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Abstract

When using the ordered weighted average operator, it can happen that
one wants to optimize the variability (measured by the entropy (maximal)
or by the variance (minimal)) of the weights while keeping the orness of
this operator at a fixed level. This has been considered by several authors.
Dually, there might be some contexts where one wishes to maximize the
orness while guaranteeing some fixed variability. In this paper, we present
two algorithms for finding such weights, when the variability is captured
by the entropy and by the variance.
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1 Introduction

Anyone willing to use the ordered weighted average operator (OWA) must at
some point choose a weight vector. Several approaches exist for this. For in-
stance, [5] suggested that, in some cases, it might be interesting to choose the
weight vector maximizing the entropy of the operator while guaranteeing some
predetermined orness. He also proposed a technique achieving this goal. [1]
studied the same problem. [3] followed the same approach and suggested a
different algorithm for the maximal-entropy weight vector given a fixed orness.
Since entropy is not the only possible measure for the variability, [4] presented
an algorithm for finding the minimal-variance weight vector given a fixed orness.

Consider now the following situation: we are facing an aggregation problem
and, after discussion with the decision-maker or for some theoretical reasons,
we want to use a disjunctive operator. If we use the maximum operator, then
we take into account only the largest score. So, if we aggregate n scores, we use
only 1/n of the available information. This is quite low. It might therefore be
interesting to use an ‘as disjunctive as possible’ operator while using at least
50% of the available information. This is possible if we use an OWA operator.
We can try to find the weight vector maximizing the orness of the OWA operator
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while guaranteeing that a quantity β of the available information (measured by
the entropy) will be used in the aggregation.

Remark that this problem is dual to the one described in the first paragraph:
given a fixed orness, which weight vector maximizes the entropy?

In this paper, we present an algorithm for finding weights maximizing the
orness, given a fixed entropy. Since entropy is a measure of dispersion or vari-
ability and since variance is also a measure of variability, we also present an
algorithm for finding weights maximizing the orness, given a fixed variance.
Finally note that [6] have solved a similar problem: finding the weight vector
maximizing the orness, given a fixed dispersion measured by

1
n− 1

1− w

w
,

where w is the largest weight in the vector.

2 Fixed entropy

If W = (w1, . . . , wn)T is the weighting vector of an OWA operator, then the
orness of the operator is defined by

orness(W ) =
1

n− 1

n∑
i=1

(n− i)wi

and its dispersion or entropy, by

disp(W ) = −
n∑

i=1

wi lnwi.

Suppose we want to maximize the orness and respect the constraint that the
entropy must be equal to some given positive value β. If β is equal to the
highest possible entropy, i.e. β = β = lnn, then the solution is simply W =
(1/n, . . . , 1/n)T . If β < β, then we can use the method of Lagrange multipliers.
Let

L(W,λ1, λ2) =
1

n− 1

n∑
i=1

(n−i)wi+λ1

(
−

n∑
i=1

wi lnwi − β

)
+λ2

(
n∑

i=1

wi − 1

)
.

The partial derivatives of L w.r.t. wj are

∂L

∂wj
=

n− j

n− 1
− λ1(lnwj + 1) + λ2 = 0, ∀j. (1)

If we set j equal to n, we obtain

λ2 = λ1(lnwn + 1).
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Replacing in (1) and letting j = 1, we find

λ1 =
1

lnw1/wn
.

We can now replace λ1 and λ2 in (1), and, after some simple algebra, we find

wj

wn
=
(

w1

wn

)n−j/n−1

, 1 ≤ j ≤ n.

Let us now compute the ratio of two consecutive weights:

wj+1

wj
=
(

wn

w1

)1/n−1

, 1 ≤ j ≤ n− 1.

The ratio (wn/w1)1/n−1 is independent of j and is not equal to 1 because β < β.
Let us denote it by a. Because we maximize the orness, it is clear that the
weights may not increase with i, i.e. w1 ≥ w2 ≥ . . . ≥ wn. So, 0 < a < 1. We
rewrite the last equation, using a:

wj = w1a
j−1, 1 ≤ j ≤ n. (2)

The sum of the weights being equal to 1, we have

1 = w1

n∑
i=1

ai−1 = w1
1− an

1− a
,

whence
wj =

1− a

1− an
aj−1.

So, if we know a, we can compute any weight. In order to find a, we rewrite the
constraint on the entropy.

β = −
n∑

i=1

wi lnwi

= −
n∑

i=1

1− a

1− an
ai−1 ln

1− a

1− an
ai−1. (3)

The ratio a is one of the solutions of this equation, satisfying 0 < a < 1. It
cannot be solved analytically but numerical solutions with any given precision
can easily be obtained. From the definition of our optimization problem, it is
clear that a solution always exists in ]0, 1[. We now prove that there is only
one solution in ]0, 1[. When a is close to 1, all weights are almost equal and
the dispersion is very small (the entropy is large). When a decreases and goes
to 0, the weights differ more an more from each other and have thus a larger
dispersion (the entropy is small). It is thus clear that the right-hand part of (3)
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is strictly increasing in a on ]0, 1[ and equation (3) can have only one solution
satisfying 0 < a < 1.

