondf = 1; x? = 385 on df = 1). From these results we cal-
culate the expected group trajectories and the 5-year latent
change accumulation as the combination of Equations 18.32
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Figure 18.13 Fitted curves for selected individuals from the segmented
growth model (from Cudeck & du Toit, 2001).

and 18.34, and we find the expected trajectory over time for
the nonverbal variable represented in this way is the same
as the previous nonlinear solid line in Figure 18.9 (see
Hamagami & McArdle, 2001). This dynamic result is ex-
plored more in the next section.

MULTIPLE VARIABLES IN LATENT GROWTH
CURVE MODELS

Including Measurement Models Within Latent
Growth Analyses

Previous research on growth models for multiple variables
has considered the application of standard multivariate
models to growth data (e.g., Harris, 1963; Horn, 1972). A




parsimonious alternative that has been explored in prior work
is the inclusion of a so-called measurement model embedded
in these dynamic structural models (for references, see
McArdle, 1988; McArdle & Woodcock, 1997). This can be
fitted by including common factor scores (f(t]), proportion-
ality via factor loadings (A, Ay), and uniqueness (,, u,). We
could write a model as

Y[thh=v,+ N\ fo+uyn, and
X[tln = vy + Ao fo + Us s

(18.35)

so that each score is related to a common factor (f[t]) with
time-invariant factor loadings (A;), unique components (),
and scaling intercepts (v;). We can then consider whether all
latent changes in these observed scores are characterized by
the growth parameters of the common factor scores

STt =fon + Af1t)fon +ef[th. (18.36)

This common factor growth model is drawn as a path dia-
gram in Figure 18.14. We can also recast these common
factor scores into a latent difference form of

Sitln = fIt — 1], + Af[t], and
Afltla = af fin + Bf It = 1],,

(18.37)

Xm| (Yo | X |ve
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so that the dynamic features of the common factors are
estimated directly (e.g., Figure 18.12).

The expectations from this kind of a model can be seen as
proportional growth curves, even if the model includes addi-
tional variables or factors. If this kind of restrictive model of
changes in the factor scores among multiple curves provides
a reasonable fit to the data, we have evidence for the dynamic
construct validity of the common factor (as in McArdle &
Prescott, 1992). To the degree multiple measurements are
made, this common factor hypothesis about the change pat-
tern is a strongly rejectable model (e.g., McArdle, Ferrer-
Caja et al., in press; McArdle & Woodcock, 1997). In either
form (Equation 18.36 or Equation 18.37) this multivariate
dynamic model is highly restrictive, so it may serve as a com-
mon cause baseline that can help guide the appropriate level
of analysis (as in McArdle & Goldsmith, 1990; Nesselroade
& McArdle, 1997).

Oue explicit assumption made in all growth models is that
the scores are adequate measures. of the same construct(s)
over all time and ages. This assumption may be evalu-
ated whenever we fit the measurement hypothesis (i.e., is
Alt] = A[t + 1]7). It may be useful to examine the assump-
tion of metric factorial invariance over occasions without the
necessity of a simple structure basis to the measurement
model (Horn & McArdle, 1992; McArdle & Cattell, 1994,
McArdle & Nesselroade, 1994). However, in long-term

X34 Y3 X4] Y4

Figure 18.14 A path diagram of a multiple variable measurement model with a latent “curve

of factor scores” (McArdle, 1988).
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Figure 18.15 A path diagram representing a bivariate latent growth model for multiple vari-

ables (from McArdle, 1989).

longitudinal data collections, we often use repeated measures
models when different variables. measuring the same con-
structs were used at different ages. The basic requirements of
meaningful and age-equivalent measurement models are a
key problem in the behavioral sciences, and future research is
needed to address these fundamental concerns (see Burr &
Nesselroade, 1990; Fischer & Molenaar, 1995).

Modeling Interrelationships Among Growth Curves

The collection of multiple variables at each occasion of mea-
surement leads naturally to questions about relationships
among growth processes and multivariate growth models.
The early work on this topic led to sophisticated models based
on systems of differential equations for the size of multiple
variables. In one comprehensive multivariate model, Turner
(1978) extended the simple growth principles to more vari-
ables, and permitted an examination of biologically important
interactions based on the size and sign of the estimated para-
meters (see Griffiths & Sandland, 1984). Muitivariate re-
search in the behavioral sciences has not gone as far yet, and
seems to have relied on advanced versions of the linear
growth models formalized by Rao (1958), Pothoff and Roy
(1964), and Bock (1975).

