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Collaboration with Liviu Ixaru

e 14 joint papers in the period 1995-2007

¢ Veerle Ledoux : development of Matslise
title Pd.D. : Study of special algoritms for solving
Sturm-Liouville and Schrédinger equations

e @ L. Ixaru and G. Vanden Berghe
Exponential fitting
Kluwer Academic Publishers, Dordrecht, 2004

Conclusions



Exponential fitting
oe

Introduction

In the past years, our research group has constructed modified
versions of well-known

e linear multistep methods
e Runge-Kutta methods
e ..

Aim : build methods which perform very good when the solution
has a known exponential of trigonometric behaviour.
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Exponentially-fitted Runge-Kutta methods

The most general form of an exponentially-fitted Runge-Kutta
(EFRK) method for solving

y' =1(x,y)
is
S
Yo+1 =7Yn+h D bif(xa +cih,Y)
i—1
whereby
S
Yi:'YiYn+hZaijf(Xn+th,Yj), i=1,...,s.

j=1
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EFRK methods

Generalised Butcher tableau

Ci|7|an dis

Co |72 |ax dog

Cs | s | Qs1 dss
v by bs

c|r|a
7| b7

Conclusions
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Construction of EFRK methods

Linear functionals

Lily(x);h] =y(x +cih) —1iy(x) —h Zaij y'(x +¢jh)
i=1,...,s

Lly(x);h] = y(x +h) — th.y +cih

\
A fitting space S is introduced such thatVu € S

Lilu(x);h] =0 i=1,...,s
{ Llu(x);h] =0
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Construction of EFRK methods

Collocation

A function P(x) € S is constructed such that

{ P(Xn) = Yn

The method is defined by y,,1 := P(xn + h)

Ways to construct EFRK methods

Conclusions
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Construction of EFRK methods

The fitting space S

e Vanden Berghe et al.
S={x%**q=0,1,...,P}U{x%9g=0,1,...,K}

e Calvo et al.
S={et"q=1,....P+1}U{x%9q=0,1,...,K}

The coefficients of the method then depend upon zp :=wh

e Both Vanden Berghe and Calve consider special cases of :
S={e“¥lqg=1,...,s+1}

Zy = (wl h,wz h,. ey Wst1 h)
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The stability function of EFRK methods
The stability function R(z, zp) of an EFRK method is obtained
by applying the EFRK method to

/

y ' =Ay.
One obtains
Yn+1 = R(ZaZO)Yn

whereby
R(z,20) =7y +zb" (I —zA)™IT

is a rational function in z := X\ h with coefficients that depend
upon zg := wh. When z5 — 0 one obtains

R(z)=1+zb" (I -zA)tes =e? + O(zF)

where es is the vector of length s with unit entries and
s<p<2s.
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Example : 1-stage methods
e method 1 : S o(w) = Span{1, x}

e method 2 : S 1(w) = Span{1, e~*}

—Cq Z
¢ 1] 1=enn

Z
1 e(l—cl)zoo_e—cl )
Zo

e method 3 : Sp(w) = Span{e“*, x e**}

ecl Zy Cl
€1 ‘ 1+cy 29 ‘ 1+cy 79
‘ 1—(1—cq) 29 ezo ‘ el-c1)zg
1+4cq 29 1+4c;y 29

Conclusions
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Example : 1-stage methods
e method 1: Sy 0(w) = Span{1l, x}

1+ (l — Cl) V4
C1 _
Reo(®)=—71 ¢ 7
e method 2 : §; 1(w) = Span{1, e“*}

1 + e(l—cl)zo_l
C1 _ Zo
R171(27 ZO) - 1 1_e—C12
_ 720

z

e method 3 : Spo(w) = Span{e“*, x e~*}

1+(1—c1)(z—20)
Rg = g%
02(%:20) = ¢ T e 7 —2,)

Conclusions
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Example : 1-stage methods

method 1 : RoL(2) = %

2o 1+ (1—¢1)(z = 20)
1-c1(z—20)

method 3:  Rg(z,20) =€
Ro%(2,20) = €°R3}(z — 20)

