Introduction	Asymptotic expansions	Exponentially fitted rules	Rules of Filon-type	Adaptive Filon rules	Conclusions
00	00	00 000000 0000	000	000000 00 000	

Adaptive Filon methods for the computation of highly oscillatory integrals

Marnix Van Daele, Veerle Ledoux

Department of Applied Mathematics and Computer Science Ghent University

SciCADE 2011

Introduction Asymptotic expansion
 oo

Exponentially fitted rule

ules of Filon-typ

Adaptive Filon rules

Conclusions

Oscillatory integrals

$$I[f] = \int_0^h f(x) e^{i\omega g(x)} dx$$

We focus on the particular case

$$I[f] = \int_0^h f(x) e^{i\omega x} dx$$

If the integrand oscillates rapidly, and unless we use a huge number of function evaluations, the classical ν -point Gauss rule is useless.

Introduction

00

Gauss rule applied to oscillatory integrands Example : f(x) = exp(x) and h = 1/10

$$\int_0^h e^x e^{i\omega x} dx = \frac{-1 + e^{h(1+i\omega)}}{1 + i\omega}$$

The absolute error in Gauss-Legendre quadrature for different values of the characteristic frequency $\psi = \omega h$.

Asymptotic expansions

Exponentially fitted rules

Rules of Filon-type

Adaptive Filon rules

Conclusions

Asymptotic expansion

$$I[f] = \int_{a}^{b} f(x)e^{i\omega x} dx$$

= $\frac{1}{i\omega} \left(f(b)e^{i\omega b} - f(a)e^{i\omega a} \right) - \frac{1}{i\omega}I[f']$
= $\frac{1}{i\omega} \left(f(b)e^{i\omega b} - f(a)e^{i\omega a} \right)$
 $-\frac{1}{(i\omega)^{2}} \left(f'(b)e^{i\omega b} - f'(a)e^{i\omega a} \right) + \frac{1}{(i\omega)^{2}}I[f'']$

$$I[f] = -\sum_{m=0}^{\infty} \frac{1}{(-\mathrm{i}\omega)^{m+1}} \left[e^{\mathrm{i}\omega b} f^{(m)}(b) - e^{\mathrm{i}\omega a} f^{(m)}(a) \right]$$

Introduction

Asymptotic expansions

Exponentially fitted r

tules of Filon-typ

Adaptive Filon rules

Conclusions

Asymptotic rules

$$I[f] = \int_a^b f(x) e^{i\omega x} dx$$

$$I[f] = -\sum_{m=0}^{\infty} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega b} f^{(m)}(b) - e^{i\omega a} f^{(m)}(a) \right]$$
$$Q_{s}^{A}[f] = -\sum_{m=0}^{s-1} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega b} f^{(m)}(b) - e^{i\omega a} f^{(m)}(a) \right]$$

$${\sf Q}^{{\sf A}}_{{\sf S}}[f]-{\it I}[f]\sim {\it O}(\omega^{-s-1}) \quad \omega
ightarrow+\infty$$

This asymptotic method is of asymptotic order s + 1. The asymptotic order gives us the rate at which the error decreases with increasing ω .

Introduction	Asymptotic	expansions
00	00	

Exponentially fitted rules

Rules of Filon-type

Adaptive Filon rules

Conclusions

Exponential fitting

M. VAN DAELE, G. VANDEN BERGHE AND H. VANDE VYVER, *Exponentially fitted quadrature rules of Gauss type for oscillatory integrands*, Appl. Numer. Math., 53 (2005), pp. 509–526.

How to compute

 $\int_{-1}^{1} F(t) dt$

whereby F(x) has an oscillatory behaviour with frequency μ ?

$$I[f] = \int_0^h f(x) e^{i\omega x} dx = \frac{h}{2} e^{i\mu} \int_{-1}^1 f(h(t+1)/2) e^{i\mu t} dt \quad \mu = \frac{\omega h}{2}$$

Introduction	Asymptotic exp	ansions
00	00	

Exponentially fitted rules Rules of Filon-type

Adaptive Filon rules

Conclusions

Exponential fitting

$$\mathcal{L}[F; x; h; \mathbf{a}] = \int_{x-h}^{x+h} F(z) dz - h \sum_{k=1}^{\nu} w_k F(x + \hat{c}_k h), \quad \hat{c}_k \in [-1, 1]$$

