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A measurement-theoretic axiomatization of
trapezoidal membership functions

Thierry Marchant

Abstract—In many applications of fuzzy set theory, the mem- each real number (in some range) to a membership degree. For
bership of an object is not defined directly. One of its attributes example,f(lan) is mapped omua (f(lan)). This is illustrated
(like height, age, weight, ...) is first mapped to a real number ;, fig. 2.
(often by means of a physical instrument) and a parametric
function then maps this real number to a membership degree A
in some fuzzy set (like ‘tall’, ‘old’, ‘heavy’, ...). A very common 41
parametric function is the trapezoidal one. This paper presents
some conditions guaranteeing the existence of such a trapezoidal
membership function representing the knowledge of an expert.
Further experimental research is needed for testing whether these M)
conditions are satisfied by human agents.

Index Terms— Membership, measurement Hean(K)

I. INTRODUCTION
) . Fig. 1. Direct representation of the membership
There are different sources of fuzzines (e.g. [1], [2]). One

of them is that some concepts (like ‘tall’ or ‘old’) are vague,
even in absence of measurement imprecision [3]. For instance,
if we know for sure that the persahis exactly 50 years old,

it is not clear that/ is old. It depends on the context and on
our perception of the concept ‘old’. So, if we want to capture
the knowledge of an expert and if we think his knowledge
is fuzzy because of the vagueness of some concepts, we ma
want to use fuzzy sets.

Some authors (e.g. [4], [5], [6], [7], [8], [9], [10], [11],
[12]) have axiomatized different measurement techniques t
permit us to represent the membership of some objects b
function that is unique up to some transformations (strictl
increasing, positive affine or linear) thereby showing how we
can try to measure the membership on some kind of scale ) ] )
(ordinal, interval, ratio). Fig. 2. Indirect representation of the membership

In these papers, the ?m of objects for which we want to In Section I, | will try to analyze, from a measurement-
measure the membership has no special structure (for exammgbretic viewpoint, the indirect approach (the one depicted
X = { lan, Jin, Khaled}) and the membership function. ’

. . . L in fig. 2). 1 will not suppose thayf is given. Instead, | will
glﬁgt%ergsﬁrse)ihr n[10e7nl1]t,)e6r1:hlilluj;rtar:ggeIrclbﬁeg(.:ti.(oSrO,eiv?g)SIart with a structure allowing to construct the representation
e . P J peop .Sf'r(for example the height measured in meters) with some nice
the fuzzy set ‘tall’ on an interval scale, we do not know if it i

; . ; . L uniqueness properties. Then | will introduce another structure
possible to obtain a parametric membership function like th . . .
allowing to construct the representatipnof the membership

trapezoidal one or any other one. Those papers tell us nothing . ; i
about the relation between the membership of an individual i Some fuzzy set. Finally, | W'”.pres_e”F some conditions,
the set ‘tall’ and his height as measured in meters linking both structures,.that perm|t.to indirectly m.easure.the
. L membership and that yield trapezoidal membership functions.
theoretical papers, the membership of an object in a fuzs'g rther expe 'rimental resgarph Is needed for testing whgthgr
' ese conditions are satisfied by human agents. If this is

set is no? defined d'irectily: the sl is first mapped intak . the case, then we would have a justification of the use of
(often using a physical instrument). For example, the he'gblpezoidal membership functions.

_(I)_Llan IS trﬁpresentgd byﬂ:he realbnurggé(fnan),_m meters. Note that, in order to obtain a trapezoidal membership
en another mapping—the membership funcign—maps function, f must be unique up to some transformations and the

T. Marchant is with Ghent University, B-9000 Ghent, Belgium (e-mailfset of transformations mUSt be a SUbset of the positive gffine
Thierry.Marchant@UGent.be). transformations. Otherwise, when varying the representgtion
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we cannot guarantee that the membership function will remdiet us denote the asymmetric (resp. symmetric) part diy
trapezoidal. This means thgt must be an interval or ratio > (resp.~).

scale. There are different measurement techniques leading\ 8: BisymmetryFor all z,y, z,w in X,

to interval scales: extensive measurement, bisection, conjaifto y) o (z o w) ~ (z 0 2) o (y o w).

measurement, difference measurement, ... In this paper, | willa 9: Restricted Solvability of. If 4/ oz ==z = 3" o z (or
use only bisection but | will show in Section Il that this is; o ¢/ >~ 2 >~ 2z 0 ), then there existg such thaty o z ~
not restrictive. (orzoy ~ x).

