Fourth-order boundary value problems

Numerical Illustrations

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Exponentially fitted methods applied to fourth-order boundary value problems

M. Van Daele, D. Hollevoet and G. Vanden Berghe

Department of Applied Mathematics and Computer Science

SCICADE, Beijing, 2009

Fourth-order boundary value problems

Numerical Illustration

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Outline

Introduction

A model problem Exponential fitting

Fourth-order boundary value problems

The problem Exponentially-fitted methods Parameter selection

Numerical Illustrations

First example About the conditioning Second example

Conclusions

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Introduction

In the past 15 years, our research group has constructed modified versions of well-known

- linear multistep methods
- Runge-Kutta methods

Aim : build methods which perform very good when the solution has a known exponential of trigonometric behaviour.

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

A model problem

Consider the initial value problem

$$\mathbf{y}'' + \omega^2 \, \mathbf{y} = \mathbf{g}(\mathbf{y}) \qquad \mathbf{y}(\mathbf{a}) = \mathbf{y}_{\mathbf{a}} \qquad \mathbf{y}(\mathbf{a}) = \mathbf{y}'_{\mathbf{a}} \,.$$

If $|g(y)| \ll |\omega^2 y|$ then

 $\mathbf{y}(\mathbf{t}) pprox lpha \, \cos(\omega \, \mathbf{t} + \phi)$

To mimic this oscillatory behaviour, we construct methods which yield exact results when the solution is of trigonometric (in the complex case : exponential) type. These methods are called Exponentially-fitted methods.

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

A model problem

Consider the initial value problem

$$\mathbf{y}'' + \omega^2 \mathbf{y} = \mathbf{g}(\mathbf{y})$$
 $\mathbf{y}(\mathbf{a}) = \mathbf{y}_{\mathbf{a}}$ $\mathbf{y}(\mathbf{a}) = \mathbf{y}'_{\mathbf{a}}$.

If $|g(y)| \ll |\omega^2 y|$ then

 $\mathbf{y}(t) pprox \alpha \cos(\omega t + \phi)$

To mimic this oscillatory behaviour, we construct methods which yield exact results when the solution is of trigonometric (in the complex case : exponential) type. These methods are called **Exponentially-fitted methods**.

Conclusions

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

A model problem

Consider the initial value problem

$$\mathbf{y}'' + \omega^2 \mathbf{y} = \mathbf{g}(\mathbf{y})$$
 $\mathbf{y}(\mathbf{a}) = \mathbf{y}_{\mathbf{a}}$ $\mathbf{y}(\mathbf{a}) = \mathbf{y}'_{\mathbf{a}}$.

If $|g(y)| \ll |\omega^2 y|$ then

 $y(t) \approx \alpha \cos(\omega t + \phi)$

To mimic this oscillatory behaviour, we construct methods which yield exact results when the solution is of trigonometric (in the complex case : exponential) type.

These methods are called Exponentially-fitted methods.

Conclusions

A model problem

Consider the initial value problem

$$\mathbf{y}'' + \omega^2 \mathbf{y} = \mathbf{g}(\mathbf{y})$$
 $\mathbf{y}(\mathbf{a}) = \mathbf{y}_{\mathbf{a}}$ $\mathbf{y}(\mathbf{a}) = \mathbf{y}'_{\mathbf{a}}$.

If $|g(y)| \ll |\omega^2 y|$ then

 $y(t) \approx \alpha \cos(\omega t + \phi)$

To mimic this oscillatory behaviour, we construct methods which yield exact results when the solution is of trigonometric (in the complex case : exponential) type. These methods are called Exponentially-fitted methods.

EF methods

To determine the coefficients of a method, we impose conditions on a linear functional. These conditions are related to the fitting space S which contains

• polynomials :

$$\{t^q|q=0,\ldots,K\}$$

• exponential or trigonometric functions, multiplied with powers of *t* :

$$\{t^q \exp(\pm \mu t) | q = 0, \ldots, P\}$$

or, with $\omega = i \mu$,

 $\{t^q \cos(\omega t), t^q \sin(\omega t) | q = 0, \dots, P\}$

EF methods

To determine the coefficients of a method, we impose conditions on a linear functional. These conditions are related to the fitting space S which contains

• polynomials :

$$\{t^q|q=0,\ldots,K\}$$

• exponential or trigonometric functions, multiplied with powers of *t* :

$$\{t^q \exp(\pm \mu t) | q = 0, \ldots, P\}$$

or, with $\omega = i \mu$,

 $\{t^q \cos(\omega t), t^q \sin(\omega t) | q = 0, \dots, P\}$

EF method can be characterized by the couple (K, P)Classical method : P = -1number of basis functions : $M = 2P + K + 3_{\Box}, A_{\Box}, A_{$

EF methods

To determine the coefficients of a method, we impose conditions on a linear functional. These conditions are related to the fitting space S which contains

• polynomials :

$$\{t^q|q=0,\ldots,K\}$$

• exponential or trigonometric functions, multiplied with powers of *t* :

$$\{t^q \exp(\pm \mu t) | q = 0, \ldots, P\}$$

or, with $\omega = i \mu$,

 $\{t^q \cos(\omega t), t^q \sin(\omega t) | q = 0, \dots, P\}$

EF method can be characterized by the couple (K, P)Classical method : P = -1number of basis functions : $M = 2P + K + 3_{B}$, A = 1, A

EF methods

To determine the coefficients of a method, we impose conditions on a linear functional. These conditions are related to the fitting space S which contains

• polynomials :

$$\{t^q|q=0,\ldots,K\}$$

• exponential or trigonometric functions, multiplied with powers of *t* :

$$\{t^q \exp(\pm \mu t) | q = 0, \ldots, P\}$$

or, with $\omega = i \mu$,

 $\{t^q \cos(\omega t), t^q \sin(\omega t) | q = 0, \dots, P\}$

EF method can be characterized by the couple (K, P)Classical method : P = -1number of basis functions : M = 2P + K + 3

EF methods

To determine the coefficients of a method, we impose conditions on a linear functional. These conditions are related to the fitting space S which contains

• polynomials :

$$\{t^q|q=0,\ldots,K\}$$

• exponential or trigonometric functions, multiplied with powers of *t* :

$$\{t^q \exp(\pm \mu t) | q = 0, \ldots, P\}$$

or, with $\omega = i \mu$,

 $\{t^q \cos(\omega t), t^q \sin(\omega t) | q = 0, \dots, P\}$

EF method can be characterized by the couple (K, P)Classical method : P = -1number of basis functions : $M = 2P + K + 3_{B}$, A = 0

