Stability function

Which conditions to impose

Exponentially-fitted methods and their stability functions

M. Van Daele, D. Hollevoet

Department of Applied Mathematics and Computer Science Ghent University

Tenth International Conference of Numerical Analysis and Applied Mathematics, Kos, 2012

Stability functions

Which conditions to impose

Outline

Exponential fitting

Introduction EFRK methods

Stability functions

The stability function of an EFRK Questions

Which conditions to impose

Which conditions to impose

Ways to construct EFRK methods

Ways to construct EFRK methods

IF methods

Exponential collocation methods

Example 1: polynomial interpolation

Example 2: exponential interpolation

Linear functionals

Conclusions

Stability functions

Which conditions to impose

Ways to construct EFRK methods

Conclusions

Collaboration with Liviu Ixaru

- 14 joint papers in the period 1995-2007
- Veerle Ledoux : development of Matslise title Pd.D. : Study of special algoritms for solving Sturm-Liouville and Schrödinger equations
- L. Ixaru and G. Vanden Berghe Exponential fitting Kluwer Academic Publishers, Dordrecht, 2004

Stability functions

Which conditions to impose

Ways to construct EFRK methods Con 00 00000 00000000

Introduction

In the past years, our research group has constructed modified versions of well-known

- linear multistep methods
- Runge-Kutta methods

• ...

Aim : build methods which perform very good when the solution has a known exponential of trigonometric behaviour.

Stability functions

Which conditions to impose

Ways to construct EFRK methods

Exponentially-fitted Runge-Kutta methods

The most general form of an exponentially-fitted Runge-Kutta (EFRK) method for solving

y'=f(x,y)

is

$$y_{n+1} = \gamma y_n + h \sum_{i=1}^{s} b_i f(x_n + c_i h, Y_i)$$

whereby

$$Y_i = \gamma_i y_n + h \sum_{j=1}^s a_{ij} f(x_n + c_j h, Y_j), \qquad i = 1, ..., s.$$

Stability function

Which conditions to impose

Ways to construct EFRK methods Concle

EFRK methods

Generalised Butcher tableau

<i>c</i> ₁	γ_1	a ₁₁		a 1s	
<i>c</i> ₂	$\begin{array}{c} \gamma_1 \\ \gamma_2 \end{array}$	<i>a</i> ₂₁		a 2s	
÷	:	: a _{s1} b ₁	·	÷	
Cs	γ_{s}	a _{s1}		ass	
	γ	b ₁		bs	
$\frac{c \Gamma A}{ \gamma b^{T}}$					

Stability function

Which conditions to impose

Ways to construct EFRK methods

Conclusions

Construction of EFRK methods

Linear functionals

$$\mathcal{L}_i[y(x);h] = y(x+c_i h) - \gamma_i y(x) - h \sum_{j=1}^s a_{ij} y'(x+c_j h)$$
$$i = 1, \dots, s$$
$$\mathcal{L}[y(x);h] = y(x+h) - \gamma y(x) - h \sum_{i=1}^s b_i y'(x+c_i h).$$

A fitting space S is introduced such that $\forall u \in S$

$$\begin{cases} \mathcal{L}_i[u(x);h] = 0 \quad i = 1, \dots, s \\ \mathcal{L}[u(x);h] = 0 \end{cases}$$

Stability functions

Which conditions to impose

Ways to construct EFRK methods

Conclusions

Construction of EFRK methods

Collocation

A function $P(x) \in S$ is constructed such that

$$\begin{cases} P(x_n) = y_n \\ P(x_n + c_i h)' = f(x_n + c_i h, P(x_n + c_i h)) & i = 1, ..., s \end{cases}$$

The method is defined by $y_{n+1} := P(x_n + h)$

Stability functions

Which conditions to impose

Ways to construct EFRK methods

Construction of EFRK methods

The fitting space ${\mathcal S}$

• Vanden Berghe et al.

$$\mathcal{S} = \{x^q e^{\pm \omega x} | q = 0, 1, \dots, P\} \cup \{x^q | q = 0, 1, \dots, K\}$$

Calvo et al.

$$S = \{e^{\pm q\omega x} | q = 1, \dots, P+1\} \cup \{x^q | q = 0, 1, \dots, K\}$$

