Exponentially-fitted methods and their stability functions

M. Van Daele, D. Hollevoet

Department of Applied Mathematics and Computer Science
Ghent University

Tenth International Conference of Numerical Analysis and Applied Mathematics, Kos, 2012
Outline

Exponential fitting
- Introduction
- EFRK methods

Stability functions
- The stability function of an EFRK
- Questions

Which conditions to impose
- Which conditions to impose

Ways to construct EFRK methods
- Ways to construct EFRK methods
 - IF methods
 - Exponential collocation methods
 - Example 1: polynomial interpolation
 - Example 2: exponential interpolation
- Linear functionals

Conclusions
Collaboration with Liviu Ixaru

- 14 joint papers in the period 1995-2007
- **Veerle Ledoux**: development of **Matslise**
 title Pd.D. : Study of special algorithms for solving Sturm-Liouville and Schrödinger equations

- [L. Ixaru and G. Vanden Berghe](#)
 Exponential fitting
Introduction

In the past years, our research group has constructed modified versions of well-known
- linear multistep methods
- Runge-Kutta methods
- …

Aim: build methods which perform very good when the solution has a known exponential of trigonometric behaviour.
Exponentially-fitted Runge-Kutta methods

The most general form of an exponentially-fitted Runge-Kutta (EFRK) method for solving

\[y' = f(x, y) \]

is

\[y_{n+1} = \gamma y_n + h \sum_{i=1}^{s} b_i f(x_n + c_i h, Y_i) \]

whereby

\[Y_i = \gamma_i y_n + h \sum_{j=1}^{s} a_{ij} f(x_n + c_j h, Y_j), \quad i = 1, \ldots, s. \]
EFRK methods

Generalised Butcher tableau

<table>
<thead>
<tr>
<th>c_1</th>
<th>γ_1</th>
<th>a_{11}</th>
<th>\ldots</th>
<th>a_{1s}</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_2</td>
<td>γ_2</td>
<td>a_{21}</td>
<td>\ldots</td>
<td>a_{2s}</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\ldots</td>
<td>\vdots</td>
</tr>
<tr>
<td>c_s</td>
<td>γ_s</td>
<td>a_{s1}</td>
<td>\ldots</td>
<td>a_{ss}</td>
</tr>
<tr>
<td>γ</td>
<td>b_1</td>
<td>\ldots</td>
<td>b_s</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>c</th>
<th>Γ</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>b^T</td>
<td></td>
</tr>
</tbody>
</table>
Construction of EFRK methods

Linear functionals

\[
\begin{align*}
\mathcal{L}_i[y(x); h] &= y(x + c_i h) - \gamma_i y(x) - h \sum_{j=1}^{s} a_{ij} y'(x + c_j h) \\
& \quad i = 1, \ldots, s \\
\mathcal{L}[y(x); h] &= y(x + h) - \gamma y(x) - h \sum_{i=1}^{s} b_i y'(x + c_i h).
\end{align*}
\]

A fitting space \(S \) is introduced such that \(\forall u \in S \)

\[
\begin{align*}
\mathcal{L}_i[u(x); h] &= 0 \quad i = 1, \ldots, s \\
\mathcal{L}[u(x); h] &= 0
\end{align*}
\]
Construction of EFRK methods

Collocation

A function $P(x) \in S$ is constructed such that

$$
\begin{aligned}
P(x_n) &= y_n \\
P(x_n + c_i h)' &= f(x_n + c_i h, P(x_n + c_i h)) & \quad i = 1, \ldots, s
\end{aligned}
$$

The method is defined by $y_{n+1} := P(x_n + h)$
Construction of EFRK methods

The fitting space S

- Vanden Berghe et al.

 $$S = \left\{ x^q e^{\pm \omega x} \mid q = 0, 1, \ldots, P \right\} \cup \left\{ x^q \mid q = 0, 1, \ldots, K \right\}$$

- Calvo et al.

 $$S = \left\{ e^{\pm q \omega x} \mid q = 1, \ldots, P + 1 \right\} \cup \left\{ x^q \mid q = 0, 1, \ldots, K \right\}$$

The coefficients of the method then depend upon $z_0 := \omega h$

- Both Vanden Berghe and Calve consider special cases of:

 $$S = \left\{ e^{\omega q x} \mid q = 1, \ldots, s + 1 \right\}$$

 $$z_0 := (\omega_1 h, \omega_2 h, \ldots, \omega_{s+1} h)$$
The stability function of EFRK methods