Some recent structural equation models described in the
statistical literature have emphasized the examination of par-
allel growth curves, including the correlation of various com-
ponents (McArdle, 1988, 1990; Willett & Sayer, 1994). The
models fitted here can be represented in latent growth

notation for two variables by

Y[tla = Yon +Ay[‘])’s.n + eyltl, and
X[t = xon + Ax[t] x50 + exlthn,

(18.38)

where Y[t} and X[t] are two different variables observed over
time, there are two basis functions (A,[t] and 4 {t}), and

E(yo, X0} = oyox0. E(ye, Xs} = Oy0.0s,

(18.39)
and  E{ys, X} = Oysxs,

E{ys, xo} = Tys,x0,
and all covariances (o) are allowed among the com-
mon latent variables. A path diagram of this bivariate growth
model is presented in Figure 18.15.

This set of structural equations has been used to examine
a variety of substantive hypotheses..One hypothesis relies on
the equality of the basis coefficients (e.g., 4,[t] = 4,[t]) to
examine the overall shape of the two curves. Interpretations
have also been made about the size and sign of nonzero. co-
variance of initial levels (i.e., |Gyo x0| > 0) and covariance of
slopes (i.e., |0y xs] > 0), but these interpretations are lim-
ited. These random coefficients reflect individual similarities
in the way persons start and change over time across different
variables, and these are key features for some researchers
(e.g., Duncan & Duncan, 1995; Raykov, 1999; Willet &
Sayer, 1994). However, it should be noted that this simple re-
lationship is not time-dependent, so it may not fully charac-
terize the interrelationships over time. This might lead us to
consider other, more elaborate models for the time-dependent




interrelationships among the measures. That is, if we think
one of these variables is responsible for the growth in the
other, then we might need to fit a related but decidedly differ-
ent set of models. The next section presents some advanced
models used to solve these kinds of problems.

Multivariate Dynamic Models of Determinants
of Changes

The previous models use information about the time-
dependent nature of the scores, and there are several exten-
sion of these models of interest in multivariate growth curve
analysis (Arminger, 1987; Nesselroade & Boker, 1994). One
of the most basic extensions is the combination of a measure-
ment model with a dual change score model among common
factor scores. This kind of model was displayed earlier in
Figure 18.14 but can now be extended into Figure 18.15.
In other extensions, we may be interested in a combination of
several previous models, including parallel growth curves
and time-varying covariates.

Suppose a new variable X[t] is measured at muitiple occa-
sions and we want to examine its influence in the context of a
growth model for Y[t]. One popular model used in multilevel
and mixed-effects modeling is based on the analysis of co-
variance (Equation 18.13) with X[t] as a time-varying predic-
tor. In our notation we can write

Ytla = Yon +Altlysicn + 0X[t)y + elt], (18.40)

where the 8 are fixed (group) coefficients with the same
) effect on Y[t] scores at all occasions. In this case the growth
parameters (flg., ., Os:x, €tc.) are conditional on the ex-
pected values of the external X[¢] variable. By taking first dif-
ferences we find that this model implies the true score change
over time is
Aylt], = AA[t]ys;t.n + SAX[t]m (18.41)
so the basis coefficients still reflect changes based on a con-
¢, stantslope (y,..) independent of X[t], and the new coefficient
(8) represents the effect of changes in X (i.e., AX[t]) on
changes in ¥ (i.e., Ay[t]). This time-varying covariate model
is relatively easy to implement using available mixed-effects
software (e.g., Sliwinski & Buchele, 1999; Sullivan,
Rosenbloom, Lim, .& Pfefferman, 2000; Verbeke &
Molengerghs, 2000; cf. McArdle, Hamagami, et al., in press).
Modeling for multiple variables over time has been con-
sidered in the structural modeling literature. For many re-
searchers, the most practical solution is to fit a cross-lagged
regression model (see Cook & Campbell, 1977; Rogosa,
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1978). This model can be written for latent scores as

Mtl, = vy + ¢,y[t —1la + Byxx[t —1la +ey[t]nv and
X[thh = v: + by x{t — 1o + 35yt — 1]n + ec[tla, (18.42)

where we assume a complementary regression model for
each variable with auto-regressions (d,, ¢,) and cross-
regressions (8y:, 8,) for time-lagged predictors. This model
yields a set of first difference equations that are similar to
Equation 18.41, where each change model has zero intercept
and the lagged changes. The cross-lagged coefficients (5) are
interpreted as the effect of changes (e.g., Ax[t]) on changes
(e.g., Ay[t]), and form the basis for the eritical hypotheses
(e.g., 8yx > O but 8, = 0).