The coefficients of the method then depend upon $z_0 := \omega h$

Both Vanden Berghe and Calve consider special cases of :

$$\mathcal{S} = \{ \mathbf{e}^{\omega_q \mathbf{x}} | \mathbf{q} = 1, \dots, \mathbf{s} + 1 \}$$

$$\mathbf{z}_{\mathbf{0}} := (\omega_{1} h, \omega_{2} h, \dots, \omega_{s+1} h)$$

Stability functions

Which conditions to impose

Ways to construct EFRK methods

The stability function of EFRK methods The stability function $R(z, z_0)$ of an EFRK method is obtained by applying the EFRK method to

 $\mathbf{y}' = \lambda \, \mathbf{y}$.

One obtains

$$y_{n+1}=R(z,z_0)y_n$$

whereby

$${\it R}({\it z},{\it z}_0)=\gamma+{\it z}\,{\it b}^{T}\,({\it I}-{\it z}\,{\it A})^{-1}$$
 Г

is a rational function in $z := \lambda h$ with coefficients that depend upon $z_0 := \omega h$. When $z_0 \to 0$ one obtains

$$R(z) = 1 + z b^T (I - z A)^{-1} e_s = e^z + O(z^{p+1})$$

where e_s is the vector of length *s* with unit entries and $s \le p \le 2 s$.

Stability functions

Which conditions to impose

Example : 1-stage methods

• method 1 : $S_{2,0}(\omega) = \text{Span}\{1, x\}$

• method 2 : $S_{1,1}(\omega) = \text{Span}\{1, e^{\omega x}\}$

• method 3 : $S_{0,2}(\omega) = \operatorname{Span}\{e^{\omega x}, x e^{\omega x}\}$

Stability functions

Which conditions to impose

Ways to construct EFRK methods Cond 00 00000 00000000

Example : 1-stage methods

• method 1 : $S_{2,0}(\omega) = \text{Span}\{1, x\}$

$$R_{2,0}^{c_1}(z) = \frac{1 + (1 - c_1) z}{1 - c_1 z}$$

• method 2 : $S_{1,1}(\omega) = \text{Span}\{1, e^{\omega x}\}$

$$R_{1,1}^{c_1}(z,z_0) = \frac{1 + \frac{e^{(1-c_1)z_0} - 1}{z_0}z}{1 - \frac{1 - e^{-c_1z_0}}{z_0}z}$$

• method 3 : $S_{0,2}(\omega) = \operatorname{Span}\{e^{\omega x}, x e^{\omega x}\}$

$$R_{0,2}^{c_1}(z,z_0) = e^{z_0} \frac{1 + (1 - c_1)(z - z_0)}{1 - c_1(z - z_0)}$$

Stability functions

Which conditions to impose

Ways to construct EFRK methods C 00 00000 00000000

Example : 1-stage methods

method 1:
$$R_{2,0}^{c_1}(z) = \frac{1+(1-c_1)z}{1-c_1z}$$

method 3: $R_{0,2}^{c_1}(z,z_0) = e^{z_0} \frac{1+(1-c_1)(z-z_0)}{1-c_1(z-z_0)}$

$$R_{0,2}^{c_1}(z,z_0) = e^{z_0} R_{2,0}^{c_1}(z-z_0)$$

$$\left|\frac{R_{0,2}^{c_1}(z,z_0)}{e^z}\right| = \left|\frac{R_{2,0}^{c_1}(z-z_0)}{e^{z-z_0}}\right|$$

It follows that the orders stars are (apart from a shift over a distance z_0) equal to each other.

Stability functions

Which conditions to impose

Ways to construct EFRK methods Con-0000 000000000

General property for s-stage methods

Suppose a method $M_{k,l}$ is a EFRK method with fitting space

$$S_{k,l}(\omega) = \text{Span}\{1, x, \dots, x^{k-1}, e^{\omega x}, x e^{\omega x}, \dots, x^{l-1} e^{\omega x}\}$$
$$y' = \lambda y \Longrightarrow y_{n+1} = R_{k,l}(z, z_0) y_n$$
Lawson : $u(x) = e^{-\omega x} y(x) \Longrightarrow u' = (\lambda - \omega) u$

$$\begin{array}{lll} y \in \mathcal{S}_{k,l}(\omega) & \Longrightarrow & u \in \mathcal{S}_{l,k}(-\omega) \\ & \Longrightarrow & u_{n+1} = R_{l,k}(z-z_0,-z_0) \, u_n \\ & \Longrightarrow & y_{n+1} = \mathrm{e}^{z_0} \, R_{l,k}(z-z_0,-z_0) \, y_n \end{array}$$

