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Abstract

A lot of decision support systems use some kind of aggregation proce-
dure based on the concept of majority, but not always the same one; it can
be simple majority, weak majority or one of the many other kinds of ma-
jority. This paper attempts to present the main variants of majority and
to characterize them in a uniform way. Consequently, it is now easier to
compare different kinds of majority and to understand the dissimilarities
(or similarities) between them. This should help decision analysts willing
to use a majority procedure to choose the right one for their problem and
context.
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1 Introduction

Many aggregation procedures used in multicriteria decision aiding or group de-
cision support are based on some majority concept: for instance, the various
Electre methods [16], Melchior [10], procftn [2], Tactic [19], Vikor [14]
and vip-g [5]. See also, among others, [4, 7, 9, 11, 13] for some recent but un-
named methods. The majority concepts used in these papers are not always the
same: some papers use simple majority, others use absolute majority, weak ma-
jority or other variants of majority. Of course, these various majority concepts
are not equivalent and can sometimes yield very different results. This prompts
some important questions. Do we have good reasons to use different kinds of
majority in Electre, Tactic and vip-g? Wouldn’t Melchior or Vikor work
better with another kind of majority?

Understanding how these majority-based procedures work and what makes
each one different from the others is therefore crucial if we want to use a pro-
cedure that is adequate for the problem we want to handle. That is why we
present in this paper various characterizations of some major majority concepts.

∗I wish to thank Denis Bouyssou for his comments on a previous version of this paper.
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Some of the majority concepts described in this paper have been studied
earlier [1, 3, 8, 12, 17, among others] in the framework of Social Choice Theory,
but most of the time in the context of pairwise elections where a proposition
is opposed to the status quo. In this context, the proposition passes if it has a
majority (of some type); but if the proposition does not have a majority, then
the status quo wins, even if the status quo is not supported by a majority. Con-
sequently, there is always a winner and, sometimes, two (when the proposition
and the status quo are supported by a majority).

In the context of multicriteria decision aiding or group decision support, very
often, there is no status quo: all alternatives play the same role. So, if none
of two alternatives has a majority, they can be declared incomparable. Hence,
the majority procedures that we will study in this paper will often be different
from those previously studied in Social Choice Theory, even if they have some
features in common.

Another difference between the analysis of aggregation procedures in the
context of multicriteria decision aiding and Social Choice Theory is that, in
the latter, abstention is sometimes taken into account [6] while, in multicriteria
decision aiding, abstention is hardly relevant. Indeed, a voter can choose not
to vote; in that case, we have no preference relation for that voter. But, in
multicriteria decision aiding, for each criterion, we always have a preference
relation, even if it is not complete.

In Section 2, we formally define the various majority concepts that are char-
acterized in Section 3 (where the size of the set of criteria is fixed) and 4 (where
the size of the set of criteria is allowed to vary). Section 5 concludes.

2 Notation and definitions

The set of potential criteria is denoted by N = {1, 2, . . .} and the set of al-
ternatives, finite, by X = {x, y, . . .}. The set of criteria that is actually used
is denoted by N = {1, 2, . . . , n}. For each criterion i, we suppose that we
have a complete preference relation on X, denoted by %i. This preference re-
lation is not supposed to have any particular property but completeness; for
instance, it is not necessarily transitive. The asymmetric and symmetric parts
of %i are denoted by �i and ∼i. A profile of size n is defined as a n-tuple
p = (%1,%2, . . . ,%n). It can be used to represent the preferences of a decision-
maker according to n criteria (or the preferences of n decision-makers). The set
of all complete binary relations on X is denoted by C. The set of all possible
profiles of size n is therefore the n-fold cartesian product Cn. The set of all bi-
nary relations on X is denoted by R. We define a n-aggregation procedure (or
just n-procedure) as a mapping %

n

: Cn → R : p → %
n

(p). An aggregation pro-
cedure (or just procedure) is an infinite collection of n-aggregation procedures,
for n ∈ N. It is denoted by %= {%1,%2, . . .}. The asymmetric and symmetric
parts of %

n

(p) are denoted by �n(p) and ∼n(p). We now present some of the most
important variants of majority. Because there are no standard names for ag-
gregation procedures, I use my own terminology but I nevertheless try to follow
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some tradition.

Weak majority
x%

n

(p)y ⇔ #{i ∈ N : x %i y} ≥ dn/2e,

with dte the smallest integer that is not smaller than t (upwards rounding).
This n-procedure can be presented in a different but perfectly equivalent
way [8]:

x�n(p)y ⇔ #{i ∈ N : x �i y} > n/2,

with %
n

(p) complete for all p. It is sometimes called absolute majority.

Qualified weak majority

x%
n

(p)y ⇔ #{i ∈ N : x %i y} ≥ δn,

with δn integer and 0 < δn ≤ dn/2e. An equivalent definition is:

x�n(p)y ⇔ #{i ∈ N : x �i y} > δn,

with %
n

(p) complete for all p, δn integer, bn/2c ≤ δn < n and btc the
largest integer that is not larger than t (downwards rounding). This is
closely related to what [8] calls absolute special majority (in the context of
pairwise elections with a status quo). It is also sometimes called qualified
majority.

Electre I majority

x%
n

(p)y ⇔ #{i ∈ N : x %i y} ≥ δn,

with δn integer and dn/2e ≤ δn ≤ n. Note that with this n-procedure,
there can be two alternatives x and y such that NOT x%

n

(p)y and NOT
y%

n

(p)x. We then say that x and y are incomparable in the profile p. We
call this n-procedure ‘Electre I majority’ because, if we omit the weights
and the vetoes, it is the one used in Electre I [15].

Generalized qualified weak majority

x%
n

(p)y ⇔ #{i ∈ N : x %i y} ≥ δn,

with δn integer and 0 < δn ≤ n. Note that Electre I, weak majority
and qualified weak majority are special cases of generalized qualified weak
majority.

