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A measurement-theoretic axiomatization of
trapezoidal membership functions

Thierry Marchant

Abstract— In many applications of fuzzy set theory, the mem-
bership of an object is not defined directly. One of its attributes
(like height, age, weight, . . . ) is first mapped to a real number
(often by means of a physical instrument) and a parametric
function then maps this real number to a membership degree
in some fuzzy set (like ‘tall’, ‘old’, ‘heavy’, . . . ). A very common
parametric function is the trapezoidal one. This paper presents
some conditions guaranteeing the existence of such a trapezoidal
membership function representing the knowledge of an expert.
Further experimental research is needed for testing whether these
conditions are satisfied by human agents.

Index Terms— Membership, measurement

I. I NTRODUCTION

There are different sources of fuzzines (e.g. [1], [2]). One
of them is that some concepts (like ‘tall’ or ‘old’) are vague,
even in absence of measurement imprecision [3]. For instance,
if we know for sure that the personI is exactly 50 years old,
it is not clear thatI is old. It depends on the context and on
our perception of the concept ‘old’. So, if we want to capture
the knowledge of an expert and if we think his knowledge
is fuzzy because of the vagueness of some concepts, we may
want to use fuzzy sets.

Some authors (e.g. [4], [5], [6], [7], [8], [9], [10], [11],
[12]) have axiomatized different measurement techniques that
permit us to represent the membership of some objects by a
function that is unique up to some transformations (strictly
increasing, positive affine or linear) thereby showing how we
can try to measure the membership on some kind of scale
(ordinal, interval, ratio).

In these papers, the setX of objects for which we want to
measure the membership has no special structure (for example,
X = { Ian, Jin, Khaled}) and the membership function
directly mapsX in [0, 1], as illustrated in fig. 1. So, even
if we measure the membership of these objects (or people) in
the fuzzy set ‘tall’ on an interval scale, we do not know if it is
possible to obtain a parametric membership function like the
trapezoidal one or any other one. Those papers tell us nothing
about the relation between the membership of an individual in
the set ‘tall’ and his height as measured in meters.

But in many applications, contrary to what is done in these
theoretical papers, the membership of an object in a fuzzy
set is not defined directly: the setX is first mapped intoR
(often using a physical instrument). For example, the height
of Ian is represented by the real numberf (Ian), in meters.
Then another mapping—the membership functionµtall—maps
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each real number (in some range) to a membership degree. For
example,f (Ian) is mapped onµtall(f (Ian)). This is illustrated
in fig. 2.
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Fig. 1. Direct representation of the membership
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Fig. 2. Indirect representation of the membership

In Section II, I will try to analyze, from a measurement-
theoretic viewpoint, the indirect approach (the one depicted
in fig. 2). I will not suppose thatf is given. Instead, I will
start with a structure allowing to construct the representation
f (for example the height measured in meters) with some nice
uniqueness properties. Then I will introduce another structure
allowing to construct the representationµ of the membership
in some fuzzy set. Finally, I will present some conditions,
linking both structures, that permit to indirectly measure the
membership and that yield trapezoidal membership functions.
Further experimental research is needed for testing whether
these conditions are satisfied by human agents. If this is
the case, then we would have a justification of the use of
trapezoidal membership functions.

Note that, in order to obtain a trapezoidal membership
function,f must be unique up to some transformations and the
set of transformations must be a subset of the positive affine
transformations. Otherwise, when varying the representationf ,
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we cannot guarantee that the membership function will remain
trapezoidal. This means thatf must be an interval or ratio
scale. There are different measurement techniques leading
to interval scales: extensive measurement, bisection, conjoint
measurement, difference measurement, . . . In this paper, I will
use only bisection but I will show in Section III that this is
not restrictive.

II. M AIN RESULT

In this paper, the primitives are
• X = {x, y, . . .} , the universal set (uncountable),
• %∗

A, a binary relation defined onX×X and representing
differences of membership in a fuzzy setA, as perceived
by an expert. For instance,xy %∗

A wz means the
difference of membership betweenx and y is at least
as large as the difference of membership betweenw and
z,

• ◦, a binary operation fromX×X into X. It is a bisection
or ‘midpoint’ operation. For instance,x ◦ y represents
the midpoint betweenx and y, obtained by means of a
physical device or by asking an expert,

• %, a binary relation onX.
The primitives are empirically observable. They are not ex-
plained nor defined by the theory. In particular, the fuzzy
setA has no mathematical structure or property. It is just an
expression in ordinary language (e.g. ‘tall’) that can be seen
as a fuzzy set.