EF methods

To determine the coefficients of a method, we impose conditions on a linear functional. These conditions are related to the fitting space S which contains

• polynomials :

$$\{t^q|q=0,\ldots,K\}$$

• exponential or trigonometric functions, multiplied with powers of *t* :

$$\{t^q \exp(\pm \mu t) | q = 0, \ldots, P\}$$

or, with $\omega = i \mu$,

 $\{t^q \cos(\omega t), t^q \sin(\omega t) | q = 0, \dots, P\}$

EF method can be characterized by the couple (K, P)Classical method : P = -1number of basis functions : M = 2P + K + 3 o O●OO Fourth-order boundary value problems

Numerical Illustrations

Conclusions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

M = 2P + K + 3

(<i>K</i> , <i>P</i>)						
<i>M</i> = 2	<i>M</i> = 4	<i>M</i> = 6	<i>M</i> = 8	<i>M</i> = 10		
(1,-1)	(3, -1)	(5, -1)	(7, -1)	(9, -1)		
(-1,1)	(1,0)	(3,0)	(5,0)	(7,0)		
	(-1,1)	(1,1)	(3,1)	(5,1)		
		(-1,2)	(1,2)	(3,2)		
			(-1,3)	(1,3)		
				(-1,4)		

 $(1,2) \Longrightarrow S = \left\{1, t, \exp(\pm\mu t), t \exp(\pm\mu t), t^2 \exp(\pm\mu t)\right\}$

o O●OO Fourth-order boundary value problems

Numerical Illustrations

Conclusions

M = 2P + K + 3

(<i>K</i> , <i>P</i>)						
<i>M</i> = 2	<i>M</i> = 4	<i>M</i> = 6	<i>M</i> = 8	<i>M</i> = 10		
(1,-1)	(3, -1)	(5, -1)	(7, -1)	(9, -1)		
(-1,1)	(1,0)	(3,0)	(5,0)	(7,0)		
	(-1,1)	(1,1)	(3,1)	(5,1)		
		(-1,2)	(1,2)	(3,2)		
			(-1,3)	(1,3)		
				(-1,4)		

 $(1,2) \Longrightarrow \mathcal{S} = \left\{1, t, \exp(\pm\mu t), t \exp(\pm\mu t), t^2 \exp(\pm\mu t)\right\}$

Conclusions

Exponential Fitting

L. Ixaru and G. Vanden Berghe Exponential fitting Kluwer Academic Publishers, Dordrecht, 2004

$$\begin{split} \eta_{-1}(Z) &= \begin{cases} \cos(|Z|^{1/2}) & \text{if } Z < 0\\ \cosh(Z^{1/2}) & \text{if } Z \ge 0 \end{cases} \\ \eta_{0}(Z) &= \begin{cases} \sin(|Z|^{1/2})/|Z|^{1/2} & \text{if } Z < 0\\ 1 & \text{if } Z = 0\\ \sinh(Z^{1/2})/Z^{1/2} & \text{if } Z > 0 \end{cases} \quad Z := (\mu h)^{2} = -(\omega h)^{2} \end{split}$$

$$\eta_n(Z) := \frac{1}{Z} [\eta_{n-2}(Z) - (2n-1)\eta_{n-1}(Z)], \quad n = 1, 2, 3, \ldots$$

$$\eta'_n(Z) = \frac{1}{2}\eta_{n+1}(Z), \quad n = 1, 2, 3, \dots$$

Conclusions

Exponential Fitting

L. Ixaru and G. Vanden Berghe Exponential fitting Kluwer Academic Publishers, Dordrecht, 2004

$$\begin{split} \eta_{-1}(Z) &= \begin{cases} \cos(|Z|^{1/2}) & \text{if } Z < 0\\ \cosh(Z^{1/2}) & \text{if } Z \ge 0 \end{cases} \\ \eta_0(Z) &= \begin{cases} \sin(|Z|^{1/2})/|Z|^{1/2} & \text{if } Z < 0\\ 1 & \text{if } Z = 0\\ \sinh(Z^{1/2})/Z^{1/2} & \text{if } Z > 0 \end{cases} \quad Z := (\mu h)^2 = -(\omega h)^2 \end{split}$$

 $\eta_n(Z) := \frac{1}{Z} [\eta_{n-2}(Z) - (2n-1)\eta_{n-1}(Z)], \quad n = 1, 2, 3, \ldots$

$$\eta'_n(Z) = \frac{1}{2}\eta_{n+1}(Z), \quad n = 1, 2, 3, \dots$$

Conclusions

Exponential Fitting

L. Ixaru and G. Vanden Berghe Exponential fitting Kluwer Academic Publishers, Dordrecht, 2004

$$\begin{split} \eta_{-1}(Z) &= \begin{cases} \cos(|Z|^{1/2}) & \text{if } Z < 0\\ \cosh(Z^{1/2}) & \text{if } Z \ge 0 \end{cases} \\ \eta_0(Z) &= \begin{cases} \sin(|Z|^{1/2})/|Z|^{1/2} & \text{if } Z < 0\\ 1 & \text{if } Z = 0\\ \sinh(Z^{1/2})/Z^{1/2} & \text{if } Z > 0 \end{cases} \quad Z := (\mu h)^2 = -(\omega h)^2 \end{split}$$

$$\eta_n(Z) := \frac{1}{Z} [\eta_{n-2}(Z) - (2n-1)\eta_{n-1}(Z)], \quad n = 1, 2, 3, \ldots$$

$$\eta'_n(Z) = \frac{1}{2}\eta_{n+1}(Z), \quad n = 1, 2, 3, \dots$$

Conclusions

Exponential Fitting

L. Ixaru and G. Vanden Berghe Exponential fitting Kluwer Academic Publishers, Dordrecht, 2004

$$\begin{split} \eta_{-1}(Z) &= \begin{cases} \cos(|Z|^{1/2}) & \text{if } Z < 0\\ \cosh(Z^{1/2}) & \text{if } Z \ge 0 \end{cases} \\ \eta_0(Z) &= \begin{cases} \sin(|Z|^{1/2})/|Z|^{1/2} & \text{if } Z < 0\\ 1 & \text{if } Z = 0\\ \sinh(Z^{1/2})/Z^{1/2} & \text{if } Z > 0 \end{cases} \quad Z := (\mu h)^2 = -(\omega h)^2 \end{split}$$

