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Abstract

The β-measure has been introduced and characterized by R. van den
Brink and R. P. Gilles (Measuring domination in directed networks, So-
cial Networks, 22:141–157, 2000) for measuring the domination in directed
networks. The present paper characterizes the ranking induced by the β-
measure. It also provides an alternative characterization of the β-measure.

1 Introduction

Among the many different types of centrality concepts defined for social networks,
one finds domination and the corresponding relational power measures as intro-
duced by van den Brink and Gilles [2000] (henceforth referenced as vdBG2000) for
directed networks1. vdBG2000 characterize two relational power measures: the
β-measure and the score measure. Their characterization of the β-measure helps
us understand the key properties of the β-measure and to compare it with other
relational power measures2; for instance with the outdegree (called score-measure
by vdBG2000 or score function by Herings et al. [2005]).

A couple of years later, van den Brink and Gilles [2003] (henceforth referenced
as vdBG2003) characterized the ranking induced by the score measure (they call
this ranking the ranking by outdegree). So far, no characterization of the ranking
induced by the β-measure (we will call it the β-ranking) has been published. There
is therefore a gap in the literature because it is not possible to compare the β-
ranking with the ranking by outdegree from an axiomatic perspective. The aim of
the present paper is to fill this gap.

Since our main emphasis is on the characterization of the β-ranking, we do not
expand further on the motivation for the concept of domination and for relational

1van den Brink et al. [2008] consider the case of undirected networks.
2Relational power measures are called power functions by Herings et al. [2005]
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power measures; we refer the reader to vdBG2000 and, e.g., Herings et al. [2005]
and Tabak et al. [2010].

In the next section, we present the notation and the main definitions. Section 3
presents the characterization of the β-ranking and compares it with the charac-
terization of the ranking by outdegree in vdBG2003. In Section 4, we present a
new characterization of the β-measure. This alternative characterization of the
β-measure mainly uses the same axioms as the characterization of the β-ranking.
This allows us to have a unified view of the ranking and the measure.

2 Notation and definitions

Unlike vdBG2003, we consider a set of nodes (agents) that is not fixed, i.e., the
set X of nodes is a subset of a countably infinite universe Ω and X will be allowed
to vary in our analysis. The motivation for allowing X to vary will be detailed in
Section 3.5.

A directed network3 N is a pair (X,D) where D is a binary relation on X, i.e.,
a subset of X × X. Examples of such directed networks are networks of papers
and citations or Twitter accounts and followers. We limit our analysis to finite
irreflexive directed networks, that is, networks N = (X,D) such that X is finite
and (a, a) /∈ D for all a ∈ X. Irreflexivity is assumed because it is coherent with
the concept of domination, but it could easily be dispensed with. The set of all
logically possible finite irreflexive directed networks is denoted by N .

For every N = (X,D) ∈ N and a ∈ X, we define the set of successors of a as
SN(a) = {b ∈ X : (a, b) ∈ D} and the set of predecessors of a as PN(a) = {b ∈ X :
(b, a) ∈ D}. The cardinalities of these two sets are respectively called outdegree
and indegree of node a and are denoted by sN(a) and pN(a).

A relational power measure f (in vdBG2000’s terminology) is a function map-
ping every network N = (X,D) ∈ N to a vector in RX such that fN(a) is the
relational power of node a in network N . For instance, the outdegree sN is the
score-measure characterized in vdBG2000. A relational power ranking % is a
function mapping every network N = (X,D) ∈ N to a weak order4 on X denoted
%N . For instance, the ranking by outdegree (vdBG2003) is defined by a %s

N b iff
sN(a) ≥ sN(b).

For every node a in network N = (X,D), the β-measure is the relational power
measure defined by

βN(a) =
∑

b∈SN (a)

1

pN(b)
,

3Also often called directed graph or digraph.
4A weak order on a set A is a complete (a % b or b % a for every a, b in A) and transitive

(a % b and b % c imply a % c for every a, b, c in A) binary relation.
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where, by convention, the sum is equal to zero whenever SN(a) is empty. It induces
the β-ranking %β defined by a %β

N b iff βN(a) ≥ βN(b). This paper will characterize
the β-ranking and the β-measure.

The intuition behind this measure is the following: if node a dominates node b
(there is an arc from a to b), then we have an argument for increasing the measure
of a (there is a corresponding term in the sum), but this argument is weaker
if b is dominated by many other nodes: the strength of the argument is equal
to 1/pN(b). A similar idea (but a different operationalisation) underlies the Elo
ranking for chess players: when a player defeats a strong opponent, he earns more
points than when he defeats a weak one [Elo, 1978].

A much related idea can also be found in the literature on bibliometrics. The
“fractional counting of citations” proposed by Leydesdorff and Opthof [2010a,b]
and Glänzel et al. [2011] and axiomatized by Bouyssou and Marchant [2016] is
indeed quite reminiscent of the β-measure with links having a dual interpretation:
if a paper p is cited by paper q, this raises the index of p by a factor that is
inversely proportional to the number of papers citing q. Another related index
is the PageRank index [Page and Brin, 1998, Altman and Tennenholtz, 2005], of
which the fractional counting of citations is in some sense a non-recursive version.

3 The β-ranking

3.1 Axioms

We present some conditions satisfied by the β-ranking. The first one imposes that
the labelling of the nodes be immaterial. Before presenting it, we need a new piece
of notation. For every network N = (X,D) ∈ N and every permutation π of X,
we define Dπ by (π(a), π(b)) ∈ Dπ ⇐⇒ (a, b) ∈ D and we define Nπ = (X,Dπ).

