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Abstract

Suppose we want to use a particular algebraic operation (for example the drastic
product t-norm) for representing an operation on fuzzy sets (for example the inter-
section). This algebraic operation will be used with membership degrees, i.e., most
of the time, numbers between 0 and 1. If we want that the results of our calculations
make sense, we must be sure that the algebraic operation is compatible with the
nature of the membership degrees, which is determined by the technique used to
measure them. But this technique must in turn be compatible with the structural
properties of the knowledge we want to represent. This paper addresses these issues
within the framework of measurement theory.

We provide sound theoretical foundations for the measurement of membership
on ordinal and interval scales. But we also show that the level of measurement
(ordinal, interval or even ratio) is not critical for the choice of a particular algebraic
operation. Within measurement theory, whatever the scale, only the max and the
min can be used for representing the intersection and the union. We also present
some results about the complementation.
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1 Introduction

Suppose we ask the following question to an expert: what is the membership
degree of x in the set A? He answers 0.5. Then, what is the membership degree
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of x in B, C and D? He says 0.1, 0.3 and 0.4. If we choose a particular t-conorm,
we can compute from his answers the membership degree of x in A ∪ B and
C∪D. Suppose we choose the  Lukasiewicz t-conorm, i.e. S(a, b) = min(1, a+b).
Then, the membership degree of x in A ∪ B is 0.6. For C ∪ D, it is 0.7. We
conclude then that x belongs more to C ∪D than to A ∪B.

But we know that the membership degrees given by the expert must be taken
with a pinch of salt. On another occasion, the same expert might give slightly
different answers, for example, 0.5, 0.1, 0.2 and 0.3 for the membership of
x in A, B, C and D respectively. After all, these numbers express the same
ordering. The problem is that, with these new membership degrees and the
 Lukasiewicz t-conorm, the membership degree of x in A ∪B is 0.6 and 0.5 in
C ∪D. We now conclude then that x belongs more to A ∪ B than to C ∪D
although the information provided by the expert did not really change. He
gave the same ordering and we cannot really expect that his answers carry
more than an ordering.

It is a well-known problem (see e.g. French, 1984, 1987) and it is not limited
to the  Lukasiewicz t-conorm or t-norm. Only the max and the min escape
this particular problem. But very few authors pay attention to it although it
is crucial; it invalidates any inference we can make from a set of membership
degrees.

Because the information carried by the answers of the expert is an ordering,
we say that the membership degrees are measured on an ordinal scale. And
because max and min are only sensitive to the ordering, it is tempting to claim
that the max should be used as the t-conorm (and min as the t-norm). We
will show that this is not right. Even if the algebraic operators max and min
are compatible with ordinal information, if we have an ordering of member-
ship degrees, given by our expert, max and min are not necessarily the right
operations for representing the union and the intersection.

In this paper, we will use the framework provided by measurement theory (see
e.g. Krantz et al., 1971; Roberts, 1979) for showing which algebraic conditions
can represent the union, the intersection or the complementation. We will
also provide the conditions under which these algebraic operations are valid
representations. We will assume that we can obtain from the expert some
information (in the form of statements) that really makes sense for him. Not
statements like “the membership of x in A is 0.35,” because it is not clear at
all how this should be interpreted, but statements like

• The object x belongs more to the set A than to the set B.
• The object x belongs more to the set A than to the set B ∪ C.
• The object x belongs more to the set A than to the complement of A.
• The difference between the membership of x in A and that of y in A is larger
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than the difference between the membership of x in A and that of z in A.

These pieces of information are called primitives. They constitute the empiri-
cally observable phenomenon that we want to represent with our measurement
model. Note that the primitives are not explained within the model; they are
not defined either. They are just structured observations. In particular, ∪ is
not defined as the formal union of two sets. The expression A ∪ B represents
whatever the subject or expert understands or thinks at when I tell him ‘A∪B’
or ‘A or B’.

In each section, we will assume the existence of different primitives and we
will see what kind of measurement technique we can use with those primitives.
Thanks to this approach, we will prove different results that can be roughly
summarized as follows.

• Having an ordering of the membership degrees is not enough for guaran-
teeing that max and min can represent the union and the operation (Sec-
tion 2.1).

• Some reasonable conditions (first presented by Bollmann-Sdorra et al., 1993)
can guarantee that max and min can represent the union and the operation
(Section 2.2 and 3).

• There are techniques that permit us to measure membership degrees on in-
terval scales or ratio scales. But, even with these techniques, no t-conorm
and t-norm except the max and min can represent the union and the inter-
section (Section 2.3 and 4).

• It is not necessary to have an interval scale in order to use the standard
negation “1 − a” for representing the complementation of the membership
degree a. An ordering plus a mild condition is enough (Section 5).

It is important to remember that these results are derived within the frame-
work of measurement theory and, therefore, are not universal. They hold only
when we try to numerically represent the knowledge of an expert. But there
are many contexts where we use fuzzy sets without trying to represent an ex-
pert’s knowledge. For example, many automatic classification systems (based
on fuzzy data or not) have as outcome a membership degree for each object in
each class or category. These membership degrees do not represent the knowl-
edge of an expert. They are the outcome of an algorithm (eventually based on
some definitions) and their properties and meaning is completely determined
by that algorithm. Measurement theory has nothing to say about such mem-
bership degrees . . . unless the algorithm is supposed to mimic the reasoning of
an expert.

Before going further with measurement theory, let us mention an alternative
approach to the problem of measurement: psychometrics (Crocker and Algina,
1986, for example). It is a part of psychology, heavily relying on probability
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theory and aimed at measuring psychological characteristics of subjects (intel-
ligence or neuroticism for example) or the (necessarily subjective) perception
of a phenomenon by a subject. It could be used to construct a scale for the
membership, with some particular properties but, as far as we know, it cannot
help us to find a good representation for the union or the intersection. Let us
also mention psychophysics (Gescheider, 1997, for a broad introduction), an-
other part of pyschology, whose aim is to measure the perception of physical
stimuli (light intensity, sound intensity or pitch, temperature, . . . ) by subjects.
There are two main schools in psychophysics: one is a psychometric one (e.g.
Baird and Noma, 1978), the other is measurement-theoretic (e.g. Falmagne,
1985).

2 The membership of one object in several sets, in presence of a
union and an intersection 〈F , %x,∪,∩〉.

In this section, the primitives are F , a set whose elements can be interpreted
as all fuzzy sets that are relevant in a particular context, %x, a binary relation
on F , ∪, a binary operation on F , interpreted as the union of any two elements
of F , and ∩, another binary operation, interpreted as the intersection of any
two elements of F . The statement

A %x B ∪ C

is interpreted as “the object x belongs at least as much to A as to B ∪ C.”
Note that, with these primitives, it is not possible to express the fact that x
belongs more to A than y belongs to A.

