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Abstract

In the previous years some authors have been elaborating on the measurement-
theoretic foundations of fuzzy set theory. A well-known problem in this approach
is the difficult applicability of the deterministically formulated axioms on data ob-
tained from an expert (or social science data in general). In this paper a statistical
method is proposed which can be used for the testing of measurement axioms in a
pairwise comparison design. Consequently we apply this method for the testing of
two of these axioms (i.e. Transitivity and Order of Operations) used in the context
of fuzzy set theory. The results clearly indicate that subjects act in agreement with
Transitivity, but, for Order of Operations there is no such vivid evidence, which
may have repercussions for some of the earlier theoretical work.
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1 Introduction

Since Zadeh (1965) introduced the concept of fuzzy sets, a major concern
has been the meaning and measurement of membership functions. Related to
this question is the issue of which operators (e.g. max, min, bold intersection,
bounded sum,...) to use to represent the union and intersection in fuzzy set
theory. Nowadays a general concept for these different operators is in use
(i.e. t-norms and t-conorms, concepts borrowed from the statistical metric
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spaces literature), though this mere abstraction does not give an answer to
the question raised above: which operator should be used?

The answer to this question depends of course on what we want to repre-
sent by means of membership degrees. In some cases, for instance in fuzzy
expert systems, one tries to represent the knowledge of an expert. In other
cases, membership degrees are the outcome of an algorithm in artificial intel-
ligence, e.g. a fuzzy classification algorithm, and are not meant to represent
the knowledge of an expert. In this paper, we will only consider the former
case.

So, if we want to represent knowledge, we need to observe it, to capture it; and
if we want to represent it by means of numbers, we need to measure it. The
easiest way to measure the membership is obviously to tell the expert ‘give
me a number between 0 and 1 representing the membership degree µA(x) of
object x in the set A?’ A problem with this technique is that we do not know
the properties of the numbers we obtain. For example, does µA(x) − µA(y)
represent something? Does µA(x)µB(y) represent µA∩B(x), i.e. the membership
degree of x in the intersection of A and B? Or is µA∩B(x) beter represented
by min(µA(x), µB(y))? Several other measurement techniques can be thought
of and have been proposed in the literature.

Türksen (1991) has shown that it is possible to analyze some of these tech-
niques within the framework of measurement theory (Krantz et al., 1971;
Roberts, 1979), this way answering the kind of questions raised in the pre-
vious paragraph. In this tradition, measurement involves a mapping of an
empirical structure into a numerical one, in such a way that, corresponding to
each relation in the first structure, there is a relation in the second one, this
mapping having the property that some objects are in relation in the empirical
structure if and only if the corresponding objects are in relation in the numer-
ical structure. In that case, one says the empirical structure is represented by
the numerical one. If one wishes to represent an empirical structure by a given
numerical structure, some conditions (or axioms) need to be met, depending
on the desired numerical structure. One of the goals of measurement theory
is to identify those conditions making measurement possible.

In the context of measurement of fuzzy sets, the empirical relational structure
consists of 3 elements: (1) a set of fuzzy sets, (2) a relation indicating that the
membership of an object in a fuzzy set is at least as large as the membership
of the same object in another fuzzy set (the same object being used in this
relation over all fuzzy sets) and (3) some operations on the fuzzy sets (such
as union and intersection). This is the relational structure we will put our
attention on in this paper. Another possible structure could be one consisting
of different objects and a relation on these objects concerning their member-
ship in a given fuzzy set. Other structures can be found in the literature, (e.g.
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Bollman-Sdorra et al., 1993; Marchant, 2004a) but are not within the scope
of this paper.

Some authors (Bollman-Sdorra et al., 1993; Bilgiç and Türksen, 1995; Marchant,
2004a,b) have been elaborating on the conditions under which appropriate
representations of membership degrees can be made, and whether this is de-
pendent on the choice of a particular operation representing union and inter-
section. The focus in their papers was on the theoretical development of the
conditions needed to make a particular representation.

A practical problem now arises. Thanks to measurement theory, we know
the conditions guaranteeing that a given a numerical representation and the
accompanying measurement technique can be used. But are these conditions
met in practice? In other words, does the membership, as perceived by an
expert, have properties that are compatible with the numerical representation
one wishes to use? If yes, then we may safely use it. If not, then one needs to
use another measurement technique.