Note that the weights solving our constrained maximization problem might
be called exponential since any weight (j = 1, . . . , n) is an exponential function
of j − 1 as shown in (2). The OWA operator based on this weight vector might
hence be called an exponential OWA but [2] already used this name for another
OWA operator which, actually, is not exactly exponential. Indeed, in [2], the
weights follow an exponential function not for all j but only for j = 1, . . . , n−1.
More precisely, for some γ ∈ [0, 1],

w1 = γ, w2 = γ(1−γ), w3 = γ(1−γ)2, . . . , wn−1 = γ(1−γ)n−2, wn = (1−γ)n−1.

3 Fixed variance

The variance of a weighting vector W is defined by

var(W ) =
1
n

n∑
i=1

w2
i −

1
n2

.

If we want to maximize the orness and respect the constraint that the variance
must be equal to some given positive value β, it can happen that some weights
are zero. Of course, because the orness must be maximal, these weights are lo-
cated at the end of the weighting vector. So, we can write the optimal weighting
vector as Wopt = (w1, . . . , wj , . . . , wp, 0, . . . , 0)T , for some p ∈ {1, 2, . . . , n}.

In order to find the optimum, we can use the method of Lagrange multipliers.
Let

L(W,λ1, λ2, λ
′
1, . . . , λ

′
n−p) =

1
n− 1

p∑
i=1

(n− i)wi + λ1

(
1
n

p∑
i=1

w2
i −

1
n2

− β

)

+λ2

(
p∑

i=1

wi − 1

)
+

n−p∑
i=1

λ′iwn+1−i.

The multipliers λ′i correspond to the fact that the last weights are zero.
The partial derivatives of L w.r.t. wj are

∂L

∂wj
=
{ n−j

n−1 + 2λ1
n wj + λ2 = 0, j = 1, . . . , p,

λ′j = 0, j = p + 1, . . . , n.
(4)

Setting successively j = 1 and j = p in (4), it is easy to find

λ1 =
p− 1
n− 1

n

2(wp − w1)

and

λ2 =
(n− 1)wp − (n− p)w1

(n− 1)(w1 − wp)
.
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Substitution in (4) yields

n− j

n− 1
+

p− 1
n− 1

wj

wp − w1
+

(n− 1)wp − (n− p)w1

(n− 1)(w1 − wp)
= 0, j = 1, . . . , p.

If we solve for wj , we obtain

wj = w1
p− j

p− 1
+ wp

j − 1
p− 1

, j = 1, . . . , p.

From the condition
∑p

i=1 wi = 1, we get

wp =
2
p
− w1

and
wj = w1

p− 2j + 1
p− 1

+
2
p

j − 1
p− 1

. (5)

We now rewrite the condition on the variance:

var(W ) = β =
1
n

n∑
i=1

w2
i −

1
n2

(6)

Substituting (5) in (6) and using the relation

p∑
i=1

i2 =
1
6
p(p + 1)(2p + 1),

we can rewrite (6) in the form of a polynomial in w1:

w2
1np2(p + 1)− w12np(p + 1)− 3n2βp(p− 1)− 3p(p− 1) + 4np− 2n = 0

whose roots are

w1 =
1
p

+

√
3n(p + 1)(p− 1)(n2βp− n + p)

np(p + 1)

and

w1 =
1
p
−
√

3n(p + 1)(p− 1)(n2βp− n + p)
np(p + 1)

.

But, because we want to maximize the orness, w1 must be as large as possible.
So, only the first root is the solution of our problem and we can write

wj =

(
1
p

+

√
3n(p + 1)(p− 1)(n2βp− n + p)

np(p + 1)

)
p− 2j + 1

(p− 1)

+
2
p

j − 1
p− 1

, j = 1, . . . , p. (7)
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So, we now have an explicit expression for the non-zero weights but it depends
on p. Given β, we must find the value of p that maximizes the orness while
respecting two conditions: all weights must be (i) non-negative and (ii) real.
We first consider (i). Because the weights wj decrease with j, we must only
check that wp is non-negative, i.e.

wp =
1
p
−
√

3n(p + 1)(p− 1)(n2βp− n + p)
np(p + 1)

≥ 0.

We obtain

β ≤ n(p + 1)
3n2p(p− 1)

+
1
np

− 1
n2

. (8)

We now turn to (ii). The weights will be real if

3n(p + 1)(p− 1)(n2βp− n + p) ≥ 0.

Combining this and (8), we find

n− p

n2p
≤ β ≤ n(p + 1)

3n2p(p− 1)
+

1
np

− 1
n2

. (9)

So, we will use for p the integer maximizing the orness and such that (9) holds.
Example. Let n = 5 and β = 0.05.

n− p

n2p
=


0.060, p = 2
0.027, p = 3
0.010, p = 4
0.000, p = 5.

n(p + 1)
3n2p(p− 1)

+
1
np

− 1
n2

=


0.160, p = 2
0.071, p = 3
0.038, p = 4
0.020, p = 5.

So, 3 is the only value for p such that (9) holds. We then compute the weights
using (7) with p = 3 and we obtain Wopt = (0.57, 0.33, 0.1, 0, 0)T .

4 Conclusion

We presented two algorithms for obtaining the OWA operator with maximal
orness and a given variability, be it measured by the variance or the entropy. If,
instead of a disjunctive operator, one wants to use a conjuctive operator, one
may be willing to maximize the andness, with a given variability. In that case,
a similar approach to the one presented in this paper can be followed.
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