Hamiltonian Cycles in Triangulations

Gunnar Brinkmann, Craig Larson, Jasper Souffriau, Nico Van Cleemput

Combinatorial Algorithms and Algorithmic Graph Theory
Department of Applied Mathematics and Computer Science
Ghent University
A triangulation is a plane graph in which each face is a triangle.
A hamiltonian cycle in $G(V, E)$ is a subgraph of $G(V, E)$ which is isomorphic to $C_{|V|}$.

A graph is hamiltonian if it contains a hamiltonian cycle.
A separating triangle S in a triangulation T is a subgraph of T such that S is isomorphic to C_3 and $T - S$ has two components.
A triangulation is 4-connected if and only if it contains no separating triangles.
Theorem (Whitney, 1931)

Each triangulation without separating triangles is hamiltonian.
Splitting triangulations
Recursively splitting triangulations

4-connected parts

G. Brinkmann, C. Larson, J. Souffriau, N. Van Cleemput

Hamiltonian Cycles in Triangulations
Decomposition tree

Vertices: 4-connected parts
Edges: separating triangles
Theorem (Jackson and Yu, 2002)

A triangulation with a decomposition tree with maximum degree 3 is hamiltonian.
There exists a non-hamiltonian triangulation with a decomposition tree with maximum degree 4.
Can the result of Jackson and Yu be improved?

Which trees can arise as decomposition trees of non-hamiltonian triangulations?
Theorem (Jackson and Yu, 2002)

Let G be a 4-connected triangulation. Let T, T_1, T_2 be distinct triangles in G. Let $V(T) = \{u, v, w\}$. Then there exists a hamiltonian cycle C of G and edges $e_1 \in E(T_1)$ and $e_2 \in E(T_2)$ such that uv, uw, e_1 and e_2 are distinct and contained in $E(C)$.
Subdividing a face with a graph

Hamiltonian Cycles in Triangulations
Subdividing a face with a graph

Hamiltonian Cycles in Triangulations
Subdividing a non-hamiltonian triangulation

Lemma

When a non-hamiltonian triangulation is subdivided, then the resulting graph is also non-hamiltonian.
Creating a non-hamiltonian plane graph

Lemma

When in a plane graph with more faces than vertices each face is subdivided, then the resulting plane graph is non-hamiltonian.
Decomposition trees with $\Delta \geq 6$

Theorem

For each tree D with $\Delta(D) \geq 6$, there exists a non-hamiltonian triangulation T, such that D is the decomposition tree of T.

Constructive proof.
Assume $\Delta(D) = 6$.

Choose triangulation T_i with decomposition tree D_i ($1 \leq i \leq 6$).
A non-hamiltonian triangulation with D as decomposition tree.
\[\Delta(D) > 6 \]
Given a tree D:

If $\Delta(D) \leq 3$, then D is not the decomposition tree of a non-hamiltonian triangulation.

If $\Delta(D) \geq 6$, then D is the decomposition tree of a non-hamiltonian triangulation.

What if $\Delta(D) = 4$ or $\Delta(D) = 5$?
Theorem

For each tree D with at least two vertices with degree > 3, there exists a non-hamiltonian triangulation T, such that D is the decomposition tree of T.
Adjacent vertices with degree > 3

8 faces and 7 vertices
Non-adjacent vertices with degree > 3
Remaining cases: trees with one vertex of degree 4 or 5 and all other degrees at most 3.
Theorem

For each \(k \geq 4 \). Let \(D \) be a tree with one vertex of degree \(k \) and all other vertices of degree \(\leq 3 \). There exists a non-hamiltonian triangulation with \(D \) as decomposition tree if and only if there exists a non-hamiltonian triangulation with \(K_{1,k} \) as decomposition tree.
Theorem

For each \(k \geq 4 \). If there exists a non-hamiltonian triangulation with \(K_{1,k} \) as decomposition tree, then there exists a non-hamiltonian triangulation with \(K_{1,k} \) as decomposition tree such that the leaves correspond to \(K_4 \)'s.
Specialized programs to search for non-hamiltonian triangulations with $K_{1,4}$ or $K_{1,5}$ as decomposition tree.
Hamiltonian Cycles in Triangulations
Given a graph G and the graph G' which is constructed from G by subdividing 4 or 5 faces with a K_4.

When can a hamiltonian cycle of G be extended to a hamiltonian cycle of G'?
Hamiltonian cycles and matchings

edge is contained in triangle
Hamiltonian cycles and matchings

edge is contained in triangle

edges of G

triangles of G
Hamiltonian cycles and matchings

edge is contained in triangle

edges of G

triangles of G
Limiting the 4-tuples

Theorem

Let G be a 4-connected triangulation. Let T_1, T_2, T_3 and T_4 be triangles in G such that at least two of them share an edge. The graph obtained by subdividing the four triangles with a K_4 is hamiltonian.

\Rightarrow only check edge-disjoint 4-tuples of faces
All triangulations on at most 27 vertices with $K_{1,4}$ or $K_{1,5}$ as decomposition tree are hamiltonian.
Results

<table>
<thead>
<tr>
<th>V</th>
<th>F</th>
<th>4-connected triangulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>25</td>
</tr>
<tr>
<td>12</td>
<td>20</td>
<td>87</td>
</tr>
<tr>
<td>13</td>
<td>22</td>
<td>313</td>
</tr>
<tr>
<td>14</td>
<td>24</td>
<td>1357</td>
</tr>
<tr>
<td>15</td>
<td>26</td>
<td>30 926</td>
</tr>
<tr>
<td>16</td>
<td>28</td>
<td>158 428</td>
</tr>
<tr>
<td>17</td>
<td>30</td>
<td>836 749</td>
</tr>
<tr>
<td>18</td>
<td>32</td>
<td>4 504 607</td>
</tr>
<tr>
<td>19</td>
<td>34</td>
<td>24 649 284</td>
</tr>
<tr>
<td>20</td>
<td>36</td>
<td>136 610 879</td>
</tr>
<tr>
<td>21</td>
<td>38</td>
<td>765 598 927</td>
</tr>
<tr>
<td>22</td>
<td>40</td>
<td>4 332 047 595</td>
</tr>
<tr>
<td>23</td>
<td>42</td>
<td>24 724 362 117</td>
</tr>
</tbody>
</table>
Thanks for your attention.