A 10: Archimedeanness of Every strictly bounded stan-
Il. MAIN RESULT dard sequence based o finite, where{z; : z; € X,i € N}

In this paper, the primitives are is a standard sequence basedadffi there existy, z € X such

e X ={z,y,...} , the universal set (uncountable), thaty > z and, for alli,i +1 € N, z; oy ~ x;41 0 z or, for

« %, abinary relation defined o x X and representing all i,i+1 €N, yox; ~ 20 x;y1.

differences of membership in a fuzzy sétas perceived  Definition 2: The structure (X,-,0) is a bisymmetric
by an expert. For instancery % wz means the structure iff it satisfies Weak Ordering &f (A6), Monotonic-
difference of membership betweenand y is at least ity of o (A7), Bisymmetry (A8), Restricted Solvability of
as large as the difference of membership betweeand (A9) and Archimedeanness of (A10).
2y Note that the conditions imposed @ndo not force us to
« o, a binary operation fronX x X into X. Itis a bisection interpreto as a bisection. It could be the concatenation of an
or ‘midpoint’ operation. For instance; o y represents extensive structure. But we will later impose another condition
the midpoint between: and y, obtained by means of athat makes sense only if is a bisection.
physical device or by asking an expert, We now introduce some new notation and two new con-
 Z. abinary relation onX. ditions that will make it possible to construct a trapezoidal
The primitives are empirically observable. They are not exmembership function.
plained nor defined by the theory. In particular, the fuzzy | et -, be a binary relation orX defined byz =, y iff
set A has no mathematical structure or property. It is just ap, =* zx. If (X,7*) is an algebraic difference structure,
expression in ordinary language (e.g. ‘tall’) that can be segien 4 is a weak order. LeT'(A) = {z € X : = =4
as a fuzzy set. y Yy € X} (the set of elements with maximal membership
I now recall some classical conditions that guarantee the 4) and B(4) = {z € X : y =4 z Vy € X} (the set of
existence of a numerical representatjon of the relation”%,  elements with minimal membership it). These two sets may
unique up to positive affine transformations. These conditiogg empty (think e.g. of the fuzzy set of infinitely old people).
are those axiomatizing algebraic difference structures [13]. et 1., = {reX:z2323yVyeT(A) and Vz € B(A)
A 1: Weak Ordering of’y. The relation on X x X'is  wijth < y} andRy = {zr € X : 2 2 Sy Vz € T(A) and

a weak order, i.e. is transitive and complete Vy € B(A) with z < y}. The elements i, correspond to

A 2: ReversalFor all w,z,y,z in X, the increasing part of the membership function while those in
TY T Wz e zw _ZZ yzx. ) R4 correspond to the decreasing part. The detsand R 4

A 3: Monotonicity ofZ%. For all z,2”,y,y/, 2, 2" in X, can be empty (e.g. if we have degenerate fuzzy sets, as in
vy Za 2y and yz 7%y’ = xz g a7 Section 1V).

A 4: Solvability ofZ*. For all w, z,y,z in X,
vy Ta we Th ax = 32, 2" ad o~ wa v 2y 71 < T2 < x3 < 24, SUCh that:
Let us denote the asymmetric (resp. symmetric) park;{f .
by =%, (resp.~%). o z € B(A) _If'f T 3 X1 OF T 7 2y
A 5. Archimedeanness of%. If xy,zo,...,2;,... iS o z€T(A)iff 2o 3o 3 ws;
a strictly bounded standard sequence based:gp (ie.  * ¥1 <% Jy <2 impliesy iz, ;
Ti1x; ~Y moxy fOr everyz;, ;4 in the sequencesyz; not  * T3 =<7 Sy T4 |mpI|e.Sx. iA_y'
~* zx; and there exisp, z in X such thayz =% z;z, =% zy Remarkthat Quasi-Convexity implies thafA) andB(A) are
for all z; in the sequence), then it is finite. not empty.