The aim of this paper is twofold. First, we will present a new procedure for
statistically testing measurement-theoretic axioms, i.e. for answering the ques-
tions of previous paragraph. Second, we will test some axioms. This will illus-
trate how our statistical procedure works and provide some empirical results
on two key axioms for the measurement of membership.

In Section 2, we will present the axioms that we will test further in the paper.
In Section 3, we will shortly review some existing statistical procedures for
testing measurement-theoretic axioms and we will then present a new proce-
dure. Section 4 will be devoted to the presentation of our experiment and its
results. Section 5 will conclude.

2 Review of some measurement-theoretical work

As already mentioned we will focus in this paper on the membership of one
object in several sets, in the presence of a union and intersection, a struc-
ture which can be formalised as 〈F , %x,∪,∩〉 . The primitives used are F , a
set whose elements can be interpreted as all fuzzy sets that are relevant in a
particular context, %x, a binary relation on F , ∪, a binary operation on F ,
interpreted as the union of any two elements of F , and ∩, another binary oper-
ation, interpreted as the intersection of any two elements of F . The statement
A %x B is interpreted as “the object x belongs at least as much to A as to
B”. We will use �T to denote the asymmetric part of %T (strict preference)
and ∼T to denote the symmetric part of %T (indifference).
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Several papers have dealt with the measurement of 〈F , %x,∪,∩〉. One is by
Bollman-Sdorra et al. (1993), other papers are by Bilgiç, Norwich and Türksen
in different combinations (Bilgiç and Türksen, 1995, 1997, 2000; Norwich and
Türksen, 1982; Türksen, 1991). Bollman-Sdorra et al. (1993) present results
in which ∪ and ∩ are represented by the max and min operations respectively.
The results presented by the other authors yield representations of ∪ by means
of the  Lukasiewicz t-conorm (or some generalizations), i.e. S(a, b) = min(1, a+
b).

We present below some of the axioms that have been presented in the literature
in order to characterize some numerical representations.

Completeness. For all A, B in F , A %x B or B %x A.
Transitivity For all A, B, C in F , A %x B and B %x C implies A %x C.
Order of Operations. For all A, B in F , A ∪B %x A ∩B.
Commutativity. For all A, B in F ,

A ∪B ∼x B ∪ A and

A ∩B ∼x B ∩ A.

Absorption. For all A, B in F ,

A ∼xA ∩ (A ∪B) and

A ∼xA ∪ (A ∩B).

Right Monotonicity. For all A, B, C in F ,

A %x B implies A ∩ C %x B ∩ C and

A %x B implies A ∪ C %x B ∪ C.

Etc.

It is of course impossible to test all axioms that have been discussed in the
literature. We will thus test only two of them in this paper.

We do not test Completeness because of a lack of knowledge of any method
to do this properly. To us it seems that, if one asks a subject to choose one of
the following statements, ‘A �x B’, ‘B �x A’, ‘B ∼x A’ or ‘I cannot compare
A and B’, the person will be tempted to choose the last option in situations
were the first three options require some cognitive effort in order to make a
decent choice. So, an experiment aimed at testing Completeness is very likely
to reject Completeness.

Transitivity is so controversial in many areas (Tversky, 1969; Fishburn, 1991;
Luce, 2000, section 2.2) that we felt there was no option not testing it. Further-
more this condition is crucial for most applications of fuzzy sets. If transitivity
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does not hold, then membership functions with values in totally ordered sets
(like R) cannot be used.

Order of Operations is another crucial condition for most applications since it
is a neccessary condition for all numerical representations using a t-norm and
a t-conorm to represent the intersection and the union. That is why we will
test it.

More research is of course needed to test other axioms and, hence, to see which
numerical representations is empirically validated.