A 1 Anonymity. For every permutation π of X and every N = (X,D) ∈ N , we
have, for all a, b ∈ X π(a) %Nπ π(b) ⇐⇒ a %N b.

This condition is identical to Anonymity in vdBG2003. It is clear that Anonymity
is necessary for the β-ranking since the labels of the nodes do not play any role in
the definition of the β-ranking; only the binary relation D matters.

We also need a monotonicity condition guaranteeing that adding an arc never
hurts the origin.

A 2 Positive Responsiveness. For every N = (X,D) and N ′ = (X,D′) in N and
every a, b, c ∈ X with a 6= b, if a %N b, (a, c) /∈ D and D′ = D ∪ {(a, c)}, then
a �N ′ b.
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Notice that this is a strict monotonicity condition. Indeed, after the addition of
the arc (a, c), if a was strictly above b, this strict preference is preserved and,
moreover, if a was indifferent to b, this indifference is transformed into a strict
preference.

This condition is exactly Positive Responsiveness, as defined by vdBG2003 for
characterizing the outdegree.

Let us show the necessity of this condition. When we add an arc (a, c), we add
a successor to SN(a) and, for all other successors of a, the number of predecessors
does not vary. Hence βN ′(a) = βN(a) + 1/pN(c) and, so, the β-measure of a
increases. At the same time, when we add an arc (a, c), the number of successors
of b does not vary and the number of predecessors of a successor of b can possibly
increase by 1. Put differently, the β-measure of b remains unchanged or decreases.
Consequently, if a was at least as good as b in the network N , then a is strictly
better than b in N ′.

Our next condition says that the addition of nodes that are not linked to any
other node has no influence on the ranking. Before presenting it, we need a new
definition. The restriction of a weak order % on the set X to a subset X ′ ⊂ X is
the weak order %′ defined for all a, b ∈ X ′ by a %′ b iff a % b.

A 3 Node Addition. For every network N = (X,D) ∈ N and N ′ = (X ∪{a}, D),
the ranking %N ′ restricted to X is equal to %N .

This condition is not related (at least not in a simple way) to any of the conditions
in vdBG2003. The Node Addition condition is satisfied by the β-ranking. Indeed,
adding an isolated node (i.e., a node that is not linked to any other node) does not
change the number of successors or predecessors of any other node. The β-measure
of all other nodes therefore remains constant.

Our next condition formalizes the idea that some arcs are irrelevant for com-
paring a and b.

A 4 Independence of Irrelevant Arcs. Let N = (X,D) and N = (X,D′) be two
networks in N such that

• (c, d) /∈ D, D′ = D ∪ {(c, d)},

• c /∈ {a, b}, d /∈ SN(a) ∪ SN(b).

Then a %N ′ b iff a %N b.

This condition is strictly weaker than Independence of Non-dominated Arcs in
vdBG2003. From the definition of the β-measure, it is clear that an arc influences
the β-measure of node a only if the origin of the arc is a or if the destination of
the arc is a successor of a. Independence of Irrelevant Arcs is therefore satisfied
by the β-ranking.
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Figure 1: Independence of Local Density: left, the network N = (X,D) and right,
the network N ′ = (X,D′), with l = 3 and n = 2.

Consider two nodes a and b such that a dominates many nodes while b dom-
inates few ones. At first sight, we may be tempted to conclude that a has more
power than b. Suppose in addition that a is in a very dense region of the network,
i.e., a region where nodes have many predecessors, while b is in a region with a low
density. This may lead us to temper our previous conclusion. Our last condition is
based on this idea. It says that increasing the number of successors of node a and
simultaneously increasing their number of predecessors, in the same proportion,
does not improve or worsen the position of a.

A 5 Independence of Local Density. Consider two networks N = (X,D) and
N ′ = (X,D′) in N and l, n ∈ N. Let ak1, . . . , a

k
n, b

k for k ∈ {1, . . . , l} be distinct
nodes in X such that

1. PN(bk) = {ak1, . . . , akn}, for k ∈ {1, . . . , l},

2. (aki , b
k′) /∈ D, for k 6= k′ ∈ {1, . . . , l} and i ∈ {1, . . . , n},

3. D′ = D ∪ {(aki , bk
′
) : k 6= k′ ∈ {1, . . . , l}, i ∈ {1, . . . , n}}.

Then %N=%N ′.
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This condition, illustrated in Figure 1, is not related to any of the conditions
in vdBG2003. We establish the necessity of this condition. Consider any node
d ∈ X. We must show that βN(d) = βN ′(d). We distinguish several cases.

• d /∈ {ak1, . . . , akn, bk} for k ∈ {1, . . . , l}. Then the number of terms in the sum
defining the β-measure does not change when going from N to N ′, i.e., when
adding arcs of the form (aki , b

k′). The denominator of each term also remains
the same because d is not the predecessor of any bk

′
.

• d = aki . Then the term (1/n) corresponding to the arc (d, bk) is divided by
l because of all the new arcs of the form (ak

′
i , b

k). The number of terms
in the sum also changes: node d has l − 1 new successors, because of the
arcs of the form (d, bk

′
), and each corresponding term in the new sum is

equal to 1/(n × l). The β-measure of d therefore remains unchanged since
1/n = 1/nl + (l − 1)/nl.

• d = bk. There is clearly no new term in the sum. Since we have assumed
in the statement of the condition that ak1, . . . , a

k
n, b

k for k ∈ {1, . . . , l} are
distinct, we know that none of the new arcs (aki , b

k′) has a successor of d as
destination. Each term of the sum therefore remains unchanged.