The stability function $R(z, z_0)$ of an EFRK method is obtained by applying the EFRK method to

$$y' = \lambda y.$$

One obtains

$$y_{n+1} = R(z, z_0) y_n$$

whereby

$$R(z, z_0) = \gamma + z b^T (I - z A)^{-1} \Gamma$$

is a rational function in $z := \lambda h$ with coefficients that depend upon $z_0 := \omega h$. When $z_0 \to 0$ one obtains

$$R(z) = 1 + z b^T (I - z A)^{-1} e_s = e^z + O(z^{p+1})$$

where e_s is the vector of length s with unit entries and $s \leq p \leq 2s$.

Example: 1-stage methods

- **method 1**: \(S_{2,0}(\omega) = \text{Span}\{1, x\} \)

\[
\begin{array}{c|cc|c}
0 & 1 & 0 \\
\hline
1 & 1 & 1
\end{array}
\]

- **method 2**: \(S_{1,1}(\omega) = \text{Span}\{1, e^{\omega x}\} \)

\[
\begin{array}{c|cc|c}
0 & 1 & 0 \\
\hline
1 & 1 & 1
\end{array}
\]

- **method 3**: \(S_{0,2}(\omega) = \text{Span}\{e^{\omega x}, x e^{\omega x}\} \)

\[
\begin{array}{c|cc|c}
0 & 1 & 0 \\
\hline
1 & 1 & 1
\end{array}
\]
Example: 1-stage methods

- **method 1**: $S_{2,0}(\omega) = \text{Span}\{1, x\}$
 \[R_{2,0}^{c_1}(z) = \frac{1 + (1 - c_1) z}{1 - c_1 z} \]

- **method 2**: $S_{1,1}(\omega) = \text{Span}\{1, e^{\omega x}\}$
 \[R_{1,1}^{c_1}(z, z_0) = \frac{1 + e^{(1-c_1)z_0-1} z}{1 - e^{-c_1 z_0} z} \]

- **method 3**: $S_{0,2}(\omega) = \text{Span}\{e^{\omega x}, x e^{\omega x}\}$
 \[R_{0,2}^{c_1}(z, z_0) = e^{z_0} \frac{1 + (1 - c_1) (z - z_0)}{1 - c_1 (z - z_0)} \]
Example: 1-stage methods

method 1: \[R_{2,0}^{c_1}(z) = \frac{1+(1-c_1)z}{1-c_1 z} \]

method 3: \[R_{0,2}^{c_1}(z, z_0) = e^{z_0} \frac{1 + (1 - c_1)(z - z_0)}{1 - c_1 (z - z_0)} \]

\[R_{0,2}^{c_1}(z, z_0) = e^{z_0} R_{2,0}^{c_1}(z - z_0) \]

\[\left| \frac{R_{0,2}^{c_1}(z, z_0)}{e^z} \right| = \left| \frac{R_{2,0}^{c_1}(z - z_0)}{e^{z-z_0}} \right| \]

It follows that the orders stars are (apart from a shift over a distance \(z_0\)) equal to each other.
General property for s-stage methods

Suppose a method $M_{k,l}$ is an EFRK method with fitting space

$$S_{k,l}(\omega) = \text{Span}\{1, x, \ldots, x^{k-1}, e^{\omega x}, xe^{\omega x}, \ldots, x^{l-1}e^{\omega x}\}$$

$$y' = \lambda y \implies y_{n+1} = R_{k,l}(z, z_0) y_n$$

Lawson:

$$u(x) = e^{-\omega x} y(x) \implies u' = (\lambda - \omega) u$$

$$y \in S_{k,l}(\omega) \implies u \in S_{l,k}(-\omega)$$

$$\implies u_{n+1} = R_{l,k}(z - z_0, -z_0) u_n$$

$$\implies y_{n+1} = e^{z_0} R_{l,k}(z - z_0, -z_0) y_n$$
General property for s-stage methods

$$R_{k,l}(z, z_0) = e^{z_0} R_{l,k}(z - z_0, -z_0)$$

For the corresponding order star, this then means

$$\left| \frac{R_{k,l}(z, z_0)}{e^z} \right| = \left| \frac{R_{l,k}(z - z_0, -z_0)}{e^{z-z_0}} \right|$$
Example: 1-stage methods

stability function
\((x, y) \in [-5, 5]^2\)

order star
\((x, y) \in [-5, 5]^2\)

\[R_{i,j}(x, -1) - e^x \]
\[x \in [-5, 5] \]
\[y \in [-0.1, 0.1] \]

\[R_{2,0}^{c_1}, \quad R_{1,1}^{c_1}, \quad R_{0,2}^{c_1} \]
\[z_0 = -1 \] and \(c_1 = 0.5 \)
Questions:

1. Can we determine the explicit form of the stability function $R(z, z_0)$ of an EFRK without computing the method?
2. Which conditions does one have to impose to a rational function to obtain the stability function of an EFRK?
3. How to construct an EFRK with a given stability function?
The stability function of a classical RK

1. Can we determine the explicit form of the stability function \(R(z) \) of a classical RK without computing the method? sometimes

2. Which conditions does one have to impose to a rational function to obtain the stability function of a RK?
 order \(p \) \(\iff \) \(R^{(i)}(0) = 1, i = 0, 1, \ldots, p \)

3. How to construct a RK with a given stability function?
 linear functionals, collocation
The stability function of an EFRK

Questions:

1. Can we determine the explicit form of the stability function $R(z, z_0)$ of an EFRK without computing the method? Which conditions does one have to impose to a rational function to obtain the stability function of an EFRK?

2. How to construct an EFRK with a given stability function?
Suppose an EFRK method is fitted to $e^{\omega x}$

Consider the test equation $y' = \lambda y$. This leads to

$$y_{n+1} = R(z, z_0) \ y_n$$

whereby $z = \lambda h$ and $z_0 = \omega h$.

If $\lambda = \omega$, then

$$y_{n+1} = R(z_0, z_0) \ y_n = y(x_{n+1}) = e^{z_0} \ y_n,$$

so

$$R(z_0, z_0) = e^{z_0} \quad \text{or} \quad R(z, \omega h)\big|_{z=\omega h} = e^{\omega h}$$
Which conditions to impose?

Generalisation:

For an EFRK method that is fitted to the functions $e^{\omega_q x}$, $q = 0, 1, \ldots, P$ the conditions that should be imposed, can be written down as

$$R(z, \omega_q h) \bigg|_{z=\omega_q h} = e^{\omega_q h} \quad q = 0, 1, \ldots, P$$
Which conditions to impose?

Special case: what if two parameters coincide?

Suppose \(R(z_0, \{z_0, z'_0\}) = e^{z_0} \) and \(R(z'_0, \{z_0, z'_0\}) = e^{z'_0} \).

Then, when \(z'_0 \to z_0 \), one obtains

\[
\frac{\partial}{\partial z} R(z, z_0) \bigg|_{z=z_0} = \lim_{z'_0 \to z_0} \frac{R(z_0, \{z_0, z'_0\}) - R(z'_0, \{z_0, z'_0\})}{z_0 - z'_0} = \lim_{z'_0 \to z_0} \frac{e^{z_0} - e^{z'_0}}{z_0 - z'_0} = e^{z_0}
\]

\[
R(z, z_0) \bigg|_{z=z_0} = \frac{\partial}{\partial z} R(z, z_0) \bigg|_{z=z_0} = e^{z_0}
\]
Which conditions to impose?

• Suppose $\omega_0 = \omega_1 = \ldots = \omega_P = \omega$:

• For an EFRK method that is fitted to the functions $x^q e^{\omega x}$, $q = 0, 1, \ldots, P$ the conditions that should be imposed, can be written down as

$$\frac{\partial^q}{\partial q} R(z, z_0) \bigg|_{z=z_0} = e^{z_0} \quad q = 0, 1, \ldots, P$$

• Special case: $\omega = 0$ (as in the classical case):

$$\frac{\partial^q}{\partial q} R(z, 0) \bigg|_{z=0} = 1 \quad q = 0, 1, \ldots, P$$

i.e $R(z) = e^z + \mathcal{O}(z^{P+1})$
Which conditions to impose?