3 Statistical Method

A well-known problem in measurement theory concerns the difficult applica-
bility of the deterministically formulated axioms on data in the social sciences
which are sensitive to random error (due to a number of sources, such as inher-
ent unreliability of human behavior, sampling error,...) and systematic error.
Therefore some major effort has been spent on the development of statisti-
cal models of axiom testing. First, Iverson and Falmagne (1985) suggested a
likelihood-ratio method and later Karabatsos and others (Karabatsos, 2001;
Karabatsos and Sheu, 2001; Karabatsos and Ullrich, 2002; Myung et al., 2005)
proposed different Bayesian statistical methods. All of these methods were
based on a recasting of deterministic axioms into a probabilistic form. This
approach, although extremely interesting, poses at least two problems. First,
a probabilistic version of an axiom is not the same as the corresponding deter-
ministic one: they are distinct mathematical objects. Testing the probabilistic
one is therefore not equivalent to testing the deterministic one. Second, there
are several ways to recast a deterministic axiom into a probabilistic form.
Transitivity, for instance, has been recasted by different researchers in weak
stochastic transitivity, strong stochastic transitivity, min-transitivity, transi-
tivity w.r.t. a given t-norm, etc. Choosing a particular recasting is hence, to
some extent, arbitrary.

Karabatsos (2005) also developed an approach based on an exchangeable
multinomial model, in which a recasting of the deterministic axioms into a
probabilistic form is no longer necessary. In this latter approach a framework
is provided for testing any deterministic axiom, on discrete- or real-valued
response data that can be represented as frequencies in one or more multidi-
mensional contingency tables. More specifically, the data are modeled with a
Dirichlet posterior distribution, under a multinomial sampling distribution of
the data, and a Dirichlet prior distribution specified over the multinomial pa-
rameters. Consequently a Bayes factor can be directly computed (closed form
solution) to provide a test for any of the deterministic axioms. Karabatsos also
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explains how this model generalizes the previously mentioned approaches.

In this paper we will present a different model, developed at the same time
as the method of (Karabatsos, 2005), suggesting a different data-generating
process (see below), and giving us a method to analyze our data in which there
is also no need to recast any deterministic axiom into a probabilistic form. A
Bayes factor is computed to provide a test for an axiom.

3.1 Data

Let F (#F = n with #F denoting the cardinality of F) be a set containing
fuzzy sets (as in Section 2) or, for instance, gambles if we are in decision the-
ory, or tones, in psychophysics. The elements of F will be called alternatives.
Suppose that, in an experiment, we present two alternatives A and B of F to
a subject and we ask him to choose one of them according to some criterion.
For example, we ask him to choose the fuzzy set such that the membership
of some object x is maximal. Or the gamble he prefers, or the tone he finds
louder. We repeat this for every pair of distinct alternatives in F . As a result
of such an experiment, the subject is giving us a complete and asymmetric
binary relation �O (O for observed) over F .

Note that, by asking the subject to choose A or B, we do not let him express
that he is indifferent between A and B or that he cannot compare A or B.
This to avoid that the subject systematically chooses the indifference or the
incomparability when the comparison is difficult.

3.2 Model

In our model, we suppose the subject has a relation %T (T for true) in mind,
over F . The relation %T might be the relation %x of Section 2 or, for instance,
a preference relation in decision theory, or a perceived intensity relation in
psychophysics. When we present two alternatives A and B to an expert and
ask him to make a comparison, he chooses one of them in accordance to %T ,
but, as humans are not always consistent in their behavior, with some ‘error’.
Because of the error, %T and �O will probably not be identical. However we
can reasonably assume, that the probability that a subject chooses A out of
the set A and B, i.e. P (A �O B), is

(1) P (A �O B) = p if A �T B,
(2) P (A �O B) = 1− p if B �T A
(3) P (A �O B) = P (B �O A) = 0.5 if A ∼T B,
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where p > 0.5, otherwise our model would not make sense. We also assume
p does not depend on A and B (like Harless and Camerer (1994)). In (3) we
assume for a subject having an indifference in mind, an equal likelihood of
choosing either A or B.

Instead of assuming that p is independent of A and B, we could use the same
model with one parameter pAB for each pair A and B. This would have one
advantage (the model being more flexible, it would perhaps be closer to reality)
but, also, one disadvantage: a considerable loss of parsimony.