Independence of Local Density is a kind of normalization condition5, in the
sense that it permits comparisons across networks with different densities or to
compare nodes located in different parts of a single network, with different local
densities. Another example of a normalized index is the density of a network
(number of arcs divided by n(n − 1)/2); it is normalized in the sense that it is a
ratio, and it is thereby independent of the size of the network. Comparisons across
networks of different size are thus possible. Notice that such a normalization
has nothing to do with units of measurement6. Indeed, even if we change the
measurement unit, i.e., we multiply the standard density index (resp. the β-
measure) by 2, by 10 or by 100, the scaled up density index (resp. the scaled up
β-measure) remains normalized and comparisons across networks remain possible.

3.2 Result

We are now ready to state our first result, characterizing the ranking induced by
the β-measure.

5This concept of “normalization” is often used in the literature on networks [e.g., Ruhnau,
2000, Koschützki et al., 2005].

6Contrary to the Dominance Normalization condition used in vdBG2000, as explained later.
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a b

Figure 2: Before step 1. The nodes a, b, their successors and the predecessors of
their successors in the network N = (X,D).

Theorem 1 A relational power ranking satisfies (i) Anonymity, (ii) Positive Re-
sponsiveness, (iii) Node Addition, (iv) Independence of Irrelevant Arcs, and (v)
Independence of Local Density if and only if it is the β-ranking.

Before proving this theorem, we state and prove a lemma.

Lemma 1 (Transfer) Let N = (X,D) and N ′ = (X,D′) be two networks in N
and n ∈ N be such that

1. PN(b) = {a1, . . . , an}, PN(b′) = {a′1, . . . , a′n},

2. PN ′(b) = {a′1, a2, . . . , an}, PN ′(b′) = {a1, a′2, . . . , a′n},

3. (ai, b
′) /∈ D and (a′i, b) /∈ D for all i ∈ {1, . . . , n},

4. D∆D′ = {(a1, b), (a′1, b′), (a1, b′), (a′1, b)}.

If % satisfies Independence of Local Density, then %N=%N ′.

Proof. Consider the network N ′′ = (X,D′′) such that

D′′ = D ∪ {(ai, b′), (a′i, b) : i ∈ {1, . . . , n}}.

By Independence of Local Density, %N ′′=%N . By Independence of Local Density
as well, %N ′′=%N ′ . Hence %N=%N ′ . 2

Proof of Theorem 1. The necessity of our conditions has been shown above.
We now prove the sufficiency. Choose any two nodes a, b in X. In a number
of steps, we will transform the network N into N1, N2, etc. in such a way that
(1) the β-measure of a and b will not change and (2) the way a and b compare
to each other will also not change. At each step, the obtained network will be
simpler. When we will reach N4, it will be so simple, that, using Anonymity and
Positive Responsiveness, it will be easy to know how a and b compare to each
other. Figures 2–6 illustrate the proof with a simple example. The initial network
N = (X,D) is displayed in Figure 2.

7



a b

Figure 3: Step 1. The network N1 = (X1, D1). The nodes added during step 1 are
represented by a square. The least common multiple m is 6.

Step 1. Let us construct N1 = (X1, D1) as follows. Let m be the least common
multiple of pN(c) for all c ∈ SN(a) ∪ SN(b). For each successor c of a, we do the
following (we will do the same with the successors of b). Let n = m/pN(c). We

relabel a as d11, c as c1 and the other predecessors of c as d21, . . . , d
pN (c)
1 . We add

n− 1 new nodes c2, . . . , cn and (n− 1)pN(c) new nodes dji with i ∈ {2, . . . , n}, j ∈
{1, . . . , pN(c)}. Thanks to Node Addition, the new nodes have no influence on the
comparison between a and b. We then add (n− 1)pN(c) new arcs from ci to dji for
i ∈ {2, . . . , n}, j ∈ {1, . . . , pN(c)}. Thanks to Independence of Irrelevant Arcs, the
new arcs have no influence on the comparison between a and b. We then add an
arc from each dji to each ci′ for all i 6= i′ ∈ {1, . . . n} and all j ∈ {1, . . . , pN(c)}.
Thanks to Independence of Local Density, a %N1 b iff a %N b. As a result of this
step (see Fig.3), all successors of a and b have the same indegree m. Notice that
βN1(a) = βN(a) and βN1(b) = βN(b).

Step 2. Let us construct N2 = (X2, D2) as follows. For each successor c of a,
we add 1 +m new nodes: c′, d1, . . . , dm.Thanks to Node Addition, the new nodes
have no influence on the comparison between a and b. We add a new arc from each
d1, . . . , dm to c′. Thanks to Independence of Irrelevant Arcs, the new arcs have no
influence on the comparison between a and b. We add two new arcs (a, c′), (d1, c)
and we remove the arcs (a, c), (d1, c

′).
Thanks to Transfer, %N2=%N1 and, therefore, a %N2 b iff a %N1 b. Hence

a %N2 b iff a %N b. Notice that βN2(a) = βN(a) and βN2(b) = βN(b). As a result
of this step (see Fig. 4), all successors of a have no successor; each predecessor
(unless it is a) of a successor of a has no predecessor and has only one successor.

