Fourth-order boundary value problems

Numerical examples

Conclusions

Exponentially-fitted methods applied to fourth-order boundary value problems

M. Van Daele, D. Hollevoet and G. Vanden Berghe

Department of Applied Mathematics and Computer Science

Sixth International Conference of Numerical Analysis and Applied Mathematics, Kos, 2008

Fourth-order boundary value problems

Numerical examples

Conclusions

Outline

Introduction

An example Exponential fitting

Fourth-order boundary value problems

The problem Exponentially-fitted methods Parameter selection

Numerical examples

First example Second example

Conclusions

Introduction ••••• Fourth-order boundary value problems

Numerical examples

Conclusions

Introduction

In the past 15 years, our research group has constructed modified versions of well-known

- linear multistep methods
- Runge-Kutta methods

Aim : build methods which perform very good when the solution has a known exponential of trigonometric behaviour.

Numerical examples

Conclusions

Linear multistep methods

A well known method to solve

$$y'' = f(y)$$
 $y(a) = y_a$ $y'(a) = y'_a$

is the Numerov method (order 4)

$$y_{n+1} - 2 y_n + y_{n-1} = \frac{1}{12} h^2 (f(y_{n-1}) + 10 f(y_n) + f(y_{n+1}))$$

Construction:

impose $\mathcal{L}[z(t); h] = 0$ for $z(t) \in \mathcal{S} = \{1, t, t^2, t^3, t^4\}$ where

$$\mathcal{L}[z(t);h] := z(t+h) + \alpha_0 z(t) + \alpha_{-1} z(t-h) -h^2 \left(\beta_1 z''(t+h) + \beta_0 z''(t) + \beta_{-1} z''(t-h)\right)$$

Fourth-order boundary value problems

Numerical examples

Conclusions

A model problem

Consider the initial value problem

$$\mathbf{y}'' + \omega^2 \mathbf{y} = \mathbf{g}(\mathbf{y})$$
 $\mathbf{y}(\mathbf{a}) = \mathbf{y}_{\mathbf{a}}$ $\mathbf{y}(\mathbf{a}) = \mathbf{y}'_{\mathbf{a}}$.

If $|g(y)| \ll |\omega^2 y|$ then

 $\mathbf{y}(\mathbf{t}) pprox \alpha \cos(\omega \mathbf{t} + \phi)$

To mimic this oscillatory behaviour, one could replace polynomials by trigonometric (in the complex case : exponential) functions.

Numerical examples

Conclusions

EF Numerov method Construction : impose $\mathcal{L}[z(t); h] = 0$ for $z(t) \in S$ with

 $\mathcal{S} = \{1, t, t^2, \sin(\omega t), \cos(\omega t)\}$

$$\mathcal{L}[z(t);h] := z(t+h) + \alpha_0 z(t) + \alpha_{-1} z(t-h) -h^2 (\beta_1 z''(t+h) + \beta_0 z''(t) + \beta_{-1} z''(t-h)) y_{n+1} - 2 y_n + y_{n-1} = h^2 (\lambda f(y_{n-1}) + (1-2\lambda) f(y_n) + \lambda f(y_{n+1}))$$

$$\lambda = \frac{1}{4\sin^2\frac{\theta}{2}} - \frac{1}{\theta^2} \qquad \theta := \omega h$$
$$= \frac{1}{12} + \frac{1}{240}\theta^2 + \frac{1}{6048}\theta^4 + \dots$$

Numerical examples

EF methods

Generalisation : to determine the coefficients of a method, we impose conditions on a linear functional. These conditions are related to the fitting space S which contains

• polynomials :

$$\{t^q|q=0,\ldots,K\}$$

• exponential or trigonometric functions, multiplied with powers of *t* :

$$\{t^q \exp(\pm \mu t) | q = 0, \ldots, P\}$$

or, with $\omega = i \mu$,

 $\{t^q \cos(\omega t), t^q \sin(\omega t) | q = 0, \dots, P\}$

EF method can be characterized by the couple (K, P) Classical method : P = -1number of basis functions : M = 2P + K + 3

Fourth-order boundary value problems

Numerical examples

Conclusions

Examples

$$M = 2P + K + 3$$

(<i>K</i> , <i>P</i>)				
<i>M</i> = 2	<i>M</i> = 4	<i>M</i> = 6	<i>M</i> = 8	<i>M</i> = 10
(1,-1)	(3, -1)	(5, -1)	(7, -1)	(9, -1)
(-1,1)	(1,0)	(3,0)	(5,0)	(7,0)
	(-1,1)	(1,1)	(3,1)	(5,1)
		(-1,2)	(1,2)	(3,2)
			(-1,3)	(1,3)
				(-1,4)