The literature on nonlinear dynamic models has also dealt
with similar multivariate issues, but clear examples are not
easy to find. One dynamic bivariate model based on the par-
tial adjustment concept was proposed by Coleman (1968)
and Arminger (1987) using different techniques for estima-
tion. This model can be written in difference score form as a
set of simultaneous equations where

Ay(tl, = 'ﬂ'y(ya,n -yt - 114 with
Yan = a)’ + ’Yy;x[t - l]nv

and

Ax(t], = Te(Xan — X[t — 1]y) with

Xan = @ + Yy ¥t — 1a. (18.43)
In this model we include pairs of fatent asymptotes (y, and
x,), rates of adjustment (7, and 7r,), intercepts (o, and aty),
and cross-effects (y,, and Yxy)- The partial adjustment sys-
tern has some features of a multilevel model for intercepts
and slopes (Equation 18.13).

Now, following our previous latent difference scores
model, we can also write a bivariate dynamic change score
model as

Ay[t), = Oy Y50 + Byy[t =1+ ‘nyx[( ~ 1]y, and
Ax[tla = 0t Xs 0 + By x(t — 1], + Yot —1]a,  (18.44)

where we assume a complementary dual change score model
for each variable. In the first part of each change score we as-
sume a dual change score model represented by parameters o«
and $. This model also permits a coupling parameter (¥yx)
representing the time-dependent effect of latent x{t] on ylitl,
and another coupling parameter (v,y) representing the time-
dependent effect of latent y{t] on x[t]. If we restrict the
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Figure 18.16 A path diagram representing a bivariate latent difference score structural model; each variable is allowed dual changes
within variables (o = additive and B = proportional) as well as covariance (o) and coupling () across variables (from McArdle &

Hamagami, 2001).

parameters of Equation 18.44 so that o = —@, then this
model is a reduced form of the partial adjustment system
(Equation 18.43). This model is close to the partial adjust-
ment system (Equation 18.43) but is not the same as time-
varying covariate models (Equation 18.41) or cross-lagged
models (Equation 18.42)-—the latent changes in this system
of equations have an intercept (o) and the coupling parame-
ters (y) are direct effects from prior time-varying levels
(xft — 1] and y{t — 1]). Results from these alternative mod-
els can be quite different (see McArdle & Hamagami, 2001).

This bivariate dynamic model is described in the path dia-
gram of Figure 18.16. Again the key features of this model
include the used of fixed unit values (to define Ay[t] and
Ax{t]) and equality constraints (for the e, ﬁ, and « parame-
ters). These latent difference score models can lead to more
complex nonlinear trajectory equations (e.g., nonhomoge-
neous equations) but these can be described simply by writ-
ing the respective bases (A;[t]) as the linear accumulation of
first differences (Equation 18.31) for each variable.

On a formal basis, however, this bivariate dynamic modet
of Equation 18.44 permits hypotheses to be formed about

(a) parallel growth, (b) covariance among latent components,
(c) proportional growth, and (d) dynamic coupling over time.
That is to say, in addition to the previous restrictions on the
dynamic parameters (@ =0, & = 1, and/or B = 0) we can
focus on evaluating models in which one or more of the cou-
pling parameters is restricted (i.e., v,, = 0 and/or v,, = 0).
If only one of these coupling parameters is large and reliable,
we may say we have estimated a coupled dynamic system
with leading indicators in the presence of growth. To the de-
gree these parameters are zero, we can say we have estimated
an uncoupled system. Additional descriptions of the relevant
dynamic aspects of these model coefficients, including the
stability or instability of long run behaviors, can be evaluated
from additional calculations (e.g., eigenvalues and equilib-
rium formulas; Arminger, 1987; Tuma & Hannan, 1984). Ad-
ditional information can also come from a visual inspection
of the bivariate expectations (after Boker & McArdle, 1995).