Stability functions

Which conditions to impose

Ways to construct EFRK methods

General property for s-stage methods

$$R_{k,l}(z,z_0) = e^{z_0} R_{l,k}(z-z_0,-z_0)$$

For the corresponding order star, this then means

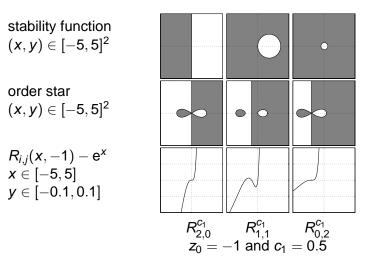
$$\frac{R_{k,l}(z,z_0)}{e^{z}} = \left| \frac{R_{l,k}(z-z_0,-z_0)}{e^{z-z_0}} \right|$$

Stability functions

Which conditions to impose

Ways to construct EFRK methods

Example : 1-stage methods



Conclusions

Stability functions

Which conditions to impose

Ways to construct EFRK methods

Conclusions

The stability function of an EFRK

Questions :

- 1. Can we determine the explicit form of the stability function $R(z, z_0)$ of an EFRK without computing the method ?
- 2. Which conditions does one have to impose to a rational function to obtain the stability function of an EFRK ?
- 3. How to construct an EFRK with a given stability function ?

Stability functions

Which conditions to impose

Ways to construct EFRK methods

- Can we determine the explicit form of the stability function R(z) of a classical RK without computing the method? sometimes
- Which conditions does one have to impose to a rational function to obtain the stability function of a RK ? order *p* ↔ *R*⁽ⁱ⁾(0) = 1, *i* = 0, 1, ..., *p*
- 3. How to construct a RK with a given stability function ? linear functionals, collocation

Stability functions

Which conditions to impose

Ways to construct EFRK methods

Conclusions

The stability function of an EFRK

Questions :

- 1. Can we determine the explicit form of the stability function $R(z, z_0)$ of an EFRK without computing the method? Which conditions does one have to impose to a rational function to obtain the stability function of an EFRK?
- 2. How to construct an EFRK with a given stability function ?

Stability functions

Which conditions to impose

Ways to construct EFRK methods Con 00 00000 00000000

Which conditions to impose

Suppose an EFRK method is fitted to $e^{\omega x}$ Consider the test equation $y' = \lambda y$. This leads to

$$y_{n+1}=R(z,z_0)\,y_n$$

whereby $z = \lambda h$ and $z_0 = \omega h$. If $\lambda = \omega$, then

$$y_{n+1} = R(z_0, z_0) y_n = y(x_{n+1}) = e^{z_0} y_n$$

so

 $R(z_0, z_0) = e^{z_0}$ or $R(z, \omega h)|_{z=\omega h} = e^{\omega h}$

Stability functions

Which conditions to impose

Ways to construct EFRK methods

Conclusions

Which conditions to impose?

Generalisation:

For an EFRK method that is fitted to the functions $e^{\omega_q x}$, q = 0, 1, ..., P the conditions that should be imposed, can be written down as

$$\left. \mathsf{R}(z,\omega_q\,h) \right|_{z=\omega_q\,h} = \mathrm{e}^{\omega_q\,h} \qquad q=0,\,1,\,\ldots,P$$

Stability functions

Which conditions to impose

Which conditions to impose?

Special case : what if two parameters coincide?

Suppose $R(z_0, \{z_0, z'_0\}) = e^{z_0}$ and $R(z'_0, \{z_0, z'_0\}) = e^{z'_0}$.