Several papers have dealt with the measurement of 〈F , %x,∪,∩〉. One is by
Bollmann-Sdorra et al. (1993) and the others are by Bilgiç, Norwich and
Türksen, in different combinations (Bilgiç, 1996; Bilgiç and Türksen, 1995,
1997, 2000; Norwich and Türksen, 1982; Türksen, 1991). The results presented
in Bollmann-Sdorra et al. (1993) yield representations of ∪ and ∩ by means of
the max and min operations. Most of the results presented by Bilgiç, Norwich
and Türksen yield representations of ∪ by means of the  Lukasiewicz t-conorm
(or some generalizations), i.e. S(a, b) = min(1, a + b). I hereafter present the
result of Bollmann-Sdorra et al. (1993) and one result typical of those found
in the papers by Bilgiç, Norwich and Türksen.

2.1 A first representation theorem

If the relation %x on F has the same structure as the relation ≥ on the
reals and if F is not “too rich”, then it is possible to find a representation
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for 〈F , %x,∪,∩〉 in the real numbers. More formally, we need the following
condition.

A 1 Weak Order. A relation ≥̇ on a set S is a weak order iff it satisfies

• Completeness. For all s, t in S, s ≥̇ t or t ≥̇ s.
• Transitivity. For all s, t, r in S, s ≥̇ t and t ≥̇ r implies s ≥̇ r.

The following result is then a straightforward application of a classical result
in measurement theory (see e.g. Krantz et al., 1971).

Theorem 1 Consider the structure 〈F , %x,∪,∩〉 where F is a countable non-
empty set closed under ∪ and ∩. The relation %x on F satisfies Weak Order
(A1) if and only if there exists a real-valued mapping ηx such that ηx(A) ≥
ηx(B) iff A %x B. Moreover, the representation is unique up to a strictly
increasing transformation.

So, under the conditions of this theorem, it is possible to measure the mem-
bership degree of x in various fuzzy sets A, B, . . . on an ordinal scale. I use
here the symbol η for the membership function and not the more classical
µ because I will use µ when representing the membership degree of various
objects x, y, . . . in one fuzzy set.

It is often stated that, with an ordinal scale, the operations ∪ and ∩ must be
represented by the max and min operators. In other words, the membership
of x in A ∪B can be derived from the membership in A and the membership
in B by

ηx(A ∪B) = max(ηx(A), ηx(B)).

Note that Theorem 1 does not say such a thing. In fact, it does not say
anything about ∪ and ∩. The following example shows that measuring the
membership degrees on an ordinal scale is not enough to guarantee that ∪
and ∩ can be represented by max and min.

Example 1 Let F = {A, B, A ∪ B} and A ∪ A = A, B ∪ B = B, A ∩ A =
A, B ∩ B = B, A ∩ B = B, (A ∪ B) ∪ A = A ∪ B, (A ∪ B) ∩ A = A,
(A∪B)∪B = A∪B, (A∪B)∩B = B. Let the relation %x be the weak order
A ∪ B �x A �x B. We can represent this relation on an ordinal scale but it
is clear that ∪ cannot be represented by the max. The problem is the fact that
A ∪ B �x A. More conditions are needed and are presented in the following
section.

Note that when we look at the example above, we may be tempted to think
that B is a subset of A because A∩B = B; but this is just an interpretation,
it is not a logical consequence. Do not forget that ∩ and ∪ do not denote
mathematically defined operations. They denote two empirical operations that
we observe by asking questions like “Does x belong more to ‘A and B’ or to
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‘B’ ?” A priori, the operations ∩ and ∪ do not have any particular properties.
We will later see what happens when they satisfy some nice properties.

2.2 The operations ∪ and ∩ represented by max and min

Bollmann-Sdorra et al. (1993) introduce the following axioms.

A 2 Order of Operations. For all A, B in F , A ∪B %x A ∩B.

A 3 Weak Commutativity. For all A, B in F ,

A ∪B ∼x B ∪ A and

A ∩B ∼x B ∩ A.

A 4 Weak Associativity. For all A, B, C in F ,

A ∪ (B ∪ C) ∼x (A ∪B) ∪ C and

A ∩ (B ∩ C) ∼x (A ∩B) ∩ C.

A 5 Weak Absorption. For all A, B in F ,

A ∼x A ∩ (A ∪B) and

A ∼x A ∪ (A ∩B).

A 6 Weak Right Monotonicity. For all A, B, C in F ,

A %x B implies A ∩ C %x B ∩ C and

A %x B implies A ∪ C %x B ∪ C.

They then prove the following theorem (this is Theorem 2 in Bollmann-Sdorra
et al. (1993), in a slightly different form) .

Theorem 2 Consider the structure 〈F , %x,∪,∩〉 where F is a countable non-
empty set closed under ∪ and ∩ and the relation %x on F satisfies Weak Order
(A1). The structure satisfies Order of Operations (A2), Weak Commutativity
(A3), Weak Associativity (A4), Weak Absorption (A5) and Weak Monotonic-
ity (A6) if and only if there exists a real-valued mapping ηx such that

( i) ηx(A) ≥ ηx(B) iff A %x B,
( ii) ηx(A ∪B) = max(ηx(A), ηx(B)),
( iii) ηx(A ∩B) = min(ηx(A), ηx(B)).
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Moreover, the representation is unique up to a strictly increasing transforma-
tion. So, there is also a representation in [0, 1].

With other words, Theorem 2 says the following: under some conditions (Weak
Order, . . . ), it is possible to measure the membership degree of x in various
sets on an ordinal scale. Furthermore, there are algebraic operations (max and
min) that can be used with the obtained membership degrees and that model
the empirical operations ∪ and ∩. So, we have with this theorem a scale for the
membership degrees and two operations that are compatible with this scale.