$$\eta_n(Z) := \frac{1}{Z} [\eta_{n-2}(Z) - (2n-1)\eta_{n-1}(Z)], \quad n = 1, 2, 3, \ldots$$

$$\eta'_n(Z) = \frac{1}{2}\eta_{n+1}(Z), \quad n = 1, 2, 3, \dots$$

o OOO● Fourth-order boundary value problems

Numerical Illustration

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Choice of ω

 local optimization based on local truncation error (Ite) ω is step-dependent

global optimization
 Preservation of geometric properties (periodicity, energy, ...)
 u is constant over the interval of integration

o OOO● Fourth-order boundary value problems

Numerical Illustration

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Choice of ω

 local optimization based on local truncation error (Ite) ω is step-dependent

- global optimization
 Preservation of geometric properties (periodicity, energy, ...)
 - ω is constant over the interval of integration

Numerical Illustrations

$$egin{array}{ll} y^{(4)} = F(t,\,y) & a \leq t \leq b \ y(a) = A_1 & y''(a) = A_2 \ y(b) = B_1 & y''(b) = B_2 \end{array}$$

- special case : $y^{(4)} + f(t) y = g(t)$
- mathematical modeling of viscoelastic and inelastic flows, deformation of beams, plate deflection theory, ...
- work by Doedel, Usmani, Agarwal, Cherruault et al., Van Daele et al., ...
- finite differences, B-splines, ...

Numerical Illustrations

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

$$egin{array}{lll} y^{(4)} = F(t,\,y) & a \leq t \leq b \ y(a) = A_1 & y''(a) = A_2 \ y(b) = B_1 & y''(b) = B_2 \end{array}$$

- special case : $y^{(4)} + f(t) y = g(t)$
- mathematical modeling of viscoelastic and inelastic flows, deformation of beams, plate deflection theory, ...
- work by Doedel, Usmani, Agarwal, Cherruault et al., Van Daele et al., ...
- finite differences, B-splines, ...

Numerical Illustrations

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

$$egin{array}{lll} y^{(4)} = F(t,\,y) & a \leq t \leq b \ y(a) = A_1 & y''(a) = A_2 \ y(b) = B_1 & y''(b) = B_2 \end{array}$$

- special case : $y^{(4)} + f(t) y = g(t)$
- mathematical modeling of viscoelastic and inelastic flows, deformation of beams, plate deflection theory, ...
- work by Doedel, Usmani, Agarwal, Cherruault et al., Van Daele et al., ...
- finite differences, B-splines, ...

Numerical Illustrations

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

$$egin{array}{ll} y^{(4)} = F(t,\,y) & a \leq t \leq b \ y(a) = A_1 & y''(a) = A_2 \ y(b) = B_1 & y''(b) = B_2 \end{array}$$

- special case : $y^{(4)} + f(t) y = g(t)$
- mathematical modeling of viscoelastic and inelastic flows, deformation of beams, plate deflection theory, ...
- work by Doedel, Usmani, Agarwal, Cherruault et al., Van Daele et al., ...
- finite differences, B-splines, ...

Numerical Illustrations

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

$$egin{array}{lll} y^{(4)} = F(t,\,y) & a \leq t \leq b \ y(a) = A_1 & y''(a) = A_2 \ y(b) = B_1 & y''(b) = B_2 \end{array}$$

- special case : $y^{(4)} + f(t) y = g(t)$
- mathematical modeling of viscoelastic and inelastic flows, deformation of beams, plate deflection theory, ...
- work by Doedel, Usmani, Agarwal, Cherruault et al., Van Daele et al., ...
- finite differences, B-splines, ...

Fourth-order boundary value problems

Numerical Illustrations

The formulae

$$t_j = a + j h, j = 0, 1, ..., N + 1$$
 $N \ge 5$ $h := \frac{b - a}{N + 1}$

• central formula for $j = 2, \ldots, N-1$

 $y_{j-2} + a_1 y_{j-1} + a_0 y_j + a_1 y_{j+1} + y_{j+2} = h^4 (b_2 F_{j-2} + b_1 F_{j-1} + b_0 F_j + b_1 F_{j+1} + b_2 F_{j+2})$

whereby y_j is approximate value of y(t_j) and F_j := F(t_j, y_j).
begin formula

 $c_1 y_0 + c_2 y_1 + c_3 y_2 + y_3 =$ $d_1 h^2 y_0'' + h^4 (d_2 F_0 + d_3 F_1 + d_4 F_2 + d_5 F_3 + d_6 F_4 + d_7 F_5)$

• end formula

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The formulae

$$t_j = a + j h, j = 0, 1, ..., N + 1$$
 $N \ge 5$ $h := \frac{b - a}{N + 1}$

• central formula for $j = 2, \ldots, N-1$

$$y_{j-2} + a_1 y_{j-1} + a_0 y_j + a_1 y_{j+1} + y_{j+2} = h^4 (b_2 F_{j-2} + b_1 F_{j-1} + b_0 F_j + b_1 F_{j+1} + b_2 F_{j+2})$$

whereby y_j is approximate value of y(t_j) and F_j := F(t_j, y_j).
begin formula

 $c_1 y_0 + c_2 y_1 + c_3 y_2 + y_3 =$ $d_1 h^2 y_0'' + h^4 (d_2 F_0 + d_3 F_1 + d_4 F_2 + d_5 F_3 + d_6 F_4 + d_7 F_5)$