Then, when $z'_0 \rightarrow z_0$, one obtains

$$\begin{aligned} \frac{\partial}{\partial z} R(z, z_0) \Big|_{z=z_0} &= \lim_{z'_0 \to z_0} \frac{R(z_0, \{z_0, z'_0\}) - R(z'_0, \{z_0, z'_0\})}{z_0 - z'_0} \\ &= \lim_{z'_0 \to z_0} \frac{e^{z_0} - e^{z'_0}}{z_0 - z'_0} \\ &= e^{z_0} \end{aligned}$$

$$R(z,z_0)\big|_{z=z_0}=\frac{\partial}{\partial z}R(z,z_0)\big|_{z=z_0}=e^{z_0}$$

Stability functions

Which conditions to impose

Ways to construct EFRK methods Conclusi oo oocoo oocooooo

Which conditions to impose?

- Suppose $\omega_0 = \omega_1 = \ldots = \omega_P = \omega$:
- For an EFRK method that is fitted to the functions x^q e^{ωx}, q = 0, 1, ..., P the conditions that should be imposed, can be written down as

$$\frac{\partial^{q}}{\partial^{q}z}R(z,z_{0})\big|_{z=z_{0}}=e^{z_{0}}\qquad q=0,\,1,\,\ldots,P$$

• Special case : $\omega = 0$ (as in the classical case):

$$\frac{\partial^q}{\partial^q z} R(z,0)\big|_{z=0} = 1 \qquad q=0,\,1,\,\ldots,P$$
 i.e $R(z) = \mathbf{e}^z + \mathcal{O}(z^{P+1})$

Stability functions

Which conditions to impose

Ways to construct EFRK methods

Which conditions to impose?

In particular, an EFRK method that is fitted to the space of functions $\{1, x, ..., x^{P_1}\} \cup \{x^q e^{\omega x} | q = 0, 1, ..., P_2\}$, has to satisfy:

$$\begin{cases} \left. \frac{\partial^q}{\partial^q z} R(z, \{z_0, 0\}) \right|_{z=0} = 1 \qquad q = 0, 1, \dots, P_1 \\ \left. \frac{\partial^q}{\partial^q z} R(z, \{z_0, 0\}) \right|_{z=z_0} = e^{z_0} \quad q = 0, 1, \dots, P_2. \end{cases}$$

Stability functions

Which conditions to impose

Ways to construct EFRK methods Cor 00 0000 00000000

Example : 1-stage methods

For a one-stage method

$$R(z,z_0)=rac{a_0+a_1\,z}{1+b_1\,z}\,,$$

where a_0 , a_1 and b_1 can depend upon z_0

- 3 coefficients, so we can impose 3 conditions
- If $S = \{1, x, \dots, x^{i-1}\} \cup \{e^{\omega x}, x e^{\omega x}, \dots, x^{j-1} e^{\omega x}\}$ then the conditions are

$$\begin{cases} \left. \frac{\partial^q}{\partial^q z} R(z, z_0) \right|_{z=0} = 1 \qquad q = 0, \dots, i-1 \\ \left. \frac{\partial^q}{\partial^q z} R(z, z_0) \right|_{z=z_0} = e^{z_0} \quad q = 0 \dots, j-1 \end{cases}$$

• Four different functions $R_{i,j}(z, z_0)$

Stability functions

Which conditions to impose

Ways to construct EFRK methods

Example : 1-stage methods

•
$$R_{3,0}(z, z_0) = rac{1 + rac{z}{2}}{1 - rac{z}{2}}$$

• $R_{2,1}(z, z_0) = rac{1 + rac{1 - e^{z_0} + e^{z_0} z_0}{z_0(e^{z_0} - 1)} z}{1 + rac{1 + z_0 - e^{z_0}}{z_0(e^{z_0} - 1)} z}$
• $R_{1,2}(z, z_0) = rac{1 - rac{1 + z_0 - e^{z_0}}{z_0^2} z}{1 - rac{e^{-z_0} - 1 + z_0}{z_0^2} z}$
• $R_{0,3}(z, z_0) = e^{z_0} rac{1 + rac{z - z_0}{z_0^2}}{1 - rac{z_0^{-z_0}}{z_0^2}}$

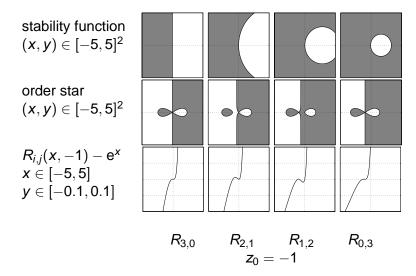
Conclusions

Stability function

Which conditions to impose

Ways to construct EFRK methods

Example : 1-stage methods



Stability functions

Which conditions to impose

Ways to construct EFRK methods

Conclusions

The stability function of an EFRK

Questions :

- 1. Can we determine the explicit form of the stability function $R(z, z_0)$ of an EFRK without computing the method? Which conditions does one have to impose to a rational function to obtain the stability function of an EFRK?
- 2. How to construct an EFRK with a given stability function?