R(C),lz(za Zo) Rg}o(z — Zp)

eZ eZ —2Zp

It follows that the orders stars are (apart from a shift over a
distance zg) equal to each other.
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General property for s-stage methods

Suppose a method My | is a EFRK method with fitting space

k—1

Ski(w) = Span{1, x, ..., xk71 evX xevx ... xI"lewx}

y' =AY = VYn+1 = R«1(2:20) ¥n
Lawson : u(x) =e “*y(x) = u' = (A —w)u

y €Ski(w) = ueSi(—w)
= Unt1 = Rix(z — 20, —20) Un
= Yn+1 =€ R x(Z — Zo, —Z0) ¥n
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General property for s-stage methods

Rk.1(z,20) = € Ry k(z — 20, —20)
For the corresponding order star, this then means

Rk.1(z,20)
eZ

_ |Rix(z — 20, —20)
- eZ—ZO

Conclusions
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Example : 1-stage methods

o -
.|?

stability function
(x,y) € [-5,5]%

order star
(x,y) € [-5,5]?

Ri,j (X, —1) —eX
x € [-5,5]
y € [-0.1,0.1]

C1 C1 C1
Rz,o R1,1 Ro,z
Zzpo=-landc, =0.5
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The stability function of an EFRK

Questions :
1. Can we determine the explicit form of the stability function
R(z,zp) of an EFRK without computing the method ?

2. Which conditions does one have to impose to a rational
function to obtain the stability function of an EFRK ?

3. How to construct an EFRK with a given stability function ?
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The stability function of a classical RK

1. Can we determine the explicit form of the stability function
R(z) of a classical RK without computing the method?
sometimes

2. Which conditions does one have to impose to a rational
function to obtain the stability function of a RK ?
orderp < R(0)=1,i=0,1,...,p

3. How to construct a RK with a given stability function ?
linear functionals, collocation
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The stability function of an EFRK

Questions :

1. Can we determine the explicit form of the stability function
R(z,zp) of an EFRK without computing the method?
Which conditions does one have to impose to a rational
function to obtain the stability function of an EFRK?

2. How to construct an EFRK with a given stability function ?
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Which conditions to impose

Suppose an EFRK method is fitted to e~ *
Consider the test equation y’ = \y. This leads to

Ynt+1 = R(Z,20) yn

whereby z = Ah and zg = wh.
If A\ = w, then

Yni1 = R(Z0,20) Yn = Y (Xn11) = € yn,

S0
R(20,20) =€* or R(z,wh)| —evh

z=wh

Conclusions
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Which conditions to impose?

Generalisation:

For an EFRK method that is fitted to the functions e~aX,
g=20,1,...,P the conditions that should be imposed, can be

written down as

R(z.wgh)|,_, ,=e*" q=0,1,...P

Z= q

Conclusions
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Which conditions to impose?
Special case : what if two parameters coincide?

Suppose R(zo, {20, 2}) = €® and R(zg, {20, 23}) = €%

Then, when z; — zo, one obtains

0 . R(zo,{z0,2}}) — R(z}, {20, Z;
7R(Z,ZO)| 3 _ I|m ( 0 { 0 O}) /( 0 { 0 0})
0z =20 z)—z9 20— 2)
e% — e%
= lim ——

o—)Zo ZO - ZO
= eZO

Zp

0
R(Z7ZO)}Z:ZO az (Z ZO)‘Z =Zp =€
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Which conditions to impose?

e SUppOSE Wy =wW1 =...=Wp =W :
e For an EFRK method that is fitted to the functions x4 e«*,

g=0,1,...,P the conditions that should be imposed, can

be written down as
o Z
iz ——R(z,2)|,_, =e q=0,1,...,P

e Special case : w = 0 (as in the classical case):

o9
i, R 0, ,=1 q=01..,P

i.e R(z) =e* +0(zP*1)
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Conclusions

Which conditions to impose?