• end formula

Fourth-order boundary value problems

Numerical Illustrations

.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Conclusions

The formulae

$$t_j = a + j h, j = 0, 1, ..., N + 1$$
 $N \ge 5$ $h := \frac{b - a}{N + 1}$

• central formula for $j = 2, \ldots, N-1$

$$y_{j-2} + a_1 y_{j-1} + a_0 y_j + a_1 y_{j+1} + y_{j+2} = h^4 (b_2 F_{j-2} + b_1 F_{j-1} + b_0 F_j + b_1 F_{j+1} + b_2 F_{j+2})$$

whereby y_j is approximate value of $y(t_j)$ and $F_j := F(t_j, y_j)$. • begin formula

$$c_1 y_0 + c_2 y_1 + c_3 y_2 + y_3 = d_1 h^2 y_0'' + h^4 (d_2 F_0 + d_3 F_1 + d_4 F_2 + d_5 F_3 + d_6 F_4 + d_7 F_5)$$

end formula

Fourth-order boundary value problems

Numerical Illustrations

.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Conclusions

The formulae

$$t_j = a + j h, j = 0, 1, ..., N + 1$$
 $N \ge 5$ $h := \frac{b - a}{N + 1}$

• central formula for $j = 2, \ldots, N-1$

$$y_{j-2} + a_1 y_{j-1} + a_0 y_j + a_1 y_{j+1} + y_{j+2} = h^4 (b_2 F_{j-2} + b_1 F_{j-1} + b_0 F_j + b_1 F_{j+1} + b_2 F_{j+2})$$

whereby y_j is approximate value of $y(t_j)$ and $F_j := F(t_j, y_j)$. • begin formula

$$c_1 y_0 + c_2 y_1 + c_3 y_2 + y_3 = d_1 h^2 y_0'' + h^4 (d_2 F_0 + d_3 F_1 + d_4 F_2 + d_5 F_3 + d_6 F_4 + d_7 F_5)$$

• end formula

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Central formula

 $\mathcal{L}[y] := y(t-2h) + a_1 y(t-h) + a_0 y(t) + a_1 y(t+h) + y(t+2h)$ $-h^4 \left(b_2 y^{(4)}(t-2h) + b_1 y^{(4)}(t-h) + b_0 y^{(4)}(t) + b_1 y^{(4)}(t+h) + b_2 y^{(4)}(t+2h) \right)$

$$P = -1 : S = \{1, t, t^2, \dots, t^{M-1}\}$$

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Central formula

 $\mathcal{L}[y] := y(t-2h) + a_1 y(t-h) + a_0 y(t) + a_1 y(t+h) + y(t+2h)$ $-h^4 \left(b_2 y^{(4)}(t-2h) + b_1 y^{(4)}(t-h) + b_0 y^{(4)}(t) + b_1 y^{(4)}(t+h) + b_2 y^{(4)}(t+2h) \right)$

$$P = -1 : S = \{1, t, t^2, \dots, t^{M-1}\}$$

case M = 10: order 6

$$y_{p-2} - 4 y_{p-1} + 6 y_p - 4 y_{p+1} + y_{p+2} =$$

$$\frac{h^4}{720} \left(-y_{p-2}^{(4)} + 124 y_{p-1}^{(4)} + 474 y_p^{(4)} + 124 y_{p+1}^{(4)} - y_{p+2}^{(4)} \right)$$

$$\mathcal{L}[y](t) = \frac{1}{3024} h^{10} y^{(10)}(t) + \mathcal{O}(h^{12})$$

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

Central formula

 $\mathcal{L}[y] := y(t-2h) + a_1 y(t-h) + a_0 y(t) + a_1 y(t+h) + y(t+2h)$ $-h^4 \left(b_2 y^{(4)}(t-2h) + b_1 y^{(4)}(t-h) + b_0 y^{(4)}(t) + b_1 y^{(4)}(t+h) + b_2 y^{(4)}(t+2h) \right)$

$$\boldsymbol{P} = -\mathbf{1}: \ \mathcal{S} = \left\{\mathbf{1}, \ t, \ t^2, \ \dots, \ t^{M-1}\right\}$$

case M = 8 and $b_2 = 0$: order 4

 $y_{p-2} - 4 y_{p-1} + 6 y_p - 4 y_{p+1} + y_{p+2} = \frac{h^4}{6} \left(y_{p-1}^{(4)} + 4 y_p^{(4)} + y_{p+1}^{(4)} \right)$ $\mathcal{L}[y](t) = -\frac{1}{720} h^8 y^{(8)}(t) + \mathcal{O}(h^{10})$

▲□▶▲□▶▲□▶▲□▶ □ のへ⊙

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Central formula

 $\mathcal{L}[y] := y(t-2h) + a_1 y(t-h) + a_0 y(t) + a_1 y(t+h) + y(t+2h)$ $-h^4 \left(b_2 y^{(4)}(t-2h) + b_1 y^{(4)}(t-h) + b_0 y^{(4)}(t) + b_1 y^{(4)}(t+h) + b_2 y^{(4)}(t+2h) \right)$

$$\boldsymbol{P} = -\mathbf{1}: \ \mathcal{S} = \left\{\mathbf{1}, \ t, \ t^2, \ \dots, \ t^{M-1}\right\}$$

case M = 6 and $b_1 = b_2 = 0$: order 2

$$y_{p-2} - 4 y_{p-1} + 6 y_p - 4 y_{p+1} + y_{p+2} = h^4 y_p^{(4)}$$
$$\mathcal{L}[y](t) = \frac{1}{6} h^6 y^{(6)}(t) + \mathcal{O}(h^8)$$

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

EF Central formula

 $\mathcal{L}[y] := y(t-2h) + a_1 y(t-h) + a_0 y(t) + a_1 y(t+h) + y(t+2h)$ $-h^4 \left(b_2 y^{(4)}(t-2h) + b_1 y^{(4)}(t-h) + b_0 y^{(4)}(t) + b_1 y^{(4)}(t+h) + b_2 y^{(4)}(t+2h) \right)$

$$\boldsymbol{P} = \boldsymbol{0}: \ \mathcal{S} = \left\{ \cos(\omega t), \sin(\omega t), 1, t, t^2, \dots, t^{M-3} \right\}$$