In particular, an EFRK method that is fitted to the space of functions \(\{1, x, \ldots, x^{p_1}\} \cup \{x^q e^{\omega x} | q = 0, 1, \ldots, p_2\} \), has to satisfy:

\[
\begin{align*}
\frac{\partial^q}{\partial q z} R(z, \{z_0, 0\}) \bigg|_{z=0} &= 1 & q = 0, 1, \ldots, p_1 \\
\frac{\partial^q}{\partial q z} R(z, \{z_0, 0\}) \bigg|_{z=z_0} &= e^{z_0} & q = 0, 1, \ldots, p_2.
\end{align*}
\]
Example : 1-stage methods

- For a one-stage method

\[R(z, z_0) = \frac{a_0 + a_1 z}{1 + b_1 z} , \]

where \(a_0, a_1 \) and \(b_1 \) can depend upon \(z_0 \)
- 3 coefficients, so we can impose 3 conditions
- If \(S = \{1, x, \ldots, x^{i-1}\} \cup \{e^{\omega x}, xe^{\omega x}, \ldots, x^{j-1}e^{\omega x}\} \) then the conditions are

\[
\begin{align*}
\left. \frac{\partial^q}{\partial q z} R(z, z_0) \right|_{z=0} &= 1 & q = 0, \ldots, i - 1 \\
\left. \frac{\partial^q}{\partial q z} R(z, z_0) \right|_{z=z_0} &= e^{z_0} & q = 0 \ldots, j - 1
\end{align*}
\]
- Four different functions \(R_{i,j}(z, z_0) \)
Example: 1-stage methods

- \(R_{3,0}(z, z_0) = \frac{1 + \frac{z}{2}}{1 - \frac{z}{2}} \)

- \(R_{2,1}(z, z_0) = \frac{1 + \frac{1 - e^{z_0} + e^{z_0} z_0}{z_0 (e^{z_0} - 1)} z}{1 + \frac{1 + z_0 - e^{z_0}}{z_0 (e^{z_0} - 1)} z} \)

- \(R_{1,2}(z, z_0) = \frac{1 - \frac{1 + z_0 - e^{z_0}}{z_0 (e^{z_0} - 1)} z}{1 - \frac{e^{-z_0} - 1 + z_0}{z_0^2} z} \)

- \(R_{0,3}(z, z_0) = e^{z_0} \frac{1 + \frac{z - z_0}{2}}{1 - \frac{z - z_0}{2}} \)
Example: 1-stage methods

stability function
$(x, y) \in [-5, 5]^2$

order star
$(x, y) \in [-5, 5]^2$

$R_{i,j}(x, -1) - e^x$
$x \in [-5, 5]$
$y \in [-0.1, 0.1]$

$R_{3,0}$ $R_{2,1}$ $R_{1,2}$ $R_{0,3}$

$z_0 = -1$
The stability function of an EFRK

Questions:

1. Can we determine the explicit form of the stability function $R(z, z_0)$ of an EFRK without computing the method? Which conditions does one have to impose to a rational function to obtain the stability function of an EFRK?

2. How to construct an EFRK with a given stability function?
The stability function of an EFRK

Questions:

1. Can we determine the explicit form of the stability function $R(z, z_0)$ of an EFRK without computing the method? Which conditions does one have to impose to a rational function to obtain the stability function of an EFRK?

2. How to construct an EFRK with a given stability function?
 - integration factor methods
 - exponential collocation
 - linear functionals
1. Integrating factor methods

We start from the equation

$$y' = f(x, y)$$

which we rewrite as

$$y' - \omega y = f(x, y) - \omega y = \tilde{f}(x, y)$$

Lawson: if $u(x) = e^{-\omega x} y(x)$ then

$$u' = g(x, u)$$

where

$$g(x, u) = e^{-\omega x} \tilde{f}(x, e^{\omega x} u)$$
1. Integrating factor methods

Apply any Runge-Kutta method defined by \((A, b, c)\) to \(u' = g(x, u)\):

\[
u_{n+1} = u_n + h \sum_{j=1}^{s} b_j K_j
\]

where \(K_i = g(x_n + c_i h, u_n + h \sum_{j=1}^{s} a_{ij} K_j)\)

Expressed in terms of \(y\) and \(\tilde{f}\), this then gives

\[
y_{n+1} = e^{\omega h} y_n + h \sum_{i=1}^{s} b_i e^{\omega (1-c_i) h} k_i
\]

\[
k_i = \tilde{f}(x_n + c_i h, e^{\omega c_i h} y_n + h \sum_{j=1}^{s} a_{ij} e^{\omega (c_i-c_j h) k_j}) \quad i = 1, \ldots, s
\]
Example: 1-stage method

Applying

\[
\begin{array}{c|c|c}
 c_1 & 1 & c_1 \\
 \hline
 1 & 1 & 1 \\
\end{array}
\]

to \(u' = g(x, u) \), and expressed in terms of \(y \) and \(\tilde{f} \) gives

\[
Y_1 = e^{c_1 \omega h} y_n + h c_1 \tilde{f}(x_n + c_1 h, Y_1)
\]
\[
y_{n+1} = e^{\omega h} y_n + h e^{(1-c_1)\omega h} \tilde{f}(x_n + c_1 h, Y_1)
\]