In particular, an EFRK method that is fitted to the space of

functions {1, x, ..., xP1} U {x%9e“X|q =0, 1, ...,P,}, has to
satisfy:

aqz ( {2070})‘2 0:1 q:O, 17"'7Pl
aqz R(z {2070})‘2 ZO:eZO q=0,1,...,P>.
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Example : 1-stage methods
For a one-stage method

apt+az

R(Z7ZO) - 1+b12

)

where ag, a; and b, can depend upon zg
3 coefficients, so we can impose 3 conditions

IfS={1,x,....x"1u{ev*, xevX, ... xI=1e¥*} then
the conditions are

o )

aTR(z 20)|,_.,=1 9q=0,...,i—1

. R( )\Z:ZOZeZO q=0...,j—1

Four different functions R; j(z, zo)
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Example : 1-stage methods

1+5
2
* R30(z,20) = 1z
2
—e?0e?%0
1+ 1—e Z+e Zg
Zg (e®0—-1)
* R21(2,20) = 1 4 Ltzg—e
T 2% eo-1)%
_e?0
1— l+z;2 ev,
® Rl 2(2720) = z—0
El 40—
1 o e 221+ZOZ
0
1+50
* Ro3(z,20) = %02,

1_2
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Example : 1-stage methods

Q-
-
/ /

R30 Rz 1 12 Ro3

stability function
(Xay) S [_575]2

(x,y) € [-5,5

Ri,j (X, —1) —eX
x € [-5,5]
y € [-0.1,0.1]

order star I
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The stability function of an EFRK

Questions :

1. Can we determine the explicit form of the stability function
R(z,zp) of an EFRK without computing the method?
Which conditions does one have to impose to a rational
function to obtain the stability function of an EFRK?

2. How to construct an EFRK with a given stability function?
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The stability function of an EFRK

Questions :

1. Can we determine the explicit form of the stability function
R(z,zp) of an EFRK without computing the method?
Which conditions does one have to impose to a rational
function to obtain the stability function of an EFRK?

2. How to construct an EFRK with a given stability function?

e integration factor methods
e exponential collocation
e linear functionals
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1. Integrating factor methods

We start from the equation

!/

y = f(Xa y)

which we rewrite as

y'—wy =f(x,y)-wy =f(x,y)
Lawson : if u(x) = e “*y(x) then

/

u'=g(x,u)

where

g(x,u) = e “*f(x,e“* u)

Conclusions
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1. Integrating factor methods
Apply any Runge-Kutta method defined by (A, b, ¢) to
u =g(x,u):

S
Un+1 =up+h ij Kj
j=1

where K; = g(Xn + Ci h, un +h stzl aj Kj)

Expressed in terms of y and f, this then gives

S
Yni1=€“"yn+h Zbiew(l_ci)h N
i—1

S
ki = f(Xn +cih, e“’cihyn + hZaij ew(ci_cjhkj) i=1,...

j=1

Conclusions
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Example : 1-stage method

Applying

to u’ = g(x,u), and expressed in terms of y and f gives

Y, = eClLUh Yn + h le(Xn +C1 h, Yl)
Vi1 = €“Myn +he=e)«M(x 4 ¢y h,Yq)
Fory’ = f(x,y) this method is identical to method 3 defined by

eCl E4s) C1

C1 ‘ 1+c; 29 ‘ 1+¢y 29

‘ 1—(1—C1) Zy ezo ‘ exp((l Cl) Zo)
1+C1 Zp +C1 Zy

Zg :=wh
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Stability function of IF methods

y' =y
Lawson'’s transformation : u(x) = e “*y(x)
u=(MN\-w)u
Suppose a purely polynomial method M with stability function

Rwm(z) is applied, then

Unt1 = Rm(Z — zo) Un
Re-expressed in terms of the y-variable, this gives

Yn+1 = € Rw(z — Zo) Yn

R(z,20) = €*Rw(z - 20)

ditions to impose Ways to construct EFRK methods Conclusions
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Conclusions

2. Exponential collocation methods

y'-wy =f(x,y)-wy =f(x,y)
A function P(x) € S is constructed such that for
Q(x) :=e“*(e™“*P(x))
{ P(Xn) = Yn B

The method is defined by yn.1 := P(xn + h).
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2. Exponential collocation methods

(e7*P(x)) =e™*Q(x)