If we use a model with one parameter pAB for each pair A and B, it is also
tempting to impose that [A �T B, B �T C and A �T C] imply pAC ≥ pAB

and pAC ≥ pBC . This would reflect the intuition that errors are more frequent
when the alternatives are closer to each other. In our opinion, this is not sound.
The axioms we test do not imply any idea of distance. Some systems of axioms
may eventually be equivalent to the existence of a numerical representation
from which we can deduce a distance. But no one axiom, taken individually,
implies a distance. Remember that we test axioms in order to know if we
can use a particular numerical representation, for instance one that implies a
distance. If, when testing the axioms, we use a distance, then we are using
a circular reasoning. We use properties of the representation while testing
axioms; but we do not know yet if this representation exists.

Besides, Carbone (1997) have found that a model where pAB is a monotone
function of the distance between A and B does not do a much better job
than a model with pAB independent of A and B although the model with pAB

constant is much more parsimonious. About these two models, (Luce, 2000,
p.29) writes ‘[. . . ] I know of no principled reason for choosing either.’

3.3 Odds

The set of all binary relations on F satisfying some given axiom(s) is denoted
by X. The hypothesis we want to test is ‘%T∈ X’. The competing hypothesis
is ‘%T /∈ X’. We suggest to compute the odds to test the evidence of one hy-
pothesis against the other. We begin with the data �O, assumed to have arisen
under one of the two hypotheses ‘%T∈ X’ or ‘%T /∈ X’, and this according to
the respective probability distributions P [�O | %T∈ X] and P [�O | %T /∈ X].
Given the prior probabilities P [%T∈ X] and P [%T /∈ X] = 1 − P [%T∈ X],
reflecting our belief that the subject agrees/disagrees with some axiom(s), the
data produce posterior probabilities P [%T∈ X| �O] and P [%T /∈ X| �O]. From
Bayes theorem, we know
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P [%T∈ X| �O] =
P [�O | %T∈ X]P [%T∈ X]

P [�O | %T∈ X]P [%T∈ X] + P [�O | %T /∈ X]P [%T /∈ X]
.

By conversion to the odds scale, we obtain the Bayes factor

P [%T∈ X| �O]

P [%T /∈ X| �O]
=

P [�O | %T∈ X]

P [�O | %T /∈ X]

P [%T∈ X]

P [%T /∈ X]
. (1)

Let us compute the numerator of the right-hand side of (1). We have

P [�O | %T∈ X] =
P [�O ∩(%T∈ X)]

P [%T∈ X]

=
P [
⋃

R∈X(�O ∩(%T = R))]

P [%T∈ X]

=

∑
R∈X P [�O | %T = R] P [%T = R]

P [%T∈ X]
.

So,

P [%T∈ X] P [�O | %T∈ X] =
∑
R∈X

(
P [�O | %T = R] P [%T = R]

)
.

Using a similar reasoning for the denominator, expression (1) can therefore be
rewritten as

P [%T∈ X| �O]

P [%T /∈ X| �O]
=

∑
R∈X

(
P [�O | %T = R] P [%T = R]

)
∑

R/∈X

(
P [�O | %T = R] P [%T = R]

) . (2)

If we further assume that all relations in X have the same probability (i.e.
P [%T = R] = P [%T∈ X]/#X, for R ∈ X) and that all relations in X̄ (meaning
the complement of X) have the same probability (i.e. P [%T = R] = P [%T∈
X̄]/#X̄, for R /∈ X), then we obtain

P [%T∈ X| �O]

P [%T /∈ X| �O]
=

P [%T∈ X]

P [%T /∈ X]

#X̄

#X

∑
R∈X P [�O | %T = R]∑
R/∈X P [�O | %T = R]

. (3)

In order to compute this expression, we have to compute P [�O | %T = R]. Let
α(�O, R) be the number of pairs such that �O and R agree, β(�O, R) the
number of pairs with an inversion of the preference and γ(R) 3 the number of

3 Note that γ only depends on R and not on �O, since the latter is asymmetric.
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pairs where an indifference has been broken. Of course,

α(�O, R) + β(�O, R) + γ(R) = n(n− 1)/2.

We then have

P [�O | %T = R] = p̂(�O, R)α(�O,R) (1− p̂(�O, R))β(�O,R) 0.5γ(R), (4)

where p̂(�O, R) is an estimation of p and is given by

p̂(�O, R) = max

(
1

2
,

α(�O, R)

α(�O, R) + β(�O, R)

)
.

The max(1/2, .) operator is used here because p < .5 does not make sense in
our model (see section 3.2).