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

EF Central formula

 $\mathcal{L}[y] := y(t-2h) + a_1 y(t-h) + a_0 y(t) + a_1 y(t+h) + y(t+2h)$ $-h^4 \left(b_2 y^{(4)}(t-2h) + b_1 y^{(4)}(t-h) + b_0 y^{(4)}(t) + b_1 y^{(4)}(t+h) + b_2 y^{(4)}(t+2h) \right)$

$$P = 0$$
: $S = \left\{ \cos(\omega t), \sin(\omega t), 1, t, t^2, \dots, t^{M-3} \right\}$

case *M* = 10 :

$$y_{\rho-2} - 4 y_{\rho-1} + 6 y_{\rho} - 4 y_{\rho+1} + y_{\rho+2} = h^4 \left(b_2 y_{\rho-2}^{(4)} + b_1 y_{\rho-1}^{(4)} + b_0 y_{\rho}^{(4)} + b_1 y_{\rho+1}^{(4)} + b_2 y_{\rho+2}^{(4)} \right)$$

$$b_{0} = \frac{4\cos^{2}\theta - 2 - 11\cos\theta}{6(\cos\theta - 1)^{2}} + \frac{6}{\theta^{4}} \quad b_{1} = \frac{\cos^{2}\theta + 5}{6(\cos\theta - 1)^{2}} - \frac{4}{\theta^{4}} \quad b_{2} = -\frac{\cos\theta + 2}{12(\cos\theta - 1)^{2}} + \frac{1}{\theta^{4}}$$

$$\mathcal{L}[y](t) = \frac{1}{3024} h^{10} \left(y^{(10)}(t) + \omega^2 y^{(8)}(t) \right) + \mathcal{O}(h^{12})$$
Fourth-order boundary value problems

Numerical Illustrations

Conclusions

EF Central formula

 $\mathcal{L}[y] := y(t-2h) + a_1 y(t-h) + a_0 y(t) + a_1 y(t+h) + y(t+2h)$ $-h^4 \left(b_2 y^{(4)}(t-2h) + b_1 y^{(4)}(t-h) + b_0 y^{(4)}(t) + b_1 y^{(4)}(t+h) + b_2 y^{(4)}(t+2h) \right)$

$$P = 0$$
: $\mathcal{S} = \left\{ \cos(\omega t), \, \sin(\omega t), 1, \, t, \, t^2, \, \dots, t^{M-3}
ight\}$

case M = 8 and $b_2 = 0$:

$$y_{p-2}-4 y_{p-1}+6 y_p-4 y_{p+1}+y_{p+2}=h^4 \left(b_1 y_{p-1}^{(4)}+b_0 y_p^{(4)}+b_1 y_{p+1}^{(4)}\right)$$

$$b_0 = \frac{\cos\theta}{\cos\theta - 1} + \frac{4(1 - \cos\theta)}{\theta^4} \qquad b_1 = \frac{1}{2(1 - \cos\theta)} + \frac{2(\cos\theta - 1)}{\theta^4}$$
$$\mathcal{L}[y](t) = -\frac{1}{720} h^8 \left(y^{(8)}(t) + \omega^2 y^{(6)}(t) \right) + \mathcal{O}(h^{10})$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

EF Central formula

 $\mathcal{L}[y] := y(t-2h) + a_1 y(t-h) + a_0 y(t) + a_1 y(t+h) + y(t+2h)$ $-h^4 \left(b_2 y^{(4)}(t-2h) + b_1 y^{(4)}(t-h) + b_0 y^{(4)}(t) + b_1 y^{(4)}(t+h) + b_2 y^{(4)}(t+2h) \right)$

$${m P}={f 0}:\;{\cal S}=\left\{\cos(\omega\;t),\,\sin(\omega\;t),{f 1},\,t,\,t^2,\,\ldots,t^{M-3}
ight\}$$

case M = 6 and $b_1 = b_2 = 0$:

 $y_{p-2} - 4 y_{p-1} + 6 y_p - 4 y_{p+1} + y_{p+2} = \frac{\sin^4(\theta/2)}{(\theta/2)^4} h^4 y_p^{(4)}$

$$\mathcal{L}[y](t) = \frac{1}{6} h^6 \left(y^{(6)}(t) + \omega^2 y^{(4)}(t) \right) + \mathcal{O}(h^8)$$

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

EF Central formula

$$\mathcal{L}[y] := y(t-2h) + a_1 y(t-h) + a_0 y(t) + a_1 y(t+h) + y(t+2h) -h^4 \left(b_2 y^{(4)}(t-2h) + b_1 y^{(4)}(t-h) + b_0 y^{(4)}(t) + b_1 y^{(4)}(t+h) + b_2 y^{(4)}(t+2h) \right)$$

$$\boldsymbol{P} = \boldsymbol{1}: \ \mathcal{S} = \left\{ \cos(\omega t), \sin(\omega t), t \, \cos(\omega t), t \, \sin(\omega t), 1, t, t^2, \dots, t^{M-5} \right\}$$

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

EF Central formula

$$\mathcal{L}[y] := y(t-2h) + a_1 y(t-h) + a_0 y(t) + a_1 y(t+h) + y(t+2h) -h^4 \left(b_2 y^{(4)}(t-2h) + b_1 y^{(4)}(t-h) + b_0 y^{(4)}(t) + b_1 y^{(4)}(t+h) + b_2 y^{(4)}(t+2h) \right)$$

$$\boldsymbol{P} = \boldsymbol{1}: \ \mathcal{S} = \left\{ \cos(\omega \ t), \sin(\omega \ t), t \ \cos(\omega \ t), t \ \sin(\omega \ t), 1, t, t^2, \dots, t^{M-5} \right\}$$

case M = 6 and $b_1 = b_2 = 0$:

.

$$y_{p-2} + a_1 y_{p-1} + a_0 y_p + a_1 y_{p+1} + y_{p+2} = b_0 h^4 y_p^{(4)}$$

$$a_{0} = 2 \frac{-8 \sin^{2} \theta + \theta (4 \cos \theta - 1) \sin \theta - 4 \cos \theta + 4}{\theta \sin \theta + 4 \cos \theta - 4} \qquad a_{1} = -4 \frac{\sin \theta (\theta \cos \theta - 2 \sin \theta)}{\theta \sin \theta + 4 \cos \theta - 4}$$
$$b_{0} = 4 \frac{\sin \theta (\sin^{2} \theta - 2 + 2 \cos \theta)}{\theta^{3} (\theta \sin \theta + 4 \cos \theta - 4)}$$

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

Coefficients of central formula e.g. case M = 6:

 $y_{\rho-2} + a_1 y_{\rho-1} + a_0 y_{\rho} + a_1 y_{\rho+1} + y_{\rho+2} = b_0 h^4 y_{\rho}^{(4)}$

$$Z = (\mu h)^2 = -(\omega h)^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Coefficients of central formula e.g. case M = 6

• *P* = -1 :

 $b_0 = 1$

- P = 0: $b_0 = 4 \frac{(\cos \theta - 1)^2}{\theta^4}$
- P = 1: $b_0 = -4 \frac{\sin \theta (\cos \theta - 1)^2}{\theta^3 (4 \cos \theta - 4 + \theta \sin \theta)}$
- P = 2: $b_0 = -2 \frac{\sin^3 \theta}{\theta^2 (\theta \cos \theta - 3 \sin \theta)}$