By combining some aspects of the previous sections, we
can now represent a group difference dynamic change score
model in at least three different ways. Assume C is a ob-
served vector describing some kind of group differences




(e.g., effect or dummy codes, for g = 1 to G groups.). If so,
we can consider a model whereby the group contrasts «<,)
have a direct effect on the latent change

Ay(tla/At = oy ys0 + B, y[t — At]q
+ nyx[t - Aqn + Ky Cna (1845)

with group coefficient ,. Alternatively, we can write a
model in which the contrasts have direct effects on the latent
slopes

Ay[t]n/At = Oy Ys.n + By)'[t — Atl, + Yy X[t At],

with  ygn = Ko + 1:Cp + €;[t]y. (18.46)
Finally, we can write a model in which multiple groups
(superscripts g) are used to indicate independent group
dynamics,

Ay[t1P /At = o« y[sI® + BE yit — AP

+y®x(t - AGP. (18.47)
In the first model (Equation 18.45), we add the group con-
trasts as a covariate in the difference model. In the second
model (Equation 18.46), we add a multilevel prediction
structure of the dynamic slopes. In the third model (Equa-
tion 18.47), we indicate a potentially different dynamic para-
meter for each group. This third model can be fitted and used
in the same way as any multiple-group models can (e.g.,
McArdle & Cattell; 1995; McArdle & Hamagami, 1996).

Results From Fitting Multiple Variable Growth Models

Measurement problems arise in the fitting of any statistical
model with longitudinal data, and these issues begin with
scaling and metrics. Our first problem with the Bradway-
McArdle data comes from the fact that the Stanford-Binet
(SB) was the measure administered at early ages(4, 14, 30)
and the Wechsler Adult Intelligence Scale (WAIS) was used
at the later ages (30, 42, 56, 64). Although these are both
measures of intellectual abilities, they are not scored in the
same way, and they may measure different intellectual abili-
ties at the same or at different ages. These data were exam-
ined using a set of structural equation models with common
factors for composite scores from the SB and the WAIS.
The initial structural equation model was based on infor-
mation from the age 30 data in which both measurements
were made, and assumed invariance across all measures at
other occasions. In model fitting, the factor loading of the
first variable was fixed (Ay = 1) to identify the factor scores,

Muitiple Variables in Latent Growth Curve Models 473

and the other loading (A, = .84) was estimated and required
to be invariant over all times of measurement. The results
quickly showed a single common factor model does not pro-
duce a good fit (x? = 473, df = 34) even though most of
the parameter estimates seem reasonable (o, = 1.39;
o7 = .06; o,y = 5.3). In subsequent analyses, the items in
each scale (SB & WAIS) were separated on a theoretical
basis—some were considered as verbal items, and these were
separated from the items that were considered as nonverbal
items in each scale (memory and number items were sepa-
rated; see Hamagami, 1998; McArdle et al., 2002). The
single-factor model was refitted to each new scale, and these
models fit much better than before (x? = 63, df = 32). At
least two separate constructs were needed to reflect the time-
sequence information in the interbattery data.

Next we followed the early work of Bayley (1956; see
Figure 18.4), and we created longitudinal scores with equal
intervals by using some new forms of item response theory
(IRT) and latent trait models (Embretson, 1996; Fisher, 1995;
McDonald, 1999). From these analyses, we formed a scoring
system or translation table for each construct from the SB and
WAIS measures by using IRT calibration (using the MSTEPS
program) based on the data from the testing at age 30, in
which both the SB & WAIS were administered. These analy-
ses resulted in new and (we hope) age-comparable scales for
the verbal and nonverbal items from all occasions (as dis-
played in Table 18.1 and Figure 18.6).

Several alternative verbal-nonverbal bivariate coupling
models were fitted to the data (for details, see McArdle,
Hamagami, et al., in press). A first model included all the bi-
variate change parameters described previously (Equation
18.44). This includes six dynamic coefficients (two each for
o, B, y), four latent means (), six latent deviations (o), and
six latent correlations (p). This model was fitted with °
N = 111 individuals with at least one point of data and 498
individual data observations, and it yields an overall fit
(L = 7118) that was different from that of a random baseline
(x%*=379on df = 16). The group {and individual} trajecto-
ries of the best-fitting model can be written for the verbal
(V[t]) and nonverbal (N[t]) scores in the following way

Vitl, = 154 (£1.3) + (Z Avm,,) +0{%4.7}), and

i=1,t

Nty = 33.4{+7.8) + (Z ANm,,) +0{£11.5), with

i=1.t

Oyoxo = 1, Tyoxs = .90, Oysx = .08, Tysxs = —.05.

