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Exponential fitting

Aim : To build numerical methods which perform very good
when the solution has a known exponential of trigonometric
behaviour.

How : start from linear functional(s) and impose that for some
linear function space S the method produces exact results.

example : S = (coswX, sinwx, 1, x, x2, ... ,x"?)

The parameter w, which is either real (trigonometric case) or
purely imaginary (exponential case), needs to be determined!
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A model problem

Consider the initial value problem
y'+w?y =g(y) y@=va Yy(@)=Vyi-
If |g(y)| < |w?y| then
y(X) =~ a cos(wXx + ¢)

To mimic this oscillatory behaviour, we construct methods
which yield exact results when the solution is of trigonometric
(in the complex case : exponential) type.

These methods are called Exponentially-fitted methods.
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Example : Numerov method

y"=fly) vy@=ya yb)=w
classical Numerov method :
1
yn+1 - ZYn + Yn—l - E h2 (f (Yn-i-l) + 10f(Yn) + f(yn_l))

b—-a

=12, ...,N h=
n )y e ’ N+1

Construction :
impose L[z(x);h] = 0for z(x) € S = (1, x, x2, x3, x*) where
Llz(x);h] :=z(X +h)+apz(x)+a_1z(x —h)
—h?Z (b1 2"(x +h) +boz”(x) + b_1 2"(x — h))

1
L[z(x);h] = —ﬁohez(s)(x)qLO(hg) — order 4
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EF Numerov method
Construction : impose L[z(x); h] = 0 for z(x) € S with
S = (1, x, x2, sin(wx), cos(wx))

, exp(px), exp(—pX))  pi=iw
+apz(x)+a_1z(x —h)
+bgz”(x) + b_1 2"(x — h))

Yn-1) + (1 = 2A)f(yn) + Af(Ynt1))
11 11, 1,
ssn?? 212 240" tooas” T bi=w

1 1 1 1

_4sinh2%+ﬁ_ﬁ_mlj

—_~ = ~—

A =

2+ 4., vi=uh

6048"
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Choice of w

It is very important to attribute an appropriate value to w!

This can be done by a

e local optimization procedure based on the minimisation of
the local truncation error (Ite)
w is step-dependent

¢ by a global optimization procedure to preserve certain
geometric properties (periodicity, energy, ...)
w is constant over the interval of integration
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EF Numerov method

S = (1, x, x2, sin(wx), cos(wx))
Yni1 — 2Yn +Yn1 = h?® (Af(Yn_1) + (1 = 2A) F(yn) + A f(Yni1))

Llz(x): h] = _%hﬁ (20()+2 2@ (x))+O(M®) = order4

local optimization : y\®+w2y\* =0
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EF Numerov method
S = (1, x, x2, sin(wx), cos(wx))

Yni1 — 2Yn + Yn1 = h? (M (Yn_1) + (1 = 22) f(yn) + A f(Ynt1))

local optimization : y\®+w2y (Y =0
o if w2 > 0 we locally fit to (1, x, x2) and

(sin(wn x), cos(wn X)) = (exp(i wn X), exp(—i wn X))

o if w2 = —12 < 0 we locally fit to (1, x, x?) and

(sinh(vn x), cosh(vn X)) = (exp(vn X), exp(—vn X))

o if w2 = 0 we locally fit to (1, x, x2, x3, x4)
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EF methods

In the past decades, various research groups have constructed
modified versions of well-known methods
o for first-order problems y’ = f(t,y)
e linear multistep methods (e.g. Adams-type, ...)
e Runge-Kutta methods (e.g. collocation-type, ...)
o ...
o for second-order problems y” = f(t,y)

e linear multistep methods (e.g. Stérmer-Cowell type, .. .)
e Runge-Kutta-Nystrom methods
e ...
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EF Runge-Kutta methods of collocation type
(Gauss, LobattolllA, ...)

;

Lily(x);h] =y(x +cih) —y(x) —h Zauy +¢jh

Lly(x);h] =y (x +h) —y(x) —h Zbi y'(x +cih).