Simple majority

x%
n

(p)y ⇔ #{i ∈ N : x %i y} ≥ #{i ∈ N : y %i x}.

This n-procedure is sometimes presented in a different but perfectly equiv-
alent way [8]:

x%
n

(p)y ⇔ #{i ∈ N : x �i y} ≥ #{i ∈ N : y �i x}.
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a-Qualified simple majority

x%
n

(p)y ⇔ #{i ∈ N : x %i y} ≥ #{i ∈ N : y %i x}+ δn,

with δn integer and −n < δn ≤ n. We call this procedure a-qualified
simple majority to make a distinction with another generalization of simple
majority that we present in the next paragraph. The “a” in “a-qualified
simple majority” stands for additive, because the threshold δn is added.

m-Qualified simple majority

x%
n

(p)y ⇔ #{i ∈ N : x %i y} ≥ δn#{i ∈ N : y %i x},

with 0 < δn ≤ n and kδn in N for some k in N . The “m” in “m-qualified
simple majority” stands for multiplicative, because the threshold δn is
multiplied.

Tactic majority

x�n(p)y ⇔ #{i ∈ N : x �i y} > δn#{i ∈ N : y �i x},

with %
n

(p) asymmetric for all p, 1 ≤ δn < n and kδn in N for some k in
N . We call this n-procedure ‘Tactic majority’ because, if we omit the
weights and the vetoes, it is the one used in Tactic [19]. Remark that
we cannot generalize this n-procedure by considering thresholds δ smaller
than 1. It would lead to the impossible conclusion that x�n(p)x, for any
x and any profile p. We therefore introduce a slightly modified version of
Tactic majority in the next paragraph.

r-Tactic majority

x%
n

(p)y ⇔ #{i ∈ N : x �i y} ≥ δn#{i ∈ N : y �i x},

with 1 ≤ δn ≤ n and kδn in N for some k in N . With this n-procedure,
we always have x∼n(p)y when x ∼i y for all criteria. In particular, x∼n(p)x
(reflexivity). It is the only difference with Tactic. For any x 6= y and
δn > 1, both n-procedures always yield the same result.

Generalized r-Tactic majority

x%
n

(p)y ⇔ #{i ∈ N : x �i y} ≥ δn#{i ∈ N : y �i x},

with 0 < δn ≤ n and kδn in N for some k in N . This is closely related to
what [8] calls relative special majority (in the context of pairwise elections
with a status quo).

The reason why we impose that δn be integer or that kδn be in N for some
k ∈ N is that, if we do not, then several values of δn can correspond to the same
n-procedure. This would complicate the proofs. For example, the qualified weak
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majority for n = 10 and a threshold equal to 3.2 is equivalent to the qualified
weak majority for n = 10 and a threshold equal to 4.

We now present two conditions that are clearly satisfied by all the above
defined n-procedures and that will allow us to use a simple graphical represen-
tation.

A 1 Independence of Irrelevant Alternatives. Suppose p and p′ are two profiles
such that, for some alternatives x and y and for all criteria i in N ,

x %i y ⇔ x %′
i y and y %i x ⇔ y %′

i x.

Then
x%

n

(p)y ⇔ x%
n

(p′)y and y%
n

(p)x ⇔ y%
n

(p′)x.

A 2 Anonymity. Suppose σ is a permutation of N . We denote by σ(p) a profile
identical to p except that the order of the relations has been changed according
to σ. Anonymity imposes that %

n

(p) = %
n

(σ(p)).

The first condition states that the global preference between two alternatives
should depend only on the single-criteria preferences between these two alter-
natives. Other alternatives cannot play any role. The second condition imposes
that all criteria play exactly the same role. So, what they represent or their
name is irrelevant; whence anonymity. This condition is also sometimes called
symmetry.

For all n-procedures satisfying Independence of Irrelevant Alternatives and
Anonymity, the relation between two alternatives x and y in the global relation
%

n

(p) depends only on α, the number of criteria i such that x �i y, β, the
number of criteria such that x ∼i y and γ, the number of criteria such that
y �i x. So, any profile can be represented as a point with coordinates (α, β, γ)
in a three-dimensional space. Remark that the sum of α, β and γ is n and, so,
given n the number of criteria, each profile is a point lying in the plane defined
by α+β+γ = n. Because α, β, γ ≥ 0, all possible profiles lie in a simplex, i.e. the
equilateral triangle with vertices (n, 0, 0), (0, n, 0) and (0, 0, n). We can therefore
represent the outcome between two alternatives in a simplex, in function of these
three numbers (see Fig.1, left). An analogous representation has been used by
[17, 20, 18]. Only the points with integer coordinates correspond to possible
profiles; they form a kind of lattice. Fig.2 is a graphical representation of the
majority concepts presented above.

3 Characterization of some n-aggregation pro-
cedures

In this section, I present some characterizations of n-aggregation procedures.
Contrary to the next section, none of the axioms used in this section involve
profiles of different size. Before turning to the characterizations of some n-
procedures, I present some conditions that are satisfied by all n-procedures
defined in Section 2.
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n

Figure 1: Left: the simplex for a 5-aggregation procedure. In this figure, the axes
and the lattice of integer coordinates are represented but will be omitted in the
rest of the paper. Right: geometrical representation of a neutral n-aggregation
procedure. The profiles lying in the area with oblique hatching yield x%

n

(p)y.
The profiles lying in the area with horizontal hatching yield y%

n

(p)x. The profiles
located where both areas overlap yield x%

n

(p)y and y%
n

(p)x, i.e. x∼n(p)y. The
profiles lying in none of these areas yield ‘x and y are incomparable’.

If π is a permutation of X, we denote by π(p) the profile that is obtained from
p by permuting all alternatives in each relation %i according to π. Similarly,
π(%

n

(p)) denotes the relation obtained from %
n

(p) by permuting all alternatives
according to π.