3.4 Practical considerations

When F is small, it is possible to compute the sums in (3) in an exact way.
But when F is large (6 is already large, since with 6 elements in F , more than
1.4348× 107 different relations are possible), we must resort to a Monte Carlo
procedure. We randomly generate k relations belonging to X (and l relations
belonging to its complement for the denominator), denoted by R1, R2, . . . , Rk

(or S1, S2, . . . , Sl). We then approximate the odds ratio by

P [%T∈ X| �O]

P [%T /∈ X| �O]
≈ P [%T∈ X]

P [%T /∈ X]

#X̄

#X

#X
k

#X̄
l

∑k
i=1 P [�O | %T = Ri]∑l
i=1 P [�O | %T = Si]

. (5)

4 Experiment

In this experiment, we want to test Transitivity and Order of Operations (see
Section 2).

4.1 Presentation

All participants were shown a picture of a person 4 on a computer screen
(representing the object x in our empirical relational structure 〈F , %x,∪,∩〉)
4 Unfortunately, not having the written permission of this person to publish the
picture, it cannot be presented here.
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and consequently presented with N binary choices of the form: the person
on this picture belongs more to: ‘the set of people who are tall’ – ‘the set
of people who are old and who have grey hair’ (the alternatives representing
the elements of the set F in our empirical relational structure). A choice was
made by pointing one of the two alternatives and left-clicking the mouse. To
continue the experiment, no other option was available (forced choice).

So the linguistic terms (tall, old, grey hair,...) used in the alternatives were
considered as labels of a fuzzy set. A combination of up to 3 of these linguistic
terms (fuzzy sets) was posssible. The assemblage of these combined fuzzy sets
was achieved through the use of the linguistic terms ‘and’ and ‘or’, which were
considered as representing the fuzzy ‘intersection’ and ‘union’ respectively. Of
course, other representations for these operators were possible. Our choice was
in favor of ‘and’ and ‘or’ because of their pervasiveness in the fuzzy literature
and in many applications (e.g. Bilgiç and Türksen, 1995; Schwartz, 2000). We
are aware of the criticisms raised by some researchers against the modelling of
the linguistic ‘and’ by an intersection and of the linguistic ‘or’ by a union (e.g.
Tamburini, De Santis and Zamuner, 2002; Türksen, 2006). But since all ex-
periments aiming at verifying that ‘and’ can be represented by an intersection
and ‘or’ by a union have tested the representation itself and not the axioms
underlying it (e.g. Zimmermann and Zysno, 1980), we do not know today why
the linguistic connectives cannot be adequately modelled by the set-theoretic
ones. That is why we think it is important to carry out some experiments
testing which axioms underlying the intersection (resp. union), modelled by
min (resp. max), are satisfied by ‘and’ (resp. ‘or’).

The length N of the sequence of binary choices is based on all pairwise com-
binations of the n alternatives and was chosen as the maximum comfortable
sequence of binary choices for the participants (typically we chose n=23, so
we obtained a length of 253 pairwise comparisons). These 23 alternatives can
be found in table 1.

Of these 23 alternatives, the first 9 alternatives are single fuzzy sets and have
been used for testing Transitivity. The following 6 (10–15 in table) alternatives
consist of three unions and three intersections of the same fuzzy sets, and have
been used for testing Order of Operations. The remaining 8 (16–23 in table)
alternatives are randomly generated combinations of fuzzy sets and have been
used as distractors. In order to construct alternatives 10–15, we tried not
to use fuzzy sets 1–9. The reason for this is that we want to avoid that a
participant, when presented with a pair, say ‘adult and thick’ vs. ‘adult or
thick’, be influenced by his previous response on the pair ‘adult’ vs. ‘thick’.
This increases the chance that the responses be independent. Yet, two of
the alternatives 10–14 involve one of the alternatives 1–9: ‘thin’, because it
is difficult to find many different linguistic expressions that are relevant for
describing a given person.
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1 middle age 13 red hair and long hair

2 grey hair 14 thin and round face

3 adult 15 small and young adult

4 slender 16 very thick and grey hair and square face

5 large 17 very thick or black hair or adult

6 black hair 18 middle length or juvenile or blond hair

7 middle long hair 19 black hair and middle length and old

8 thick 20 very small and grey hair and adult

9 thin 21 very thick and small and brown hair

10 red hair or long hair 22 small and brown hair and adult

11 thin or round face 23 very small and brown hair and adult

12 small or young adult

Table 1
Alternatives used in the experiment (translated from Dutch).