Some people may consider the representation obtained in Theorem 2 as a weak
one because it is unique up to a strictly increasing transformation and we know
other measurement-theoretic results where the representation is unique up to
a positive affine transformation (for example, conjoint measurement) or even
a positive linear transformation (for example, extensive measurement). But in
conjoint or extensive measurement, if we find an additive representation, then
we know that there are also multiplicative and many other representations :
the representations of the operations are not at all unique. For example, if
we apply extensive measurement (Krantz et al., 1971) to the measurement
of mass, we find that under some conditions, there exist a representation
u : X 7→ R+ such that u(x ⊕ y) = u(x) + u(y) and u(x) ≥ u(y) iff x % y,
where X is a set of objects with different mass, ⊕ is the operation of putting
two objects on the same side of a balance and % denotes the relation “heavier
than” as observed by putting objects on the opposite sides of a balance. In
this case, if we want an additive representation, i.e. u(x ⊕ y) = u(x) + u(y),
then u is unique up to a positive linear transformation. But we can also find
non-additive representations. For example a multiplicative one: we just define
u′ = eu and it is easy to check that u′(x ⊕ y) = u(x)u(y). In Theorem 2, on
the contrary, even if we apply a transformation to the scale, the only possible
representation for ∪ and ∩ are max and min. So the uniqueness of the scale in
Theorem 2 may be weak but the uniqueness of the operations representation
is much stronger than in most measurement-theoretic results.

The problem with this theorem is that the obtained operations are the max
and min and not many fuzzy engineers or fuzzy system designers like these
operations because they do not permit any kind of compensation. Yet in many
applications, some kind of compensation seems desirable. So, it is natural to
look for other conditions that would lead to other operations than the max
and min and it is what by Bilgiç, Norwich and Türksen did. I present this in
the next subsection.
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2.3 The operation ∪ represented by the  Lukasiewicz t-conorm and t-norm

I present here one result (Case 2 of Theorem 7 of Bilgiç and Türksen (1995))
among those found in the different papers by Bilgiç, Norwich and Türksen.
Most of their results are very similar to this one or are generalizations of this
one. But all share the same essential characteristic : Archimedeanness. This
will be of some interest in our discussion. Here are the conditions used by
Bilgiç and Türksen.

A 7 Weak ∪-Associativity. For all A, B, C in F ,

A ∪ (B ∪ C) ∼x (A ∪B) ∪ C.

A 8 Weak ∪-Monotonicity. For all A, B, C in F ,

A %x B ⇒ A ∪ C %x B ∪ C and C ∪ A %x C ∪B.

A 9 ∪-Solvability. For all A, B in F such that A �x B, there exists C such
that A ∼x B ∪ C.

A 10 ∪-Positivity. For all A, B in F , A ∪B %x A, B.

A 11 ∪-Archimedeanness. For all A, B in F ,

if
n⋃

i=1

A ≺x B for all n, then A is an identity for ∪,

that is A ∪ C ∼x C for all C in F .

A 12 ∪-Homogeneity. For all A, B, C in F ,

A %x B ⇔ A ∪ C %x B ∪ C ⇔ C ∪ A %x C ∪B.

Note that ∪-Homogeneity implies the absence of a maximal element in F .
It can also be shown (Fuchs, 1963, Lemma C, p.163) that, if ∪-Homogeneity
is not satisfied, then there is a maximal element u in F in the sense that
u % x, ∀x ∈ F and ∃ y ∈ F : u � y.

The representation theorem is then:

Theorem 3 Consider the structure 〈F , %x,∪〉 where F is closed under ∪
and the relation %x on F satisfies Weak Order (A1). If the structure satisfies
Weak ∪-Associativity (A7), Weak ∪-Monotonicity (A8), ∪-Solvability (A9),
∪-Positivity (A10) and ∪-Archimedeanness (A11) but NOT ∪-Homogeneity
(A12), then there exists a mapping ηx from F into [0, 1] such that
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( i) ηx(A) ≥ ηx(B) iff A %x B,
( ii) ηx(A ∪B) = min(1, ηx(A) + ηx(B)).

Some comments are now in order.

(1) Theorem 3 is in fact not exactly Case 2 of Theorem 7 in Bilgiç and
Türksen (1995) but Case P1 of Theorem 2 in (Fuchs, 1963, p.165), which
was originally proved in Hölder (1901). We do so because the theorem
presented in Bilgiç and Türksen (1995) is not completely correct: they
also cite Fuchs (1963) as their source but they omitted Positivity and
Closedness.

(2) There is another error (or at least ambiguity) in Theorem 7 of Bilgiç
and Türksen (1995). They claim that the obtained representation is on
an absolute scale. It is indeed so if we impose that the representation
be in [0, 1] but we have no good reason to impose that. If we want to
obtain an additive representation (this is the essence of Theorem 3), then
the value 0 plays a special role but the value 1 can be replaced by any
other positive number. So, the representation obtained in Theorem 3
can be multiplied by any positive real number α and we obtain then a
representation in [0, α]. The algebraic operation corresponding to ∪ is
then min(α, ηx(A) + ηx(B)). The representation obtained in Theorem 3
is therefore on a ratio scale.

(3) The Archimedan condition looks very sensible in many different contexts
but, here, it is completely inappropriate because ∪ is necessarily an idem-
potent operation, i.e. A ∪ A ∼x A, as shown in the following lines. We
can expect some experimental violations of idempotency; for example,
because of the limited cognitive abilities of the subjects, I would not be
surprised if a subject would say

(A ∪ (B ∩ C)) ∪ (A ∪ (B ∩ C)) 6∼x (A ∪ (B ∩ C)).

Such a statement is too complex. But if x is a person 1.95m tall, A=
small and B= tall, then it is almost certain that a subject will say “the
membership of x in the set small or small is the same as in the set small.”
In other words,

A ∪ A ∼x A.

Similarly, it is extremely unlikely that a subject says

A ∪ A ∪ A ∪ . . . ∪ A %x B.

But if we want to empirically validate Theorem 3, we precisely need to
observe such statements. These arguments show that Theorem 3, even
if it is correct, cannot be applied to the measurement of membership
degrees

(4) Bilgiç and Türksen (1995, p.21) give a wrong interpretation of the Archimedean
condition. I quote them, with slightly different notations.
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Let A %x B stand for “John is funnier than he is bright.” Archimedean
axiom asserts that there should be a finite amount of “brightness”
which, when attributed to John, makes John brighter than he is funny.

This interpretation is misleading. The Archimedean condition doesn’t say
anything about some changes in John or in x (the symbol that stands for
John). It is only about the membership of John in different sets, one of
which is an arbitrary long union of A with itself.

(5) It is probably possible to prove a similar theorem using another Archimedean
axiom, using a standard sequence of different sets instead of a series of
unions of A with itself. But this would not solve the problem: the obtained
representation would still violate idempotency and this is not realistic.

(6) In the axiomatic papers about t-norms and t-conorms, idempotency is not
always assumed (S(a, a) = a). Very often, instead, Archimedeannness is
assumed (S(a, a) > a). But in that literature, a is a membership degree
or a truth value and, when we consider S(a, a), the two a’s can be two
identical membership degrees in two different fuzzy sets. Therefore, it is
not completely unplausible that S(a, a) > a.