A 3 Neutrality. Suppose π is a permutation of X. Then, %
n

(π(p)) = π(%
n

(p)).

This excludes the existence of a status quo that would be treated in a different
way as the other alternatives.

If we impose Independence of Irrelevant Alternatives and Anonymity, then
Neutrality can easily be given a geometrical representation in the simplex. The
area where y%

n

(p)x is the reflection of the area where x%
n

(p)y through a vertical
mirror (see Fig.1, right). Furthermore, the shape of this area is independent of
the pair x, y.

A 4 Weak Non-Negative Responsiveness 1. Suppose p and p′ are two identical
profiles except that there is a criterion i and two alternatives x and y such that
y �i x and x �′

i y. If x%
n

(p)y, then x%
n

(p′)y.

This condition is very compelling for it imposes that turning a single-criterion
preference y �i x into x �′

i y (thus improving the position of x w.r.t. y) cannot
lead to a deterioration of the position of x w.r.t. y in the global preference
relation.

Under Independence of Irrelevant Alternatives and Anonymity, Weak Non-
Negative Responsiveness 1 implies that, if x%

n

(p)y and if we move West on a
horizontal line, then we still have x%

n

(p′)y (see Fig.3).
I now define a very simple and mild condition.
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y     (p) x
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β

α γ

β

α γ

β

α γ

β

α γ

β

α γ

β

α γ

β

α γ

β

α γ

Weak majority, δ = n/2 Electre, δ > n/2 Qualified weak majority, δ < n/2

Simple majority, δ = 0 a-Qualified simple majority, δ > 0 a-Qualified simple majority, δ < 0

m-Qualified simple majority, δ > 1 m-Qualified simple majority, δ < 1 Tactic, δ > 1

Generalized r-Tactic, δ < 1

Figure 2: Graphical representations of different majority concepts
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Figure 3: Geometrical representation of Weak Non-Negative Responsiveness 1
(left) and Unanimity (right)

A 5 Unanimity. If x �i y, for all i in N , then x�n(p)y.

Under Independence of Irrelevant Alternatives and Anonymity, Unanimity
implies that the West vertex of the simplex is a point where x�n(p)y (see Fig.3).

3.1 The generalized qualified weak majority and some spe-
cial cases

A key property of all n-procedures in this family is

A 6 Limited Influence of Indifference. Suppose p and p′ are two identical pro-
files except that there is a criterion i and two alternatives x and y such that
x �i y and x ∼′

i y. Then x%
n

(p)y iff x%
n

(p′)y.

The intuition for this condition is the following. Even if there is less support
for the global strict preference (i.e. �n) of x over y in p′ than in p, we might
consider that there is not less support for the global weak preference (i.e. %

n

) of
x over y in p′ than in p. It is then reasonable to impose that x%

n

(p′)y and this
is precisely what Limited Influence of Indifference does.

Suppose now that x�n(p)y. Then, because there is less support for the global
strict preference of x over y in p′ than in p, it might happen that x∼n(p′)y. This
is not prevented by Limited Influence of Indifference. So, moving from x �i y
in p to x ∼i y in p′ (or the converse) can influence the global preference relation
and cause a deterioration (or an improvement) of the global position of x, but
not in all situations. That is why we speak of “limited influence.”

Under Independence of Irrelevant Alternatives and Anonymity, Limited In-
fluence of Indifference implies that, if x%

n

(p)y and if we move parallel to the
West border of the simplex, northward or southward, then we still have x%

n

(p′)y
(see Fig.4).
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Figure 4: Geometrical representation of Limited Influence of Indifference (left)
and Weak Non-Negative Responsiveness 2 (right).

Theorem 1 If a n-aggregation procedure satisfies Independence of Irrelevant
Alternatives (A1), Anonymity (A2), Neutrality (A3), Weak Non-Negative Re-
sponsiveness 1 (A4), Unanimity (A5) and Limited Influence of Indifference
(A6), then it is a generalized qualified weak majority.

Proof. By Independence of Irrelevant Alternatives and Anonymity, we know
that the outcome between x and y depends only on α, β and γ. From here,
we will abuse the notation and write, e.g. x%

n

(α, β, γ)y when we mean x%
n

(p)y
for all profiles p such that α, β and γ are the numbers of criteria such that,
respectively, x �i y, x ∼i y and y �i x. By Unanimity, we know that there
are points in the simplex such that x%

n

(α, β, γ)y. Among these points, let α0, β0

and γ0 be one such that α + β is minimal. Then, using Weak Non-Negative
Responsiveness 1 and Limited Influence of Indifference, we can move to any
point (α′, β′, γ′) in the simplex such that α′ + β′ ≥ α0 + β0 and we still have
x%

n

(α′, β′, γ′)y. Hence, x%
n

(α, β, γ)y iff α + β ≥ α0 + β0. By Neutrality, we can
permute x and y and we find that y%

n

(α, β, γ)x iff γ +β ≥ α0 +β0. So, between
x and y, the n-procedure is a generalized qualified weak majority. Applying
again Neutrality, we can generalize this conclusion to all pairs. The threshold
δn is equal to α0 + β0. 2

If we want to avoid incomparability, we may use the following simple (but strong)
condition.

A 7 Completeness. For all x and y in X, x%
n

(p)y or y%
n

(p)x.

Theorem 2 If a n-aggregation procedure satisfies Independence of Irrelevant
Alternatives (A1), Anonymity (A2), Neutrality (A3), Weak Non-Negative Re-
sponsiveness 1 (A4), Unanimity (A5), Limited Influence of Indifference (A6)
and Completeness (A7), then it is a qualified weak majority.

Proof. By Theorem 1, the n-procedure is a generalized qualified weak ma-
jority. Then, by Completeness, for all α, β, γ such that α + β + γ = n, we have
α + β ≥ δn or β + γ ≥ δn. This is true, in particular, when β = 0 and
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• α = γ = n/2 = dn/2e (n even)

• α = (n + 1)/2 = dn/2e and γ = (n− 1)/2 (n odd).