4.2 Procedure

The experiment was conducted in a session normally lasting no more than one
hour. Participants could determine the pace of the presentations. A new binary
choice was shown only after having answered a previous one. The pairwise
alternatives presentation we used was based on a design which is optimal in
two respects: (i) the alternatives are optimally spaced across the sequence
(in the sense that we have about the same number of pairs of alternatives
in between two pairs of alternatives that include the same alternative) and
(ii) the left-right position of each alternative is altered as often as possible on
subsequent presentations.

4.3 Equipment

The picture (stimulus) and the alternatives were presented by the use of a Java
program 5 and as such could be presented in any (Java supporting) browser.
Normally the experiments were conducted on a normal Pentium 4 pc, running
Linux. Presentation-media was a 17inch monitor, placed at 50 cm distance in
front of the participants.

5 This program was written by M. Covents of the Testpracticum of Ghent Univer-
sity, whom we owe due thanks.
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4.4 Participants

Eight people participated in this experiment, of which 4 were man and 4
women. Some of them were MA-students and the rest was staff of Ghent
University. The students received a compensation of 10 euro per session.

4.5 Analysis - Transitivity

Because we have no arguments against or in favour of Transitivity, we used in
our statistical analysis a uniform prior: P [%T∈ X] = P [%T /∈ X] = 1/2.

For this analysis we used the first 9 alternatives from table 1. So we needed
a monte carlo simulation to conduct the above presented statistical analysis
(see section 3.4). A drawback of simulation methods is that it is often not
straightforward to decide when it is safe to terminate them. To have an idea
of the convergence of our calculations we decided to sample—for each separate
analysis—a number of parallel, independent chains and plot the 90%-posterior
band of our statistic of interest (see below) as well as the average of the same
statistic computed over the parallel generated relations at each point t of the
sequence of length T 6 .

Because of reasons of convergence we did not conduct a single Monte Carlo—
for each analysis—in order to compute expression (5), but carried out two
Monte Carlo simulations, one for the product of the numerators of the second
and the third fraction of the right hand side of expression (5), (see expression
(6)) and one for the product of the denominators of the same fractions, (see
expression (7)). Sometimes the number of generated relations needed in order
to achieve convergence was different for expression (6) and expression (7).

#X

k
×

k∑
i=1

P [�O | %T = Ri] (6)

3n(n−1)/2 −#X

l
×

l∑
i=1

P [�O | %T = Si] (7)

6 Initially also the Gelman and Rubin statistic (Gelman and Rubin, 1992) was
computed as a convergence diagnostic, but since this measure indicated convergence
even when there was no graphical evidence for it we discarded this diagnosis from
our analyses.
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subject
∑

R∈X P [�O | %T = R]
∑

R/∈X P [�O | %T = R] Ratio

1. 18.08596 8356106 45837.86

2. 18.8051 8154478 48838.94

3. 17.92734 9078993 41818.16

4. 1.309643 6511686 4259.38

5. 17.17977 6371685 57101.80

6. 1.402265 7855661 3780.37

7. 18.33732 8498536 45696.02

8. 0.3898225 6612845 1248.43
Table 2
Results Monte Carlo analysis for Transitivity.

4.6 Results - Transitivity

When we look at table 2 we can find in the second column the numerator of
the third fraction of the right hand side of expression (3), which is estimated
by expression (6). In the third column we can find the denominator of the
third fraction of the right hand side of expression (3), which is estimated by
expression (7). In the last column of this table one can find the result for
the posterior odds computed for each of the subjects (i.e. the ratio of the
second and the third column multiplied by #X̄/#X, see expression 3, with
#X = 7087261 7 and #X̄ = 3n(n−1)/2− 7087261). It is clear that the evidence
obtained from each subject speaks clearly in favor of transitivity, because the
odds are much larger than 1. A graphical display of the convergence of nt

parallel sequences of Monte Carlo estimations for expressions (6) and (7), are
printed here for two of our participants (i.e. subj. 6 and subj. 8). In fig.1
convergence plots are shown for expression (6) for subject 6 (left, with tn =
1000 and T = 1.0×105) and subject 8 (right, with tn = 300 and T = 1.0×105).
The full line indicates the running average of P [�O | %T = R], i.e.