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

▲□▶▲□▶▲□▶▲□▶ □ のQで

Central formula : coefficients e.g. case M = 6

• *P* = -1 :

 $b_0 = 1$

- P = 0: $b_0 = 1 - \frac{1}{6}\theta^2 + \frac{1}{80}\theta^4 + O(\theta^6)$
- P = 1: $b_0 = 1 - \frac{1}{3}\theta^2 + \frac{37}{720}\theta^4 + \mathcal{O}(\theta^6)$

• P = 2: $b_0 = 1 - \frac{1}{2}\theta^2 + \frac{7}{60}\theta^4 + \mathcal{O}(\theta^6)$

Numerical Illustrations

Conclusions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Central formula : local truncation error

$$\mathsf{lte} = \mathcal{L}[\mathbf{y}](t)$$

As an inifinite series :

Ite =
$$h^M C_M D^{K+1} (D^2 + \omega^2)^{P+1} y(t) + O(h^{M+2})$$

In closed form : (Coleman and Ixaru)

$$\begin{aligned} &\text{Ite} = h^M \, \Phi_{K,P}(Z) \, D^{K+1} \, (D^2 + \omega^2)^{P+1} y(\xi) \\ &Z \in \text{some interval} \quad \Phi_{K,P}(0) \neq 0 \qquad \xi \in (t-2\,h,\,t+2\,h) \end{aligned}$$

Numerical Illustrations

Conclusions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Central formula : local truncation error

Ite = $\mathcal{L}[y](t)$

As an inifinite series :

lte =
$$h^M C_M D^{K+1} (D^2 + \omega^2)^{P+1} y(t) + O(h^{M+2})$$

In closed form : (Coleman and Ixaru)

$$\begin{aligned} &\text{Ite} = h^M \, \Phi_{K,P}(Z) \, D^{K+1} \, (D^2 + \omega^2)^{P+1} y(\xi) \\ &Z \in \text{some interval} \qquad \Phi_{K,P}(0) \neq 0 \qquad \xi \in (t-2\,h, \, t+2\,h) \end{aligned}$$

Numerical Illustrations

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Central formula : local truncation error

Ite = $\mathcal{L}[y](t)$

As an inifinite series :

Ite =
$$h^M C_M D^{K+1} (D^2 + \omega^2)^{P+1} y(t) + O(h^{M+2})$$

In closed form : (Coleman and Ixaru)

$$\begin{aligned} &\text{Ite} = h^M \, \Phi_{\mathcal{K}, \mathcal{P}}(Z) \, D^{\mathcal{K}+1} \, (D^2 + \omega^2)^{\mathcal{P}+1} y(\xi) \\ & \mathcal{Z} \in \text{some interval} \quad \Phi_{\mathcal{K}, \mathcal{P}}(0) \neq 0 \qquad \xi \in (t-2 \, h, \, t+2 \, h) \end{aligned}$$

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

Local truncation error

Ite =
$$h^M C_M D^{K+1} (D^2 + \omega^2)^{P+1} y(t) + O(h^{M+2})$$
,

At
$$t_j : D^{(K+1)} (D^2 + \omega_j^2)^{(P+1)} y(t) \Big|_{t=t_j} = 0$$
 $j = 2, ..., N-1$

•
$$P = 0$$
:
 $y^{(K+3)}(t_j) + y^{(K+1)}(t_j) \omega_j^2 = 0$

•
$$P = 1$$
:
 $y^{(K+5)}(t_j) + 2 y^{(K+3)}(t_j) \omega_j^2 + y^{(K+1)}(t_j) \omega_j^4 = 0$

• P = 2: $y^{(K+7)}(t_j) + 3y^{(K+5)}(t_j) \omega_j^4 + 3y^{(K+3)}(t_j) \omega_j^4 + y^{(K+1)}(t_j) \omega_j^6 = 0$

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

Local truncation error

Ite =
$$h^M C_M D^{K+1} (D^2 + \omega^2)^{P+1} y(t) + O(h^{M+2})$$
,

At
$$t_j : D^{(K+1)} (D^2 + \omega_j^2)^{(P+1)} y(t) \Big|_{t=t_j} = 0$$
 $j = 2, ..., N-1$

•
$$P = 0$$
:
 $y^{(K+3)}(t_j) + y^{(K+1)}(t_j) \omega_j^2 = 0$

•
$$P = 1$$
:
 $y^{(K+5)}(t_j) + 2 y^{(K+3)}(t_j) \omega_j^2 + y^{(K+1)}(t_j) \omega_j^4 = 0$

• P = 2: $y^{(K+7)}(t_j) + 3y^{(K+5)}(t_j) \omega_j^4 + 3y^{(K+3)}(t_j) \omega_j^4 + y^{(K+1)}(t_j) \omega_j^6 = 0$

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

Local truncation error

Ite =
$$h^M C_M D^{K+1} (D^2 + \omega^2)^{P+1} y(t) + O(h^{M+2})$$
,

At
$$t_j : D^{(K+1)} (D^2 + \omega_j^2)^{(P+1)} y(t) \Big|_{t=t_j} = 0$$
 $j = 2, ..., N-1$

•
$$P = 0$$
:
 $y^{(K+3)}(t_j) + y^{(K+1)}(t_j) \omega_j^2 = 0$

•
$$P = 1$$
:
 $y^{(K+5)}(t_j) + 2y^{(K+3)}(t_j)\omega_j^2 + y^{(K+1)}(t_j)\omega_j^4 = 0$

•
$$P = 2$$
:
 $y^{(K+7)}(t_j) + 3y^{(K+5)}(t_j) \omega_j^4 + 3y^{(K+3)}(t_j) \omega_j^4 + y^{(K+1)}(t_j) \omega_j^6 = 0$

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

Local truncation error

Ite =
$$h^M C_M D^{K+1} (D^2 + \omega^2)^{P+1} y(t) + O(h^{M+2})$$
,

At
$$t_j : D^{(K+1)} (D^2 + \omega_j^2)^{(P+1)} y(t) \Big|_{t=t_j} = 0$$
 $j = 2, ..., N-1$