So, in both cases, δn can be at most dn/2e. 2

A problem with the qualified weak majority is that many alternatives are
globally indifferent, the n-procedure does not help to decide between them,
because the indifference area is very large. So, we say that a n-procedure %

n

is more decisive than another one %
n′

if there are profiles such that %
n

gives
a strict preference and %

n′
an indifference or an incomparability and if there

are no profiles where %
n′

yields a strict preference and %
n

an indifference or
an incomparability. So, we can easily characterize the weak majority in the
following theorem (without proof).

Theorem 3 Among the n-aggregation procedures satisfying Independence of
Irrelevant Alternatives (A1), Anonymity (A2), Neutrality (A3), Weak Non-
Negative Responsiveness 1 (A4), Unanimity (A5), Limited Influence of Indif-
ference (A6) and Completeness (A7), the weak majority is the most decisive
one.

Note that weak majority has been previously characterized by P. C. Fishburn
[8]. The conditions he used are somehow similar to mine but they do not easily
allow to present weak majority as a special case of generalized qualified weak
majority.

Finally, in order to characterize Electre I, I introduce

A 8 Restricted Positive Responsiveness. Suppose p and p′ are two identical
profiles except that there is a criterion i and two alternatives x and y such that
y �i x and x �′

i y. Suppose also that, for no criterion i, x ∼i y. Then x∼n(p)y
implies x�n(p′)y.

Theorem 4 If a n-aggregation procedure satisfies Independence of Irrelevant
Alternatives (A1), Anonymity (A2), Neutrality (A3), Weak Non-Negative Re-
sponsiveness 1 (A4), Unanimity (A5), Limited Influence of Indifference (A6)
and Restricted Positive Responsiveness (A8), then it is an Electre I method.

Note finally that, in most cases, Electre I is used with a threshold larger
than n/2 and, so, it never happens that x and y are globally indifferent while
there is no criterion where x and y are indifferent. Hence, Restricted Positive
Responsiveness is trivially satisfied and does not really help us to understand
how Electre I works. It is therefore more interesting to characterise Electre
I with δn > n/2. That is why we introduce a new condition.

A 9 Minimal Incomparability. Suppose n is even. There is at least one situ-
ation where x and y must be considered as incomparable: when the conflict is
maximal, that is when x is strictly better than y for n/2 criteria and y is strictly
better than x for the other n/2 criteria. But, because n can be odd, we must
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adapt the condition for that case. The alternatives x and y must be incompa-
rable if x is strictly better than y for (n + 1)/2 criteria and y is strictly better
than x for the other (n− 1)/2 criteria, or the converse.

The meaning of this condition is clear. If we impose it, we adopt a prudent
attitude. We avoid that the n-aggregation procedure always gives a clear-cut
and easily interpretable result even when it (perhaps) should not. But the cost
of imposing this condition is also clear. The global preference relation might be
difficult to interpret or use. It is up to the decision-maker to choose between
prudence and ease of interpretation.

Theorem 5 If a n-procedure satisfies Independence of Irrelevant Alternatives
(A1), Anonymity (A2), Neutrality (A3), Weak Non-Negative Responsiveness
1 (A4), Unanimity (A5), Limited Influence of Indifference (A6) and Minimal
Incomparability (A9), then it is an Electre I method with δn > n/2.

3.2 The a-qualified simple majority and some special cases

Let us now present a condition that is satisfied by all n-procedures discussed in
this paper and that will be useful in this section.

A 10 Weak Non-Negative Responsiveness 2. Suppose p and p′ are two identical
profiles except that there is a criterion i and two alternatives x and y such that
x ∼i y and x �′

i y. If x%
n

(p)y, then x%
n

(p′)y.

This condition, like Weak Non-Negative Responsiveness 1, is very compelling
for it imposes that turning a single-criterion indifference x ∼i y into x �′

i y
(thus improving the position of x w.r.t. y) cannot lead to a deterioration of the
position of x w.r.t. y in the global preference relation.

Under Independence of Irrelevant Alternatives and Anonymity, Weak Non-
Negative Responsiveness 2 implies that, if x%

n

(p)y and if we move southward on
a line parallel to the West border of the simplex, then we still have x%

n

(p′)y (see
Fig.4). Note that Weak Non-Negative Responsiveness 2 is implied by Limited
Influence of Indifference but the converse is not true.

The next condition is very specific of simple majority. It expresses the fact
that two criteria (one for which x �i y and another one for which y �j x) are
equivalent to two criteria for which x and y are indifferent.

A 11 Pairwise Cancellation. Suppose p and p′ are two identical profiles except
that there are two criteria i, j and two alternatives x and y such that

• x �i y and x ∼′
i y

• y �j x and x ∼′
j y.

Then x%
n

(p)y iff x%
n

(p′)y.
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Figure 5: Geometrical representation of Pairwise Cancellation (left) and condi-
tion C (right).

Under Independence of Irrelevant Alternatives and Anonymity, Pairwise
Cancellation implies that, if x%

n

(p)y and if we move vertically in the simplex,
northward or southward, then we still have x%

n

(p′)y (see Fig.5).

Theorem 6 If a n-aggregation procedure satisfies Independence of Irrelevant
Alternatives (A1), Anonymity (A2), Neutrality (A3), Weak Non-Negative Re-
sponsiveness 2 (A10), Unanimity (A5) and Pairwise Cancellation (A11), then
it is a a-qualified simple majority.