(put
$$x = 0$$
 and $h = 1$ to obtain $\int_{-1}^{1} F(t) dt$)

 $\mathcal{L}[F; x; h; \mathbf{a}] = \mathbf{0}$ for a reference set of $K + \mathbf{2}(P + \mathbf{1}) + \mathbf{1} = \mathbf{2}\nu$ functions

$$1, t, t^2, ...t^K,$$

 $\exp(\pm i\mu t), t \exp(\pm i\mu t), t^2 \exp(\pm i\mu t), \dots, t^P \exp(\pm i\mu t)$

In this talk we only consider the case K = -1, $P = \nu - 1$.

Introduction	Asymptotic	expansions
00	00	

Exponentially fitted rules

Rules of Filon-type

Adaptive Filon rules

Conclusions

1-node EF rule

$$\int_{-1}^{1} F(x) dx \approx w_1 F(\hat{c}_1)$$

 $\int_{-1}^{1} \exp(\pm i\mu x) dx - w_1 \exp(\pm i \hat{c}_1 \mu) = \mathbf{0}$

$$w_1 = 2\sin(\mu)/\mu$$
 $\hat{c}_1 = 0$

$$I[f] = \int_0^h f(x) \exp(i\omega x) dx = \int_0^h F(x) dx$$

$$\mathsf{Q}_{\mathbf{1}}^{\mathsf{EF}}[\mathsf{F}] = \frac{h\sin(\mu)}{\mu}\mathsf{F}(h/\mathbf{2}) = \frac{e^{\mathrm{i}h\omega} - \mathbf{1}}{\mathrm{i}\omega}f(h/\mathbf{2}) \quad \mu = \omega h/\mathbf{2}$$

Introduction	Asymptotic expansions
00	00

Q

Exponentially fitted rules

Rules of Filon-type

Adaptive Filon rules

Conclusions

2-node EF rule

$$\int_{-1}^{1} F(x) dx \approx w_1 F(\hat{c}_1) + w_2 F(\hat{c}_2)$$

$$\begin{cases} \int_{-1}^{1} \exp(\pm i\mu x) dx - w_{1} \exp(\pm i \hat{c}_{1} \mu) - w_{2} \exp(\pm i \hat{c}_{2} \mu) = \mathbf{0} \\ \int_{-1}^{1} x \exp(\pm i\mu x) dx - w_{1} \hat{c}_{1} \exp(\pm i \hat{c}_{1} \mu) - w_{2} \hat{c}_{2} \exp(\pm i \hat{c}_{2} \mu) = \mathbf{0} \end{cases}$$

Assuming $w_1 = w_2$ and $\hat{c}_1 = -\hat{c}_2$:

4

$$\iff \begin{cases} w_2 \mu \cos(\mu \hat{c}_2) - \sin(\mu) = \mathbf{0} \\ w_2 \hat{c}_2 \mu^2 \sin(\mu \hat{c}_2) - \sin(\mu) + \mu \cos(\mu) = \mathbf{0} \end{cases}$$
$$\overset{EF}{}_2 [F] = \frac{h}{2} w_2 \left[F\left(\frac{h(1 + \hat{c}_2)}{2}\right) + F\left(\frac{h(1 - \hat{c}_2)}{2}\right) \right] \qquad \mu = \frac{\omega h}{2} \end{cases}$$

Introduction	Asymptotic	expansions
00	00	

Rules of Filon-type

Adaptive Filon rules

Conclusions

2-node EF rule

 $\begin{cases} w_2 \mu \cos(\mu \hat{c}_2) - \sin(\mu) = \mathbf{0} \\ w_2 \hat{c}_2 \mu^2 \sin(\mu \hat{c}_2) - \sin(\mu) + \mu \cos(\mu) = \mathbf{0} \\ \text{If } \cos(\mu \hat{c}_2) \neq \mathbf{0} \text{ then } w_2 = \sin \mu / (\mu \cos(\mu \hat{c}_2)) \\ G(\hat{c}_2) := (\sin \mu - \mu \cos \mu) \cos(\mu \hat{c}_2) - \mu \hat{c}_2 \sin \mu \sin(\mu \hat{c}_2) = \mathbf{0} \end{cases}$

Figure: $G(x_2)$ for $\mu = 5$, $\mu = 50$ and $\mu = 200$.