Step 3. This step is similar to the previous one; it handles the successors of
b. Let us construct N3 = (X3, D3) as follows. For each successor c of b, we add
1 + m new nodes: c′, d1, . . . , dm.Thanks to Node Addition, the new nodes have
no influence on the comparison between a and b. We add a new arc from each
d1, . . . , dm to c′. Thanks to Independence of Irrelevant Arcs, the new arcs have no
influence on the comparison between a and b. We add two new arcs (b, c′), (d1, c)
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a b

Figure 4: Step 2. The network N2 = (X2, D2). The nodes added during step 2 (3
groups of 7 nodes) are represented by a triangle.

and we remove the arcs (b, c), (d1, c
′). Thanks to Transfer, a %N3 b iff a %N2 b.

Hence a %N3 b iff a %N b. Notice that βN3(a) = βN(a) and βN3(b) = βN(b). As a
result of this step (see Fig. 5), all successors of a and b have no successor and they
all have the same indegree; each predecessor (unless it is a or b) of a successor of
a or b has no predecessor and has only one successor; a and b have no successor in
common.

Step 4. Let N4 = (X4, D4) be such that X4 = X3 and D4 = D3 \ {(c, d) : d /∈
SN3(a)∪ SN3(b)}. Thanks to Independence of Irrelevant Arcs, a %N4 b iff a %N3 b.
Hence a %N4 b iff a %N b. Notice that βN4(a) = βN(a) and βN4(b) = βN(b). As a
result of this step (see Fig. 6), all arcs have a successor of a or b as destination;
only a and b can have an outdegree larger than 1; only successors of a or b have a
positive indegree; a and b have no successor in common; all successors of a and b
have no successor and they all have the same indegree.

We now consider three cases.

1. βN(a) = βN(b). In this case, it is easy to see that a and b have the same
outdegree in N4. Because of the high symmetry of N4, there is clearly a
permutation π of X4 such that π(a) = b, π(b) = a and Nπ

4 = N4 (there are
actually many such permutations). Because of Anonymity, we have b %Nπ

4

a ⇐⇒ a %N4 b. Since Nπ
4 = N4, this implies a ∼N4 b and, hence, a ∼N b.

2. βN(a) > βN(b). In this case, the outdegree of a in N4 is larger than that
of b. By removing some arcs leaving a, we can construct a network N5 (see
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a b

Figure 5: Step 3. The network N3 = (X3, D3). The nodes added during step 3 (2
groups of 7 nodes) are represented by a empty square.

a b

Figure 6: Step 4. The network N4 = (X4, D4) contains all arcs in this figure. The
network N5 = (X5, D5) contains only the solid arcs.
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Fig.6) in which βN5(a) = βN5(b). From case 1, we know that a ∼N5 b and by
Positive Responsiveness, we conclude that a �N4 b. Hence a �N b.

3. βN(a) < βN(b). This case is handled as the previous one.

2

3.3 Independence of the conditions in Theorem 1

For each of the five conditions invoked in Theorem 1, we provide an example of a
relational power ranking satisfying four conditions but one. This proves that our
result cannot be improved by dropping one of the five conditions.

Example 1 Anonymity. Choose any a ∈ Ω. For all N = (X,D) ∈ N and all
b ∈ X, define the relational power measure f by

fN(b) =

{
2βN(b), if b = a,
βN(b), otherwise.

Define then the relational power ranking % by b %N c iff fN(b) ≥ fN(c), for all
b, c ∈ X.

It is simple to check that % violates Anonymity but satisfies Node Addition,
Positive Responsiveness, Independence of Irrelevant Arcs and Independence of Lo-
cal Density.

Example 2 Positive Responsiveness. For all N = (X,D) ∈ N , define the rela-
tional power ranking % by %N= X2.

It is simple to check that % violates Positive Responsiveness but satisfies Anonymity,
Node Addition, Independence of Irrelevant Arcs and Independence of Local Den-
sity.

Example 3 Independence of Irrelevant Arcs. For all N = (X,D) ∈ N and all
a ∈ X, define the relational power measure f by fN(a) = βN(a)−

∑
c∈PN (a) βN(c).

Define then the relational power ranking % by a %N b iff fN(a) ≥ fN(b) for all
a, b ∈ X.

Adding a node to the set X does not affect the β-measure of any node and
Node Addition is therefore satisfied. Anonymity is clearly satisfied. Positive Re-
sponsiveness holds because, when we add an arc from node a to any other node
d, the measure fN(a) strictly increases. Indeed, βN(a) strictly increases and, for
all c ∈ PN(a), βN(c) remains constant except if d ∈ SN(c). In that case, βN(c)
decreases. The overall effect on fN(a) is thus an increase.
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We now show that Independence of Irrelevant Arcs does not hold. Consider the
network N = (X,D) with X = {a, b, c, d, e} and D = {(c, a), (e, b)}. Then a ∼N b
because fN(a) = −1 = fN(b). We now add the arc (c, d) to this network and we
obtain N ′ = (X,D′) with D′ = {(c, a), (e, b), (c, d)}. We have a ≺N b because
fN(a) = −2 and fN(b) = −1, contrary to what Independence of Irrelevant Arcs
imposes.

Independence of Local Density holds because fN(a) is a combination of the β-
measures of some nodes and we have shown in Section 3.1 that the β-measure of
all nodes remains unchanged when we increase the local density as in the statement
of Independence of Local Density.

Example 4 Independence of Local Density. For all N = (X,D) ∈ N and all
a ∈ X, define the relational power measure f by fN(a) = sN(a). Define then the
relational power ranking % by a %N b iff fN(a) ≥ fN(b) for all a, b ∈ X.