A fitting space S is introduced such that Vu € S

Li[u(x);h] =0 i=1,...,s
{ L[u(x);h] =0
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Trapezoidal rule
S = (1,x,x?)

h
Yn+1 —Yn = 5 (f(Xn, Yn) + F(Xnt+1, Yn+1))

h3
lterg = —Ey@)(xn) + O(h%)
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Exponentially-fitted trapezoidal rule
fitted to S = (1, sin(wx), cos(wx))

0 0 0
1 tan(wh/2) tan(wh/2)
wh wh
tan(wh/2) tan(wh/2)
wh wh
tan(wh/2)

Yni1 = Yn = — o h (f(Xn, Yn) + f(Xn+1, Yn+1))

h3
ltegrrr = 12 (y(g)(xn) + w? y/(Xn)) +0(h*)

Conclusions
oo
[e]e]
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Explicit EF Runge-Kutta methods

Lily(x);h] = y(x +¢ih) — ;i hzauy +¢ih

LIy(x);h] =y(x +h) —7y(x) —h > biy'(x +cih).

i=1

For each stage and for the outer stage, fitting spaces S and S
are introduced such that

Lilu(x);h] =0 Vu € S i=1,...,s
{L‘[u(x);h]:o YueS
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Explicit Euler method

S=(1,x)

Yni1 = Yn + hf(Xn, yn)

h2
ltegyier = _7y(2)(xn) + O(ha)
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Explicit Euler method
fitted to S = (sin(wx), cos(w X))

0 ‘ 0 ‘ 0
\ cos(wh) \ Si”US“;]h)

sin(w h)

Ynt1 = COS(wh)yn +h wh f(Xn, Yn)

h2
IteEuIer,EF = _7(y(2)(xn) + WZY(Xn)) + O(hs)

Conclusions
oo
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An explicit 2-stage RK method

0] 0 o0
1/2]1/2 0
0 1

e the second stage is fitted to (1, x)
o the outer stage is fitted to (1, x, x?).
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An EF explicit 2-stage RK method

0 0 0 0
1/2 | cos(wh/2) | nh/2) g
wh/2
R

e the second stage is fitted to (cos(w x), sin(w X))
e the outer stage is fitted to (1, cos(w x), sin(wX)).
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Linear stability theory

The linear stability properties for both classical methods and EF
methods are studied by means of linear test equations
o for first order problems : y’ = Ay, A e C~

e If A € C~ theny(t) — 0 whent — oo.
e For which values of h doesy, —+ 0asn — c0?

« for second order problems : y” + X2y =0

o If A € R then y(t) is periodic.
e For which values of his {yn|n =0, 1 ...} periodic?
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Results on linear stability for EF methods

o for second order problems :
much papers are devoted to the construction of P-stable
methods or to the construction of methods with a large
interval of periodicity

o for first order problems :
almost nothing about stability
Maybe it is assumed that an EF method inherits the
properties from the underlying classical method. However
this is only true for small values of w.
Some examples will illustrate this
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Explicit Euler method

S=(1,x)

Ynt+1 = Yn +hf(Xn, yn)

Applying this method toy’ = \y,
A € C gives

Yn+1 = (L +hA)yn =R(Ah)yn

R(z)=1+z

‘R : region in complex z-plane for
which [R(z)| < 1
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EF explicit Euler method
fitted to S = (exp(wy X), exp(wz X))

Let w; and w, be both real or complex conjugate.
Ynt1 =7 (wih, wah)yn +hd(wih, wph)f(Xn, yn)

Applying this method to y’ = \y gives

Yn+1 = R(w1 h, woh, Xh)yp

R(a,b;z) =v(a,b) +zd(a, b)

R(a,p) : region in complex z-plane for F-1
which |R(z)| < 1

R(wih,wy h)
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EF explicit Euler method
fitted to S = (sin(wx), cos(w X))
wih=iwh=ip woyh=—-wh=-ig

Ynt1 = C0S(B)yn +h ,8( ) f(Xn, Yn)

Applying this method to y’ = \y gives
Ynt1 =R B, =1 Bi Ah)yn

R(i B,—i8;2) = cos(B) + z Si”ﬁ(ﬁ)
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EF explicit Euler method
fitted to S = (sin(wx), cos(w X))

wih=iwh=1ip wyh=—-iwh=-ig

Ynt1 = COS(B)yn +h sin(s)

f(Xl’h yn)