 $(1,2) \Longrightarrow \mathcal{S} = \left\{1, t, \exp(\pm\mu t), t \exp(\pm\mu t), t^2 \exp(\pm\mu t)\right\}$

Numerical examples

Conclusions

Exponential Fitting

L. Ixaru and G. Vanden Berghe Exponential fitting Kluwer Academic Publishers, Dordrecht, 2004

$$\eta_n(Z) := \frac{1}{Z} [\eta_{n-2}(Z) - (2n-1)\eta_{n-1}(Z)], \quad n = 1, 2, 3, \ldots$$

$$\eta'_n(Z) = \frac{1}{2}\eta_{n+1}(Z), \quad n = 1, 2, 3, \ldots$$

Fourth-order boundary value problems

Numerical examples

Conclusions

Choice of ω

 local optimization based on local truncation error (Ite) ω is step-dependent

- global optimization
 Preservation of geometric properties (periodicity, energy, ...)
 - $\boldsymbol{\omega}$ is constant over the interval of integration

Numerical examples

Fourth-order boundary value problem

$$egin{array}{ll} y^{(4)} = F(t,\,y) & a \leq t \leq b \ y(a) = A_1 & y''(a) = A_2 \ y(b) = B_1 & y''(b) = B_2 \end{array}$$

- special case : $y^{(4)} + f(t) y = g(t)$
- mathematical modeling of viscoelastic and inelastic flows, deformation of beams, plate deflection theory, ...
- work by Doedel, Usmani, Agarwal, Cherruault et al., Van Daele et al., ...
- finite differences, B-splines, ...

Fourth-order boundary value problems

Numerical examples

.

Conclusions

The formulae

$$t_j = a + j h, j = 0, 1, ..., N + 1$$
 $N \ge 3$ $h := \frac{b - a}{N + 1}$

• central formula for $j = 2, \ldots, N-1$

$$y_{j-2} + a_1 y_{j-1} + a_0 y_j + a_1 y_{j+1} + y_{j+2} = h^4 \left(b_2 F_{j-2} + b_1 F_{j-1} + b_0 F_j + b_1 F_{j+1} + b_2 F_{j+2} \right)$$

whereby y_j is approximate value of $y(t_j)$ and $F_j := F(t_j, y_j)$. • begin formula

$$y_0 + \alpha_1 y_1 + \alpha_2 y_2 + a_3 y_3 = \gamma h^2 y_0'' + h^4 (\beta_0 F_0 + \beta_1 F_1 + \beta_2 F_2 + \beta_3 F_3 + \beta_4 F_4 + \beta_5 F_5)$$

• end formula

Fourth-order boundary value problems

Numerical examples

Conclusions

Central formula

$$\mathcal{L}[y] := y(t-2h) + a_1 y(t-h) + a_0 y(t) + a_1 y(t+h) + y(t+2h) -h^4 \left(b_2 y^{(4)}(t-2h) + b_1 y^{(4)}(t-h) + b_0 y^{(4)}(t) + b_1 y^{(4)}(t+h) + b_2 y^{(4)}(t+2h) \right)$$

$$\mathbf{P} = -\mathbf{1}$$
: $\mathcal{L}[y] = \mathbf{0}$ for $y \in \mathcal{S} = \left\{\mathbf{1}, t, t^2, \dots, t^{M-1}\right\}$

M = 10 :

$$y_{p-2} - 4 y_{p-1} + 6 y_p - 4 y_{p+1} + y_{p+2} =$$

$$\frac{h^4}{720} \left(-y_{p-2}^{(4)} + 124 y_{p-1}^{(4)} + 474 y_p^{(4)} + 124 y_{p+1}^{(4)} - y_{p+2}^{(4)} \right)$$

$$\mathcal{L}[y](t) = \frac{1}{3024} h^{10} y^{(10)}(t) + \mathcal{O}(h^{12})$$

$$M = 8 \text{ and } b_2 = 0 :$$

Fourth-order boundary value problems

Numerical examples

Conclusions

EF Central formula

$$\mathcal{L}[y] := y(t-2h) + a_1 y(t-h) + a_0 y(t) + a_1 y(t+h) + y(t+2h) -h^4 \left(b_2 y^{(4)}(t-2h) + b_1 y^{(4)}(t-h) + b_0 y^{(4)}(t) + b_1 y^{(4)}(t+h) + b_2 y^{(4)}(t+2h) \right)$$

$$\boldsymbol{P} = \boldsymbol{0}: \ \mathcal{L}[\boldsymbol{y}] = \boldsymbol{0} \ \text{ for } \ \boldsymbol{y} \in \mathcal{S} = \left\{ \cos(\omega t), \sin(\omega t), 1, t, t^2, \dots, t^{M-3} \right\}$$