Introduction	Asymptotic	expansions
00	00	

Exponentially fitted rules

ules of Filon-type

Adaptive Filon rules

Conclusions

2-node EF rule

Figure: The $\hat{c}_2(\mu)$ and $w_2(\mu)$ curve for the EF method with $\nu = 2$.

Introduction	Asymptotic	expansions
00	00	

Exponentially fitted rules

Rules of Filon-ty

Adaptive Filon rules

Conclusions

3-node EF rule

$$\hat{c}_1 = -\hat{c}_3$$
 $\hat{c}_2 = 0$ $w_1 = w_3$

Figure: The $\hat{c}_3(\mu)$, $w_1(\mu) = w_3(\mu)$ and $w_2(\mu)$ curves for the $\nu = 3$ EF rule

uction	Asymptotic expansions	Exponentially fitted rules	Rules of Filon-type	Adaptive Filon rules	Conclusion
	00	00	000	000000	
		000000	000	00	
		0000		000	

4-node EF rule

$$\hat{c}_1 = -\hat{c}_4$$
 $\hat{c}_2 = -\hat{c}_3$ $w_1 = w_4$ $w_2 = w_3$

Figure: Nodes and weights of the EF rule with $\nu = 4$ quadrature nodes.

Accuracy of EF rules

All EF rules reduce to the classical ν -point Gauss(-Legendre) method in the limiting case $\mu = 0$. Thus for small μ : $O(h^{2\nu+1})$ What about the accuracy for larger values of $\mu = \omega h/2$?

J. P. COLEMAN AND L. GR. IXARU, *Truncation errors in exponential fitting for oscillatory problems*, SIAM. J. Numer. Anal., 44 (2006), pp. 1441–1465.

for large μ : $O(\mu^{\bar{\nu}-\nu})$ with $\bar{\nu} = \lfloor (\nu-1)/2 \rfloor$

$$u = 1: O(\omega^{-1})$$
 $u = 2, 3: O(\omega^{-2})$ $u = 4, 5: O(\omega^{-3})$

Introduction	Asymptotic expansions	Exponentially fitted rules	Rules of Filon-type	Adaptive Filon rules	Conclusions
00	00	00 000000 0000	000 000	000000 00 000	

Pro

 $\int_{-1}^{1} F(t) dt \approx \int_{-1}^{1} \bar{F}(t) dt$ $\bar{F}(t) \in \operatorname{span}\{\exp(\pm i\mu t), t \exp(\pm i\mu t), t^2 \exp(\pm i\mu t), \dots, t^P \exp(\pm i\mu t)\}$

$$I[f] = \int_{0}^{n} f(x)e^{i\omega x} dx = \frac{h}{2}e^{i\frac{\omega h}{2}} \int_{-1}^{1} f(\frac{h}{2}(t+1))e^{i\frac{\omega h}{2}t} dt$$

If $\frac{\omega h}{2} = \mu$ then $I[f] \approx I[\bar{f}]$ with $\bar{f}(x) \in \text{span}\{1, x, x^{2}, \dots, x^{\nu-1}\}$
 $Q_{\nu}^{EF}[f] - I[f] = I[\bar{f}] - I[f] = I[\nu]$ $v(x) := \bar{f}(x) - f(x)$

Introduction	Asymptotic expansions	Exponentially fitted rules	Rules of Filon-type	Adaptive Filon rules	Conclusions
00	00	00	000	000000	
		000000	000	00	
		0000		000	

Proof

Suppose ν is even and $a < c_1 < c_2 < \ldots < c_{\nu} < b$

$$c_j = a + \lambda_j / \omega$$
 $c_{\nu-j+1} = b - \lambda_j / \omega$ $j = 1, \dots, \nu/2$

$$v(x) = \frac{f^{(\nu)}(\xi(x))}{\nu!} \prod_{i=1}^{\nu} (x - c_i)$$

$$v(x) = s(x) \prod_{i=1}^{\nu/2} (x - b + \lambda_i/\omega)$$
 $s(x) = \frac{f^{(\nu)}(\xi(x))}{\nu!} \prod_{j=1}^{\nu/2} (x - a - \lambda_j/\omega)$

$$v(b) = s(b) \prod_{i=1}^{\nu/2} (\lambda_i/\omega) = O(\omega^{-\nu/2})$$
$$v'(b) = s(b) \omega^{-\nu/2+1} \sum_{k=1}^{\nu/2} \prod_{i \neq k} \lambda_i + O(\omega^{-\nu/2}) = O(\omega^{-\nu/2+1})$$