For \(y' = f(x, y) \) this method is identical to method 3 defined by

\[
\begin{array}{c|c|c|c|c}
 c_1 & e^{c_1 z_0} & \frac{c_1}{1+c_1 z_0} & \frac{c_1}{\exp((1-c_1) z_0)} & z_0 := \omega h \\
 \hline
 \frac{1-(1-c_1) z_0}{1+c_1 z_0} e^{z_0} & \frac{1}{1+c_1 z_0} & \frac{1}{1+c_1 z_0} & \frac{1}{1+c_1 z_0} & \frac{1}{1+c_1 z_0} \\
\end{array}
\]
Stability function of IF methods

\[y' = \lambda y \]

Lawson’s transformation: \[u(x) = e^{-\omega x} y(x) \]

\[u' = (\lambda - \omega) u \]

Suppose a purely polynomial method \(M \) with stability function \(R_M(z) \) is applied, then

\[u_{n+1} = R_M(z - z_0) u_n \]

Re-expressed in terms of the \(y \)-variable, this gives

\[y_{n+1} = e^{z_0} R_M(z - z_0) y_n \]

\[R(z, z_0) = e^{z_0} R_M(z - z_0) \]
2. Exponential collocation methods

\[y' - \omega y = f(x, y) - \omega y = \tilde{f}(x, y) \]

A function \(P(x) \in S \) is constructed such that for

\[
Q(x) := e^{\omega x}(e^{-\omega x}P(x))'
\]

\[
\begin{align*}
P(x_n) &= y_n \\
Q(x_n + c_i h) &= \tilde{f}(x_n + c_i h, P(x_n + c_i h)) \quad i = 1, \ldots, s
\end{align*}
\]

The method is defined by \(y_{n+1} := P(x_n + h) \).
2. Exponential collocation methods

\[(e^{-\omega x} P(x))' = e^{-\omega x} Q(x)\]

\[\int_{x_n}^{x_n+th} d(e^{-\omega x} P(x)) = \int_{x_n}^{x_n+th} e^{-\omega x} Q(x) dx\]

\[P(x_n + th) = e^{t\omega h} P(x_n) + h \int_0^t e^{\omega (t-\tau)h} Q(x_n + \tau h) d\tau\]

\[Q(x_n + \tau h) = \sum_{j=1}^s l_j(\tau) k_j \quad k_i := \tilde{f}(x_n + c_i h, P(x_n + c_i h))\]
2. Exponential collocation methods

\[P(x_n + t h) = e^{t \omega h} P(x_n) + h \int_0^t e^{\omega (t-\tau) h} Q(x_n + \tau h) d\tau \]

\[Q(x_n + \tau h) = \sum_{j=1}^s l_j(\tau) k_j \quad k_i := \tilde{f}(x_n + c_i h, P(x_n + c_i h)) \]

\[
\begin{cases}
 P(x_n + c_i h) = e^{c_i \omega h} P(x_n) + h \sum_{j=1}^s a_{ij} k_j & i = 1, \ldots, s \\
 P(x_n + h) = e^{\omega h} P(x_n) + h \sum_{j=1}^s b_j k_j \\
\end{cases}
\]

\[a_{ij} := \int_0^{c_i} e^{\omega (c_i-\tau) h} l_j(\tau) d\tau \quad \text{and} \quad b_j := \int_0^1 e^{\omega (1-\tau) h} l_j(\tau) d\tau \]
2. Exponential collocation methods

The exponential collocation method for the problem

\[y' - \omega y = \tilde{f}(x, y) \]

is thus given by

\[y_{n+1} = e^{\omega h}y_n + h \sum_{i=1}^{s} b_i k_i \]

with

\[k_i = \tilde{f}(x_n + c_i h, e^{c_i \omega h}y_n + h \sum_{j=1}^{s} a_{ij} k_j) \quad i = 1, \ldots, s \]
Example 1: polynomial interpolation

Suppose $S_Q = \Pi_{s-1}$ (space of polynomials of degree $\leq s - 1$)

$$P' - \omega P = Q(x) \implies P(x) = \alpha e^{\omega x} + \tilde{Q}(x)$$

where α is a constant and $\tilde{Q} \in \Pi_{s-1}$.