(18.48)




474  Growth Curve Analysis in Contemporary Psychological Research

More fundamentally, the respective latent change scores
were modeled as

AV[t]y = -10.1{£11.2}V,, + 099 V[t — 1],

+ LO2N[t—1],, and

. (18.49)
AN[t], = 34.6{+4.3}N,, + —0.28N[t - 1],

+ 016 V[t — 1],

The fitting of a sequence of alternative models suggested
some systematic coupling across the V[t] and N[t] variables.
Three additional models were fit to examine whether one or
more of -the coupling parameters (y) were different from
zero. In the first alternative model, the parameter represent-
ing the effect of N[t} on AV[t] was fixed to zero (v, = 0),
and this led to a notable loss of fit (x> = 123 on df = 1). The
second alternative assumed no effect from V[t] on
AN[t] (vy =0), and this is a much smaller loss of fit
(x? =27 on df = 1). Another model was fit in which no cou-
pling was allowed (y, = 0 and vy, = 0), and this resulted in a
clear loss of fit (x2 = 126 on df = 2). These results suggest a
dynamic system in which the nonverbal ability is a positive
leading indicator of changes on verbal ability, but the nega-
tive effect of verbal ability on the nonverbal changes is not as
strong. The parameters listed previously are specific to the
time interval chosen (i.e., At = 5), and any calculation of the
explained latent variance requires a specific interval of age.
These seemingly small -differences can accumulate over

longer periods of titne, however, so the N[t] is expected to
account for an increasing proportion of the variance in A V/[t]
over age.

These mathematical results of these kinds of models can
be also displayed in the pictorial form of a vector field plot of
Figure 18.17 (for details, see McArdle, Hamagami, et al., in
press). This allows us to write the model expectations in a rel-
atively scale-free form: Any pair of coordinates is a starting
point (yy, x,), and the directional arrow is a display of the
expected pair of 5-year changes (Ay, Ax) from this point.
These pictures show an interesting dynamic property—the
change expectations of a dynamic model depend on the
Starting point. From this perspective, we can also interpret
the positive level-level correlation (pyo <0 = .77), which de-
scribes the placement of the individuals in the vector field,
and the small slope-slope correlation (Pys.xs = —.05), which
describes the location of the subsequent scores for individu-
als in the vector field. In any case, the resulting flow shows a
dynamic process in which scores on nonverbal abilities have
a tendency to impact score changes on the verbal scores, but
there is no notable reverse effect.
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Additional models were fit to examine a common growth
factor model proportionality hypothesis. In this case, the fac-
tor model has two indicators at each time, V[t] and N[t], and
it was combined with the previous dual change model (Equa-
tion 18.36). The basic model required only nine parameters in
common factor loadings (A, = I, A, = .35) and common
factor dynamic parameters (o, = 1, B, = .14, u;, = —0.13,
with no -y) and achieved convergence. However, the fit of this
common factor DCS was much worse than that of the bivari-
ate DCS model (x? = 1262 on df = 11), and this is addi-
tional evidence that separate process models are needed for
verbal and nonverbal growth processes.

Differences between various Bradway demographic
groups were examined using the multiple-group dynamic
growth models (Equation 18.47). First we examined results
when the data for males and females were considered sepa-
rately. Here we found that an overall test of invariance across
groups now yielded only a small difference (X(2m+f) =21 on
df = 20). We also find no difference in the coupling hypoth-

esis across gender groups (x(zm) = 10 on df = 2). The same
kinds of dynamic comparisons were calculated for partici-
pants with some college experience (ce) versus those with no
college education (nc). Here we find that an overall test of
invariance across groups yields another small difference
(X&etney = 32 0N df = 20). However, when we pursue this




result in more detail, we do find a large difference in the
coupling hypothesis across these groups—the nonverbal to
verbal coupling effect is enhanced in the group with some
college education (y = —.28, X%, =250ndf =1) even
though both groups started at similar initial levels.

The final group model was designed to answer several
questions about nonrandom attrition. This was addressed by
comparing results for participants with complete six-occasion
longitudinal data (n = 29) from those with some incomplete
data (n = 82). The differences in fit due to the assumption of
invariance of the dynamic process over data groups is rela-
tively small, but nontrivial ()<(2c +iy = 54 on df = 20). This
means we did alter the results by using all available data
rather than just that for the persons with all data at all time
points. This leaves us with a complex issue that requires
further investigation.