In the context of measurement, things are different: A∪A is the union
of A with itself. This is why idempotency is unescapable and, therefore,
there is no hope of obtaining the  Lukasiewicz t-conorm as a representation
for ∪, in the framework of measurement theory, even with different (but
sensible) axioms.

We now turn to a different problem.

3 The membership of several objects in several sets, in presence
of a union and an intersection 〈F ×X, %,∪,∩〉

Suppose we are interested not only by the membership of x in A, B, . . . but
also by the membership of y, z, . . . in these different sets. Let X = {x, y, z, . . .}
be the set of all objects x for which it is makes sense to consider a relation %x

on F . We can then consider different structures similar to those of Section 2,
one for each element in X : 〈F , %x,∪,∩〉, 〈F , %y,∪,∩〉, 〈F , %z,∪,∩〉,. . .

Under the conditions of Theorem 2, we then know that there is an ordinal
representation ηx, ηy, ηz, . . . for each structure but each representation is in-
dependent of the other ones. It is therefore meaningless to make comparisons
such as ηx(A) ≥ ηy(B) or even ηx(A) ≥ ηy(A). They do not make sense because
we compare numbers that are on independent scales. If we want to make such
comparisons, we then need a richer structure. Bollmann-Sdorra et al. (1993)
propose to use the following structure : 〈F ×X, %,∪,∩〉. The relation % is on
F ×X and the statement (A, x) % (B, y) is interpreted as “x belongs at least
as much to A as y belongs to B.”

10



From the relation % we can easily derive the relations %A and %x by means
of the following equivalences :

x %A y ⇔ (A, x) % (A, y) and (1)

A %x B ⇔ (A, x) % (B, x). (2)

Obiously, if % is a weak order, then %A and %x are weak orders for all x
in X and all A in F . As previously mentioned, imposing the conditions of
Theorem 2 on each structure 〈F , %x,∪,∩〉 is not enough to guarantee the
existence of a representation for 〈F ×X, %,∪,∩〉. One additional condition is
needed : the relation % must be a weak order.

Theorem 4 Consider the structure 〈F ×X, %,∪,∩〉 where the relation % on
F ×X satisfies Weak Order (A1), X is countable and F is a countable non-
empty set closed under ∪ and ∩. Each structure 〈F , %x,∪,∩〉 derived according
to (2) satisfies Order of Operations (A2), Weak Commutativity (A3), Weak
Associativity (A4), Weak Absorption (A5) and Weak Monotonicity (A6) if
and only if there exists µ : F ×X 7→ R : (A, x) 7→ µA(x) such that

( i) µA(x) ≥ µB(y) iff (A, x) % (B, y),
( ii) µA∪B(x) = max(µA(x), µB(x)),
( iii) µA∩B(x) = min(µA(x), µB(x)).

Moreover, the representation is unique up to a strictly increasing transforma-
tion. So, there is also a representation in [0, 1].

The statement of this theorem is simpler but perfectly equivalent to Theorem 3
in Bollmann-Sdorra et al. (1993). Under the conditions of Theorem 4, it is
perfectly licit to make comparisons of membership degrees across sets and
elements and we can represent the union and intersection by max and min.

4 Difference measurement

In Sections 2 and 3, we have seen that measuring the membership degrees on
an ordinal scale does not imply that we may use the max and min operations
to represent ∪ and ∩. Some additional conditions are needed: these conditions
are those of Theorem 2 and 4. In this section, we will see that measuring the
membership degrees on an interval scale does not entail the use of “cardi-
nal” operators (operators that use the cardinal properties of the membership
degrees).
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4.1 The membership of several objects in one set: 〈X, %∗
A〉

We present here a result found in Norwich and Türksen (1982) and Türksen
(1991). It can also be found in Krantz et al. (1971, p.151), under the heading
Algebraic Difference Measurement.

The relation %∗
A is on X2 and the statement (x, y) %∗

A (w, z) is interpreted as
“the difference between the membership of x and y in A is at least as large
as the difference between the membership of w and z in A.” In the following
definition, we summarize the axioms that we will use in our first representation
theorem for a difference measurement structure.

Definition 1 The structure 〈S, ≥̇〉 is an algebraic difference structure iff, for
all x, y, z, w, x′, y′, and z′ in S and all sequences x1, x2, . . . , xi, . . . in S, the
following five axioms are satisfied :

(1) The relation ≥̇ on S2 satisfies Weak Order (A1).
(2) If (x, y) ≥̇ (w, z), then (z, w) ≥̇ (y, x).
(3) If (x, y) ≥̇ (x′, y′) and (y, z) ≥̇ (y′, z′), then (x, z) ≥̇ (x′, z′).
(4) If (x, y) ≥̇ (z, w) ≥̇ (x, x), then there exist w′, w′′ in S such that (x, w′) =̇ (z, w) =̇ (w′′, y).
(5) If (xi+1, xi) =̇ (x2, x1) for all xi+1, xi in a sequence, if it is not the

case that (x2, x1) =̇ (x1, x1) and if there exists w′, w′′ ∈ S such that
(w′, w′′) >̇ (xi, x1) >̇ (w′′, w′) for all xi in the sequence (we say x1, x2, . . . , xi, . . .
is a strictly bounded standard sequence), then the sequence is finite.

Theorem 5 Suppose the structure 〈X, %∗
A〉 is an algebraic difference struc-

ture. Then, there is a real-valued mapping µA such that

µA(x)− µA(y) ≥ µA(w)− µA(z) iff (x, y) %∗
A (w, z).

Moreover, the representation is unique up to a positive affine transformation,
i.e. µ′A = αµA + β is also a representation.
If we suppose in addition that there are u and e in X such that (u, e) %∗

A

(x, y), ∀x, y ∈ X, then there is a representation in [0, 1], i.e. µA(x) ∈ [0, 1], ∀x ∈
X.

In other words, under the conditions of this theorem, we can measure the
membership on an interval scale. But it measures the membership in one
single set A. If we want to measure the membership in B, we have to consider
another algebraic difference structure and measure it independently of the
structure related to A. So, we get two completely unrelated representations
and this theorem does not tell anything about the representation of ∪ and
∩. Therefore, the use of any t-conorm such as max,  Lukasiewicz, probabilistic
sum, . . . is unsupported by this theorem.
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We now turn to a richer structure, in order to measure simultaneously the
membership in several sets.