It is simple to check that % violates Independence of Local Density but satisfies
Anonymity, Node Addition, Positive Responsiveness and Independence of Irrele-
vant Arcs.

Example 5 Node Addition. For all N = (X,D) ∈ N and all a ∈ X, define the
relational power measure f by

fN(a) =

{
sN(a), if #X ≤ 3,
βN(a), otherwise.

Define then the relational power ranking % by a %N b iff fN(a) ≥ fN(b) for all
a, b ∈ X.

To see that Node Addition is not satisfied, use the following example. Consider
the network N = (X,D) with X = {a, b, c} and D = {(a, b), (b, a), (b, c), (c, b), (c, a)}.
We have fN(a) = sN(a) = 1. Similarly, fN(b) = 2 and fN(c) = 2. Therefore,
b ∼N c �N a. Consider now the network N ′ = (X ′, D) with X ′ = {a, b, c, d}. We
have fN ′(a) = βN ′(a) = 1/2. Similarly, fN ′(b) = 3/2 and fN ′(c) = 1. Therefore,
b �N ′ c �N ′ a. Hence %N 6=%N ′ contrary to what Node Addition imposes.

It is clear that Anonymity, Positive Responsiveness, Independence of Irrelevant
Arcs and Independence of Local density are satisfied when #X > 3. It is also
clear that Anonymity, Positive Responsiveness and Independence of Irrelevant Arcs
hold when #X ≤ 3. Finally, Independence of Local density holds when #X ≤ 3
because Independence of Local Density is vacuous (the premise is never true) when
#X ≤ 3.

These five examples formally prove the logical independence of our conditions.
Yet, the last one, although formally correct, is not fully satisfactory. Indeed, if we
would state Theorem 1 for sets containing at least four nodes, Example 5 would no
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Theorem 2.4 in vdBG2003 Our Theorem 1
Anonymity ⇔ Anonymity
Positive responsiveness ⇔ Positive responsiveness
(Node Addition) ⇔ Node Addition
Independence of Non-Dominated Arcs ⇒ Independence of Irrelevant Arcs

Independence of Local density

Table 1: Comparison of the axioms in Theorem 2.4 in vdBG2003 and in our
Theorem 1. Node Addition is satisfied by the ranking by outdegree, but is not
used in its characterization.

longer work. Finding a better example or slightly weakening some of our conditions
so as to obtain conditions that are logically independent even if the result is stated
for sets containing at least k alternatives (with k > 3) is left as an open problem.

3.4 Comparison with the characterization of the ranking
by outdegree

Theorem 2.4 in vdBG2003 characterizes the ranking by outdegree by means of
three conditions: Anonymity, Positive Responsiveness and Independence of Non-
Dominated Arcs. Obviously, the same result holds in a framework where X is
allowed to vary: no additional condition is needed to characterize the outdegree.
So, when we compare their Theorem 2.4 (adapted to a framework with X varying)
and our Theorem 1, we find the following (see Table 1). The ranking by outdegree
and the β-ranking have two characterizing axioms in common: Anonymity and
Positive Responsiveness. They both satisify Node Addition, but this condition
is not used in the characterization result for the outdegree. The fact that the
ranking based on the outdegree can be characterized without appealing to Node
Addition is also the sign that the measure on which this ranking is based is some-
what simpler than the β-measure. What are then the differences? The ranking by
outdegree satisfies Independence of Non-Dominated Arcs while the β-ranking sat-
isfies a weaker independence condition, namely Independence of Irrelevant Arcs.
Besides, the β-ranking satisfies Independence of Local Density.

3.5 Why do we let X vary?

Given a fixed, finite set of nodes, the number of possible networks is also finite.
And the set of all different values taken by the β-measure is also finite. Any
axiom stated for rankings imposes an ordering constraint or an equality constraint
on some pairs of values. When the set of all different values is finite, an axiom
imposes a finite number of such constraints. With a finite set of axioms, the
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number of ordering or equality constraints remains finite. Obviously, with a finite
number of ordering or equality constraints imposed on a finite number of pairs of
values, it is impossible to completely determine what these values are, unless they
are equally-spaced. For instance, the set of all values taken by the outdegree is
equally-spaced. It is the set {0, 1, 2, ..., n − 1}, where n is the size of the set of
nodes. But the set of values taken by the β-measure on a fixed set of nodes is
not equally-spaced. For instance, with 4 alternatives, the set of values that can
possibly be taken by the β-measure is {0, 1/3, 1/2, . . .}. We therefore think it is
impossible to characterize the β-ranking with a fixed set of nodes.

By considering a variable set of nodes and imposing a finite number of axioms,
we actually impose infinitely many constraints. This way, it is possible to isolate
the β-ranking among all possible rankings.

4 The β-measure

In this section, we are interested in the β-measure itself, and no longer in the rank-
ing induced by the β-measure. A characterization of the β-measure has already
been published by vdBG2000. The alternative characterization we will propose
will use many of the conditions already introduced for the characterization of the
β-ranking presented in the previous section. It therefore offers a unified view of the
ranking and the measure and it allows us to clearly identify the difference between
the ranking and the measure in terms of axioms.

Since any relational power measure induces a ranking and since we already
characterized the β-ranking in Theorem 1, a first way to impose conditions on
a relational power measure f is to impose the conditions of Theorem 1 on the
ranking induced by f . This way, we are sure that f is a numerical representation
of the β-ranking in the sense that fN(a) ≥ fN(b) iff a %β

N b. Yet, these conditions
will not be strong enough to characterize the β-measure because many different
measures induce the same ranking. Indeed, any strictly increasing transformation
of f induces the same ranking as the one induced by f . So we need to add some
new conditions and/or to reinforce some of the conditions used in Theorem 1.
We will actually use two additional conditions and reinforce the Node Addition
condition.