$$P(x) \in \Pi_{s-1} \cup Span\{e^{\omega x}\}$$

$$\tau^q = \sum_{j=1}^{s} l_j(\tau)c_j^q \quad q = 0, \ldots, s - 1$$

$$\int_0^{c_i} e^{\omega(c_i - \tau) h} \tau^q d\tau = \sum_{j=1}^{s} \int_0^{c_i} e^{\omega(c_i - \tau) h} l_j(\tau) d\tau c_j^q = \sum_{j=1}^{s} a_{ij}c_j^q$$
Example 1: polynomial interpolation

\[\int_0^{c_i} e^{\omega(c_i-\tau)h} \tau^q d\tau = \sum_{j=1}^{s} \int_0^{c_i} e^{\omega(c_i-\tau)h} l_j(\tau) d\tau c_j^q = \sum_{j=1}^{s} a_{ij} c_j^q \]

\[\sum_{j=1}^{s} a_{ij} = \frac{e^{c_i \omega h} - 1}{\omega h} \quad i = 1, \ldots, s \]

\[\sum_{j=1}^{s} a_{ij} c_j^q = -\frac{c_i^q}{\omega h} + \frac{q}{\omega h} \sum_{j=1}^{s} a_{ij} c_j^{q-1} \quad q = 1, 2, \ldots s-1; i = 1, \ldots, s \]
One-stage method

\[Y_1 = e^{c_1 \omega h} y_n + h \frac{e^{c_1 \omega h} - 1}{\omega h} \tilde{f}(x_n + c_1 h, Y_1) \]

\[y_{n+1} = e^{\omega h} y_n + h \frac{e^{\omega h} - 1}{\omega h} \tilde{f}(x_n + c_1 h, Y_1) \]

For \(y' = f(x, y) \) this method is identical to method 2 defined by

\[
\begin{array}{c|c|c}
 c_1 & 1 & \frac{1-e^{-c_1 z_0}}{z_0} \\
 & 1 & \frac{e^{(1-c_1)z_0} - e^{-c_1 z_0}}{z_0} \\
\end{array}
\]
Example 2: exponential interpolation

Suppose $S_Q = e^{\omega x} \Pi_{s-1}$ (functions of the form $e^{\omega x} p_{s-1}(x)$ where $p_{s-1}(x) \in \Pi_{s-1}$)

$$P' - \omega P = Q(x) \implies P(x) = e^{\omega x} p_s(x)$$

with $p_s(x) \in \Pi_s$ (in fact, $p'_s(x) = p_{s-1}(x)$)

$$P(x) \in e^{\omega x} \Pi_s$$

The collocation conditions then become

$$p'_s(x) = e^{-\omega x} f(x, e^{\omega x} p_s(x)) = g(x, p_s(x))$$

This is the classical polynomial collocation method $u' = g(x, u)$

The resulting method will be the same as the IF method.
3. Linear functionals

\[\mathcal{L}_i[y(x); h] := y(x_n + c_i h) - \gamma_i y_n - h \sum_{j=1}^{s} a_{ij}(y'(x_n + c_j h) - \omega y(x_n + c_j h)) \]

\[i = 1, \ldots, s \]

\[\mathcal{L}[y(x); h] := y(x_n + h) - \gamma y_n - h \sum_{i=1}^{s} b_i(y'(x_n + c_i h) - \omega y(x_n + c_i h)) \]

Require that

\[\left\{ \begin{array}{l}
\mathcal{L}_i[u(x); h] = 0 \quad i = 1, \ldots, s \\
\mathcal{L}[u(x); h] = 0
\end{array} \right. \]

for \(u(x) = e^{\omega x} \) and for each function \(u \) in the \(s \) dimensional space \(S_Q \).
Conclusions

- We have analysed properties of stability functions of EFRK methods.
- Whereas purely polynomial methods impose conditions on the stability function $R(z)$ for $z = 0$ solely, EFRK that are fitted for parameter values $\omega_1, \omega_2, \ldots, \omega_n$ impose conditions for $z = \omega_1 h, \ldots, z = \omega_n h$ on the stability function $R(z, \{z_1, \ldots, z_n\})$.
- Nice relations exist between the different stability functions and, more in particular, between the corresponding order stars.
- The stability functions of integrating factor methods and exponential collocation methods were considered.
- Exponential-fitting, integrating factor and exponential collocation can lead to the same method.