4.2 The membership of several objects in several sets: 〈F ×X, %∗〉

The relation %∗ is on (F ×X)2 and the statement (A, x, B, y) %∗ (C, w, D, z)
is interpreted as “the difference between the membership of x in A and y in B
is larger than the difference between the membership of w in C and z in D.”
Note that such statements are very complex from a cognitive viewpoint and
it is not obvious that a subject can make such statements in a consistent way.
But we may not a priori reject this measurement technique without conducting
first an empirical study.

Theorem 6 Suppose the structure 〈F × X, %∗〉 is an algebraic difference
structure. Then, there is a mapping µ : F × X 7→ R : (A, x) 7→ µA(x) such
that

µA(x)− µB(y) ≥ µC(w)− µD(z)

iff (A, x, B, y) %∗ (C, w, D, z).

Moreover, the representation is unique up to a positive affine transformation,
i.e. µ′ = αµ + β is also a representation.
If we suppose in addition that there are u, e in X and A, B in F such that
(A, u, B, e) %∗ (C, x, D, y), for all x, y ∈ X and all C, D ∈ F , then there is a
representation in [0, 1], i.e. µA(x) ∈ [0, 1], for all x ∈ X and all A ∈ F .

So, we now have a common interval scale for the membership degrees of several
objects in several sets. But, because this theorem does not tell anything about
∪ and ∩, we still do not know if we can obtain a numerical representation for
these two empirical operations.

Those who are familiar with meaningfulness theory (e.g. Roberts, 1979) might
now say that we can use a t-conorm like the  Lukasiewicz one because µ is mea-
sured on one common interval scale for all sets. In some sense, this is right : a
statement like “min(1, µA(x)+µB(x)) > min(1, µA(y)+µB(y))” is meaningful.
If it is true, then it remains true after a positive affine transformation. But the
problem is that, even if it is meaningful, we do not know if the  Lukasiewicz
t-conorm models what we want to model, i.e. the union of two sets. Meaning-
fulness theory doesn’t say a word about this.

In order to obtain a numerical representation for ∪ and ∩, we still need a
richer structure.
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4.3 The membership of several objects in several sets, in presence of a inter-
section and an intersection 〈F ×X, %∗,∪,∩〉

From the relation %∗, it is possible to derive the relation % by means of

(A, x) % (B, y) iff (A, x, B, y) %∗ (A, x, A, x). (3)

It is also possible to derive %x from % by means of (2). In the next theorem, I
use the interval representation of Theorem 6 and I add some conditions under
which there is a representation for ∪ and ∩.

Theorem 7 Suppose the structure 〈F × X, %∗〉 is an algebraic difference
structure. Suppose also that the relation %x derived according to (2) and (3)
satisfies Order of Operations (A2), Weak Commutativity (A3), Weak Asso-
ciativity (A4), Weak Absorption (A5) and Weak Monotonicity (A6) for all
x ∈ X. Then, there is a mapping µ : F × X 7→ R : (A, x) 7→ µA(x) as in
Theorem 6 and such that

( i) µA∪B(x) = max(µA(x), µB(x)),
( ii) µA∩B(x) = min(µA(x), µB(x)).

Moreover, the representation is unique up to a positive affine transformation,
i.e. µ′ = αµ + β is also a representation.
If we suppose in addition that there are u, e in X and A, B in F such that
(A, u, B, e) %∗ (C, x, D, y), for all x, y ∈ X and all C, D ∈ F , then there is a
representation in [0, 1], i.e. µA(x) ∈ [0, 1], for all x ∈ X and all A ∈ F .

In the proof of this theorem, we will need a variant of Theorem 4 for sets that
are possibly uncountable. I present this variant as a lemma.

Lemma 1 Consider the structure 〈F ×X, %,∪,∩〉 where F is closed under ∪
and ∩. Suppose that % has a representation µ : F ×X 7→ R : (A, x) 7→ µA(x)
such that

µA(x) ≥ µB(y) iff (A, x) % (B, y).

Each structure 〈F , %x,∪,∩〉 derived according to (2) satisfies Order of Op-
erations (A2), Weak Commutativity (A3), Weak Associativity (A4), Weak
Absorption (A5) and Weak Monotonicity (A6) if and only if µ is such that

( i) µA∪B(x) = max(µA(x), µB(x)),
( ii) µA∩B(x) = min(µA(x), µB(x)).

Moreover, the representation is unique up to a strictly increasing transforma-
tion.

The proof of this lemma is identical, except for the first few lines, to the proof
of Theorem 4 given by Bollmann-Sdorra et al. (1993). I give it for the sake of
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completeness.

Proof of Lemma 1. I only prove the only if part. The relation % has a
numerical representation µ; it is therefore a weak order. By construction, each
relation %x is also a weak order and can also be represented by µ. Let us now
look at some properties of %x. By Weak Absorption,

A ∼x A ∪ (A ∩B).

By Weak Monotonicity,

A ∩ A ∼x A ∩ (A ∪ (A ∩B)) ∼x A ∩ (A ∪ C),

with C = A ∩ B. By Weak Absorption again and by Transitivity, we obtain
A∩A ∼x A, i.e. the Idempotence of ∩. Similarly, we can prove the Idempotence
of ∪.

By Order of Operations, A∪B %x A∩B. Applying then Weak Monotonicity,
Weak Associativity, Transitivity, Weak Absorption and Idempotence of ∩, we
get

A ∩ (A ∪B) %x A ∩ (A ∩B)

⇔ A ∩ (A ∪B) %x (A ∩ A) ∩B

⇔ A %x A ∩B. (4)

We can similarly prove that A ∪ B %x A. Suppose now that A %x B. From
Idempotence of ∩, (4) and Weak Monotonicity, we find

B %x A ∩B %x B ∩B ∼x B.

So,
A %x B ⇒ A ∩B ∼x B.

We can prove in the same way that

A %x B ⇒ A ∪B ∼x A.

We are now close to the end. We have already proven that % and %x can be
represented by µ. The only thing we still must prove is (i) and (ii). Let us
prove (i). Without loss of generality, consider A and B such that A %x B. We
know that A∪B ∼x A. So, µA∪B(x) = µA(x) = max(µA(x), µB(x)). The same
resoning holds for (ii). 2

Proof of Theorem 7. Because 〈F × X, %∗〉 is an algebraic difference
structure, we have a representation as in Theorem 6, unique up to a positive
affine transformation. Let µ denote this representation. By construction, %
can also be represented by µ in the following way:

(A, x) % (B, y) ⇔ µA(x) ≥ µB(y).
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This representation can be used in Lemma 1, and the proof is complete. The
uniqueness follows from Theorem 6. 2

Finally, we have a numerical representation for the membership degrees, the
union and the intersection but the numerical operations associated to ∪ and ∩
are the max and min operations, although the representation is on an interval
scale. Note that, even with this interval scale, there is no hope to obtain the
 Lukasiewicz t-norm or any non-idempotent t-norm.