4.1 Axioms

We begin with an additivity condition satisfied by the β-measure. Suppose two
networks have the same set of nodes while their sets of arcs have almost nothing in
common. Then, if we merge the two networks, the relational power measure of any
node is the sum of the relational power measure in the two original networks. It is
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Figure 7: Additivity. The network N = (X,D1 ∪ D2) with two components
connected via a.

difficult to motivate this condition on purely normative grounds. Why the sum and
not another binary operation? Or more generally, why should the measure in the
merged network be a combination of the measures in the original networks? There
is no clear normative reason for this. Yet such a condition is necessary if we want
to characterize the measure rather than the ranking. We can nevertheless motivate
this condition by some operational arguments: the fact that the measure in the
merged network is the sum of the measures in the original networks guarantees
that the measure will be easy to calculate and that many optimization problems
that we may want to define and to solve (in terms of the relational power measure),
will have some nice computational properties.

Before we formally define our additivity condition, we need an extra piece of
notation: for N = (X,D) ∈ N , define IN = {a ∈ X : (b, a) or (a, b) ∈ D for some
b ∈ X}.

A 6 Additivity. Let X ⊂ Ω. Consider three networks N1 = (X,D1), N2 = (X,D2)
and N = (X,D1 ∪D2) ∈ N such that there is some a ∈ X with IN1 ∩ IN2 = {a}
and PN(a) = ∅. Then fN(b) = fN1(b) + fN2(b) for all nodes b ∈ X.

This condition, illustrated in Fig. 4.1, is clearly similar in spirit to the Additivity
over Independent Partitions condition used in vdBG2000.

Let us show the necessity of this condition for the β-measure. Choose any
node b ∈ X (except a). If it has successors in N1, then it has no successors in
N2 (and vice versa). Besides, its successors in N are the same as in N1. And the
predecessors of the successors of b are the same in N as in N1. Hence βN(b) =
βN1(b) + 0 = βN1(b) + βN2(b). We now consider the node a. It has successors
in N1 and in N2, but the predecessors of the successors of a in N1 are distinct
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of the predecessors of the successors of a in N2. Furthermore the merging of N1

and N2 does not change the set of predecessors of any node. Hence βN(a) =
βN1(a) + βN2(a).

The second additional condition says that a node that has no successor nor
predecessor has a relational power measure equal to zero.

A 7 Isolated Node. Let N = (X,D) ∈ N and a ∈ X. If SN(a) = PN(a) = ∅,
then fN(a) = 0.

This is very close in spirit to the Dummy Node Condition of vdBG2000, but our
condition is weaker because vdBG2000 impose fN(a) = 0 whenever a node has no
successor. It is clearly satisfied by the β-measure.

We now reinforce the Node Addition condition: adding an isolated node (that
has no successor nor predecessor) has no effect on the relational power measure.

A 8 Node Addition*. For all networks N = (X,D) ∈ N and all a ∈ Ω \ X, if
N ′ = (X ∪ {a}, D), then fN(b) = fN ′(b) for all b ∈ X.

Node Addition* is not related to the Dummy Node Condition of vdBG2000. The
necessity of Node Addition* for the β-measure is obvious. The following example
shows that Node Addition does not imply Node Addition*.

Example 6 For all N = (X,D) ∈ N , define the relational power measure f by

fN(a) =
βN(a)

#X
, ∀a ∈ X.

Node Addition* is clearly violated while Node Addition is satisfied.

4.2 Result

Theorem 2 A relational power measure f satisfies (i) Additivity, (ii) Isolated
Node and (iii) Node Addition* and induces a ranking % satisfying (iv) Anonymity,
(v) Positive Responsiveness, (vi) Independence of Irrelevant Arcs, and (vii) Inde-
pendence of Local Density if and only if f = kβ for some positive real number
k.

Instead of imposing Anonymity, Positive Responsiveness, Independence of Lo-
cal Density, and Independence of Irrelevant Arcs on the ranking induced by the
relational power measure f , we could alternatively redefine those conditions for re-
lational power measures and impose them directly on f . For instance, Anonymity
would become
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A 9 f-Anonymity. For every permutation π of X and every N = (X,D) ∈ N , we
have, for all a, b ∈ X fNπ(π(a)) ≥ fNπ(π(b)) ⇐⇒ fN(a) ≥ fN(b).

The statement of Theorem 2 would then read “A relational power measure f
satisfies f-Anonymity, f-Positive Responsiveness, f-Independence of Local Density,
f-Independence of Irrelevant Arcs, Additivity, Isolated Node and Node Addition*
if and only if f = kβ for some positive real number k.” We prefer the former
statement because it makes clear which conditions are specifically tailored for the
index (the cardinal conditions), as opposed to the ordinal conditions.

Proof of Theorem 2. The necessity of our conditions has been shown above.
We now prove the sufficiency. Clearly, if f satisfies Node Addition*, then % satisfies
Node Addition. Hence, thanks to Theorem 1, % = %β (defined in Section 2).
Consider two networks N = (X,D) and M = (Y,B) ∈ N with a ∈ X ∩ Y . The
proof will consist of three parts: i) the index fN(b) = kβN(b), for any node b ∈ X;
ii) the index fM(b) = kβM(b), for any b ∈ Y (with the same constant k); iii) parts
i and ii hold even if X ∩ Y = ∅.