Proof. By Unanimity, we know that there are points in the simplex such
that x%

n

(α, β, γ)y (same notation as in the proof of Theorem 1). Among these
points, let α0, β0 and γ0 be one such that α − γ is minimal. Then, using
Weak Non-Negative Responsiveness 2 and Pairwise Cancellation, we can move
to any point in the simplex such that α′ − γ′ ≥ α0 − γ0 and we still have
x%

n

(α′, n− α′ − γ′, γ′)y. Hence,

x%
n

(α, β, γ)y iff α− γ ≥ α0 − γ0.

If we let δn = α0 − γ0, then we can rewrite the previous equivalence as

x%
n

(α, β, γ)y iff α ≥ γ + δn

iff α + β ≥ γ + β + δn

By Neutrality, we can permute x and y and we find that

y%
n

(α, β, γ)x iff γ + β ≥ α + β + δn.

So, between x and y, we have proved that the n-procedure is a qualified simple
majority. Applying again Neutrality, we can generalize this conclusion to all
pairs. By Unanimity and Neutrality, −n < δn ≤ n. 2

In the next theorem, we consider some special cases of a-qualified simple
majority.
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Theorem 7 If a n-aggregation procedure satisfies Independence of Irrelevant
Alternatives (A1), Anonymity (A2), Neutrality (A3), Weak Non-Negative Re-
sponsiveness 2 (A10), Unanimity (A5), Pairwise Cancellation (A11) and Com-
pleteness (A7), then it is a a-qualified simple majority with δn ≤ 0. Among
these last n-procedures, simple majority is the most decisive one.

Completeness can be replaced by Reflexivity in Theorem 7.

A 12 Reflexivity. The relation %
n

(p) is reflexive for all p in Cn.

Geometrically, Reflexivity imposes that the top vertex of the simplex corre-
sponds to an indifference.

It is worth recalling the first characterization of simple majority, by K. O.
May. His result was relevant to the case of two alternatives. We present a
straightforward generalization of his result for any finite number of alternatives.
The only difference is the addition of Independence of Irrelevant Alternatives.
We also make explicit some axioms that were part of his definition of a n-
aggregation procedure.

A 13 Positive Responsiveness. Suppose p and p′ are two identical profiles except
that there is a criterion i and two alternatives x and y such that [y �i x and
x %′

i y] or [y ∼i x and x �′
i y]. If x%

n

(p)y, then x�n(p′)y.

Theorem 8 ([12]) An aggregation procedure satisfies Independence of Irrele-
vant Alternatives (A1), Anonymity (A2), Neutrality (A3), Positive Responsive-
ness (A13) and Completeness (A7) iff it is simple majority.

We now turn to the case of a-qualified simple majority with δ ≥ 0.

Theorem 9 If a n-aggregation procedure satisfies Independence of Irrelevant
Alternatives (A1), Anonymity (A2), Neutrality (A3), Weak Non-Negative Re-
sponsiveness 2 (A10), Unanimity (A5), Pairwise Cancellation (A11) and Re-
stricted Positive Responsiveness (A8), then it is a a-qualified simple majority
with δn ≥ 0.

Restricted Positive Responsiveness can of course be replaced by Minimal In-
comparability in this theorem, but, then, δn > 0.

3.3 Tactic majority, Generalized r-Tactic majority and m-
qualified simple majority

Up to now, we characterized various n-aggregation procedures by adding one
or two conditions to Independence of Irrelevant Alternatives, Anonymity, Neu-
trality, Unanimity, Weak Non-Negative Responsiveness 1 and 2. We can do
the same for Tactic majority, Generalized r-Tactic majority and m-qualified
simple majority. But, unfortunately, the conditions that we must use to char-
acterize these n-procedures are then very strong and not easily interpretable.
Below, we give an example of such a characterization.
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A 14 Condition C. Suppose p and p′ are two identical profiles of size n except
that there are two sets of criteria I = {i1, . . . , iµ} and J = {j1, . . . , jν} and two
alternatives x and y such that

• x �i y and x ∼′
i y for all i in I

• y �j x and x ∼′
j y for all j in J .

Then
µ

ν
≤ #{i ∈ N : x �i y}

#{j ∈ N : y �j x}
implies [x%

n

(p)y ⇒ x%
n

(p′)y]

and
µ

ν
≥ #{i ∈ N : x �i y}

#{j ∈ N : y �j x}
implies [x%

n

(p′)y ⇒ x%
n

(p)y].

Under Independence of Irrelevant Alternatives and Anonymity, Relative
Pairwise Cancellation implies that, if x%

n

(p)y and if we move to any point West
of the straight line passing through the top vertex of the simplex and p, then
we still have x%

n

(p′)y (see Fig.5). Remark that condition C implies Weak Non-
Negative Responsiveness 1 and 2.

Theorem 10 If a n-aggregation procedure satisfies Independence of Irrelevant
Alternatives (A1), Anonymity (A2), Neutrality (A3), Unanimity (A5) and Con-
dition C (A14), then it is a generalized r-Tactic majority.

Proof. By Unanimity, we know that there are points in the simplex such that
x%

n

(α, β, γ)y (same notation as in the proof of Theorem 1). Among these points,
let α0, β0 and γ0 be one such that α/γ is minimal. Then, using Condition C,
we can move to any point in the simplex such that α′/γ′ ≥ α0/γ0 and we still
have x%

n

(α′, n− α′ − γ′, γ′)y. Hence,

x%
n

(α, β, γ)y iff α/γ ≥ α0/γ0.

If we let δ = α0/γ0, then we can rewrite the previous equivalence as

x%
n

(α, β, γ)y iff α ≥ γδ.

By Neutrality, we can permute x and y and we find that

y%
n

(α, β, γ)x iff γ ≥ αδ.

So, between x and y, we have proved that the n-procedure is a generalized r-
Tactic majority. Applying again Neutrality, we can generalize this conclusion
to all pairs. By Unanimity, 0 < δ ≤ n. 2

A very simple result follows (without proof).