Definition 1: The structure(X, %) is an algebraic dif- Quasi-Convexity is a very mild condition. It just says
ference structure iff it satisfies Weak Ordering of, (A1), that, when moving from small to large elements (w.r,
Reversal (AZ), Monotonicity OE*A (A3), So|vab|||ty of zi& the memberShip is first minimal then increases, reaches a
(A4) and Archimedeanness &f* (A5). maximum, decreases and reaches again the same minimum.

| now recall some classical conditions that guarantee tH&e next condition is much stronger: it imposes a very
existence of a numerical representatignof the relation Strict consistency or compatibility between the bisymmetric
-, also unique up to positive affine transformations. Thes&ructure (often measured with a physical instrument) and the
conditions are those axiomatizing bisymmetric structures [13}lgebraic difference structure (based on the knowledge of the

A 6: Weak Ordering of-. The relation- on X is a weak €xpert).
order. A 12: Consistencyror allz,y € La, z(zoy) ~% (zoy)y.

A 7: Monotonicity ofo. For all z,y, z € X, The same holds for alt,y € R4.
zoyiff rozmyoziff zoxm zoy. Note that this condition makes sense onlyifs a bisection.

A 11: Quasi-ConvexityThere arery, xs, x3, 24 € X, With
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We denote byX/ ~ the set of equivalence classes &h and

under~.
Theorem 1:Let the structureg X, z%) and (X, 7z, o) be, ¢1L4[f(m)]L_ GAl8S (@) +7f(y) + §]L
respectively, an algebraic difference structure (definition 1) and = ¢alBf(x) +7vf(y) + 6] — dalf(y)]-

a bisymmetric structure (definition 2) withi/ ~ uncountable. |t \ve reorder the terms. we obtain
If, in addition, (X, =%, =, o) satisfies Quasi-Convexity (A11)

Y ~vAY ~

and Consistency (A12), then there exjt : X — R and LU (@)] + 51f ()] = 20518 () + £ (y) + 6].

pa: X —[0,1] such that The left-hand side of this functional equation is symmetric in

pa(x) — pa(y) > pa(z) — pa(w) < zy =4 2w, x andy. Therefore,5 = v. If we setz =y, we find

Va,y, 2w € X, (1) 204[f ()] = 2058 (x) + 7 f(x) + 3.
pa(z) =0Ve € B(A) andua(z) =1 Ve e T(A), (2) Henced=0andg+~y=1.S0,8=~=1/2and, finally,
f@) > f(y) & x5y, o,y € X, ©) fwoy) = M @
flaoy) = LD IW ; W) vy e x, (4) and
¢hlf(@)] + o4l (y)] _ oL F@+ W] v et
pa(w) = a4 f(z) + b4 Y,y € La, (5) 2 — o4 2 Y S
(8)
and For anyz,y € L4 with = > y, by (7), we haver = zoy >
pa(x) = ajf(x) + b Va,y € Ra, 6) 4. so, the relatior%- on L, is dense, in the sense that, for

any x > y, there isz : x > z > y. Because, in addition,
The functions is unique. The functiong., and f” also -/ ~ IS uncountablef(L,) is a closed interval oft. We
satisfy (1-6) iff there are real numbeps> 0 andq such that Can therefore rewrite (8) as
f'=npf +q. We then havet;, = ar/p, b, =b.(1 —ar/p), oL (r) + oL (s) _ ok (r—i—s)
=04

with oy > 0 andaff < 0.

ap =agr/p andbly = br(1 —agr/p). 2 2 ©
Note that all condltlons are necessary except Solvability of € [f(z1), f(z)]. This is the well-known Jensen's