FUTURE RESEARCH USING GROWTH
CURVE ANALYSES

Future Bases of Growth Curve Analyses

The study of behavioral development and change has come a
long way in the past few decades. After many years of debat-
ing whether and how to measure and represent change, it be-
came clear that a promising solution to many of the problems
of change measurement lay in collecting multiple rather than
just two occasions of measurement. There had long been a
mystique surrounding longitudinal methods in general, but
this became translated into a much more functional approach
to the representation and assessment of change. Change
could be conceptualized as a function defined across time,
rather than being based on a single difference score. This
meant that a researcher could gather data on 3, 4, 5, or 10 oc-
casions, often within a very short time frame, and instead of
getting bogged down in an array of different kinds of change
scores, could think in terms of fitting a curve over the multi-
ple time points to represent the course of change. Moreover,
concerns regarding individual differences could be cast in
terms of the resemblance between these idealized functions
and each person’s actual trajectory.

These realizations about how to represent change
processes were accelerated by the development of the variety
of methods we have been referring to as latent growth curves,
mixed-effect and multilevel models, and dynamic systems
models. The developments in growth curve analysis have
provided a number of key substantive and methodological
contributions, as have been referenced previously. These
developments can be classified by features of the models
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themselves: (a) the degrce of mathematical specification,
(b) the way these statistical models are fitted, and (c) the clar-
ity and substantive meaning of the results. These issues have
not been completely resolved, so we end with some com-
ments about each of these topics.

“The Mathematical Basis of Growth Curve Analyses

Most current growth curve models can be written in a com-
mon symbolic form (Seber & Wild, 1992). That is, a general
model for a change in the scores over time (often using de-
rivatives dy/dt or differences Ay/At) can be based on some
mathematical functional form (f{x,t}) with unobserved
scores (x[t]) and with unknown parameters (A[t]) to be esti-
mated. Additional forms not discussed here can be included,
such as auto-regressive residual structures, Markov chains,
and Poisson processes. The list of growth functions described
here is not exhaustive, and future extensions to other general-
ized functions (e.g., Ramsey & Silverman, 1997) and dy-
namic and chaotic formulations (May, 1997) are likely.

It is now clear that growth curve models of arbitrary com-
plexity can be fitted to any observed trajectory over time
(i.e., the integral), and the unknown parameters can be esti-
mated to minimize some statistical function (e.g., weighted
least squares, maximum likelihood) using, for example, non-
linear programming. Several different computer programs
were used for the growth curve analyses discussed here. For
many of the initial analyses, standard SAS programs were
used, including PROC MIXED and PROC NLMIXED. The
Mx-SEM computer program used herein was based on a
simplified matrix approach to model expectations. All of
these programs can deal with incomplete data patterns using
the likelihood-based incomplete data approach presented
carlier. The SEM programming is not as convenient as the
mixed-effects program input scripts are, but SEM is far more
flexible for programming the dynamic models (McArdle,
2001).

Growth curve modeling as an important step—but only a
step—in the long progression toward better and better ways
to represent behavioral development and change. Indeed, it is
important to keep in mind the limitations as well as the
strengths of growth curve modeling. Growth curve analysis
per se results in a curve or curves defined over concrete
measurement intervals—that is, a particular curve or curves.
We have moved this towards a more dynamic representation
that is defined across the abstract occasions (t, t + 1, t + 2,
etc.) that can be integrated and solved for a particular solu-
tion. This kind of dynamic generalizability seems every bit as
central as the more traditional concerns of subject and vari-
able sampling,.
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The Statistical Basis of Growth Curve Analyses

The generic statistical approach featured here avoids some
problems in older techniques, such as fitting a model to a log-
scale, or directly to the velocity, or to the analysis of differ-
ence score data. These new techniques make it possible to
address the critical problems of forecasting future observa-
tions, and further research on Bayesian estimation is a proper
focus of additional efforts (for details, see Sieber & Wild,
1989).

The present model-fitting approach also permits a wide
range of new possibilities for dealing directly with unbal-
anced, incomplete, or missing data. In classical work, linear
polynomials were used extensively to deal with these kinds
of problems (e.g., Joossens & Brems-Heyns, 1975). But the
more recent work on linear and nonlinear mixed- and multi-
level models indicates that it is possible to estimate growth
curves and test hypotheses by collecting only small segments
of data on each individual (McArdle, Ferrer-Caja, et al., in
press; Pinherio & Bates, 2000; Verbeke & Molenberghs,
2000). These statistical models are being used in many
longitudinal studies to deal with self-selection and subject at-
trition, multivariate changes in dynamic patterns of develop-
ment, and the trade-offs between statistical power and costs
of person and variable sampling. The statistical power ques-
tions of the future may not be How many occasions do we
need?, but rather How few occasions are adequate? and
Which persons should we measure at which occasions?
{McArdle & Bell, 2000; McArdle & Woodcock, 1997).