Theorem 11 If a n-aggregation procedure satisfies Independence of Irrelevant
Alternatives (A1), Anonymity (A2), Neutrality (A3), Unanimity (A5), Condi-
tion C (A14) and Minimal Incomparability (A9), then it is a r-Tactic majority.
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Because the conditions we must use for characterizing Tactic majority,
Generalized r-Tactic majority and m-qualified simple majority are very strong,
we do not devote much place to them. We will see more interesting results about
these majorities in the next section when we consider aggregation procedures
and no more n-aggregation procedures.

4 Characterization of some aggregation proce-
dures

In this section, we will consider that n, the number of criteria, can vary. There is
a priori no link between the different n-procedures in an aggregation procedure.
The n-procedure %

3
could be the weak majority, %

4
, the simple majority, %

5
, the

Borda rule and %
6
, still another n-procedure.

A key property in the analysis of n-aggregation procedures is Homogeneity.
It will impose that an aggregation procedure be the same for different n in the
following sense.

A 15 Homogeneity. Suppose that p = (%1,%2, . . . ,%n) and

p′ = (%1, . . . ,%1︸ ︷︷ ︸
m

, . . . ,%n, . . . ,%n︸ ︷︷ ︸
m

).

Then x%
n

(p)y iff x%
r

(p′)y, with r = mn.

4.1 Some trivial results

All theorems of Section 3 can be trivially extended to aggregation procedures.
We just need to impose the axioms for all n in N. And if we want that the
threshold (in terms of proportions) be (almost) identical for all n, then we just
need to impose Homogeneity. We now present the extension of theorem 1 as an
example. The extension of the other theorems of Section 3 is left to the reader.

Theorem 12 If an aggregation procedure %= {%1, . . . ,%n

, . . .} satisfies Homo-
geneity (A15) and, for all n in N, Independence of Irrelevant Alternatives (A1),
Anonymity (A2), Neutrality (A3), Weak Non-Negative Responsiveness 1 (A4),
Unanimity (A5) and Limited Influence of Indifference (A6), then %

n

is a gener-
alized qualified weak majority for all n in N. Furthermore, there exists δ̇ in Q
such that δn = dnδ̇e, for all n in N.

Proof. By Theorem 1, each n-aggregation procedure is a generalized qualified
weak majority, with δn. So we just need to prove that there exists δ̇ in Q such
that δn = dnδ̇e, for all n in N. Suppose it is not the case; there are then n and n′

such that δn/n ≤ (δn′−1)/n′ or δn′/n′ ≤ (δn−1)/n. Without loss of generality,
assume δn/n ≤ (δn′ − 1)/n′. By Homogeneity, n(δn′ − 1) < δnn′ ≤ nδn′ . So,

δn′ − 1
n′ <

δnn′

nn′ ≤
δn′

n′ .
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Similarly,
δn − 1

n
<

δnn′

nn′ ≤
δn

n
.

Hence,
δn′ − 1

n′ <
δn

n
.

This contradicts the inequality we found above and the proof is complete. 2

In the next subsections, we present some results in which Homogeneity
plays a central role, allowing us to characterize Tactic majority, Generalized r-
Tactic majority and m-qualified simple majority using much weaker conditions
than in section 3.3.

4.2 Tactic and Generalized r-Tactic majority

A necessary condition for Tactic and Generalized r-Tactic majority is

A 16 �-Invariance. Let p and p′ be two profiles such that

#{i ∈ N : x �i y}
#{i ∈ N : y �i x}

=
#{i ∈ N : x �′

i y}
#{i ∈ N : y �′

i x}
.

Then x%
n

(p)y iff x%
n

(p′)y.

This condition states that what matters for deciding whether x%
n

(p)y is the ratio
of the number of criteria strictly supporting x against y (i.e. x �i y) and of those
strictly supporting y against x.

Under Independence of Irrelevant Alternatives and Anonymity, �-Invariance
implies that, if x%

n

(p)y and if we move in the simplex along a line passing through
the North vertex, northward or southward, then we still have x%

n

(p′)y (see Fig.6).

Another necessary condition for Tactic is

A 17 Asymmetry. The relation %
n

(p) is asymmetric.

Asymmetry and �-Invariance are obviously necessary for Tactic major-
ity. But they are not sufficient (with Independance of Irrelevant Alternatives,
Anonymity, Neutrality, Weak Non-Negative Responsiveness 1 or 2 and Una-
nimity) to derive the Generalized r-Tactic majority, as shown in Fig.6. The
5-procedure represented in this figure has all the properties listed before but is
not a Tactic majority. Nevertheless, if we add Homogeneity to the previous
conditions, then we obtain a Tactic majority.

Theorem 13 If an aggregation procedure %= {%1, . . . ,%n

, . . .} satisfies Homo-
geneity (A15) and, for all n in N, Independence of Irrelevant Alternatives (A1),
Anonymity (A2), Neutrality (A3), Weak Non-Negative Responsiveness 2 (A10),
Unanimity (A5), Asymmetry (A17) and �-Invariance (A16), then %

n

is Tactic
majority for all n in N. Furthermore, there exists δ̇ in Q such that, for all n in
N, kδn = dkδ̇e, for some k in N .
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β

α γ

x     (p) y
n

x     (p’) y
n

β

α γ

y    (p) xn

x    (p) yn

Figure 6: Left: geometrical representation of �-Invariance. Right: a 5-
procedure satisfying Independance of Irrelevant Alternatives, Anonymity, Neu-
trality, Weak Non-Negative Responsiveness 1 and 2, Unanimity and �-
Invariance but which is not a Tactic majority. The points in the simplex
without any dot (empty or filled) correspond to profiles such that x and y are
incomparable.