I now recall some classical conditions that guarantee the
existence of a numerical representationµA of the relation%∗

A,
unique up to positive affine transformations. These conditions
are those axiomatizing algebraic difference structures [13].

A 1: Weak Ordering of%∗
A. The relation%∗

A on X ×X is
a weak order, i.e. is transitive and complete

A 2: Reversal.For all w, x, y, z in X,
xy %∗

A wz ⇔ zw %∗
A yx.

A 3: Monotonicity of%∗
A. For all x, x′, y, y′, z, z′ in X,

xy %∗
A x′y′ and yz %∗

A y′z′ ⇒ xz %∗
A x′z′.

A 4: Solvability of%∗
A. For all w, x, y, z in X,

xy %∗
A wz %∗

A xx ⇒ ∃z′, z′′ : xz′ ∼∗
A wz ∼∗

A z′′y.
Let us denote the asymmetric (resp. symmetric) part of%∗

A

by �∗
A (resp.∼∗

A).
A 5: Archimedeanness of%∗

A. If x1, x2, . . . , xi, . . . is
a strictly bounded standard sequence based on%∗

A (i.e.
xi+1xi ∼∗

A x2x1 for everyxi, xi+1 in the sequence;x2x1 not
∼∗

A xx; and there existy, z in X such thatyz �∗
A xix1 �∗

A zy
for all xi in the sequence), then it is finite.

Definition 1: The structure〈X, %∗
A〉 is an algebraic dif-

ference structure iff it satisfies Weak Ordering of%∗
A (A1),

Reversal (A2), Monotonicity of%∗
A (A3), Solvability of %∗

A

(A4) and Archimedeanness of%∗
A (A5).

I now recall some classical conditions that guarantee the
existence of a numerical representationf of the relation
%, also unique up to positive affine transformations. These
conditions are those axiomatizing bisymmetric structures [13].

A 6: Weak Ordering of%. The relation% on X is a weak
order.

A 7: Monotonicity of◦. For all x, y, z ∈ X,
x % y iff x ◦ z % y ◦ z iff z ◦ x % z ◦ y.

Let us denote the asymmetric (resp. symmetric) part of% by
� (resp.∼).

A 8: Bisymmetry.For all x, y, z, w in X,
(x ◦ y) ◦ (z ◦ w) ∼ (x ◦ z) ◦ (y ◦ w).

A 9: Restricted Solvability of◦. If y′ ◦ z % x % y′′ ◦ z (or
z ◦ y′ % x % z ◦ y′′), then there existsy such thaty ◦ z ∼ x
(or z ◦ y ∼ x).

A 10: Archimedeanness of◦. Every strictly bounded stan-
dard sequence based on◦ is finite, where{xi : xi ∈ X, i ∈ N}
is a standard sequence based on◦ iff there existy, z ∈ X such
that y � z and, for all i, i + 1 ∈ N, xi ◦ y ∼ xi+1 ◦ z or, for
all i, i + 1 ∈ N, y ◦ xi ∼ z ◦ xi+1.

Definition 2: The structure 〈X, %, ◦〉 is a bisymmetric
structure iff it satisfies Weak Ordering of% (A6), Monotonic-
ity of ◦ (A7), Bisymmetry (A8), Restricted Solvability of◦
(A9) and Archimedeanness of◦ (A10).

Note that the conditions imposed on◦ do not force us to
interpret◦ as a bisection. It could be the concatenation of an
extensive structure. But we will later impose another condition
that makes sense only if◦ is a bisection.

We now introduce some new notation and two new con-
ditions that will make it possible to construct a trapezoidal
membership function.

Let %A be a binary relation onX defined byx %A y iff
xy %∗

A xx. If 〈X, %∗
A〉 is an algebraic difference structure,

then %A is a weak order. LetT (A) = {x ∈ X : x %A

y ∀y ∈ X} (the set of elements with maximal membership
in A) and B(A) = {x ∈ X : y %A x ∀y ∈ X} (the set of
elements with minimal membership inA). These two sets may
be empty (think e.g. of the fuzzy set of infinitely old people).
Let LA = {x ∈ X : z - x - y ∀y ∈ T (A) and ∀z ∈ B(A)
with z ≺ y} andRA = {x ∈ X : z - x - y ∀z ∈ T (A) and
∀y ∈ B(A) with z ≺ y}. The elements inLA correspond to
the increasing part of the membership function while those in
RA correspond to the decreasing part. The setsLA and RA

can be empty (e.g. if we have degenerate fuzzy sets, as in
Section IV).