M = 10 :

$$y_{\rho-2} - 4 y_{\rho-1} + 6 y_{\rho} - 4 y_{\rho+1} + y_{\rho+2} = h^4 \left(b_2 y_{\rho-2}^{(4)} + b_1 y_{\rho-1}^{(4)} + b_0 y_{\rho}^{(4)} + b_1 y_{\rho+1}^{(4)} + b_2 y_{\rho+2}^{(4)} \right)$$

$$b_{0} = \frac{4\cos^{2}\theta - 2 - 11\cos\theta}{6(\cos\theta - 1)^{2}} + \frac{6}{\theta^{4}} \quad b_{1} = \frac{\cos^{2}\theta + 5}{6(\cos\theta - 1)^{2}} - \frac{4}{\theta^{4}} \quad b_{2} = -\frac{\cos\theta + 2}{12(\cos\theta - 1)^{2}} + \frac{1}{\theta^{4}}$$

$$\mathcal{L}[y](t) = \frac{1}{3024} h^{10} \left(y^{(10)}(t) + \omega^2 y^{(8)}(t) \right) + \mathcal{O}(h^{12})$$

Fourth-order boundary value problems

Numerical examples

Conclusions

EF Central formula

$$\begin{split} \mathcal{L}[y] &:= y(t-2h) + a_1 \, y(t-h) + a_0 \, y(t) + a_1 \, y(t+h) + y(t+2h) \\ &-h^4 \, \left(b_2 \, y^{(4)}(t-2h) + b_1 \, y^{(4)}(t-h) + b_0 \, y^{(4)}(t) + b_1 \, y^{(4)}(t+h) + b_2 \, y^{(4)}(t+2h) \right) \\ P &= 1 : \ \mathcal{L}[y] = 0 \ \text{for} \ y \in \mathcal{S} = \left\{ \cos(\omega t), \sin(\omega t), t \cos(\omega t), t \sin(\omega t), 1, t, t^2, \dots, t^{M-5} \right\} \\ M &= 6 \ \text{and} \ b_1 = b_2 = 0 : \\ y_{p-2} + a_1 \, y_{p-1} + a_0 \, y_p + a_1 \, y_{p+1} + y_{p+2} = b_0 \, h^4 \, y_p^{(4)} \\ a_0 &= 2 \, \frac{-8 \sin^2 \theta + \theta \, (4 \cos \theta - 1) \sin \theta - 4 \cos \theta + 4}{\theta \sin \theta + 4 \cos \theta - 4} \qquad a_1 = -4 \, \frac{\sin \theta \, (\theta \cos \theta - 2 \sin \theta)}{\theta \sin \theta + 4 \cos \theta - 4} \\ b_0 &= 4 \, \frac{\sin \theta \, (\sin^2 \theta - 2 + 2 \cos \theta)}{\theta^3 \, (\theta \sin \theta + 4 \cos \theta - 4)} \\ \mathcal{L}[y](t) &= \frac{1}{6} \, h^6 \, (y^{(6)}(t) + 2 \, \omega^2 \, y^{(4)}(t) + \omega^4 \, y^{(2)}(t)) + \mathcal{O}(h^8) \end{split}$$

Fourth-order boundary value problems

Numerical examples

Conclusions

P=-1

P=0

P=1

P=2

Coefficients of Central formula M = 6

Fourth-order boundary value problems

Numerical examples

Coefficients of Central formula M = 8

Fourth-order boundary value problems

Numerical examples

Conclusions

Coefficients of Central formula M = 10

Fourth-order boundary value problems

Numerical examples

Conclusions

Central formula : coefficients

E.g. b_0 in case M = 6In closed form ...