Stability functions

Which conditions to impose

Conclusions

The stability function of an EFRK

Questions :

- 1. Can we determine the explicit form of the stability function $R(z, z_0)$ of an EFRK without computing the method? Which conditions does one have to impose to a rational function to obtain the stability function of an EFRK?
- 2. How to construct an EFRK with a given stability function?
 - integration factor methods
 - exponential collocation
 - linear functionals

Stability functions

Which conditions to impose

Ways to construct EFRK methods

Conclusions

1. Integrating factor methods

We start from the equation

$$y' = f(x, y)$$

which we rewrite as

$$\mathbf{y}' - \omega \mathbf{y} = f(\mathbf{x}, \mathbf{y}) - \omega \mathbf{y} = \tilde{f}(\mathbf{x}, \mathbf{y})$$

Lawson : if $u(x) = e^{-\omega x} y(x)$ then

$$u'=g(x,u)$$

where

$$g(x, u) = e^{-\omega x} \tilde{f}(x, e^{\omega x} u)$$

Stability functions

Which conditions to impose

Ways to construct EFRK methods

1. Integrating factor methods Apply any Runge-Kutta method defined by (A, b, c) to u' = g(x, u):

$$u_{n+1} = u_n + h \sum_{j=1}^{s} b_j K_j$$

where $K_i = g(x_n + c_i h, u_n + h \sum_{j=1}^s a_{ij} K_j)$

Expressed in terms of y and \tilde{f} , this then gives

$$y_{n+1} = e^{\omega h} y_n + h \sum_{i=1}^{s} b_i e^{\omega (1-c_i) h} k_i$$

$$k_i = \tilde{f}(x_n + c_i h, e^{\omega c_i h} y_n + h \sum_{j=1}^s a_{ij} e^{\omega (c_i - c_j h} k_j)$$
 $i = 1, ..., s$

Stability functions

Which conditions to impose

Ways to construct EFRK methods

Example : 1-stage method

Applying

to u' = g(x, u), and expressed in terms of y and \tilde{f} gives

$$Y_{1} = e^{c_{1}\omega h} y_{n} + h c_{1} \tilde{f}(x_{n} + c_{1} h, Y_{1})$$
$$y_{n+1} = e^{\omega h} y_{n} + h e^{(1-c_{1})\omega h} \tilde{f}(x_{n} + c_{1} h, Y_{1})$$

For y' = f(x, y) this method is identical to method 3 defined by

Stability functions

Which conditions to impose

Ways to construct EFRK methods

Conclusions

Stability function of IF methods

$$\mathbf{y}' = \lambda \, \mathbf{y}$$

Lawson's transformation : $u(x) = e^{-\omega x} y(x)$

$$u' = (\lambda - \omega) u$$

Suppose a purely polynomial method *M* with stability function $R_M(z)$ is applied, then

$$u_{n+1}=R_M(z-z_0)\,u_n$$

Re-expressed in terms of the *y*-variable, this gives

$$y_{n+1} = e^{z_0} R_M(z-z_0) y_n$$

$$R(z,z_0)=\mathrm{e}^{z_0}R_{M}(z-z_0)$$

Stability functions

Which conditions to impose

Ways to construct EFRK methods

Conclusions

2. Exponential collocation methods

$$\mathbf{y}' - \mathbf{\omega} \, \mathbf{y} = f(\mathbf{x}, \, \mathbf{y}) - \mathbf{\omega} \, \mathbf{y} = \tilde{f}(\mathbf{x}, \, \mathbf{y})$$

A function $P(x) \in S$ is constructed such that for $Q(x) := e^{\omega x} (e^{-\omega x} P(x))'$

$$\begin{cases} P(x_n) = y_n \\ Q(x_n + c_i h) = \tilde{f}(x_n + c_i h, P(x_n + c_i h)) & i = 1, \dots, s \end{cases}$$

The method is defined by $y_{n+1} := P(x_n + h)$.