A 11: Quasi-Convexity.There arex1, x2, x3, x4 ∈ X, with
x1 ≺ x2 ≺ x3 ≺ x4, such that:

• x ∈ B(A) iff x - x1 or x % x4;
• x ∈ T (A) iff x2 - x - x3;
• x1 ≺ x - y ≺ x2 implies y %A x;
• x3 ≺ x - y ≺ x4 implies x %A y.

Remark that Quasi-Convexity implies thatT (A) andB(A) are
not empty.

Quasi-Convexity is a very mild condition. It just says
that, when moving from small to large elements (w.r.t.%),
the membership is first minimal then increases, reaches a
maximum, decreases and reaches again the same minimum.
The next condition is much stronger: it imposes a very
strict consistency or compatibility between the bisymmetric
structure (often measured with a physical instrument) and the
algebraic difference structure (based on the knowledge of the
expert).

A 12: Consistency.For all x, y ∈ LA, x(x◦y) ∼∗
A (x◦y)y.

The same holds for allx, y ∈ RA.
Note that this condition makes sense only if◦ is a bisection.
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We denote byX/ ∼ the set of equivalence classes onX
under∼.

Theorem 1:Let the structures〈X, %∗
A〉 and 〈X, %, ◦〉 be,

respectively, an algebraic difference structure (definition 1) and
a bisymmetric structure (definition 2) withX/ ∼ uncountable.
If, in addition, 〈X, %∗

A,%, ◦〉 satisfies Quasi-Convexity (A11)
and Consistency (A12), then there existfA : X 7→ R and
µA : X 7→ [0, 1] such that

µA(x)− µA(y) ≥ µA(z)− µA(w) ⇔ xy %∗
A zw,

∀x, y, z, w ∈ X, (1)

µA(x) = 0 ∀x ∈ B(A) andµA(x) = 1 ∀x ∈ T (A), (2)

f(x) ≥ f(y) ⇔ x % y, ∀x, y ∈ X, (3)

f(x ◦ y) =
f(x) + f(y)

2
∀x, y ∈ X, (4)

µA(x) = aL
Af(x) + bL

A ∀x, y ∈ LA, (5)

and
µA(x) = aR

Af(x) + bR
A ∀x, y ∈ RA, (6)

with aL
A > 0 andaR

A < 0.
The functionµA is unique. The functionsµA and f ′ also

satisfy (1–6) iff there are real numbersp > 0 andq such that
f ′ = pf + q. We then havea′L = aL/p, b′L = bL(1− aL/p),
a′R = aR/p andb′R = bR(1− aR/p).

Note that all conditions are necessary except Solvability of
%∗

A and Restricted Solvability of◦.
Proof: By Theorem 2 of [13, p.151], there exists a real-

valued functionµ′
A on X such that

µ′
A(x)− µ′

A(y) ≥ µ′
A(z)− µ′

A(w) ⇔ xy %∗
A zw.

This mapping is unique up to a positive affine transfor-
mation. By Quasi-Convexity, there arex′ ∈ B(A) and
x′′ ∈ T (A). Hence,µ′

A(x′) = infx∈X µ′
A(x) and µ′

A(x′′) =
supx∈X µ′

A(x). We can therefore find a positive affine trans-
formation µA of µ′

A such thatµA(x′) = 0 and µA(x′′) = 1.
We then haveµA(x) = 0 ∀x ∈ B(A) and µA(x) = 1 ∀x ∈
T (A). This mapping is unique.

By Theorem 10 of [13, p.295], there exists a real-valued
function f on X and real numbersβ > 0, γ > 0 and δ such
that f(x) ≥ f(y) iff x % y and

f(x ◦ y) = βf(x) + γf(y) + δ.

This mapping is unique up to a positive affine transformation.
By Quasi-Convexity, for allx, y ∈ LA, f(x) ≥ f(y) iff x % y
iff xy %∗

A xx iff µA(x) − µA(y) ≥ 0 iff µA(x) ≥ µA(y).
So, there exists a strictly increasing mappingφL

A : R 7→ R
such thatµA(x) = φL

A[f(x)] for all x ∈ LA. Similarly, there
exists a strictly increasing mappingφR

A : R 7→ R such that
µA(x) = φR

A[f(x)] for all x ∈ RA.
By Consistency, for allx, y ∈ LA,

µA(x)− µA(x ◦ y) = µA(x ◦ y)− µA(y).