∑k
i=1 P [�O

| %T = Ri]/k, while the dashed lines denote the running empirical percentiles
(.05 and .95), from bottom to top. The full lines becoming stationary indicates
convergence for our estimators.

Convergence plots for expression (7) for subject 6 (left, with tn = 3000 and

7 The total number of weak orders Wm on m objects is given by Wm = w(m, 1) +
... + w(m,m) with w(m, k) = k!S(m, k), S(m, k) being a Stirling number of the
second kind. The quickest way to compute Wm is by use of the recursion w(m, k) =
k(w(m − 1, k) + w(m − 1, k − 1)) with w(1, 1) = 1, w(i, 0) = 0 and wi<j(i, j) = 0
for all i = 1, 2, ...,m and j = 1, 2, ...,m. A detailed description of this method can
be found in Maassen and Bezembinder (2002)
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Fig. 1. Convergence plots for expression (6). Left: subject 6; Right: subject 8.
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Fig. 2. Convergence plots for expression (7). Left: subject 6; Right: subject 8.

T = 1.0 × 106) and subject 8 (right, with tn = 300 and T = 1.0 × 105) can
be found in fig. 2. Again, the full line indicates

∑l
i=1 P [�O | %T = Ri]/l, while

the dashed lines denote the running empirical percentiles (.05 and .95), from
bottom to top. It is clear that again convergence is reached for our estimators.

4.7 Analysis - Order of Operations

We decided to test Order of Operations and Transitivity simultaneously, for
the following reason.
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When we ask a subject whether a person on a picture belongs more to the set
‘middle age’ or ‘grey hair’, we can expect that the subject answers in function
of his/her perception of the picture and of the labels used to represent the
fuzzy sets. But when we ask a subject whether a person on a picture belongs
more to the set A ∪ B or A ∩ B (whatever A and B are), the subject will
probably notice that the elementary fuzzy sets (A and B) are the same in both
alternatives and that the only difference is the operation (∪ or ∩). The subject
may then be tempted to use some kind of logical reasoning instead of using
his/her perception or knowledge. There are thus chances that the answers of a
subject satisfy Order of Operations even if %T does not satisfy the condition.
Besides, if we present all pairs of alternatives formed by alternatives 10–15
(see Table 1), only three pairs out of 15 are relevant for Order of Operations:
(10, 13), (11, 14) and (12, 15). So, a test of Order of Operations only would
be based on very little data and would not be very reliable.

If we simultaneously test Transitivity and Order of Operations, then we use
not just the three above-mentioned pairs (which are not very reliable) but all
pairs. Indeed, if we have (A ∪ B) �O C and C �O (A ∩ B), then, assuming
Transitivity, we have some indirect evidence in favour of Order of Operations.
Conversely, if we have (A ∩ B) �O C and C �O (A ∪ B), then, assuming
Transitivity, we have some indirect evidence against Order of Operations.

Since we previously tested Transitivity for the 8 subjects and since they were
all found to be transitive, the outcome of the simultaneous test of Order of
Operations and Transitivity can be used for deciding whether the subjects
satisfy Order of Operations. The two competing hypotheses in this part of the
paper are thus ‘Transitivity and Order of Operations’ against ‘no Transitivity
or no Order of Operations’.

The same procedure as in the test for Transitivity was used, except for the fact
that we now generated weak order relations that were in agreement with Order
of Operations (and with the same number of relevant unions and intersections
on the same single fuzzy sets, i.e. three unions and three intersections and
three unique pairs of fuzzy sets) on one hand and random relations that were
not transitive or not in agreement with Order of Operations on the other.

