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Abstract. In this paper, we give new lower bounds for the independence number 
α(G) of a finite and simple graph G.   
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Graphs, considered here, are finite and simple (without loops or 
multiple edges), and [1, 2] are followed for terminology and notation. 
Let G = (V, E ) be an undirected graph, with the set of vertices V = { v1, 
v2, …, vn } and the set of edges E, such that |E|= m.  
We denote by d(v) the degree of a vertex v in G. It is well known (e.g., 
see [2]) that σ(G) = d(v1) + d(v2) + … + d(vn) = 2m. 
Let δi (v) be the number of vertices having the distance i from a vertex 
v  of G and let α(G) be the independence number of G. 
 
LEMMA 1. If G is a triangle-free graph, then  
              
                           α(G) ≥ α*(G) = ∑v∈V δ1(v)/(1+δ1(v)+δ2(v)). 
 
Proof. We randomly label the vertices of G with a permutation of the 
integers from 1 to n. Let S ⊆V be the set of vertices v for which the 
minimum label on vertices at distance 0, 1 or 2 from v is on a vertex 
at distance 1. Obviously, the probability that S contains a vertex v is 
given by δ1(v)/(1+δ1(v)+δ2(v)) and, therefore, the expected size of S is 
equal to α*(G). Moreover, S must be an independent set of G, since, 
otherwise, if S contains an edge it is easy to see that it must lie in a 
triangle of G, contradicting the hypothesis. Thus, the lemma is proved.  
 
THEOREM 1. If G is a triangle-free and pentagon-free graph with m 
edges,  then α(G) ≥ m . 
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Proof. Let d(G) be the average degree of vertices of G. Since G is a  
triangle-free and pentagon-free graph, then we have α(G) ≥ δ1(v), by 
considering the neighbours of v, and α(G) ≥ 1+δ2(v), by considering v 
and the vertices at distance 2 from v, for any vertex v of G. Thus, by 
the above lemma, α(G) ≥ α*(G) ≥ ∑v∈V δ1(v)/2α(G), that is, α(G)2 ≥ 
nd(G)/2 or α(G) ≥ 2/)(Gnd . But, d(G) ≥ σ(G)/n = 2m/n and, therefore, 

α(G) ≥ m , the theorem being proved. 
 
LEMMA 2. If G is a graph with an odd girth 2k +3 (k ≥ 2) or greater, 
then 
            α(G) ≥ ∑v∈V (½(1+ δ1(v) + … + δk –1(v)))/(1+ δ1(v) + … + δk(v)).   
 
Proof. We randomly label the vertices of G with a permutation of the 
integers from 1 to n. Let S1 ⊆V (respectively S2 ⊆V ) be the set of 
vertices v for which the minimum label on vertices at distance k or 
less from v is at even (respectively odd) distance k –1 or less. It is easy 
to see that S1 and S2 are independent sets and that the expected size 
of S1 ∪ S2 is given by    
 
                   ∑v∈V (1+ δ1(v) + … + δk –1(v))/(1+ δ1(v) + … + δk(v)), 
 
the lemma being proved. 
 
THEOREM 2. If G is a graph with an odd girth 2k +3 (k ≥ 2) or greater, 
then 
                            α(G) ≥ 2 – (k –1)/k (∑v∈V δ1(v)1/(k –1))(k -1)/k .    
 
Proof. By the above lemmas, we have 
 
α(G) ≥ ∑v∈V { δ1(v)/(1+ δ1(v) + δ2(v)) + ½((1+ δ1(v) + δ2(v))/(1+ δ1(v) + δ2(v) 
+ δ3(v))) + … + ½((1+ δ1(v) + … + δk –1(v))/(1+ δ1(v) + … + δk(v))) }/(k -1). 
 
Since the arithmetic mean is greater than the geometric mean, then 
 
             α(G) ≥ ∑v∈V ((δ1(v)2 – (k -2) )/(1+ δ1(v) + … + δk(v)))1/(k –1) .  
 
Since the vertices at even (odd) distance less than or equal to k from 
any vertex v of G form independent sets, then  
 
                                2α(G) ≥ 1+ δ1(v) + … + δk(v) .  
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Thus,                       

α(G) ≥ ∑v∈V (δ1(v)/2k -1α(G))1/(k –1)

 
or 
 

α(G)k/(k -1) ≥ ½(∑v∈V δ1(v)1/(k -1)) 
 

or 
 

α(G) ≥ 2 – (k –1)/k (∑v∈V δ1(v)1/(k -1))(k 1)/k , 
 
the theorem being proved. 
 
COROLLARY. If G is a regular graph of the degree r(G) and with an 
odd girth 2k +3 (k ≥ 2) or greater, then 
 
                                 α(G) ≥ 2 – (k -1)/k n(k -1)/k r(G)1/k . 
 
Proof. It follows, immediately, from Theorem 2. 
 
Remark. In [3], is presented an algorithm, with a computer program, 
which for a given graph G finds all its maximal independent sets and 
the exact value of α(G).  
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