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Collaboration with Liviu Ixaru

• 14 joint papers in the period 1995-2007

• Veerle Ledoux : development of Matslise
title Pd.D. : Study of special algoritms for solving
Sturm-Liouville and Schrödinger equations

• L. Ixaru and G. Vanden Berghe
Exponential fitting
Kluwer Academic Publishers, Dordrecht, 2004
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Introduction

In the past years, our research group has constructed modified
versions of well-known

• linear multistep methods

• Runge-Kutta methods

• . . .

Aim : build methods which perform very good when the solution
has a known exponential of trigonometric behaviour.
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Exponentially-fitted Runge-Kutta methods

The most general form of an exponentially-fitted Runge-Kutta
(EFRK) method for solving

y ′ = f (x , y)

is

yn+1 = γ yn + h
s

∑

i=1

bi f (xn + ci h,Yi)

whereby

Yi = γi yn + h
s

∑

j=1

aij f (xn + cj h,Yj) , i = 1, . . . , s .
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EFRK methods

Generalised Butcher tableau

c1 γ1 a11 . . . a1s

c2 γ2 a21 . . . a2s
...

...
...

. . .
...

cs γs as1 . . . ass

γ b1 . . . bs

c Γ A

γ bT
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Construction of EFRK methods

Linear functionals































Li [y(x); h] = y(x + ci h)− γi y(x)− h
s

∑

j=1

aij y ′(x + cj h)

i = 1, . . . , s

L[y(x); h] = y(x + h)− γ y(x)− h
s

∑

i=1

bi y ′(x + ci h) .

A fitting space S is introduced such that ∀u ∈ S

{

Li [u(x); h] = 0 i = 1, . . . , s

L[u(x); h] = 0



Exponential fitting Stability functions Which conditions to impose Ways to construct EFRK methods Conclusions

Construction of EFRK methods

Collocation

A function P(x) ∈ S is constructed such that
{

P(xn) = yn

P(xn + ci h)′ = f (xn + ci h,P(xn + ci h)) i = 1, . . . , s

The method is defined by yn+1 := P(xn + h)
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Construction of EFRK methods

The fitting space S

• Vanden Berghe et al.

S = {xq e±ωx |q = 0, 1, . . . ,P} ∪ {xq|q = 0, 1, . . . ,K}

• Calvo et al.

S = {e±qωx |q = 1, . . . ,P + 1} ∪ {xq|q = 0, 1, . . . ,K}

The coefficients of the method then depend upon z0 := ω h

• Both Vanden Berghe and Calve consider special cases of :

S = {eωqx |q = 1, . . . , s + 1}

z0 := (ω1 h, ω2 h, . . . , ωs+1 h)
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The stability function of EFRK methods
The stability function R(z, z0) of an EFRK method is obtained
by applying the EFRK method to

y ′ = λ y .

One obtains
yn+1 = R(z, z0) yn

whereby
R(z, z0) = γ + z bT (I − z A)−1 Γ

is a rational function in z := λ h with coefficients that depend
upon z0 := ω h. When z0 → 0 one obtains

R(z) = 1 + z bT (I − z A)−1 es = ez +O(zp+1)

where es is the vector of length s with unit entries and
s ≤ p ≤ 2 s.
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Example : 1-stage methods

• method 1 : S2,0(ω) = Span{1, x}

c1 1 c1

1 1

• method 2 : S1,1(ω) = Span{1, eω x}

c1 1 1−e−c1 z0

z0

1 e(1−c1) z0−e−c1 z0

z0

• method 3 : S0,2(ω) = Span{eω x , x eω x}

c1
ec1 z0

1+c1 z0

c1
1+c1 z0

1−(1−c1) z0
1+c1 z0

ez0 e(1−c1) z0

1+c1 z0
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Example : 1-stage methods

• method 1 : S2,0(ω) = Span{1, x}

Rc1
2,0(z) =

1 + (1 − c1) z
1 − c1 z

• method 2 : S1,1(ω) = Span{1, eω x}

Rc1
1,1(z, z0) =

1 + e(1−c1) z0−1
z0

z

1 − 1−e−c1 z0

z0
z

• method 3 : S0,2(ω) = Span{eω x , x eω x}

Rc1
0,2(z, z0) = ez0

1 + (1 − c1) (z − z0)

1 − c1 (z − z0)



Exponential fitting Stability functions Which conditions to impose Ways to construct EFRK methods Conclusions

Example : 1-stage methods

method 1 : Rc1
2,0(z) =

1+(1−c1) z
1−c1 z

method 3 : Rc1
0,2(z, z0) = ez0

1 + (1 − c1) (z − z0)

1 − c1 (z − z0)

Rc1
0,2(z, z0) = ez0Rc1

2,0(z − z0)