Another remark concerns the maximal and minimal elements u and e : u can
be interpreted as an element that fully belongs to A and e as an element that
does not belong at all to B. The membership degree of u in A is 1 with the
representation of Theorem 7 in [0, 1]. The membership degree of e in B is
0 with the same representation. Suppose now there is another element that
fully belongs to A (or does not belong at all to B); its membership degree in A
(resp. in B) is necessarily 1 (resp. 0). But consider now an element that does
not belong at all to A or C, D, . . . Its membership degree in that set needs
not be 0. Similarly, an element that fully belongs to B, C, . . . needs not have
a membership degree in that set equal to 1.

In the following theorem, we give (without proof) the conditions guaranteeing
that the membership degree is 1 (resp. 0) for an element fully belonging to a
set (resp. not belonging at all to a set). Let uA denote an element that fully
belongs to A. Similarly, eA is an element that does not belong at all to A.

Theorem 8 Suppose all conditions of Theorem 7 are satisfied, including the
existence of u and e. There is a representation µ as in Theorem 7 and such that
µA(uA) = 1 and µA(eA) = 0 for all A ∈ F if and only if for all A, B, C ∈ F
we have (A, uA, A, eA) %∗ (B, uB, C, eC).

5 When there is a complementation operation

The complementation is an important unary operation in different fuzzy sets
applications. It is often modelled by the simple relation

µ¬A(x) = 1− µA(x)

where ¬A denotes the complement of the set A. We call this the classical
complementation. Sometimes, the complementation is the same as the nega-
tion operation but sometimes it is not, depending on the semantics. In this
paper, we focus on the complementation operation, whether or not it is also
a negation.
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Just like it is important to know if the union or intersection can be modelled by
some arithmetic operation, it is also important to know if the complementation
is correctly modelled by the classical complementation or some other equation.
Or we might want to know how to measure the membership degrees in order
to be allowed to use the classical complementation. One might also wonder if
it is right to use the classical complementation if the membership degrees are
measured on an ordinal scale. All these issues are addressed in this section.

5.1 Basic result. The membership of one object in several sets, in presence
of a complementation: 〈F , %x,¬〉

Definition 2 The structure 〈F , %x,¬〉 where F is closed under ¬ and %x is
a weak order, is a complementation structure iff

A 13 Reversal. For all A, B,∈ F , A %x B ⇔ ¬B %x ¬A.

A 14 Involution. For all A in F , ¬¬A ∼x A.

Remark that Involution does not impose that ¬¬A = A. An expert might
consider A and ¬¬A as two different sets but nevertheless say that the mem-
bership of x in A is the same as in ¬¬A. The next theorem plays a central
role for the measurement of complementation structures.

Theorem 9 Let F be countable. The structure 〈F , %x,¬〉 is a complementa-
tion structure iff there exists ηx : F 7→ [0, 1] such that

• A %x B ⇔ ηx(A) ≥ ηx(B). (5)
• ηx(¬A) = 1− ηx(A). (6)

Another mapping η′x : F 7→ R satisfies (5) and (6) iff η′x = γ(ηx), where
γ : [0, 1] 7→ R is strictly increasing and symmetric around 0.5, i.e. such that

γ(x)− γ(0.5) = γ(0.5)− γ(1− x).

The representation is then in [γ(0), γ(1)] and the complementation is repre-
sented by γ(0) + γ(1)− x.

Proof. We first prove the “if” part.

• Completeness. For all A, B, ηx(A) ≥ ηx(B) or ηx(B) ≥ ηx(A). Therefore,
A %x B or B %x A.

• Transitivity. Same reasoning as for completeness.
• Reversal. A %x B ⇒ ηx(A) ≥ ηx(B) ⇒ 1− ηx(A) ≤ 1− ηx(B) ⇒ ηx(¬A) ≤

ηx(¬B) ⇒ ¬B %x ¬A.
• Involution. ηx(¬¬A) = 1− ηx(¬A) = ηx(A) ⇒ ¬¬A ∼x A.
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We now turn to the “only if” part. We do this in a constructive way, using
some pseudo-code.

Take any A in F and call it F1. By Completeness, three cases are possible:

IF F1 �x ¬F1, THEN fix ηx(F1) = 0.75 and ηx(¬F1) = 0.25.

IF ¬F1 �x F1, THEN fix ηx(¬F1) = 0.75 and ηx(F1) = 0.25.

IF F1 ∼x ¬F1, THEN fix ηx(F1) = 0.5 = ηx(¬F1).

Fix k = 2.

(1) Take any A in F , A 6= F1, . . . , Fk−1,¬F1, . . . ,¬Fk−1. Call it Fk. By Complete-
ness, three cases are possible:

IF Fk ∼x ¬Fk, THEN fix ηx(Fk) = ηx(¬Fk) = 0.5.

IF Fk �x ¬Fk, THEN let

u+(Fk) = min
j<k

(ηx(Fj) : Fj %x Fk; ηx(¬Fj) : ¬Fj %x Fk; 1).

Let also

l+(Fk) = maxj<k(ηx(Fj) : Fj -x Fk; ηx(¬Fj) : ¬Fj -x Fk; 0.5).

Fix then

ηx(Fk) =
u+(Fk) + l+(Fk)

2
and ηx(¬Fk) = 1− ηx(Fk).

IF Fk ≺x ¬Fk, THEN let

u−(Fk) = min
j<k

(ηx(Fj) : Fj %x Fk; ηx(¬Fj) : ¬Fj %x Fk; 0.5).

Let also

l−(Fk) = maxj<k(ηx(Fj) : Fj -x Fk; ηx(¬Fj) : ¬Fj -x Fk; 0).

Fix then

ηx(Fk) =
u−(Fk) + l−(Fk)

2
and ηx(¬Fk) = 1− ηx(Fk).

IF {Fi,¬Fi, i = 1 . . . k} = F , THEN STOP
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ELSE k := k + 1 and GOTO (1).

Because F is countable, it is clear that every time we want to fix a value ηx(Fi),
this is possible. Remark also that, by Involution, ηx is well defined. Indeed, if
Fk = ¬A, we fix ηx(¬A) and ηx(¬¬A) at step k. If Fl = A (l > k), then we
fix ηx(A) at step l but also ηx(¬A). But this value has already been fixed at
step k. So, these two values must be identical and, thanks to Involution, they
are, because u+(A) = l+(A) = ηx(¬¬A) or u−(A) = l−(A) = ηx(¬¬A).