Stability functions

Which conditions to impose

Ways to construct EFRK methods

Conclusions

2. Exponential collocation methods

$$(\mathrm{e}^{-\omega x} P(x))' = \mathrm{e}^{-\omega x} Q(x)$$

$$\int_{x_n}^{x_n+t\,h} \mathsf{d}(\mathsf{e}^{-\omega\,x} P(x)) = \int_{x_n}^{x_n+t\,h} \mathsf{e}^{-\omega\,x} \mathsf{Q}(x) \mathsf{d}x$$

$$P(x_n + t h) = e^{t \omega h} P(x_n) + h \int_0^t e^{\omega (t-\tau)h} Q(x_n + \tau h) d\tau$$

$$\mathsf{Q}(\mathbf{x}_n + \tau h) = \sum_{j=1}^{s} I_j(\tau) \mathbf{k}_j \qquad \mathbf{k}_j := \tilde{f}(\mathbf{x}_n + \mathbf{c}_i h, \mathsf{P}(\mathbf{x}_n + \mathbf{c}_i h))$$

Stability functions

Which conditions to impose

Ways to construct EFRK methods

2. Exponential collocation methods

$$P(x_n + t h) = e^{t \omega h} P(x_n) + h \int_0^t e^{\omega (t-\tau)h} Q(x_n + \tau h) d\tau$$

$$\mathsf{Q}(\mathbf{x}_n + \tau h) = \sum_{j=1}^{s} I_j(\tau) \mathbf{k}_j \qquad \mathbf{k}_j := \tilde{f}(\mathbf{x}_n + \mathbf{c}_i h, \mathsf{P}(\mathbf{x}_n + \mathbf{c}_i h))$$

$$\begin{cases} P(x_n + c_i h) = e^{c_i \omega h} P(x_n) + h \sum_{j=1}^s a_{ij} k_j \quad i = 1, \dots, s \\ P(x_n + h) = e^{\omega h} P(x_n) + h \sum_{j=1}^s b_j k_j \end{cases}$$

$$a_{ij} := \int_0^{c_i} e^{\omega (c_i - \tau)h} l_j(\tau) d\tau$$
 and $b_j := \int_0^1 e^{\omega (1 - \tau)h} l_j(\tau) d\tau$

Stability functions

Which conditions to impose

Ways to construct EFRK methods

Conclusions

2. Exponential collocation methods

The exponential collocation method for the problem

$$\mathbf{y}' - \omega \, \mathbf{y} = \tilde{f}(\mathbf{x}, \mathbf{y})$$

is thus given by

$$y_{n+1} = \mathrm{e}^{\omega h} y_n + h \sum_{i=1}^s b_i \, k_i$$

with

$$k_i = \tilde{f}(x_n + c_i h, e^{c_i \omega h} y_n + h \sum_{j=1}^s a_{ij} k_j) \quad i = 1, \dots, s$$

Stability functions

Which conditions to impose

Ways to construct EFRK methods

Example 1: polynomial interpolation

Suppose $S_Q = \prod_{s-1}$ (space of polynomials of degree $\leq s - 1$)

$$P' - \omega P = Q(x) \Longrightarrow P(x) = \alpha e^{\omega x} + \tilde{Q}(x)$$

where α is a constant and $\tilde{Q} \in \Pi_{s-1}$.

 $P(x) \in \Pi_{s-1} \cup \operatorname{Span}\{e^{\omega x}\}$

$$au^{m{q}} = \sum_{j=1}^{s} l_j(au) c_j^{m{q}} \qquad m{q} = 0, \dots, s-1$$

$$\int_0^{c_i} \mathrm{e}^{\omega \, (c_i - \tau)h} \tau^q \mathrm{d}\tau = \sum_{j=1}^s \int_0^{c_i} \mathrm{e}^{\omega \, (c_i - \tau)h} I_j(\tau) \mathrm{d}\tau c_j^q = \sum_{j=1}^s a_{ij} c_j^q$$