... /2

Introduction	Asymptotic expansions	Exponentially fitted rules	Rules of Filon-type	Adaptive Filon rules	Conclusions
00	00	00	000	000000	
		000000	000	00	
		0000		000	

Proof

 $v(b) = O(\omega^{-\nu/2})$ $v'(b) = O(\omega^{-\nu/2+1})$ $v^{(n)}(b) = O(\omega^{-\nu/2+n}), n = 0, 1, ..., \nu/2 - 1$

 $v^{(n)}(a) = O(\omega^{-\nu/2+n}), \ n = 0, 1, \dots, \nu/2 - 1$

$$\begin{aligned} \mathsf{Q}_{\nu}^{\mathsf{EF}}[f] &= I[f] = I[\nu] \\ &= -\sum_{m=0}^{\infty} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega b} v^{(m)}(b) - e^{i\omega a} v^{(m)}(a) \right] \\ &= -\sum_{m=0}^{\nu/2-1} \frac{1}{(-i\omega)^{m+1}} O(\omega^{-\nu/2+m}) + O(\omega^{-\nu/2-1}) \\ &= O(\omega^{-\nu/2-1}) = O(\omega^{\lfloor (\nu-1)/2 \rfloor - \nu}) \end{aligned}$$

Filon-type

L. N. G FILON, On a quadrature formula for trigonometric integrals, Proc. Royal Soc. Edinburgh, 49 (1928), pp. 38–47.

Interpolate only the function f(x) at $c_1 h, \ldots, c_{\nu} h$ by a polynomial $\overline{f}(x)$

$$\begin{split} I[f] &\approx Q_{\nu}^{F}[f] = \int_{0}^{h} \bar{f}(x) e^{\mathrm{i}\omega x} dx = h \sum_{l=1}^{\nu} b_{l}(\mathrm{i}h\omega) f(c_{l}h) \\ &b_{l}(\mathrm{i}h\omega) = \int_{0}^{1} \ell_{l}(x) e^{\mathrm{i}h\omega x} dx \end{split}$$

 ℓ_I is the *I*th cardinal polynomial of Lagrangian interpolation.

Introduction	Asymptotic	expansion
00	00	

Exponentially fitted rules

Rules of Filon-type

Adaptive Filon rules

Conclusions

1-node Filon-type rule

$$I[f] = \int_0^h F(x) dx = \int_0^h f(x) \exp(i\omega x) dx$$
$$Q_1^F[f] = \frac{\exp(ih\omega) - 1}{i\omega} f(c_1 h)$$

$$Q_1^{EF}[F] = \frac{e^{ih\omega} - 1}{i\omega} f(h/2)$$
$$Q_1^F[f] = Q_1^{EF}[F] \text{ iff } c_1 = \frac{1}{2}$$

Introduction	Asymptotic	expansions
00	00	

Exponentially fitted ru

Rules of Filon-type

Adaptive Filon rules

Conclusions

2-node Filon-type rule

$$I[f] = \int_0^h F(x) dx = \int_0^h f(x) \exp(i\omega x) dx$$

If f is interpolated at $c_1 h$ and $c_2 h$, then

$$Q_{2}^{F}[f] = h\left[\left(\frac{i\left((e^{i\psi}-1)c_{2}-e^{i\psi}\right)}{(c_{1}-c_{2})\psi}+\frac{e^{i\psi}-1}{(c_{1}-c_{2})\psi^{2}}\right)f(c_{1}h)\right.\\\left.+\left(\frac{i\left((e^{i\psi}-1)c_{1}-e^{i\psi}\right)}{(c_{2}-c_{1})\psi}+\frac{e^{i\psi}-1}{(c_{2}-c_{1})\psi^{2}}\right)f(c_{2}h)\right]$$

 $Q_2^F[f] = Q_2^{EF}[F]$ iff the same nodes are used

Accuracy of Filon-type rules

A. ISERLES, On the numerical quadrature of highly-oscillating integrals. I. Fourier transforms, IMA J. Numer. Anal., 24 (2004), pp. 365–391.