At each step i, we fix ηx(Fi) between u+(Fi) and l+(Fi) (or u−(Fi) and l−(Fi)),
i.e. between the values already given to larger sets (w.r.t. %x) and smaller sets
in previous steps. Because %x is a weak order, we always have u+(Fi) ≥ l+(Fi)
and u−(Fi) ≥ l−(Fi) and so, A %x B implies ηx(A) ≥ ηx(B). Therefore, (5) is
satisfied. By construction, when we fix ηx(¬A) = 1− ηx(A), we are sure that
the obtained representation satisfies (6) and, thanks to Reversal, we are also
sure that it satisfies (5). 2

It is time to make some comments about this theorem.

• The representation obtained in Theorem 9 is not on an ordinal scale nor on
an interval scale. It is on a scale that we could call an ordinal scale with
a fixed point. This fixed point is 0.5 and corresponds to a set A such that
A ∼x ¬A.

• It is worth remarking that although the membership degree ηx is mea-
sured on an almost ordinal scale, we can model the complementation by an
arithmetic operation involving a subtraction even if the subtraction is often
thought of as an operation that can be used only with interval and ratio
scales. This is of great importance in possibility theory (e.g. Dubois and
Prade, 1988), where the possibility and necessity of a set is considered as
ordinal and where the operation 1− a is used for transforming a possibility
into a necessity and vice versa.

• Note that the axioms of this theorem do not preclude other representations
for the complementation. If the axioms of this theorem are satisfied, then
any involutive complementation can be used, provided that the correspond-
ing representation is used. If the membership degrees are measured using
the construction presented in the proof of Theorem 9, then the classical
complementation must be used.

• Because the representation obtained in Theorem 9 is based only on one
relation %x, it does not make sense to compare two membership degrees of
two different objects. In other words, any statement involving ηx and ηy,
with x and y distinct, is meaningless.
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5.2 The membership of one object in several sets, in presence of a comple-
mentation, a union and an intersection 〈F , %x,∪,∩,¬〉

Now, we look at what happens when we have three empirical operations : the
union and the intersection, as in Section 3 and the complementation, as in the
previous subsection. Because the operations ∪,∩ and ¬ are related by the De
Morgan law in classical set theory, it seems interesting to introduce the De
Morgan law in our context. We therefore state the De Morgan law formally
and another condition that will prove interesting in our analysis.

A 15 De Morgan law. For all A, B,∈ F ,¬(¬A ∪ ¬B) ∼x A ∩B.

A 16 Equivalence Conservation. For all A, B,∈ F , A ∼x B ⇔ ¬A ∼x ¬B.

Note that Reversal implies Equivalence Conservation but the converse is not
true.

Theorem 10 Consider the structure 〈F , %x,∪,∩,¬〉 where %x is a weak or-
der and F is a countable non-empty set closed under ∪,∩ and ¬. Suppose this
structure satisfies Order of Operations (A2), Weak Commutativity (A3), Weak
Associativity (A4), Weak Absorption (A5) and Weak Monotonicity (A6). Then
the following three statements are equivalent.

(1) The structure 〈F , %x,¬〉 satisfies Reversal (A13) and Involution (A14).
(2) The De Morgan law (A15) holds and the structure 〈F , %x,¬〉 satisfies

Equivalence Conservation (A16).
(3) There exists ηx : F 7→ [0, 1] : A 7→ ηx(A) such that

(i) ηx(A) ≥ ηx(B) iff A %x B,
(ii) ηx(A ∪B) = max(ηx(A), ηx(B)),
(iii) ηx(A ∩B) = min(ηx(A), ηx(B)).
(iv) ηx(¬A) = 1− ηx(A).
Moreover, another mapping η′x : F 7→ R satisfies (i), (ii), (iii) and (iv)
iff η′x = γ(ηx), where γ : [0, 1] 7→ R is strictly increasing and symmetric
around 0.5.

Proof. (1 ⇒ 3) Using Theorem 2, we get a representation of %x, ∪ and ∩
which is unique up to a strictly increasing transformation. Using Theorem 9,
we get a representation of %x and ¬ which is slightly more restricted : it has
a fixed point. Both representations are obviously compatible because they
both represent %x. So, we can choose the more restricted one as our unique
representation.

(3 ⇒ 2) Obvious.
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(2 ⇒ 1) By Theorem 2, we know that ∪ and ∩ are represented by max
and min. They are therefore idempotent. Assume now the De Morgan law.
Then ¬(¬A ∪ ¬A) ∼x A ∩ A. So, by Idempotence, ¬(¬A) ∼x A. This proves
Involution.

Suppose now it does not satisfy Reversal. Then, there exists A, B : A �x B
and ¬A �x ¬B. Because ∩ is represented by min, A∩B ∼x B. By Equivalence
Conservation, ¬(A∩B) ∼x ¬B. Using the min, we have ¬A∪¬B ∼x ¬A. Using
the De Morgan law and Equivalence Conservation, this implies ¬(A ∩ B) ∼x

¬A. So, by transitivity, ¬A ∼x ¬B. This contradicts what we obtained earlier
and shows that Reversal must hold. Note that the case A �x B, ¬A ∼x ¬B
is trivially ruled out by Equivalence Conservation. 2

Remark that Theorem 10 involves only one relation %x. It is therefore mean-
ingless to compare membership degrees of different objects. The only licit com-
parisons can only involve x. In the following theorem we address the problem
of measuring the membership degrees of different objects simultaneously. We
therefore modify Theorem 4 in order to include the complementation in the
structure. Because the scales that we get from each relation %x are indepen-
dent and because they are not purely ordinal (they have a fixed point), it is
not necessarily possible to make them coincide. We therefore introduce a new
axiom.

A 17 Global Reversal. For all A, B ∈ F and all x, y ∈ X, (A, x) % (B, y) ⇔
(¬B, y) % (¬A, x).

Theorem 11 Consider the structure 〈F × X, %,∪,∩,¬〉 where % is a weak
order and F is a countable non-empty set closed under ∪, ∩ and ¬. Let %x be
derived from % according to (2). Suppose that each structure 〈F , %x,∪,∩,¬〉
satisfies Order of Operations (A2), Weak Commutativity (A3), Weak Associa-
tivity (A4), Weak Absorption (A5), Weak Monotonicity (A6) and Involution
(A14). Then, the structure 〈F × X, %,¬〉 satisfies Global Reversal (A17) if
and only if there exists µ : F ×X 7→ R : (A, x) 7→ µA(x) such that

(i) µA(x) ≥ µB(y) iff (A, x) % (B, y),
(ii) µA∪B(x) = max(µA(x), µB(x)),
(iii) µA∩B(x) = min(µA(x), µB(x)).
(iv) µ¬A(x) = 1− (µA(x)).