- *P* = -1 : *b*₀ = 1
- P = 0: $b_0 = 4 \frac{(\cos \theta - 1)^2}{\theta^4}$
- P = 1: $b_0 = -4 \frac{\sin \theta (\cos \theta - 1)^2}{\theta^3 (4 \cos \theta - 4 + \theta \sin \theta)}$
- P = 2: $b_0 = -2 \frac{\sin^3 \theta}{\theta^2 (\theta \cos \theta - 3 \sin \theta)}$

Fourth-order boundary value problems

Numerical examples

Conclusions

Central formula : coefficients E.g. b_0 in case M = 6

As a series ...

• *P* = -1 :

 $b_0 = 1$

•
$$P = 0$$
:
 $b_0 = 1 - \frac{1}{6}\theta^2 + \frac{1}{80}\theta^4 + \mathcal{O}(\theta^6)$

•
$$P = 1$$
:
 $b_0 = 1 - \frac{1}{3}\theta^2 + \frac{37}{720}\theta^4 + \mathcal{O}(\theta^6)$

• P = 2: $b_0 = 1 - \frac{1}{2}\theta^2 + \frac{7}{60}\theta^4 + O(\theta^6)$

Numerical examples

Central formula : local truncation error

Ite = $\mathcal{L}[y](t)$

As an inifinite series :

Ite =
$$h^M C_M D^{K+1} (D^2 + \omega^2)^{P+1} y(t) + O(h^{M+2})$$

In closed form : (Coleman and Ixaru)

$$\begin{aligned} &\text{Ite} = h^M \, \Phi_{K,P}(Z) \, D^{K+1} \, (D^2 + \omega^2)^{P+1} y(\xi) \\ &Z \in \text{some interval} \quad \Phi_{K,P}(0) \neq 0 \qquad \xi \in (t-2\,h, \, t+2\,h) \end{aligned}$$

Fourth-order boundary value problems

Numerical examples

Conclusions

Local truncation error

Ite =
$$h^M C_M D^{K+1} (D^2 + \omega^2)^{P+1} y(t) + O(h^{M+2})$$
,

At
$$t_j : D^{(K+1)} (D^2 + \omega_j^2)^{(P+1)} y(t) \Big|_{t=t_j} = 0$$
 $j = 2, ..., N-1$

•
$$P = 0$$
:
 $y^{(K+3)}(t_j) + y^{(K+1)}(t_j) \omega_j^2 = 0$

•
$$P = 1$$
:
 $y^{(K+5)}(t_j) + 2 y^{(K+3)}(t_j) \omega_j^2 + y^{(K+1)}(t_j) \omega_j^4 = 0$

•
$$P = 2$$
:
 $y^{(K+7)}(t_j) + 3 y^{(K+5)}(t_j) \omega_j^4 + 3 y^{(K+3)}(t_j) \omega_j^4 + y^{(K+1)}(t_j) \omega_j^6 = 0$

Fourth-order boundary value problems

Numerical examples

Conclusions

Local truncation error

Ite =
$$h^M C_M D^{K+1} (D^2 + \omega^2)^{P+1} y(t) + O(h^{M+2})$$
,

At
$$t_j$$
: $D^{(K+1)} (D^2 + \omega_j^2)^{(P+1)} y(t) \Big|_{t=t_j} = 0$ $j = 2, ..., N-1$

 ω_i^2 is solution of equation of degree P + 1.

- Which value of *P* should be chosen ?
- Which root ω_j should be chosen ?

Numerical examples

Conclusions

Parameter selection

Ite =
$$h^M C_M D^{K+1} (D^2 - \mu^2)^{P+1} y(t) + O(h^{M-2})$$

Suppose y(t) takes the form $t^{P_0} e^{\mu_0 t}$

Then Ite= 0 for any EF rule with $P \ge P_0$ and $\mu_j = \mu_0$

Theorem If $y(t) = t^{P_0} e^{\mu_0 t}$ then $\nu = \mu_0^2$ is a root of multiplicity $P - P_0 + 1$ of $D^{K+1} (D^2 - \nu)^{P+1} y(t) = 0$.

- if $P = P_0$, then $\mu = \mu_0$ will be a single root
- if $P = P_0 + 1$, then $\mu = \mu_0$ will be a double root
- if $P = P_0 + 2$, then $\mu = \mu_0$ will be a triple root

Numerical examples

Conclusions

Parameter selection

Suppose y(t) does not take the form $t^{P_0} e^{\mu_0 t}$

Then $y(t) \notin S$ for any *P*.

For a given value of *P* :

$$D^{(K+1)} (D^2 - \mu_j^2)^{(P+1)} y(t) \Big|_{t=t_j} = 0$$

At each point t_j , this gives P + 1 values for μ_i^2 .