Stability functions

Which conditions to impose

Ways to construct EFRK methods

Conclusions

Example 1 : polynomial interpolation

$$\int_0^{c_i} \mathrm{e}^{\omega \, (c_i - \tau)h} \tau^q \mathrm{d}\tau = \sum_{j=1}^s \int_0^{c_j} \mathrm{e}^{\omega \, (c_i - \tau)h} I_j(\tau) \mathrm{d}\tau c_j^q = \sum_{j=1}^s a_{ij} c_j^q$$

$$\sum_{j=1}^{s} a_{ij} = \frac{e^{c_i \omega h} - 1}{\omega h} \qquad i = 1, \dots, s$$

$$\sum_{j=1}^{s} a_{ij} c_j^q = -\frac{c_i^q}{\omega h} + \frac{q}{\omega h} \sum_{j=1}^{s} a_{ij} c_j^{q-1} \qquad q = 1, 2, \dots s-1; i = 1, \dots, s$$

Stability functions

Which conditions to impose

Ways to construct EFRK methods

Conclusions

One-stage method

$$Y_{1} = e^{c_{1} \omega h} y_{n} + h \frac{e^{c_{1} \omega h} - 1}{\omega h} \tilde{f}(x_{n} + c_{1} h, Y_{1})$$
$$y_{n+1} = e^{\omega h} y_{n} + h \frac{e^{\omega h} - 1}{\omega h} \tilde{f}(x_{n} + c_{1} h, Y_{1})$$

For y' = f(x, y) this method is identical to method 2 defined by

Stability functions

Which conditions to impose

Ways to construct EFRK methods

Example 2 : exponential interpolation

Suppose $S_Q = e^{\omega x} \Pi_{s-1}$ (functions of the form $e^{\omega x} p_{s-1}(x)$ where $p_{s-1}(x) \in \Pi_{s-1}$)

$$P' - \omega P = Q(x) \Longrightarrow P(x) = e^{\omega x} p_s(x)$$

with $p_s(x) \in \Pi_s$ (in fact, $p_s'(x) = p_{s-1}(x)$)

 $P(x) \in e^{\omega x} \Pi_s$

The collocation conditions then become

$$p'_{s}(x) = e^{-\omega x} f(x, e^{\omega x} p_{s}(x)) = g(x, p_{s}(x))$$

This is the classical polynomial collocation method u' = g(x, u)The resulting method will be the same as the IF method.

Stability functions

Which conditions to impose

Ways to construct EFRK methods

3. Linear functionals

$$\mathcal{L}_i[y(\mathbf{x});h] := y(\mathbf{x}_n + \mathbf{c}_i h) - \gamma_i \mathbf{y}_n - h \sum_{j=1}^s \mathbf{a}_{ij}(y'(\mathbf{x}_n + \mathbf{c}_j h) - \omega \mathbf{y}(\mathbf{x}_n + \mathbf{c}_j h))$$
$$i = 1, \dots, s$$

$$\mathcal{L}[\mathbf{y}(\mathbf{x});h] := \mathbf{y}(\mathbf{x}_n+h) - \gamma \, \mathbf{y}_n - h \sum_{i=1}^s b_i (\mathbf{y}'(\mathbf{x}_n+c_i\,h) - \omega \, \mathbf{y}(\mathbf{x}_n+c_i\,h))$$

Require that

$$\begin{cases} \mathcal{L}_i[u(x);h] = 0 \quad i = 1, \dots, s \\ \mathcal{L}[u(x);h] = 0 \end{cases}$$

for $u(x) = e^{\omega x}$ and for each function u in the s dimensional space S_Q

Exponential	fitting
00	
00000	

Stability functions

Which conditions to impose

Ways to construct EFRK methods Conclusions

Conclusions

- We have analysed properties of stability functions of EFRK methods.
- Whereas purely polynomial methods impose conditions on the stability function R(z) for z = 0 solely, EFRK that are fitted for parameter values $\omega_1, \omega_2, \ldots, \omega_n$ impose conditions for $z = \omega_1 h, \ldots, z = \omega_n h$ on the stability function $R(z, \{z_1, \ldots, z_n\})$.
- Nice relations exist between the different stability functions and, more in particular, between the corresponding order stars.
- The stability functions of integrating factor methods and exponential collocation methods were considered
- Exponential-fitting, integrating factor and exponential collocation can lead to the same method