∣

∣

∣

∣

∣

Rc1
0,2(z, z0)

ez

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

Rc1
2,0(z − z0)

ez−z0

∣

∣

∣

∣

∣

It follows that the orders stars are (apart from a shift over a
distance z0) equal to each other.
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General property for s-stage methods

Suppose a method Mk ,l is a EFRK method with fitting space

Sk ,l(ω) = Span{1, x , . . . , xk−1, eω x , x eω x , . . . , x l−1eω x}

y ′ = λ y =⇒ yn+1 = Rk ,l(z, z0) yn

Lawson : u(x) = e−ω xy(x) =⇒ u′ = (λ− ω) u

y ∈ Sk ,l(ω) =⇒ u ∈ Sl,k (−ω)

=⇒ un+1 = Rl,k (z − z0,−z0) un

=⇒ yn+1 = ez0 Rl,k (z − z0,−z0) yn
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General property for s-stage methods

Rk ,l(z, z0) = ez0 Rl,k (z − z0,−z0)

For the corresponding order star, this then means
∣

∣

∣

∣

Rk ,l(z, z0)

ez

∣

∣

∣

∣

=

∣

∣

∣

∣

Rl,k (z − z0,−z0)

ez−z0

∣

∣

∣

∣
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Example : 1-stage methods

stability function
(x , y) ∈ [−5, 5]2

order star
(x , y) ∈ [−5, 5]2

Ri,j(x ,−1)− ex

x ∈ [−5, 5]
y ∈ [−0.1, 0.1]

Rc1
2,0 Rc1

1,1 Rc1
0,2

z0 = −1 and c1 = 0.5
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The stability function of an EFRK

Questions :

1. Can we determine the explicit form of the stability function
R(z, z0) of an EFRK without computing the method ?

2. Which conditions does one have to impose to a rational
function to obtain the stability function of an EFRK ?

3. How to construct an EFRK with a given stability function ?



Exponential fitting Stability functions Which conditions to impose Ways to construct EFRK methods Conclusions

The stability function of a classical RK

1. Can we determine the explicit form of the stability function
R(z) of a classical RK without computing the method?
sometimes

2. Which conditions does one have to impose to a rational
function to obtain the stability function of a RK ?
order p ⇐⇒ R(i)(0) = 1, i = 0, 1, . . . , p

3. How to construct a RK with a given stability function ?
linear functionals, collocation
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The stability function of an EFRK

Questions :

1. Can we determine the explicit form of the stability function
R(z, z0) of an EFRK without computing the method?
Which conditions does one have to impose to a rational
function to obtain the stability function of an EFRK?

2. How to construct an EFRK with a given stability function ?
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Which conditions to impose

Suppose an EFRK method is fitted to eω x

Consider the test equation y ′ = λ y . This leads to

yn+1 = R(z, z0) yn

whereby z = λ h and z0 = ω h.
If λ = ω, then

yn+1 = R(z0, z0) yn = y(xn+1) = ez0 yn ,

so
R(z0, z0) = ez0 or R(z, ω h)

∣

∣

z=ω h = eω h
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Which conditions to impose?

Generalisation:

For an EFRK method that is fitted to the functions eωqx ,
q = 0, 1, . . . ,P the conditions that should be imposed, can be
written down as

R(z, ωq h)
∣

∣

z=ωq h = eωq h q = 0, 1, . . . ,P
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Which conditions to impose?
Special case : what if two parameters coincide?

Suppose R(z0, {z0, z ′

0}) = ez0 and R(z ′

0, {z0, z ′

0}) = ez′

0 .

Then, when z ′

0 → z0, one obtains

∂

∂z
R(z, z0)

∣

∣

z=z0
= lim

z′

0→z0

R(z0, {z0, z ′

0})− R(z ′

0, {z0, z ′

0})

z0 − z ′

0

= lim
z′

0→z0

ez0 − ez′

0

z0 − z ′

0

= ez0

R(z, z0)
∣

∣

z=z0
=

∂

∂z
R(z, z0)

∣

∣

z=z0
= ez0
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Which conditions to impose?

• Suppose ω0 = ω1 = . . . = ωP = ω :

• For an EFRK method that is fitted to the functions xq eωx ,
q = 0, 1, . . . ,P the conditions that should be imposed, can
be written down as

∂q

∂qz
R(z, z0)

∣

∣

z=z0
= ez0 q = 0, 1, . . . ,P

• Special case : ω = 0 (as in the classical case):

∂q

∂qz
R(z, 0)

∣

∣

z=0 = 1 q = 0, 1, . . . ,P

i.e R(z) = ez +O(zP+1)
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Which conditions to impose?