In much the same way, the issues surrounding goodness-
of-fit and the choice of an appropriate model are not simply
formal statistical issues (see Burnham & Anderson, 1998).
The way we conceptualize the relationships among these
variables and the substantive issues involved has a great deal
to do with the choice of mode! fitted. If we think our key vari-
ables represent substantively different growth processes, we
would fit a specific growth model representing this idea
(Figure 18.15). However, if we think our key variables are
simply indicators of the same underlying common latent
variables, then we would fit a different growth model
(Figure 18.14). If we think our variables are growing and
have time-lagged features, we would fit another model (Fig-
ure 18.16). If we do not know the difference, we might fit all
kinds of models, examine the relative goodness-of-fit, and
make some decisions about the further experiments needed.
Although this exploratory approach is probably not optimal
and probably requires extensive cross-validation, it certainly
seems better to examine a large variety of possibilities rather
than to limit our perspective on theories of growth and
change (as in McArdle, 1988).

The multiple-group models presented here challenge the
current approaches to an important theoretical area in behav-
ioral science research—the study of group dynamics. Al-
though simpler models are more common in popular usage,
they seem to be special cases in a multiple-group dynamic
framework. Variations of these models can be used to exam-
ine combinations of variables, even in the context of latent
classes based on mixture models. In the future, we should
not be surprised if our best models are checked against ex-
ploratory searches for latent-mixtures within dynamic mod-
els (Equation 18.42).

The Substantive Basis of Growth Curve Analyses

Some of the most difficult problems for future work on
growth curves do not involve statistical analyses or computer
programming, but rather deal with the elusive substantive
meaning of the growth model parameters. As it turns out,
these issues are not new but are unresolved controversies that
have important implications for all other areas (Seber &
Wild, 1993):

“It is customary to say we are ‘model-making.’ Whether or not
our model is biologically meaningful can only be tested by
experiments. Here and in subscquent models we share G. F
Gause's View {Gause, 1934, p. 10]: *There is no doubt that
[growth, etc.] is a biological problem, and that it ought to be
solved by experimentation and not at the desk of a mathemati-
cian. But in order to penetrate deeper into the nature of these
phenomena, we must combine the experimental method with the
mathematical theory, a possibility which has been created by
fbrilliant researchers]. The combination of the experimental
method with the quantitative theory is in general one of the most
powerful tools in the hands of contemporary science.’ ” (p. xx)

Of course, the growth parameters will only have substan-
tive meaning if the measurements themselves and the
changes that can be inferred from these measurements have a
clear substantive interpretation and meaning. Thus, the basic
requirements of meaningful age-equivalent measurement
models are fundamental, and future measurement research is
needed to address these concerns (see Fischer & Molenaar,
1995). Some of the multivariate models presented here may
turn out to be useful, but these will need to be further
extended to a fully dynamic time-dependent form. Empirical
information will be needed to judge the utility of any growth
curve model.

As students of behavior and behavioral change continue to
improve their theoretical formulations, there will be a contin-
ued need to further strengthen the stock of available methods.




As the late Joachim Wohlwill (1972, 1991) argued, theory
and method are partners eternally locked in a dance, with one
of them leading at one time and the other leading at another
time——neither partner leads all the time. Growth curve mod-
eling has resulted in significant substantive findings that have
further bolstered theories about development and change. We
can expect in the not-too-distant future that strengthened
theory will request even stronger methods. Until that time,
however, the promise and power of these modeling tech-
niques should be exploited.

Given the long history of elegant formulations from math-
ematics and statistics in this area, it is somewhat humbling to
note that major aspects of the most insightful growth curve
analyses have been based on careful visual inspection of the
growth curves. The insight gained from visual inspection of a
set of growth curves is not in dispute now; in fact, obvious vi-
sual features should be highlighted and emphasized in future
research (e.g., Pinherio & Bates, 2000; Wilkinson, 1999).
Much as in the past, the best future growth curve analyses are
likely to be the ones we can all see most clearly.
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