By construction, for any c ∈ X or d ∈ Y , βN(c) and βM(d) are rational
numbers. There exist therefore

• a natural number z,

• #X natural numbers xc, ∀c ∈ X, such that βN(c) = xc/z and

• #Y natural numbers yc, ∀c ∈ Y , such that βM(c) = yc/z.

Let us choose any b ∈ X and construct a new network N ′ = (X ′, D′) with
D′ = D and X ′ = X ∪{b′, c1, . . . , cxb , e1,1, . . . , exb,z}. By Node Addition*, fN ′(b) =
fN(b). By construction, βN ′(b) = βN(b). By Isolated Node, fN ′(c) = 0 for all
c ∈ X ′ \ X. We now construct a series of networks N1, N2, . . . in a number of
steps.

Step 1. Define N1 = (X ′, D1) by

D1 = D′ ∪ {(b′, c1)} ∪ {(e1,j, c1) : j = 1, . . . , z − 1}.

By construction, βN1(b) = βN(b) and βN1(b
′) = 1/z. By Additivity, fN1(b) = fN(b)

and fN1(b
′) = fN(b′). Let γ = fN1(b

′); thanks to Anonymity, it is independent of
b′ (and thus of b) because it only depends upon the structure of the subgraph
{(b′, c1)} ∪ {(e1,j, c1) : j = 1, . . . , z − 1}.

Step i, for i ∈ {2, . . . , xb}. Define Ni = (X ′, Di) by

Di = Di−1 ∪ {(b′, ci)} ∪ {(ei,j, ci) : j = 1, . . . , z − 1}.
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By construction, βNi(b) = βN(b) and βNi(b
′) = i/z. By Additivity, fNi(b) = fN(b).

Anonymity and Additivity imply fNi(b
′) = iγ. Notice that, at the end of Step xb,

fNxb (b
′) = xbγ. It is also clear that βNxb (b) = βNxb (b

′). This and Theorem 1 imply
fNxb (b) = fNxb (b

′). As a consequence, fN(b) = fNxb (b) = fNxb (b
′) = xbγ. So,

fN(b)

βN(b)
=

xbγ

xb/z
= γz. (1)

Remember we have shown that γ does not depend on b. The ratio fN(b)/βN(b) is
therefore constant for all b ∈ X. This concludes the proof of part i.

Notice also that the same reasoning applies to the network M and any b ∈ Y ,
that is,

fM(b)

βM(b)
=

ybγ

yb/z
= γz (2)

for any b ∈ Y . By construction, z is the same number in (1) and (2). The same
holds for γ. The ratio fN(b)/βN(b) is therefore constant for all N = (X,D) ∈ N
that share a common agent a and for all b ∈ X. This concludes the proof of part
ii.

We now turn to part iii. Consider two networks N = (X,D) and M = (Y,B)
with X ∩ Y = ∅. We can easily construct a third network O = (Z,C) with
X ∩ Z 6= ∅ and Y ∩ Z 6= ∅. Applying the above reasoning to the pair (N,O) and
to the pair (M,O) yields fN(b)/βN(b) = fO(b)/βO(b) = fM(b)/βM(b). The ratio
fN(b)/βN(b) is therefore constant for all N = (X,D) ∈ N and for all b ∈ X.

In order to complete the proof, define k = γz and notice that, by Positive
Responsiveness, k > 0. 2

4.3 Independence of the conditions in Theorem 2

Examples 1, 3 and 4 in Section 3 are stated for rankings but are all induced by a
relational power measure. They can therefore be reused for showing that none of
Anonymity, Independence of Irrelevant Arcs or Independence of Local Density is
implied by the other conditions of Theorem 2.

In order to prove that Node Addition* is not implied by the other conditions
of Theorem 2, we can use fN as defined in Example 5. Yet, we prefer to use Ex-
ample 6. It is simpler than Example 5 and it cannot be used in place of Example 5
for showing the independence of the conditions of Theorem 1 because it induces a
ranking that satisfies the Node Addition condition. Besides, Example 6 does not
make a distinction between sets with at most three nodes and sets with more than
three nodes. The logical independence of the axioms in Theorem 2 is thus more
strongly established that for Theorem 1.

For the other conditions, we need some additional examples.
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Example 7 Positive Responsiveness. For all N = (X,D) ∈ N , define the rela-
tional power measure f by

fN(a) = 0, ∀a ∈ X.

The ranking induced by f violates Positive Responsiveness. All other conditions
are satisfied. This example is essentially identical to Example 2, but stated in terms
of relational power measure.

Example 8 Additivity. For all N = (X,D) ∈ N , define the relational power
measure f by

fN(a) = (βN(a))2, ∀a ∈ X.

It obviously violates Additivity. That is satisfies Isolated Node and Node Addition*
is clear as well. Since f is a strictly increasing transform of β, it is also a numerical
representation of the ranking %β and it therefore satisfies Anonymity, Positive
Responsiveness, Independence of Local Density, and Independence of Irrelevant
Arcs.

Example 9 Isolated Node. For all N = (X,D) ∈ N , define the relational power
measure f by

fN(a) = #D + βN(a), ∀a ∈ X.

It clearly violates the Isolated Node condition. It satisfies Additivity because each
of #D and βN(a) are additive measures. Node Addition* is easy to check since the
addition of an isolated node does not change #D. Anonymity is obvious. Positive
Responsiveness holds because, when we add an arc, all measures increase by 1, but
the measure of the origin of the arc increases by more than 1. Independence of
Local Density is satisfied. Indeed, when we transform a network as in the statement
of the condition, the measure of all nodes (without exception) increases by exactly
1. A similar reasoning shows that Independence of Irrelevant Arcs holds.