4.8 Results - Order of Operations

The results of this analysis are shown in table 3 8 . Only for subject 4, 6 and
7 the results are in agreement with Order of Operations and Transitivity. For

8 In this case #X = 787, which was approximated by generating random weak
order relations and testing for Order of Operations, while #X̄ = 4683−787, which,
in this analysis, is the total number of weak orders on 6 objects minus #X.
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Subject
∑

R∈X P [�O | %T = R]
∑

R/∈X P [�O | %T = R] Ratio

1. 0.0297 6.7869 0.022

2. 0.0304 0.9961 0.151

3. 0.4757 5.1674 0.456

4. 0.0617 0.0615 4.969

5. 0.4988 5.4990 0.449

6. 0.7355 0.5340 62.44

7. 1.9025 4.0389 2.332

8. 0.5140 5.3717 0.416
Table 3
Results Monte Carlo analysis for Order of Operations.

the other subjects, Transitivity or Order of Operations does not hold. Since all
subjects were previously found to be transitive (Section 4.6), we thus conclude
that sujects 1, 2, 3, 5 and 8 do not satisfy Order of Operations. Notice that
most Bayes factors are close to 1. This indicates that our conclusions should
be considered with some scepticism.

5 Conclusion

We have introduced a method that can be used for the empirical testing of any
measurement-theoretic model and, in particular, of the measurement-theoretic
foundations of fuzzy set theory. We applied this method to test Transitivity
and Order of Operations.

The analysis of our data clearly showed that the observed relations from our
experiment were in agreement with Transitivity. This does not mean that
all subjects satisfy Transitivity in all circumstances. In order to draw such
a conclusion, we would need much more subjects and experiments not only
with pictures of people but also in other contexts. Besides, drawing such a
conclusion is not our goal since differences across subjects and contexts can
exist. The conclusion that we draw is just that Transitivity is a plausible
condition. It is thus worthwile studying models relying on Transitivity. But
a prudent real-life application of such a model with an expert would require
testing Transitivity with this expert.

The analysis of our data leads to the rejection of Order of Operations for
5 subjects out of 8. This could lead to the conclusion that a large part of
the population violates Order of Operations while the other part satisfies it.
Nevertheless, given the fact that the Bayes factors are close to 1 and given
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the small number of alternatives in the experiment, we think more research is
needed.

Since the above tested axioms are only a small part of the big heap of condi-
tions formulated by the authors working on the measurement-theoretic founda-
tions of fuzzy set theory (e.g. Bollman-Sdorra et al., 1993; Bilgiç and Türksen,
1995; Marchant, 2004a,b), many other parts of this pile are still waiting for
an empirical validation, an undertaking we plan to do in the near future.

Let us note a drawback of our method, in that it is computationally very
intensive. For example, in the case of subject 6, for the test of Transitivity
(relation over 9 objects), in order to conduct the Monte Carlo analysis for
expression (7) (see fig. 2, top), it took about 150 hours (program written in
R, running on a Pentium 4 pc).

Another thought of consideration should be directed towards the choice of our
priors, which in our case are chosen in accordance with Laplace’s principle. A
reasonable choice we think, because this reflects the knowledge we have about
our hypotheses before considering the data, however, we cannot say this is
the ‘best’ possible knowledge. So maybe we are overlooking additional prior
information, the basis on which we can construct different, but maybe better
priors.

A Monte Carlo Method

In this section a description is given of a Monte Carlo procedure developed in
order to estimate

∑
R∈X P [�O | %T = R] (see expression 3, the numerator of

the second fraction of the right hand term).

(1) Initialise 3 vectors, named ‘pEstim’, ‘sumEstim’ and ‘Estim’, each of
length tn with 0 components.

(2) Initialise a vector named ‘Average’ with length T .
(3) Initialise counter t. Set t = 0.
(4) t ← t + 1
(5) Generate tn weak order relations according to the procedure described in

Maassen and Bezembinder (2002).
(6) For each of the generated relations, compute P [�O | %T = Ri] (expression

(4). Place the results in pEstim.
(7) sumEstim ← sumEstim + pEstim
(8) Estim ← sumEstim/N
(9) Average[t] ← mean(Estim)

(10) If t < T , go to 4, else exit.
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In this case Average[T]×#X gives us the estimate of
∑

R∈X P [�O | %T =
R], the results of which can be found in the second column of table (2). To
approximate the denominator term

∑
R/∈X P [�O | %T = R], a similar procedure

can be used except that, this time, we generate complete but intransitive
relations and we multiply Average[T] with (3n(n−1)/2 −#X).
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