Applying this method to y’ = \y gives
Yn+1 =R(i 8, =i B; Ah)yn

R(i 8, —i B;2) = cos(B) + z Si”ﬂ(ﬂ)
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EF explicit Euler method
fitted to S = (exp(w X), exp(—w X))

wih=wh=a woh=—-wh=-a
sinh(wh
Ynt1 = cosh(wh)yn +h #f(xn» Yn)
Applying this method to y’ = \y gives
Yny1 = R(Wh7 _Wha )‘h)yn

R(a,—a;z) = cosh(a) + z sinh(a)
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EF explicit Euler method
fitted to S = (exp(w X), exp(—w X))

wih=wh=a woh=—-wh=-a

sinh(w h
Yn+1 = cosh(wh)yn +h w(:)f(xn» Yn)

Applying this method toy’ = \y gives .
Yni1 = R(wh, —wh, Ah)yn

sinh(a)

R(a,—a;z) = cosh(a) + z 3
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EF explicit Euler method
fitted to S = (exp(w X), exp(—w X))

wih=wh=a wyh=—-wh=-a

sinh(w h
Yn+1 = cosh(wh)yn +h w(l:j)f(xn» Yn)

a
= -4 3 2 -1

Applying this method to y’ = \y gives B
Yn+1 = R(OJ h) —w h7 )\h)Yn

sinh(a) "

R(a,—a;z) = cosh(a) + z 3

R(a,—a) NR~
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An explicit 2-stage RK method

We consider the Runge-Kutta method

0] 0 o0
1/2]1/2 0
0 1

This method has stability function
R(z)=1+z+22/2
and the interval of stability is [-2, O]
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An EF explicit 2-stage RK method

We consider the EF Runge-Kutta method with modified tableau

olo|] o o
1/2 |~ |ax O
‘ o ‘ b1 by

e the second stage is fitted to (exp(w x), exp(—w X))
o the outer stage is fitted to (1, exp(w X), exp(—w X)).
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An EF explicit 2-stage RK method

-5

Figure: Interval along the negative real axis for the (a, —a)-EF variant
of the 2-stage RK method.
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The 2-step Adams-Bashforth method
S =(1,x, x?)

3 1
Ynt2 = Yny1 =h (E f(Xn+1,Yny1) — Ef(xn,Yn))

Applying the method toy’ = \y we
obtain (with z = A h)

3 1
Ynt2 — (1 + EZ) Yn+1 + EZ yn=0

R: region of z-values such that |
yn — 0asn — oo.
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The EF 2-step Adams-Bashforth method
fitted to (1, exp(w Xx), exp(—w X))

4

-5

Figure: Interval along the negative real axis for the (a, —a)-EF variant
of the 2-step Adams-Bashforth method.
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The EF 2-step Adams-Bashforth method

a=0

r0.8

r0.6

0.4 1M

r0.2

1 08 06 -04 -02 'O
Re(2)

Figure: Boundary of stability regions of the (a, —a)-EF two-step
Adams-Bashforth method whereby a = —5, —3, —1 and 0.
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Conclusions

The choice of the fitting space S greatly influences the size
of the stability region

We have illustrated that the traditional choice to fit to
(exp(wX), exp(—wx)) with w € R can be a very bad
choice, as far as stability is concerned.

In general, fitting to an increasing exponential function may
cause the stability region to schrink compared to the
stability region of the underlying polynomial method.
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Why does the stability region shrink?
Interpolate exp(z) by a quadratic function R(z) in 3 points
(0,1), (a,exp(a)) and (b, exp(b)

D————

!

T e
9 I\ W~ 0o N

i T 7 a4 01 2

Figure: exp(z) and R(z) with (a,b) = (-2, 2) (left) and
(a,b) = (-2, 1) (right)

R(z) will be a better approximation of exp(z) for small z < 0
when both a and b are negative!
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Conclusions

¢ A much better alternative, leading to increased stability, is
to fit to two decreasing exponentials exp(w x), exp(6x). In

particular, when 8 — w, good results are found.
e Example :

a
+ + 3 2 4 ® + 3

4 4

-5

5

Figure: Interval along the negative real axis for the (a, —a)-EF

variant (left) and (a, a)-EF variant (right) of the 2-stage RK
method.
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Conclusions

e To be able to cope with both the exponential and the
trigonometric case, we therefore advocate the use of
(exp(wx), exp(fx)), where w and 6 can both be real or
complex conjugate, rather than of opposite sign.
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