For small ω , a Filon-type quadrature method has an order as if $\omega = 0$.

Legendre nodes : order 2 ν Lobatto nodes : order 2 ν – 2 For large ω :

$$egin{aligned} {\sf Q}^{\sf F}_{
u}[f] - {\it I}[f] &\sim egin{cases} {\sf O}(\omega^{-1}) & {\it c}_1 > 0 ext{ or } {\it c}_
u < 1 \ {\sf O}(\omega^{-2}) & {\it c}_1 = 0, {\it c}_
u = 1 \end{aligned}$$

Introduction	Asymptotic expansions	Exponentially fitted rul
00	00	00
		000000

Rules of Filon-type

Adaptive Filon rule

Conclusions

Accuracy of Filon-type rules

$$Q^F_{\nu}[f] - I[f] \sim egin{cases} O(\omega^{-1}) & c_1 > 0 ext{ or } c_{
u} < 1 \ O(\omega^{-2}) & c_1 = 0, c_{
u} = 1 \end{cases}$$

$$Q_{\nu}^{F}[f] - I[f] = I[\bar{f}] - I[f] = I[\nu]$$

= $-\sum_{m=0}^{\infty} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega h} \nu^{(m)}(h) - \nu^{(m)}(0) \right]$

If $(c_1, c_{\nu}) = (0, 1)$ then v(h) = v(0) = 0 $\implies Q_{\nu}^{F}[f] - I[f] = O(\omega^{-2}).$

How to improve the accuracy of Filon-rules ?

 by using Hermite interpolation : asymptotic order p + 1 can be reached where p is the number of derivatives at the endpoints:

 $\overline{f}^{(l)}(h) = f^{(l)}(h), \overline{f}^{(l)}(0) = f^{(l)}(0), l = 0, \dots, p-1$

 $\mathsf{Q}_{\nu}^{\mathsf{F}}[f] - \mathsf{I}[f] = \mathsf{O}(\omega^{-p-1})$

- by using adaptive Filon-type methods : allowing the interpolation points to depend on ω (is discussed later)
- by using nodes in the complex plane (=method of steepest descent)

Introduction	Asymptotic	expansion
00	00	

Exponentially	fitted	rules
00		
000000		
2000		

Rules of Filon-type

Adaptive Filon rule

Conclusions

Method of steepest descent

D. HUYBRECHS AND S. VANDEWALLE, On the evaluation of highly oscillatory integrals by analytic continuation, SIAM J. Numer. Anal., 44 (2007) pp 1026–1048.

Introduction	Asymptotic expansions	Exponentially fitted rules	Rules of Filon-type	A
00	00	00	000	
		000000	000	C

Adaptive Filon rules

Conclusions

Method of steepest descent

$$\int_{a}^{b} f(x)e^{i\omega x} dx$$

$$= e^{i\omega a} \int_{0}^{\infty} f(a+ip)e^{-\omega p} dp - e^{i\omega b} \int_{0}^{\infty} f(b+ip)e^{-\omega p} dp$$

$$= \frac{e^{i\omega a}}{\omega} \int_{0}^{\infty} f(a+i\frac{q}{\omega})e^{-q} dq - \frac{e^{i\omega b}}{\omega} \int_{0}^{\infty} f(b+i\frac{q}{\omega})e^{-q} dq$$

This leads to the numerical evaluation of the two resulting integrals with classical Gauss-Laguerre quadrature.

High asymptotic order is obtained : using ν points for each integral, the error behaves as $O(\omega^{-2\nu-1})$.

Introduction	Asymptotic expansions	Exponentially fitted rules	Rules of Filon-type	Adaptive Filon rules	Conclusions
00	00	00	000	000000	
		000000	000	00	
		0000		000	

Method of steepest descent

$$\int_{a}^{b} f(x)e^{i\omega x}dx$$

= $\frac{e^{i\omega a}}{\omega}\int_{0}^{\infty} f(a+i\frac{q}{\omega})e^{-q}dq - \frac{e^{i\omega b}}{\omega}\int_{0}^{\infty} f(b+i\frac{q}{\omega})e^{-q}dq$

One ends up evaluating f at the points

$$a + i \frac{x_{nj}}{\omega}$$
, and $b + i \frac{x_{nj}}{\omega}$, $j = 1, ..., n_j$

where x_{nj} are the *n* roots of the Laguerre polynomial of degree *n*.