So,

φL
A[f(x)]− φL

A[f(x ◦ y)] = φL
A[f(x ◦ y)]− φL

A[f(y)]

and

φL
A[f(x)]− φL

A[βf(x) + γf(y) + δ]
= φL

A[βf(x) + γf(y) + δ]− φL
A[f(y)].

If we reorder the terms, we obtain

φL
A[f(x)] + φL

A[f(y)] = 2φL
A[βf(x) + γf(y) + δ].

The left-hand side of this functional equation is symmetric in
x andy. Therefore,β = γ. If we setx = y, we find

2φL
A[f(x)] = 2φL

A[βf(x) + γf(x) + δ].

Henceδ = 0 andβ + γ = 1. So,β = γ = 1/2 and, finally,

f(x ◦ y) =
f(x) + f(y)

2
. (7)

and

φL
A[f(x)] + φL

A[f(y)]
2

= φL
A

[
f(x) + f(y)

2

]
,∀x, y ∈ LA.

(8)
For anyx, y ∈ LA with x � y, by (7), we havex � x◦y �

y. So, the relation% on LA is dense, in the sense that, for
any x � y, there isz : x � z � y. Because, in addition,
X/ ∼ is uncountable,f(LA) is a closed interval ofR. We
can therefore rewrite (8) as

φL
A(r) + φL

A(s)
2

= φL
A

(
r + s

2

)
, (9)

∀r, s ∈ [f(x1), f(x2)]. This is the well-known Jensen’s
functional equation [14, p. 44] and its unique solution (because
φL

A is strictly increasing) isφL
A(r) = aL

Ar + bL
A for all r

in [f(x1), f(x2)], whereaL
A > 0 and bL

A are real constants
or, equivalently,µA(x) = φL

A(f(x)) = aL
Af(x) + bL

A for all
x ∈ LA. BecauseµA(x1) = φL

A(f(x1)) = 0 and µA(x2) =
φL

A(f(x2)) = 1, we find

aL
A =

1
f(x2)− f(x1)

and bL
A =

f(x1)
f(x1)− f(x2)

.

We can follow the same reasoning withRA and we obtain
µA(x) = φR

A(f(x)) = aR
Af(x) + bR

A for all x ∈ RA and

aR
A =

1
f(x3)− f(x4)

and bR
A =

f(x4)
f(x4)− f(x3)

.

III. OTHER STRUCTURES

We now look at cases where no bisection operation is used
in the construction off .

Suppose that we want to measure the membership of
different persons in the fuzzy set ‘tall’. Very often, we will
first measure the length of these persons and then map each
length on a membership degree. The standard technique for
measuring length is extensive measurement [13] and is based
on a concatenation operation usually denoted by⊕. Such an
operation cannot satisfy Consistency. But we can define an
operation◦ by means ofx ◦ y = z iff z ⊕ z = x ⊕ y. It is
easy to see that, if⊕ satisfies all conditions [13, Th. 1, p. 74]
guaranteeing the existence of an additive representation—
thus unique up to a positive linear transformation—then◦
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satisfies all conditions of Definition 2 and, hence, a variant
of Theorem 1 for extensive measurement will hold.

If difference measurement is used for constructingf , based
on some relation%′ defined onX ×X, then we can define a
bisection operation onX by means ofx◦y = z iff xz ∼′ zy. If
〈X, %′〉 is an algebraic difference structure (different of course
of 〈X, %∗

A〉), then◦ will satisfy all conditions of Definition 2
and, hence, a variant of Theorem 1 for difference measurement
will hold.

Let us look at a last case. Suppose we have a multi-attributed
set of objectsX×X1× . . .×Xn and a relation%′′ on this set.
If conjoint measurement [13] is used for constructingf on X,
then we can again define a bisection operation onX but now
by means ofx ◦ y = z iff (x, x1, . . . , xn) ∼′′ (z, y1, . . . , yn)
and(z, x1, . . . , xn) ∼′′ (y, y1, . . . , yn). Here also, if%′′ satis-
fies all conditions [13, Th. 2, p. 257] guaranteeing the existence
of an additive representation—thus unique up to a positive
affine transformation—then◦ will satisfy all conditions of
Definition 2 and, hence, a variant of Theorem 1 for conjoint
measurement will hold.