2% and Restricted Solvability of.
funcnonal equation [14, p. 44] and its umque solution (because
Proof: By Theorem 2 of [13, p.151], there exists a real-
¢ is strictly increasing) is¢’i(r) = ahr + b5 for all r

valued functionyy on X' such that in [f(x1), f(z2)], whereal > 0 and b are real constants
Walz) — ply(y) > Wa(2) — pa(w) & 2y 724 2w. or, equivalently,ua(z) = ¢4 (f(z)) = afi f(x) + b for all

x € La. Becauseu(z1) = ¢5(f(z1)) = 0 and pa(z2) =
This mapping is unique up to a posmve affine transfoEbL(f( »)) = 1, we find

mation. By Quasi-Convexity, there are’ ¢ B(A) and

x" € T(A). Hence,u/, («') = infyex p/y(x) and p/y (") = ok = v and v = _ S .
sup, ¢ x /4 (x). We can therefore find a positive affine trans- f(@2) = f(=1) f(@1) = f(a2)
formation 14 of 'y such thatua(z’) = 0 and pa(2z”) = 1. We can follow the same reasoning wity, and we obtain

We then haveua(z) = 0 Vo € B(A) andpa(z) = 1 Ve € pa(x) = o5 (f(x)) = aff(z) + b for all 2 € R4 and
T(A). This mapping is unique.

By Theorem 10 of [13, p.295], there exists a real-valued off = _ and bl = &.
function f on X and real numberg > 0, v > 0 andé such flws) = flza) flxa) = f(xs)
that f(z) > f(y) iff = 2~y and u
flzoy) =Bf(z)+vf(y) +6. I1l. OTHER STRUCTURES

This mapping is unique up to a positive affine transformation. We now look at cases where no bisection operation is used
By Quasi-Convexity, for all:,y € L4, f(z) > f(y) iff z zy in the construction off.

iff xy =% zz iff pa(z) — paly) > 0 iff pa(x) > paly). Suppose that we want to measure the membership of
So, there exists a strictly increasing mappipfy : R — R different persons in the fuzzy set ‘tall'. Very often, we will
such thatu(z) = ¢4[f(x)] for all € L4. Similarly, there first measure the length of these persons and then map each
exists a strictly increasing mappingf : R — R such that length on a membership degree. The standard technique for

pa(z) = ¢§[f(x)] for all z € R4. measuring length is extensive measurement [13] and is based
By Consistency, for all,y € L4, on a concatenation operation usually denotedthySuch an
operation cannot satisfy Consistency. But we can define an
pa(z) —pa(xoy) = pa(zoy) — pa(y). operationo by means oftoy = z iff 2Bz =2 ®y. Itis
So, easy to see that, ib satisfies all conditions [13, Th. 1, p.74]

guaranteeing the existence of an additive representation—
OL[f ()] — o5 [f(xoy)] = h[f(x oy)] — d4[f (y)] thus unique up to a positive linear transformation—then
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satisfies all conditions of Definition 2 and, hence, a variant V. CONCLUSION

of Thgorem 1 for extensive measurement will hold. A lot of representation theorems in measurement theory
If difference measurement Is used for constructin@ased a6 constructive proofs: they prove the existence of the
on some relatiort;’ defined onX x X, then we can /defme @ desired representation by showing how to construct it. These
bisection operation OA” by means ofroy = 2 iff xz ~" zy. I y,04rems are therefore interesting not only for the theoretician
(X,Z)isan algebra|.c d|ﬁ9rence structuljre (d|ﬁereqt Of COUrSKit also for the practitioner. Facing a measurement problem,
of {X,Z), then_o will satisfy all condmpns of Definition 2 he can follow the proof for constructing the representation
and, hence, a variant of Theorem 1 for difference measuremgat joeds 1n our case, Theorem 1 is of little interest for the
will hold. ) _ practitioner. If we want to construct a trapezoidal membership
Let us look at a last case. Suppose we have a multi-attribuigfction for the height, the technique is extremely simple: we
set of objectsX x X x...x X, and a relation” on this set. jyst have to ask the expert what are the heights corresponding
If conjoint measurement [13] is used for constructingn X, {5 5, 2, 23 andz, in the expression of Quasi-Convexity. We
then we can again define a bisection operationXobut now  then draw straight lines between these points and we are done.
by means ofv oy = z iff (z,21,...,2) ~" (2,41, ,yn) But this technique will work—in the sense that it will yield
and(z,z1,...,2n) ~" (Y, 41, ., yn). Here also, i7" satis- 5 membership function faithfully representing the knowledge
fies all conditions [13, Th. 2, p. 257] guaranteeing the existenge e expert—only under some conditions: those presented
of an additive representation—thus unique up to a positiyg¢ Theorem 1. And here lies the interest of this theorem. It