In particular, an EFRK method that is fitted to the space of
functions {1, x , . . . , xP1} ∪ {xq eωx |q = 0, 1, . . . ,P2}, has to
satisfy:

{

∂q

∂qz R(z, {z0, 0})
∣

∣

z=0 = 1 q = 0, 1, . . . ,P1
∂q

∂qz R(z, {z0, 0})
∣

∣

z=z0
= ez0 q = 0, 1, . . . ,P2 .
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Example : 1-stage methods
• For a one-stage method

R(z, z0) =
a0 + a1 z
1 + b1 z

,

where a0, a1 and b1 can depend upon z0

• 3 coefficients, so we can impose 3 conditions
• If S = {1, x , . . . , x i−1} ∪ {eω x , x eω x , . . . , x j−1 eω x} then

the conditions are














∂q

∂qz
R(z, z0)

∣

∣

z=0 = 1 q = 0, . . . , i − 1

∂q

∂qz
R(z, z0)

∣

∣

z=z0
= ez0 q = 0 . . . , j − 1

• Four different functions Ri,j(z, z0)
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Example : 1-stage methods

• R3,0(z, z0) =
1 + z

2

1 − z
2

• R2,1(z, z0) =
1 + 1−ez0+ez0 z0

z0 (e
z0−1) z

1 + 1+z0−ez0

z0 (e
z0−1)z

• R1,2(z, z0) =
1 − 1+z0−ez0

z2
0

z

1 − e−z0−1+z0
z2

0
z

• R0,3(z, z0) = ez0
1+

z−z0
2

1−
z−z0

2
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Example : 1-stage methods

stability function
(x , y) ∈ [−5, 5]2

order star
(x , y) ∈ [−5, 5]2

Ri,j(x ,−1)− ex

x ∈ [−5, 5]
y ∈ [−0.1, 0.1]

R3,0 R2,1 R1,2 R0,3

z0 = −1
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The stability function of an EFRK

Questions :

1. Can we determine the explicit form of the stability function
R(z, z0) of an EFRK without computing the method?
Which conditions does one have to impose to a rational
function to obtain the stability function of an EFRK?

2. How to construct an EFRK with a given stability function?
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The stability function of an EFRK

Questions :

1. Can we determine the explicit form of the stability function
R(z, z0) of an EFRK without computing the method?
Which conditions does one have to impose to a rational
function to obtain the stability function of an EFRK?

2. How to construct an EFRK with a given stability function?

• integration factor methods
• exponential collocation
• linear functionals
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1. Integrating factor methods

We start from the equation

y ′ = f (x , y)

which we rewrite as

y ′−ω y = f (x , y)−ω y = f̃ (x , y)

Lawson : if u(x) = e−ω x y(x) then

u′ = g(x , u)

where
g(x , u) = e−ω x f̃ (x , eω x u)
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1. Integrating factor methods
Apply any Runge-Kutta method defined by (A, b, c) to
u′ = g(x , u) :

un+1 = un + h
s

∑

j=1

bj Kj

where Ki = g(xn + ci h, un + h
∑s

j=1 aij Kj)

Expressed in terms of y and f̃ , this then gives

yn+1 = eω h yn + h
s

∑

i=1

bie
ω (1−ci ) h ki

ki = f̃ (xn + ci h, eω ci h yn + h
s

∑

j=1

aij eω (ci−cj h kj) i = 1, . . . , s
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Example : 1-stage method

Applying
c1 1 c1

1 1

to u′ = g(x , u), and expressed in terms of y and f̃ gives

Y1 = ec1 ω h yn + h c1 f̃ (xn + c1 h,Y1)

yn+1 = eω h yn + h e(1−c1)ω h f̃ (xn + c1 h,Y1)

For y ′ = f (x , y) this method is identical to method 3 defined by

c1
ec1 z0

1+c1 z0

c1
1+c1 z0

1−(1−c1) z0
1+c1 z0

ez0 exp((1−c1) z0)
1+c1 z0

z0 := ω h
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Stability function of IF methods

y ′ = λ y

Lawson’s transformation : u(x) = e−ω x y(x)

u′ = (λ− ω) u

Suppose a purely polynomial method M with stability function
RM(z) is applied, then

un+1 = RM(z − z0) un

Re-expressed in terms of the y -variable, this gives

yn+1 = ez0 RM(z − z0) yn

R(z, z0) = ez0RM(z − z0)
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2. Exponential collocation methods

y ′−ω y = f (x , y)−ω y = f̃ (x , y)

A function P(x) ∈ S is constructed such that for
Q(x) := eω x(e−ω xP(x))′

{

P(xn) = yn

Q(xn + ci h) = f̃ (xn + ci h,P(xn + ci h)) i = 1, . . . , s

The method is defined by yn+1 := P(xn + h).
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2. Exponential collocation methods

(e−ω xP(x))′ = e−ω xQ(x)