•
$$P = 0$$
:
 $y^{(K+3)}(t_j) + y^{(K+1)}(t_j) \omega_j^2 = 0$

•
$$P = 1$$
:
 $y^{(K+5)}(t_j) + 2 y^{(K+3)}(t_j) \omega_j^2 + y^{(K+1)}(t_j) \omega_j^4 = 0$

• P = 2: $y^{(K+7)}(t_j) + 3y^{(K+5)}(t_j) \omega_j^4 + 3y^{(K+3)}(t_j) \omega_j^4 + y^{(K+1)}(t_j) \omega_j^6 = 0$

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

Local truncation error

Ite =
$$h^M C_M D^{K+1} (D^2 + \omega^2)^{P+1} y(t) + O(h^{M+2})$$
,

At
$$t_j : D^{(K+1)} (D^2 + \omega_j^2)^{(P+1)} y(t) \Big|_{t=t_j} = 0$$
 $j = 2, ..., N-1$

•
$$P = 0$$
:
 $y^{(K+3)}(t_j) + y^{(K+1)}(t_j) \omega_j^2 = 0$

•
$$P = 1$$
:
 $y^{(K+5)}(t_j) + 2 y^{(K+3)}(t_j) \omega_j^2 + y^{(K+1)}(t_j) \omega_j^4 = 0$

•
$$P = 2$$
:
 $y^{(K+7)}(t_j) + 3 y^{(K+5)}(t_j) \omega_j^4 + 3 y^{(K+3)}(t_j) \omega_j^4 + y^{(K+1)}(t_j) \omega_j^6 = 0$

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Local truncation error

Ite =
$$h^M C_M D^{K+1} (D^2 + \omega^2)^{P+1} y(t) + O(h^{M+2})$$
,

At
$$t_j$$
: $D^{(K+1)} (D^2 + \omega_j^2)^{(P+1)} y(t) \Big|_{t=t_j} = 0$ $j = 2, ..., N-1$

ω_i^2 is solution of equation of degree P + 1.

- Which value of P should be chosen ?
- Which root ω_j should be chosen ?

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Local truncation error

Ite =
$$h^M C_M D^{K+1} (D^2 + \omega^2)^{P+1} y(t) + O(h^{M+2})$$
,

At
$$t_j$$
: $D^{(K+1)} (D^2 + \omega_j^2)^{(P+1)} y(t) \Big|_{t=t_j} = 0$ $j = 2, ..., N-1$

 ω_i^2 is solution of equation of degree P + 1.

- Which value of *P* should be chosen ?
- Which root ω_i should be chosen ?

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Local truncation error

Ite =
$$h^M C_M D^{K+1} (D^2 + \omega^2)^{P+1} y(t) + O(h^{M+2})$$
,

At
$$t_j$$
: $D^{(K+1)} (D^2 + \omega_j^2)^{(P+1)} y(t) \Big|_{t=t_j} = 0$ $j = 2, ..., N-1$

 ω_i^2 is solution of equation of degree P + 1.

- Which value of *P* should be chosen ?
- Which root ω_j should be chosen ?

Numerical Illustrations

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Parameter selection

Ite =
$$h^M C_M D^{K+1} (D^2 - \mu^2)^{P+1} y(t) + O(h^{M+2})$$

Suppose y(t) takes the form $t^{P_0} e^{\mu_0 t}$

Then Ite= 0 for any EF rule with $P\geq P_0$ and $\mu_j=\mu_0$

- if $P = P_0$, then $\mu = \mu_0$ will be a single root
- if $P = P_0 + 1$, then $\mu = \mu_0$ will be a double root
- if $P = P_0 + 2$, then $\mu = \mu_0$ will be a triple root
- . . .

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Parameter selection

Ite =
$$h^M C_M D^{K+1} (D^2 - \mu^2)^{P+1} y(t) + O(h^{M+2})$$

Suppose y(t) takes the form $t^{P_0} e^{\mu_0 t}$

Then Ite= 0 for any EF rule with $P \ge P_0$ and $\mu_j = \mu_0$

- if $P = P_0$, then $\mu = \mu_0$ will be a single root
- if $P = P_0 + 1$, then $\mu = \mu_0$ will be a double root
- if $P = P_0 + 2$, then $\mu = \mu_0$ will be a triple root
- . . .

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Parameter selection

Ite =
$$h^M C_M D^{K+1} (D^2 - \mu^2)^{P+1} y(t) + O(h^{M+2})$$

Suppose y(t) takes the form $t^{P_0} e^{\mu_0 t}$

Then Ite= 0 for any EF rule with $P \ge P_0$ and $\mu_j = \mu_0$

- if $P = P_0$, then $\mu = \mu_0$ will be a single root
- if $P = P_0 + 1$, then $\mu = \mu_0$ will be a double root
- if $P = P_0 + 2$, then $\mu = \mu_0$ will be a triple root
- . . .

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

Parameter selection

Ite =
$$h^M C_M D^{K+1} (D^2 - \mu^2)^{P+1} y(t) + O(h^{M+2})$$

Suppose y(t) takes the form $t^{P_0} e^{\mu_0 t}$

Then Ite= 0 for any EF rule with $P \ge P_0$ and $\mu_j = \mu_0$

- if $P = P_0$, then $\mu = \mu_0$ will be a single root
- if $P = P_0 + 1$, then $\mu = \mu_0$ will be a double root
- if $P = P_0 + 2$, then $\mu = \mu_0$ will be a triple root
- . . .

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Parameter selection

Ite =
$$h^M C_M D^{K+1} (D^2 - \mu^2)^{P+1} y(t) + O(h^{M+2})$$

Suppose y(t) does not take the form $t^{P_0} e^{\mu_0 t}$.

Then $y(t) \notin S$ for any *P*.

For a given value of P:

$$D^{(K+1)} \left(D^2 - \mu_j^2 \right)^{(P+1)} y(t) \Big|_{t=t_j} = 0$$

At each point t_j , this gives P + 1 values for μ_i^2 .

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Parameter selection

Ite =
$$h^M C_M D^{K+1} (D^2 - \mu^2)^{P+1} y(t) + O(h^{M+2})$$

Suppose y(t) does not take the form $t^{P_0} e^{\mu_0 t}$.

Then $y(t) \notin S$ for any *P*.

For a given value of P:

$$D^{(K+1)} \left(D^2 - \mu_j^2 \right)^{(P+1)} y(t) \Big|_{t=t_j} = 0$$

At each point t_j , this gives P + 1 values for μ_i^2 .