This approach is equivalent to using a Filon rule with the same interpolation points.

Rules of Filon-type

Adaptive Filon rules

Conclusions

Adaptive Filon-type rules

Idea : combine best properties of EF and Filon quadrature

- EF
 - + accurate for small ω *h* since the method reduces to Gauss-Legendre quadrature
 - + good results for large ωh since the nodes tend to the endpoints (at a rate proportional to ω^{-1})
 - but : difficult to determine the nodes and weights for a given ωh (iteration needed and ill-conditioned)
- Filon
 - + any set of nodes can be used
 - there is no optimal set of nodes for all ωh
 - most accurate for small ω *h* if the method is built on Legendre nodes
 - most accurate for large ωh if the endpoints are included in the set of nodes

Introduction	Asymptotic	expansion
00	00	

xponentially fitted rul o ooooo ules of Filon-typ

Adaptive Filon rules

Conclusions

Adaptive Filon-type rules

Idea : create quadrature rules with ω -dependent nodes that

- reduce to Legendre-nodes for small ω
- reduce to Lobatto-nodes for large ω
- for given value of ω are easy to compute

To do so, we introduce S-shaped functions.

Introduction Asymptotic expansions

Exponentially fitted

Rules of Filon-type

Adaptive Filon rules

Conclusions

Adaptive Filon-type methods

$$S(\psi; r; n) = rac{1 - rac{\psi^n - r^n}{1 + |\psi^n - r^n|}}{1 + rac{r^n}{1 + r^n}}$$

Figure: S(x, r, 1) and S(x, r, 2) (dashed) for r = 5 in [0, 20]

Introduction

ymptotic expansions

xponentially fitted rul 0 00000 Rules of Filon-type

Adaptive Filon rules

Conclusions

Adaptive Filon-type methods • $\nu = 2$: $c_1(\psi) = \frac{3 - \sqrt{3}}{6}S(\psi; 2\pi; 1); c_2(\psi) = 1 - c_1(\psi)$

•
$$\nu = 3$$
: $c_1(\psi) = \frac{10 - \sqrt{15}}{5}S(\psi; 3\pi; 1); c_3(\psi) = 1 - c_1(\psi)$

Figure: $c_2(\psi)$ of the adaptive Filon method Q_2^{F-A} and $c_3(\psi)$ of the adaptive Filon method Q_3^{F-A} .

Introduction	Asymptotic	expansions
00	00	

Exponentially fitted rules

Rules of Filon-type

Adaptive Filon rules

Conclusions

Asymptotic analysis for Q_2^{F-A}

$$\tilde{c}_1 = c_1 h = \sigma_1(\omega)$$
 and $\tilde{c}_2 = c_2 h = h + \sigma_2(\omega)$ with $\sigma_{1,2}(\omega) \sim \omega^{-1}$

$$\begin{array}{rcl} v(x) &=& s_h(x)(x-h-\sigma_2) & s_h(x) = \frac{f''(\xi_h(x))}{2}(x-\sigma_1) \\ v'(x) &=& s_h(x) + s'_h(x)(x-h-\sigma_2) \\ v''(x) &=& 2s'_h(x) + s''_h(x)(x-h-\sigma_2) \\ &\vdots \end{array}$$

Similar results for the other endpoint.

Introduction Asymptotic expansions

Exponentially fitted ru

Rules of Filon-type

Adaptive Filon rules

Conclusions

Asymptotic analysis for Q_2^{F-A}

$$Q_2^{\mathcal{F}-\mathcal{A}}[f] - I[f] = I[v] \sim \sum_{m=0}^{\infty} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega h} v^{(m)}(h) - v^{(m)}(0) \right]$$

Reordering for $s_h(h)$, $s'_h(h)$, ...

$$I[v] \sim s_h(h)e^{i\psi}\left[\frac{\sigma_2}{i\omega} - \frac{1}{\omega^2}\right] + s'_h(h)e^{i\psi}\left[\frac{\sigma_2}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots + s_0(0)\left[\frac{\sigma_1}{i\omega} - \frac{1}{\omega^2}\right] + s'_0(0)\left[\frac{\sigma_1}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots$$