Xn+th Xn-+th
/ d(e™“*P(x)) :/ e “XQ(x)dx

t
P(xn+th) =e'“"P(x,) + h/ e* =INQ(xy 4 7 h)dr
0

ki := f(Xn +Ci h, P(xn +ci h))

Conclusions
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2. Exponential collocation methods
t
P(xn+th)—etwhp(xn)+h/ e =TNQ(xn + Th)dr
0
s ~
Q(Xn + 7 h) le ki == f(Xn + ¢ h, P (X + ¢ h))

P(Xn + ¢ h) = e%“"P(x, +hZa., i=1,...,s

P(xh +h) =e“"P(xy) + thj i
j=1

Cj 1
8 = /0 @I (r)dr  and by = /0 e (=N (r)dr
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2. Exponential collocation methods
The exponential collocation method for the problem

y —wy =f(x,y)

is thus given by

s
Ynt1 = e‘”hyn +h Z b; k;
i=1
with

S
ki = f(xn +cih, e®“Mys+h> ajk) i=1,....s
=1

Conclusions
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Example 1: polynomial interpolation

Suppose Sg = lNs_1 (space of polynomials of degree <'s — 1)

P’ —wP = Q(x) = P(x) = ae* + Q(x)
where « is a constant and Q € Mg_;

P(x) € Ms_; U Span{e“*}

S
Tq:ZIj(T)qu q=0,...,s—-1
j=1

/i gw (G- quT_Z/ d7‘Cq Za”
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Example 1 : polynomial interpolation

Cj S Ci
/ ew (CifT)hTCIdT — E / ew (CifT)hI dTCq E a” qu
0 - 0
=1

S gtiwh _ 1 )
;aij:u}h |:1,...,S

S
> ayc! = —+—Zaucq toq
-1

wh  wh

Conclusions
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One-stage method

eclwh _ 1~
Y, =eavhy, + hTf(xn +c1h,Yy)

ewh 1.
Yn+1 = ewhyn +h Tf(xn +Cq haYl)

Fory’ = f(x,y) this method is identical to method 2 defined by

—Cq Z
Cl‘l‘ 1-e %

Z
1 e(l—cl)zo_e—cl [2)
2o

Conclusions
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Example 2 : exponential interpolation

Suppose Sg = e“*MMs_1 (functions of the form e“* ps_4(x)
where ps_1(x) € Ms_1)

P’ —wP =Q(x) = P(x) = " ps(x)
with ps(x) € Ms (in fact, p5(x) = ps_1(X))
P(x) € e“*Ms
The collocation conditions then become
Ps(x) = e X f(x, e ps(x)) = g(x, ps(x))

This is the classical polynomial collocation method u’ = g(x, u)
The resulting method will be the same as the IF method.
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3. Linear functionals

Lily (x); h] :== y (Xn+¢i )= Yn—h Y~ aj(y'(Xn+6; h)—wy (Xn + ¢; h))
j=1

i=1,...,s

LIy(x); ] ==y (Xa+h)=vyn—h > " bi(y'(Xn+Ci h)—wy (Xy + ¢; h))
i=1

Require that
Li[u(x);h] =0 i=1,...,s
{ L[u(x);h] =0

for u(x) = e“* and for each function u in the s dimensional
space Sg
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Conclusions
We have analysed properties of stability functions of EFRK
methods.

Whereas purely polynomial methods impose conditions on
the stability function R(z) for z = 0 solely, EFRK that are

fitted for parameter values wyq, wo, ..., wy IMpose
conditions forz = wy h, ..., Z = wy h on the stability
function R(z,{z;,...,zn}).

Nice relations exist between the different stability functions
and, more in particular, between the corresponding order
stars.

The stability functions of integrating factor methods and
exponential collocation methods were considered

Exponential-fitting, integrating factor and exponential
collocation can lead to the same method



	Exponential fitting
	Introduction
	EFRK methods

	Stability functions
	The stability function of an EFRK
	Questions

	Which conditions to impose
	Which conditions to impose

	Ways to construct EFRK methods
	Ways to construct EFRK methods
	IF methods
	Exponential collocation methods
	Linear functionals

	Conclusions