4.4 The characterization of van den Brink and Gilles

In this section, we present vdBG2000’s characterization of the β-measure and we
compare it with ours. In their characterization of the β-measure, vdBG2000 use
the following four axioms.

A 10 Dominance normalization. For every network N = (X,D) ∈ N ,∑
a∈X

fN(a) = #{a ∈ X : PN(a) 6= ∅}.
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A 11 Dummy Node Property. For every network N = (X,D) ∈ N and every a
in X with SN(a) = ∅, it holds fN(a) = 0.

A 12 Symmetry. For every network N = (X,D) ∈ N and every a, b in X such
that SN(a) = SN(b) and PN(a) = PN(b), it holds fN(a) = fN(b).

For the fourth axiom, we need a new definition. A collection {D1, . . . , Dm} of
binary relations on X is an independent partition of N = (X,D) if

• the union of {D1, . . . , Dm} is equal to D,

• all relations {D1, . . . , Dm} are mutually disjoint,

• each node has no predecessor in D or has predecessors in only one of the
relations {D1, . . . , Dm}.

A 13 Additivity over Independent Partitions. For every network N = (X,D) ∈
N , if the collection {D1, . . . , Dm} of binary relations on X is an independent
partition of N = (X,D), then

fN(a) =
m∑
i=1

f(X,Di)(a),

for all a ∈ X.

Their characterization result is then:

Theorem 3 [vdBG2000, Th. 2.7, p. 145] Suppose X is given. A relational power
measure satisfies Dominance Normalization, Dummy Node Property, Symmetry
and Additivity over Independent Partitions if and only if it is the β-measure.

The most salient difference between vdBG2000’s result and our Theorem 2 is
that vdBG2000 exactly characterize the β-measure while we characterize it up
to a multiplicative constant. We do so because we think there is no need for
normalization in the sense that there is no need for setting a unit of measurement
(in vdBG2000’s words, p.144). To make our point clear, we consider a simple
example in geometry. Suppose we want to characterize the Euclidean distance.
Shall we impose an axiom saying that the distance be measured in meters? Or
in yards? Definitely not. We want to characterize the Euclidean distance up
to a multiplication by some positive real number. This is perfectly sufficient for
understanding the Euclidean distance. The same is true for the β-measure: the
relational power measure f defined by fN(a) = 10βN(a) is for all purposes as good
as βN(a). We therefore want to characterize the β-measure up to a multiplication
by some positive real number.
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Since vdBG2000 want to exactly characterize the β-measure, they need to use a
normalization condition for setting a unit of measurement: this is their Dominance
Normalization. Unfortunately this is a complex condition and it does more than
normalizing (in the sense of setting a unit of measurement for) the relational power
measure. If it were just a normalization condition (in the sense of setting a unit of
measurement), then the three other conditions (namely Dummy Node Property,
Symmetry and Additivity over independent partitions) would characterize the β-
measure up to a multiplication by some positive real number. This is clearly not
the case since it is easy to find other relational power measures satisfying these
three conditions. One such measure is the outdegree, i.e., the relational power
measure f defined by fN(a) = sN(a) for all N = (X,D) and all a ∈ X.

A pure normalization axiom (in the sense of setting a unit of measurement)
would be much simpler than Dominance Normalization. It could for instance be
stated as follows: for every network N = (X,D) ∈ N such that D = {(a, b)},
we have βN(a) = 1. Such a condition does nothing else but setting the unit
of measurement. If we add it to the conditions of our Theorem 2, we exactly
characterize the β-measure. Without this condition, we characterize the β-measure
up to a multiplication by a positive real number.

Theorem 2.7 in vdBG2000 continues to hold if we restate it in a framework
where X is allowed to vary: no additional condition is needed to characterize the
β-measure. So, we can compare Theorem 2.7 in vdBG2000 to our Theorem 2.
Table 2 summarizes the axioms used in both theorems; it has five rows delimited
by dotted lines: one for each axiom of vdBG2000 plus an extra row for Node
Addition*. In a given row, the axioms in the right hand side column are similar
in spirit (or identical) to those in the left hand side column. In the right hand
side column, the last row has several axioms, thereby showing that vdBG2000’s
Dominance Normalization has been split in several weaker axioms, that all have
a clear normative content. Hence, in our view, the alternative characterization of
the β-mesure proposed in Theorem 2 does not compare unfavorably with respect
to Theorem 2.7 in vdBG2000.

The only condition in our Theorem 2 that has no clear normative content is
Additivity (similar to Additivity over Independent Partitions in vdBG2000). We
do not see a way to avoid such a condition, unless one is willing to work with a
ranking rather than with an index. Indeed, our Theorem 1 does not invoke any
additivity condition and uses all conditions with a clear normative content.
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Theorem 2.7 in vdBG2000 Our Theorem 2
Dummy Node Property ⇒ Isolated Node
Symmetry ⇐ Anonymity
Additivity over Independent Partitions Additivity
(Node Addition*) ⇔ Node Addition*
Dominance Normalization Positive Responsiveness

Independence of Irrelevant Arcs
Independence of Local Density

Table 2: Comparison of the axioms in Theorem 2.7 in vdBG2000 and in our
Theorem 2. Node Addition* is satisfied by the ranking by outdegree, but is not
used in its characterization.
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