 $\sigma_2 = -\sigma_1 \text{ with } \sigma_{1,2}(\omega) \sim \psi^{-1} \iff \mathsf{Q}_2^{F-A}[f] - I[f] \sim \mathsf{O}(\psi^{-2})$

Exponentially fitted rules Rules of Filon-type

Adaptive Filon rules 0000

A complex adaptive Filon-rule : Q_2^{F-C}

Are there better options than choosing $\sigma_2 = -\sigma_1$?

$$I[v] \sim s_{h}(h)e^{i\psi}\left[\frac{\sigma_{2}}{i\omega} - \frac{1}{\omega^{2}}\right] + s_{h}'(h)e^{i\psi}\left[\frac{\sigma_{2}}{\omega^{2}} + \frac{2}{i\omega^{3}}\right] + \dots + s_{0}(0)\left[\frac{\sigma_{1}}{i\omega} - \frac{1}{\omega^{2}}\right] + s_{0}'(0)\left[\frac{\sigma_{1}}{\omega^{2}} + \frac{2}{i\omega^{3}}\right] + \dots$$

Yes : Suppose $\sigma_{1} = \sigma_{2} = i/\omega \Longrightarrow Q_{2}^{F-C}[f] - I[f] \sim O(\psi^{-3}).$
$$ih\left[f(ih/\omega) - e^{i\psi}f((i+\omega)h/\omega)\right]$$

$$Q_2^{F-C} = \frac{i\hbar \left[f(i\hbar/\psi) - e^{i\psi}f((i+\psi)\hbar/\psi)\right]}{\psi}, \quad \psi = \omega h$$

Introduction	Asymptotic	expansio
00	00	

Exponentially fitted ru

tules of Filon-typ

Adaptive Filon rules

Conclusions

Illustration

Figure: The normalised errors in some $\nu = 2$ Filon-type schemes for $f(x) = e^x$, h = 1/10 and different values of ω .

Rules of Filon-type

Adaptive Filon rules 000

Error control for Q_2^{F-C}

$$\mathsf{Q}_2^{\mathsf{F}\text{-}\mathsf{C}} = \frac{\mathrm{i}h\left[f(\mathrm{i}h/\psi) - e^{\mathrm{i}\psi}f\left((i+\psi)h/\psi\right)\right]}{\psi}, \quad \psi = \omega h.$$

Obtained by replacing f by interpolating polynomial \overline{f} in nodes i h/ω and $h+i h/\omega$ (for large $\psi : \sim \psi^{-3}$) Similarly : Q_2^{F-C} by replacing f by interpolating polynomial \tilde{f} in nodes i h/ω , h/2 and $h + i h/\omega$ (for large ψ : also $\sim \psi^{-3}$ but about 100 times more accurate)

$$egin{split} I[f]-I[ar{f}]pprox I[ar{f}]-I[ar{f}]&=rac{(1-e^{\mathrm{i}\psi})2h}{\psi^2(4+\psi^2)} imes\ \left((2-\mathrm{i}\psi)\,f(rac{\mathrm{i}}{\omega})-(2+\mathrm{i}\psi)\,f(h+rac{\mathrm{i}}{\omega})+(2\mathrm{i}\psi)f(rac{h}{2})
ight) \end{split}$$

Introduction	Asymptotic expansions
00	00

Exponentially fitted rul

ules of Filon-typ

Adaptive Filon rules

Conclusions

Illustration

Figure: Error estimations for the Q_2^{F-A} and Q_2^{F-C} method applied on the problem with $f(x) = e^x$, h = 2.

Inti			tio	
	100	iuc	uu	4.1

symptotic expansions

Exponentially fitted r

tules of Filon-typ

Adaptive Filon rules

00

Conclusions

Illustration

Figure: Error estimations for the Q_2^{F-A} and Q_2^{F-C} method applied on the problem with $f(x) = e^x$, h = 2.

Conclusions

- Filon rules, EF rules, and steepest descent rules are built up starting from different points of view, the basic underlying idea is the same : f(x) is interpolated by a polynomial.
- Different choices can be made for the interpolation nodes.
- A choice of the (complex) interpolation nodes can improve the asymptotic behaviour of the quadrature rule.
- Even better asymptotic behaviour is obtained if the nodes are frequency dependent.
- Cheap error estimation is possible.