Proof. Let us first fix n. By Independence of Irrelevant Alternatives and
Anonymity, we know that the outcome between x and y depends only on αn, βn

and γn (we now use a subscript n because we will use, further in this proof,
a profile of another size). From here, we will abuse the notation and write,
e.g. x%

n

(αn, βn, γn)y when we mean x%
n

(p)y for all profiles p of size n such that
αn, βn and γn are the numbers of criteria such that, respectively, x �i y, x ∼i y
and y �i x. By Unanimity, we know that there are points in the simplex such
that x%

n

(αn, βn, γn)y. Among these points, let α0
n, β0

n and γ0
n be one such that

αn/γn is minimal. Consider any point in the simplex such that α′
n/γ′

n ≥ α0
n/γ0

n.
If α′

n/γ′
n = α0

n/γ0
n, then we can reach it making one of the moves described in

�-Invariance. If α′
n/γ′

n > α0
n/γ0

n, then, in some cases, it is possible to reach
it by combining some of the moves described in �-Invariance and Weak Non-
Negative Responsiveness 2. But, sometimes, it is not possible. For an example,
look at Fig.6. In this case, α0

5 = 3 and γ0
5 = 2. From this point, it is not

possible to reach (α′
5 = 3, γ′

5 = 1) using �-Invariance and Weak Non-Negative
Responsiveness 2 although α′

5/γ′
5 > α0

5/γ0
5 . Even if we would use Weak Non-

Negative Responsiveness 1, it would not be possible.
Consider now the ratio γ′

nα0
n/γ0

n. It is a rational number. Let us call m the
smallest integer such that mγ′

nα0
n/γ0

n is integer. Set α∗
mn = mγ′

nα0
n/γ0

n, γ∗
mn =

mγ′
n and β∗

mn = mn−γ∗
mn−α∗

mn. By Homogeneity, x%
mn

(mα0
n,mβ0

n,mγ0
n)y. By

�-Invariance, x%
mn

(α∗
mn, β∗

mn, γ∗
mn)y since α∗

mn/γ∗
mn = α0

n/γ0
n. Then, by Weak

Non-Negative Responsiveness 2, x%
mn

(mα′
n,mβ′

n,mγ′
n)y since mγ′

n = γ∗
mn and

mα′
n > α∗

mn. Finally, by Homogeneity, x%
n

(α′
n, β′

n, γ′
n)y.

So, using �-Invariance and Weak Non-Negative responsiveness 2, we can
move to any point in the simplex such that α′

n/γ′
n ≥ α0

n/γ0
n and we still have

x%
n

(α′
n, n− α′

n − γ′
n, γ′

n)y. Hence,

x%
n

(αn, βn, γn)y iff αn/γn ≥ α0
n/γ0

n.
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If we let δ′n = α0
n/γ0

n, then we can rewrite the previous equivalence as

x%
n

(αn, βn, γn)y iff αn ≥ γnδ′n. (1)

By Neutrality, we can permute x and y and we find that

y%
n

(αn, βn, γn)x iff γn ≥ αnδ′n.

By Asymmetry, we know that x and y are incomparable in %
n

(p) when β = n.
Using again Asymmetry, we find that δ′n > 1 and, hence, we can rewrite (1) as

x�n(αn, βn, γn)y iff αn > γnδn,

where δn is the largest number such that δn < δ′n and iδn ∈ N , for some i ∈ N .
So, between x and y, we have proved that the n-procedure is Tactic majority.
Applying again Neutrality, we can generalize this conclusion to all pairs. By
Unanimity, 1 ≤ δn < n.

Following the same reasoning as in Theorem 12, we find that there exists δ̇
in Q such that, for all n in N, kδn = dkδ̇e, for some k in N . 2

It is clear that we can prove a similar theorem replacing Weak Non-Negative
responsiveness 2 by Weak Non-Negative responsiveness 1.

Let us now consider the Generalized r-Tactic majority.

Theorem 14 If an aggregation procedure %= {%1, . . . ,%n

, . . .} satisfies Homo-
geneity (A15) and, for all n in N, Independence of Irrelevant Alternatives (A1),
Anonymity (A2), Neutrality (A3), Weak Non-Negative Responsiveness 2 (A10),
Unanimity (A5), Reflexivity (A12) and �-Invariance (A16), then %

n

is a Gen-
eralized r-Tactic majority for all n in N. Furthermore, there exists δ̇ in Q
such that, for all n in N, kδn = dkδ̇e, for some k in N .

The proof is almost the same as that of Theorem 13 except that we use
Reflexivity instead of Asymmetry at the end of the proof.

We now state a theorem characterizing different particular cases of Gener-
alized r-Tactic majority.

Theorem 15 An aggregation procedure %= {%1, . . . ,%n

, . . .} satisfies Homogene-
ity (A15) and, for all n in N, Independence of Irrelevant Alternatives (A1),
Anonymity (A2), Neutrality (A3), Weak Non-Negative Responsiveness 2 (A10),
Unanimity (A5), �-Invariance (A16) and Completeness (A7) if and only if %

n

is a Generalized r-Tactic majority with δ̇ ≤ 1. If we replace Completeness by
Restricted Positive responsiveness and Reflexivity, then δ̇ ≥ 1 and if we replace
it by Minimal Incomparability and Reflexivity, then δ̇ > 1.

4.3 The m-qualified simple majority

A necessary condition for m-qualified simple majority is
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A 18 %-Invariance. Let p and p′ be two profiles such that

#{i ∈ N : x %i y}
#{i ∈ N : y %i x}

=
#{i ∈ N : x %′

i y}
#{i ∈ N : y %′

i x}
.

Then x%
n

(p)y iff x%
n

(p′)y.

This condition states that what matters for deciding whether x%
n

(p)y is the ratio
of the number of criteria weakly supporting x against y (i.e. x %i y) and of those
weakly supporting y against x.

Under Independence of Irrelevant Alternatives and Anonymity, %-Invariance
implies that, if x%

n

(p)y and if we move in the simplex along a line passing by a
point symmetrical to the North vertex, northward or southward, then we still
have x%

n

(p′)y (see Fig.7).