Moreover, another mapping η′x : F 7→ R satisfies (i), (ii), (iii) and (iv) iff
η′x = γ(ηx), where γ : [0, 1] 7→ R is strictly increasing and symmetric around
0.5.

Proof. Using Theorem 10, we obtain ηx, ηy, . . . such that A %x B ⇔
ηx(A) ≥ ηx(B) and ηx(¬A) = 1− ηx(A). Let φx, φy, φz, . . . be [0, 1] to [0, 1] in-
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creasing mappings such that φx(0.5) = 0.5 and φx(u) + φx(1−u) = 1,∀x ∈ X
and ∀u ∈ [0, 1]. Because of Theorem 10, we know that φx(ηx) is also a repre-
sentation of 〈F , %x,∪,∩,¬〉 and we are free to choose any form for φx on the
interval [0, 0.5]. So, it is possible to choose φo

x, φ
o
y, φ

o
z, . . . such that

(A, x) % (B, y) ⇔ φo

x(ηx(A)) ≥ φo

y(ηy(B))

for all A, B in F and all x, y in X such that ηx(A) ≤ 0.5 and ηy(B) ≤ 0.5.
Because we have now specified φo

x for all values smaller than 0.5 and because
φo

x(u) + φo
x(1 − u) = 1, the mapping φo

x is completely specified, for all values
between 0 and 1. We must therefore check if φo

x(ηx) is also a representation
for the pairs (A, x) such that ηx(A) > 0.5. In other words, we must prove that

(A, x) % (B, y) ⇔ φo

x(ηx(A)) ≥ φo

y(ηy(B)) when ηx(A) > 0.5, ηy(B) > 0.5.

Because of the properties of φo
x and ηx, we know that

(A, x) % (B, y)⇔ (¬B, y) % (¬A, x) (Global reversal)

⇔ 0.5 ≥ φo

y(ηy(¬B)) ≥ φo

x(ηx(¬A))

⇔φo

x(ηx(A)) ≥ φo

y(ηy(B)).

When ηx(A) > 0.5 and ηy(B) ≤ 0.5, or the converse, it is evident that

(A, x) % (B, y) ⇔ φo

x(ηx(A)) ≥ φo

y(ηy(B)).

If we now define µA(x) = φo
x(ηx(A)), the proof is complete. 2

The following example shows why Reversal is not sufficient in the previous
theorem and why Global Reversal is needed. Let F = {A, B,¬A,¬B}, X =
{x, y}. Let also A∪B = B, A∩B = A, A∪¬B = A, A∩¬B = ¬B,¬A∪B =
B,¬A ∩ B = ¬A,¬A ∪ ¬B = ¬A,¬A ∩ ¬B = ¬B,¬¬A = A,¬¬B = B.
Then F is closed under ∪,∩ and ¬ and the De Morgan law holds. Suppose
moreover that (A, x) � (B, y) � (B, x) � (¬A, y) � (¬B, x) � (A, y) �
(¬A, x) � (¬B, y). Thus, A �x B �x ¬B �x ¬A and B �y ¬A �y A �y ¬B.
So, Reversal holds in %x and %y. It is easy to check that all conditions of
Theorem 11 are satisfied except Global Reversal : we have (B, x) � (¬A, y) and
(¬B, x) � (A, y). This cannot be represented by the mapping µ of Theorem 11.

6 Conclusion

We examined a variety of measurement techniques, with different primitives
and our main conclusion is the following: inside the framework of measurement
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theory, the only t-norm and t-conorm that can represent the intersection and
the union of fuzzy sets are the min and the max because they are the only
idempotent ones. But this does not means that the min and the max are always
good representations: some conditions need to be fulfilled. Otherwise no rep-
resentation might exist. Besides, it seems possible to measure the membership
on ordinal or interval scales. Finally, the complementation can be represented
by “1− ·” even if the membership degrees are not on an interval scale.

The results presented in this paper are theoretical. They give the conditions
under which it is possible to use some measurement technique and obtain some
representation. A second and necessary step in this research is to see which
conditions empirically hold, i.e. which conditions are respected by humans
when they make statements like “x belongs more to A than to B.” It is
only after such an empirical research that we will know which measurement
technique can actually be used when trying to model the expertise of a human.

We did not examine all possible measurement techniques and all kinds of
primitives. For example, we did not examine Stevens’ ratio estimation tech-
nique Stevens (1986). It might be interesting for measuring the membership
on a ratio scale. This will be done in another paper, in preparation. But, even
if this technique proves valuable, it does not change the validity of the results
and the soundness of the conclusions of the present paper.

Another possible direction for future resarch is working with an ordered set
F , with an underlying dimension that we can measure in some way. For ex-
ample, F = {freezing, cold, cool, warm, hot}. The underlying dimension is
here air temperature and we can measure it on a ratio scale. Let X be a
set of different atmospheric conditions that are identical on all dimensions
(humidity, pressure, concentration in CO2, . . . ) except temperature. All these
atmospheric conditions are thus characterized by their temperature t(x). In-
stead of constructing membership functions mapping X into [0, 1], we might
then construct membership functions mapping [0,∞] into [0,1], where [0,∞] is
the set of all possible temperatures, 0 being the absolute zero (-273.15 on the
Celsius scale). All results presented in this paper remain valid for ordered sets
but it might be possible to go further with ordered sets and ordered continua
(as in our example of temperature).
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Verh. Sächs. Ges. Wiss. Leipzig, Math. Phys. Cl. 53, 1–64.
Krantz, D.H., Luce, R.D., Suppes, P., Tversky, A., 1971. Foundations of mea-

surement: Additive and polynomial representations. Academic Press, Lon-
don.

Norwich, A.M., Türksen, I.B., 1982. The fundamental measurement of fuzzi-
ness. In: Yager, R.R. (Ed.), Fuzzy Sets and Possibility Theory : Recent De-
velopments. Pergamon.

Roberts, F., 1979. Measurement theory, with applications to Decision Making,
Utility and the Social Sciences. Addison-Wesley.

Stevens, S.S., 1986. Pshycophysics: introduction to its perceptual, neural and
social prospects. Transaction Books.

Türksen, I.B., 1991. Measurement of membership functions and their acquisi-
tion. Fuzzy Sets and Systems 40, 5–38.

24