affine transformation—ther will satisfy all conditions of ghqys that the use of trapezoidal membership functions relies
Definition 2 and, hence, a variant of Theorem 1 for conjoiRd, 5 |ot of assumptions, some of them being strong.

measurement will hold. . .
Th . kWId ¢ . b lied t ther” The conditions grouped under the lableisymmetric
€ Ssame Kind of reasoning can b€ applied 1o many other o, reare often satisfied if results from measurement

measurement techniques leading to interval or ratio scales. by means of physical instruments (like clocks, thermome-

ters, balances, ...). But if is based on the answers of
an expert to some questions, it is not obvious that his an-
swers will form a bisymmetric structure. Nevertheless, in
most applicationsf results from physical measurement.
Hence, this is not a crucial point.
On the contrary, the mapping,, representing the per-
ception of the membership by an expert, is usually not
based on physical measurement but on the answers of an
expert. The conditions grouped under the laddgkbraic
difference structurenust therefore be satisfied by his an-
swers. Today, we do not know if people (or some of them)
have perceptions compatible with an algebraic difference
1 structure. This should be investigated experimentally.
« Quasi-Convexity and Consistency make the link between
the bisymmetric and the algebraic difference structure.
Hence they must be satisfied by the answers of the expert.

> - > The validity of these condition must also be investigated
Left-degenerate Right-degenerate experimentally.

IV. OTHER MEMBERSHIP FUNCTIONS

In this paper, we have focused on the trapezoidal mem-
bership function because it is very popular but, following
the same approach as above, it should be possible, at least
in principle, to axiomatize other kinds of membership func-
tions. We mention, for instance, two other forms that can be
easily axiomatized: the left-degenerate and right-degenerate
trapezoidal functions, depicted in fig. 3. It is easy to see

1A

Last remark: suppose all conditions of Theorem 1 hold
not only for (X, 2%, >, 0) but also for a similar structure
(X, 75, ~',o') where B is another fuzzy set. We can then
that replacing Quasi-Convexity in Theorem 1 by Left- omeasure the membership of the elementstoih A and in B
Right-Degenerate Quasi-Convexity (defined below) yields &y means of two trapezoidal membership functions. Suppose

Fig. 3. The left- and right-degenerate trapezoidal functions

axiomatization of these two membership functions. now we want to find the membership of an element, say
A 13: Left-Degenerate Quasi-Convexityiere arers,z4 € in A N B. The usual way to do this is to chooset-@orm

X, with z3 < x4, such that: T and then to comput& (4 (z), up(z)). But whicht-norm?
e z€ B(A)ff 1 a4 Very often, W_he_zn the _membership is meas_ured on an ordinal
« 2 T(A)iff 2 =< s scale, the minimum is chosen, for meaningfulness reasons

[15]. When the membership is measured on an interval, ratio
or absolute scale (like in our case), some otheorms are
often used (e.g. the tukasiewi¢znorm). But [11] has shown
that, in the framework of measurement theory, noorm

o z € B(A)iff 3 a; except the minimum can model the intersection even when
o x€T(A)Iff 27 x; measuring the membership on an interval, ratio or absolute
o 1 <z 3y <z impliesy T z. scale or even when we have a measurement-theoretic sound

e T3 <x 3y <y impliesx 4 v.
A 14: Right-Degenerate  Quasi-ConvexityThere are
r1, T2 € X, with 21 < x5, such that:
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trapezoidal membership function. Only the minimum can be
used and the conditions guaranteeing that it can adequately
model the intersection have been presented in [6]. A symmetric
remark holds of course for the union and the maximum.
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