The same kind of reasoning can be applied to many other
measurement techniques leading to interval or ratio scales.

IV. OTHER MEMBERSHIP FUNCTIONS

In this paper, we have focused on the trapezoidal mem-
bership function because it is very popular but, following
the same approach as above, it should be possible, at least
in principle, to axiomatize other kinds of membership func-
tions. We mention, for instance, two other forms that can be
easily axiomatized: the left-degenerate and right-degenerate
trapezoidal functions, depicted in fig. 3. It is easy to see

1 1

Left-degenerate                                          Right-degenerate

Fig. 3. The left- and right-degenerate trapezoidal functions

that replacing Quasi-Convexity in Theorem 1 by Left- or
Right-Degenerate Quasi-Convexity (defined below) yields an
axiomatization of these two membership functions.

A 13: Left-Degenerate Quasi-Convexity.There arex3, x4 ∈
X, with x3 ≺ x4, such that:

• x ∈ B(A) iff x % x4;
• x ∈ T (A) iff x - x3;
• x3 ≺ x - y ≺ x4 implies x %A y.
A 14: Right-Degenerate Quasi-Convexity.There are

x1, x2 ∈ X, with x1 ≺ x2, such that:

• x ∈ B(A) iff x - x1;
• x ∈ T (A) iff x % x2;
• x1 ≺ x - y ≺ x2 implies y %A x.

V. CONCLUSION

A lot of representation theorems in measurement theory
have constructive proofs: they prove the existence of the
desired representation by showing how to construct it. These
theorems are therefore interesting not only for the theoretician
but also for the practitioner. Facing a measurement problem,
he can follow the proof for constructing the representation
he needs. In our case, Theorem 1 is of little interest for the
practitioner. If we want to construct a trapezoidal membership
function for the height, the technique is extremely simple: we
just have to ask the expert what are the heights corresponding
to x1, x2, x3 andx4 in the expression of Quasi-Convexity. We
then draw straight lines between these points and we are done.

But this technique will work—in the sense that it will yield
a membership function faithfully representing the knowledge
of the expert—only under some conditions: those presented
in Theorem 1. And here lies the interest of this theorem. It
shows that the use of trapezoidal membership functions relies
on a lot of assumptions, some of them being strong.

• The conditions grouped under the labelbisymmetric
structureare often satisfied iff results from measurement
by means of physical instruments (like clocks, thermome-
ters, balances, . . . ). But iff is based on the answers of
an expert to some questions, it is not obvious that his an-
swers will form a bisymmetric structure. Nevertheless, in
most applications,f results from physical measurement.
Hence, this is not a crucial point.

• On the contrary, the mappingµA, representing the per-
ception of the membership by an expert, is usually not
based on physical measurement but on the answers of an
expert. The conditions grouped under the labelalgebraic
difference structuremust therefore be satisfied by his an-
swers. Today, we do not know if people (or some of them)
have perceptions compatible with an algebraic difference
structure. This should be investigated experimentally.

• Quasi-Convexity and Consistency make the link between
the bisymmetric and the algebraic difference structure.
Hence they must be satisfied by the answers of the expert.
The validity of these condition must also be investigated
experimentally.

Last remark: suppose all conditions of Theorem 1 hold
not only for 〈X, %∗

A,�, ◦〉 but also for a similar structure
〈X, %∗

B ,�′, ◦′〉 where B is another fuzzy set. We can then
measure the membership of the elements ofX in A and inB
by means of two trapezoidal membership functions. Suppose
now we want to find the membership of an element, sayx,
in A ∩ B. The usual way to do this is to choose at-norm
T and then to computeT (µA(x), µB(x)). But which t-norm?
Very often, when the membership is measured on an ordinal
scale, the minimum is chosen, for meaningfulness reasons
[15]. When the membership is measured on an interval, ratio
or absolute scale (like in our case), some othert-norms are
often used (e.g. the Łukasiewiczt-norm). But [11] has shown
that, in the framework of measurement theory, not-norm
except the minimum can model the intersection even when
measuring the membership on an interval, ratio or absolute
scale or even when we have a measurement-theoretic sound
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trapezoidal membership function. Only the minimum can be
used and the conditions guaranteeing that it can adequately
model the intersection have been presented in [6]. A symmetric
remark holds of course for the union and the maximum.
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