Idea : keep $|\mu_j h|$ as small as possible. If possible, choose $P \ge 1$ to avoid too large values for $|\mu_j|$.

Fourth-order boundary value problems

Numerical examples

Conclusions

First example

$$y^{(4)} - \frac{384 t^4}{(2+t^2)^4} y = 24 \frac{2-11 t^2}{(2+t^2)^4}$$
$$y(-1) = \frac{1}{3} \qquad y(1) = \frac{1}{3}$$
$$y''(-1) = \frac{2}{27} \qquad y''(1) = \frac{2}{27}$$

Solution :
$$y(t) = \frac{1}{2+t^2}$$

Fourth-order boundary value problems

Numerical examples

Conclusions

 μ_j for M = 8

$$P = 0: y^{(8)}(t_j) - y^{(6)}(t_j) \mu_j^2 = 0$$

- re-express higher order derivatives in terms of y, y', y" and y""
- approximate y', y" and y" in terms of y
- an initial approximation for y can be computed with a polynomial rule

Fourth-order boundary value problems

Numerical examples

Conclusions

μ_i for M = 8

$$P = 1 : y^{(8)}(t_j) - 2 y^{(6)}(t_j) \mu_j^2 + y^{(4)}(t_j) \mu_j^4 = 0$$

Real and imag. part of $\mu_{1,i}$ and $\mu_{2,i}$

Real and imaginary part of μ_j with smallest norm

Fourth-order boundary value problems

Numerical examples

Conclusions

$$P = 1 : y^{(8)}(t_j) - 2 y^{(6)}(t_j) \mu_j^2 + y^{(4)}(t_j) \mu_j^4 = 0$$

error obtained with $\mu_{1,j}$, $\mu_{2,j}$ and μ with smallest norm

Numerical examples 00000000

Global error

- M = 6: (K, P) = (5, -1) : second-order method (K, P) = (1, 1) : fourth-order method

Fourth-order boundary value problems

Numerical examples

Conclusions

Global error

$$M = 8: \quad \frac{(K, P) = (7, -1)}{(K, P) = (3, 1)}$$

: fourth-order method : sixth-order method

Fourth-order boundary value problems

Numerical examples

Conclusions

Global error

1)

$$M = 10: \quad \frac{(K, P) = (9, -1)}{(K, P) = (5, 1)}$$

- : sixth-order method
- : eighth-order method

Fourth-order boundary value problems

Numerical examples

Conclusions

Condition number

Fourth-order boundary value problems

Numerical examples

Conclusions

Second example

$$y^{(4)} - t = 4 e^{t}$$

$$y(-1) = -1/e$$
 $y(1) = e$
 $y''(-1) = 1/e$ $y''(1) = 3e$

Solution : $y(t) = e^t t$

Fourth-order boundary value problems

Numerical examples

Conclusions

μ_j for M = 6

$$P = 1 : y^{(6)}(t_j) - 2 y^{(4)}(t_j) \mu_j^2 + y^{(2)}(t_j) \mu_j^4 = 0$$

differentiating the differential equation :

$$(y^{(2)}(t_j) + 4 e^{t_j}) - 2 (y_j + 4 e^{t_j}) \mu_j^2 + y^{(2)}(t_j) \mu_j^4 = 0$$

 $y^{(2)}(t_i)$ approximated by fourth-order finite difference scheme

Fourth-order boundary value problems

Numerical examples

Conclusions

M = 6

$$\mathbf{P} = \mathbf{1} : \mathbf{y}^{(6)}(t_j) - \mathbf{2} \, \mathbf{y}^{(4)}(t_j) \, \mu_j^2 + \mathbf{y}^{(2)}(t_j) \, \mu_j^4 = \mathbf{0}$$

differentiating the differential equation :

$$(y^{(2)}(t_j) + 4 e^{t_j}) - 2 (y_j + 4 e^{t_j})\mu_j^2 + y^{(2)}(t_j) \mu_j^4 = 0$$

 $y^{(2)}(t_j)$ approximated by sixth-order finite difference scheme

Fourth-order boundary value problems

Numerical examples

Conclusions

Conclusions

- Fourth-order boundary value problems are solved by means of parameterized exponentially-fitted methods.
- A suitable value for the parameter can be found from the roots of the leading term of the local truncation error.
- If a constant value is found, then a very accurate solution can be obtained.
- However, the methods strongly suffer from the fact that the system to be solved is ill-conditioned for small values of the mesh size.