β

α γ

x     (p) y
n

x     (p’) y
n

Figure 7: Geometrical representation of %-Invariance.

This condition is obviously necessary for a m-qualified simple majority. As
for m-qualified simple majority, %-Invariance (combined with Independance
of Irrelevant Alternatives, Anonymity, Neutrality, Unanimity and Weak Non-
Negative Responsiveness 1 or 2) is not enough to derive the m-qualified simple
majority. Nevertheless, if we add Homogeneity to the previous conditions, the
we obtain a m-qualified simple majority.

Theorem 16 If an aggregation procedure %= {%1, . . . ,%n

, . . .} satisfies Homo-
geneity (A15) and, for all n in N, Independence of Irrelevant Alternatives (A1),
Anonymity (A2), Neutrality (A3), Weak Non-Negative Responsiveness 2 (A10),
Unanimity (A5) and %-Invariance. (A18), then %

n

is a m-qualified simple ma-
jority for all n in N. Furthermore, there exists δ̇ in Q such that, for all n in N,
kδn = dkδ̇e, for some k in N .
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Proof. By Unanimity, we know that there are points in the simplex such
that x%

n

(αn, βn, γn)y (same notation as in the proof of Theorem 13). Among
these points, let α0

n, β0
n and γ0

n be one such that

αn + βn

γn + βn

is minimal. Consider any point in the simplex such that

α′
n + β′

n

γ′
n + β′

n

≥ α0
n + β0

n

γ0
n + β0

n

.

If
α′

n + β′
n

γ′
n + β′

n

=
α0

n + β0
n

γ0
n + β0

n

,

then we can reach it making one of the moves described in %-Invariance. If

α′
n + β′

n

γ′
n + β′

n

>
α0

n + β0
n

γ0
n + β0

n

,

then, in some cases, it is possible to reach it by combining some of the moves de-
scribed in %-Invariance and Weak Non-Negative Responsiveness 2. But, some-
times, it is not possible. For an example, look at Fig.6. In this case, α0

5 = 3
and γ0

5 = 2. From this point, it is not possible to reach (α′
5 = 3, γ′

5 = 1) using
%-Invariance and Weak Non-Negative Responsiveness 2 although

α′
5 + β′

5

γ′
5 + β′

5

>
α0

5 + β0
5

γ0
5 + β0

5

.

Even if we would use Weak Non-Negative Responsiveness 1, it would not be
possible.

Let δn denote
(α0

n + β0
n)

(γ0
n + β0

n)

and let us call m the smallest integer such that

m

(
γ′

n

δn
− n

δn
+ n

)
is integer. Set

α∗
mn = m

(
γ′

n

δn
− n

δn
+ n

)
,

γ∗
mn = mγ′

n and β∗
mn = mn−γ∗

mn−α∗
mn. By Homogeneity, x%

mn

(mα0
n,mβ0

n,mγ0
n)y.

By %-Invariance, x%
mn

(α∗
mn, β∗

mn, γ∗
mn)y since

α∗
mn + β∗

mn

γ∗
mn + β∗

mn

=
α0

n + β0
n

γ0
n + β0

n

= δn.
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Then, by Weak Non-Negative Responsiveness 2, x%
mn

(mα′
n,mβ′

n,mγ′
n)y since

mγ′
n = γ∗

mn and mα′
n > α∗

mn. Finally, by Homogeneity, x%
n

(α′
n, β′

n, γ′
n)y.

So, using %-Invariance and Weak Non-Negative responsiveness 2, we can
move to any point in the simplex such that

α′
n + β′

n

γ′
n + β′

n

≥ δn

and we still have x%
n

(α′
n, β′

n, γ′
n)y. Hence,

x%
n

(αn, βn, γn)y iff αn + βn ≥ (γn + βn)δn.

By Neutrality, we can permute x and y and we find that

y%
n

(αn, βn, γn)x iff γn + βn ≥ (αn + βn)δn.

So, between x and y, we have proved that the n-procedure is a m-qualified
simple majority. Applying again Neutrality, we can generalize this conclusion
to all pairs. By Unanimity, 0 < δn ≤ n.

Following the same reasoning as in Theorem 12, we find that there exists δ̇
in Q such that, for all n in N, kδn = dkδ̇e, for some k in N . 2

It is clear that we can prove a similar theorem replacing Weak Non-Negative
responsiveness 2 by Weak Non-Negative responsiveness 1.

5 Conclusion

All n-aggregation procedures we have discussed in sections 2 and 3 share the
following properties: Independence of Irrelevant Alternatives, Anonymity, Neu-
trality, Unanimity, Weak Non-Negative Responsiveness 1 and 2. The corre-
sponding aggregation procedures satisfy the same properties plus Homogeneity.
What makes them different? We summarize below the conditions that allow us
to characterize them.

• Generalized Qualified Weak Majority: Limited Influence of Indifference.

• a-Qualified Simple Majority: Pairwise cancellation.

• Tactic Majority: �-Invariance and Asymmetry.

• Generalized r-Tactic Majority: �-Invariance and Reflexivity.

• m-Qualified Majority: %-Invariance.

Within each of these families of procedures, it is possible to characterize some
special cases, using Completeness, Reflexivity, Restricted Positive Responsive-
ness or Minimal Incomparability.
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Some characterizations of majority procedures existed in the literature but
were not always easy to compare. In this paper, the main variants of anonymous
and neutral majority have been characterized in a uniform way.

Of course, not all variants of majority have been discussed. For instance,
nothing was said about non-neutral majorities (not so important in multicrite-
ria decision aiding) and non-anonymous majorities (e.g. weighted majority). A
uniform analysis of non-anonymous majorities would be more relevant to mul-
ticriteria decision aiding than this paper but I hope this paper can be seen as a
first step in that direction.

Another limitation of this paper is that we supposed that the preference
relation along each criterion is complete. This is of course not always the case.
A generalization encompassing incompleteness is thus needed.
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