∫ xn+t h

xn

d(e−ω xP(x)) =
∫ xn+t h

xn

e−ω xQ(x)dx

P(xn + t h) = et ω hP(xn) + h
∫ t

0
eω (t−τ)hQ(xn + τ h)dτ

Q(xn + τ h) =
s

∑

j=1

lj(τ)kj ki := f̃ (xn + ci h,P(xn + ci h))
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2. Exponential collocation methods

P(xn + t h) = et ω hP(xn) + h
∫ t

0
eω (t−τ)hQ(xn + τ h)dτ

Q(xn + τ h) =
s

∑

j=1

lj(τ)kj ki := f̃ (xn + ci h,P(xn + ci h))



























P(xn + ci h) = eci ω hP(xn) + h
s

∑

j=1

aij kj i = 1, . . . , s

P(xn + h) = eω hP(xn) + h
s

∑

j=1

bj kj

aij :=

∫ ci

0
eω (ci−τ)hlj(τ)dτ and bj :=

∫ 1

0
eω (1−τ)hlj(τ)dτ
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2. Exponential collocation methods

The exponential collocation method for the problem

y ′ − ω y = f̃ (x , y)

is thus given by

yn+1 = eω hyn + h
s

∑

i=1

bi ki

with

ki = f̃ (xn + ci h, eci ω hyn + h
s

∑

j=1

aij kj) i = 1, . . . , s
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Example 1: polynomial interpolation

Suppose SQ = Πs−1 (space of polynomials of degree ≤ s − 1)

P ′ − ω P = Q(x) =⇒ P(x) = α eω x + Q̃(x)

where α is a constant and Q̃ ∈ Πs−1.

P(x) ∈ Πs−1 ∪ Span{eω x}

τq =
s

∑

j=1

lj(τ)c
q
j q = 0, . . . , s − 1

∫ ci

0
eω (ci−τ)hτqdτ =

s
∑

j=1

∫ ci

0
eω (ci−τ)hlj(τ)dτcq

j =
s

∑

j=1

aijc
q
j
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Example 1 : polynomial interpolation

∫ ci

0
eω (ci−τ)hτqdτ =

s
∑

j=1

∫ ci

0
eω (ci−τ)hlj(τ)dτcq

j =
s

∑

j=1

aijc
q
j

s
∑

j=1

aij =
eci ω h − 1

ω h
i = 1, . . . , s

s
∑

j=1

aijc
q
j = −

cq
i

ωh
+

q
ωh

s
∑

j=1

aijc
q−1
j q = 1, 2, . . . s−1; i = 1, . . . , s
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One-stage method

Y1 = ec1 ω h yn + h
ec1 ω h − 1

ω h
f̃ (xn + c1 h,Y1)

yn+1 = eω h yn + h
eω h − 1

ω h
f̃ (xn + c1 h,Y1)

For y ′ = f (x , y) this method is identical to method 2 defined by

c1 1 1−e−c1 z0

z0

1 e(1−c1) z0−e−c1 z0

z0
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Example 2 : exponential interpolation

Suppose SQ = eω xΠs−1 (functions of the form eω x ps−1(x)
where ps−1(x) ∈ Πs−1)

P ′ − ω P = Q(x) =⇒ P(x) = eω x ps(x)

with ps(x) ∈ Πs (in fact, p′
s(x) = ps−1(x))

P(x) ∈ eω xΠs

The collocation conditions then become

p′

s(x) = e−ω x f (x , eω x ps(x)) = g(x , ps(x))

This is the classical polynomial collocation method u′ = g(x , u)
The resulting method will be the same as the IF method.
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3. Linear functionals

Li [y(x); h] := y(xn+ci h)−γi yn−h
s

∑

j=1

aij(y
′(xn+cj h)−ω y(xn + cj h))

i = 1, . . . , s

L[y(x); h] := y(xn+h)−γ yn−h
s

∑

i=1

bi(y
′(xn+ci h)−ω y(xn + ci h))

Require that
{

Li [u(x); h] = 0 i = 1, . . . , s

L[u(x); h] = 0

for u(x) = eω x and for each function u in the s dimensional
space SQ
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Conclusions

• We have analysed properties of stability functions of EFRK
methods.

• Whereas purely polynomial methods impose conditions on
the stability function R(z) for z = 0 solely, EFRK that are
fitted for parameter values ω1, ω2, . . . , ωn impose
conditions for z = ω1 h, . . . , z = ωn h on the stability
function R(z, {z1, . . . , zn}).

• Nice relations exist between the different stability functions
and, more in particular, between the corresponding order
stars.

• The stability functions of integrating factor methods and
exponential collocation methods were considered

• Exponential-fitting, integrating factor and exponential
collocation can lead to the same method
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