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

Parameter selection

Ite =
$$h^M C_M D^{K+1} (D^2 - \mu^2)^{P+1} y(t) + O(h^{M+2})$$

Suppose y(t) does not take the form $t^{P_0} e^{\mu_0 t}$.

Then $y(t) \notin S$ for any *P*.

For a given value of P:

$$D^{(K+1)} (D^2 - \mu_j^2)^{(P+1)} y(t) \Big|_{t=t_j} = 0$$

At each point t_j , this gives P + 1 values for μ_i^2 .

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

Parameter selection

Ite =
$$h^M C_M D^{K+1} (D^2 - \mu^2)^{P+1} y(t) + O(h^{M+2})$$

Suppose y(t) does not take the form $t^{P_0} e^{\mu_0 t}$.

Then $y(t) \notin S$ for any *P*.

For a given value of *P* :

$$D^{(K+1)} (D^2 - \mu_j^2)^{(P+1)} y(t) \Big|_{t=t_j} = 0$$

At each point t_i , this gives P + 1 values for μ_i^2 .

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

Parameter selection

Ite =
$$h^M C_M D^{K+1} (D^2 - \mu^2)^{P+1} y(t) + O(h^{M+2})$$

Suppose y(t) does not take the form $t^{P_0} e^{\mu_0 t}$.

Then $y(t) \notin S$ for any *P*.

For a given value of P:

$$D^{(K+1)} (D^2 - \mu_j^2)^{(P+1)} y(t) \Big|_{t=t_j} = 0$$

At each point t_j , this gives P + 1 values for μ_i^2 .

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

Numerical Illustrations

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 − のへで

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

Problem 1

$$y^{(4)} - \frac{384 t^4}{(2+t^2)^4} y = 24 \frac{2-11 t^2}{(2+t^2)^4}$$
$$y(-1) = \frac{1}{3} \qquad y(1) = \frac{1}{3}$$
$$y''(-1) = \frac{2}{27} \qquad y''(1) = \frac{2}{27}$$

Solution : $y(t) = \frac{1}{2+t^2}$ Since y(t) does not to belong to the fitting space of a EF-rule, the parameter μ will not be constant over the interval of integration.

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

Problem 1

$$y^{(4)} - \frac{384 t^4}{(2+t^2)^4} y = 24 \frac{2-11 t^2}{(2+t^2)^4}$$
$$y(-1) = \frac{1}{3} \qquad y(1) = \frac{1}{3}$$
$$y''(-1) = \frac{2}{27} \qquad y''(1) = \frac{2}{27}$$

Solution : $y(t) = \frac{1}{2+t^2}$ Since y(t) does not to belong to the fitting space of a EF-rule, the parameter μ will not be constant over the interval of integration.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

$$P = 0: y^{(8)}(t_j) - y^{(6)}(t_j) \mu_j^2 = 0$$

- re-express higher order derivatives in terms of y, y', y" and y""
- approximate y', y" and y" in terms of y
- an initial approximation for y can be computed with the classical, polynomial rule

(日)

$${m P}={f 0}:{m y}^{(8)}(t_j)-{m y}^{(6)}(t_j)\,\mu_j^2=0$$

- re-express higher order derivatives in terms of y, y', y" and y""
- approximate y', y" and y" in terms of y
- an initial approximation for y can be computed with the classical, polynomial rule

(日)

$${m P}={f 0}:{m y}^{(8)}(t_j)-{m y}^{(6)}(t_j)\,\mu_j^2=0$$

- re-express higher order derivatives in terms of y, y', y'' and y'''
- approximate y', y" and y" in terms of y
- an initial approximation for y can be computed with the classical, polynomial rule

(日)

$${m P}={f 0}:{m y}^{(8)}(t_j)-{m y}^{(6)}(t_j)\,\mu_j^2=0$$

- re-express higher order derivatives in terms of y, y', y" and y""
- approximate y', y" and y" in terms of y
- an initial approximation for y can be computed with the classical, polynomial rule

Fourth-order boundary value problems

Numerical Illustrations

$${m P}={f 0}:{m y}^{(8)}(t_j)-{m y}^{(6)}(t_j)\,\mu_j^2={f 0}$$

- re-express higher order derivatives in terms of y, y', y" and y""
- approximate y', y" and y" in terms of y
- an initial approximation for y can be computed with the classical, polynomial rule

Fourth-order boundary value problems

Numerical Illustrations

Solution obtained by a fourth-order EF method Computation of μ_j with M = 8:

$$P = 1 : y^{(8)}(t_j) - 2 y^{(6)}(t_j) \mu_j^2 + y^{(4)}(t_j) \mu_j^4 = 0$$

Real and imag. part of $\mu_{1,j}$ and $\mu_{2,j}$
Fourth-order boundary value problems

Numerical Illustrations

Solution obtained by a fourth-order EF method Computation of μ_j with M = 8:

$$P = 1 : y^{(8)}(t_j) - 2 y^{(6)}(t_j) \mu_j^2 + y^{(4)}(t_j) \mu_j^4 = 0$$

Real and imag. part of $\mu_{1,j}$ and $\mu_{2,j}$

Real and imaginary part of μ_j with smallest norm

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

3

Numerical Illustrations 0000000

Solution obtained by a fourth-order EF method Computation of μ_i with M = 8:

$$P = 1: y^{(8)}(t_j) - 2 y^{(6)}(t_j) \mu_j^2 + y^{(4)}(t_j) \mu_j^4 = 0$$

error obtained with $\mu_{1,j}$, $\mu_{2,j}$ and μ with smallest norm ・ロト・日本・日本・日本・日本

Numerical Illustrations 0000000

Global error

- M = 6: (K, P) = (5, -1) : second-order method (K, P) = (1, 1) : fourth-order method

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

Global error

$$M = 8: \quad \frac{(K, P) = (7, -1)}{(K, P) = (3, 1)}$$

: fourth-order method : sixth-order method

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

Global error

$$M = 10: \quad \frac{(K, P) = (9, -1)}{(K, P) = (5, 1)}$$

- : sixth-order method
- : eighth-order method

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Numerical Illustrations

Conclusions

Condition number of the coefficient matrix

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Fourth-order boundary value problems

Numerical Illustrations

Condition number of the coefficient matrix The (classical) discretisation of $y_p^{(4)}$ gives rise to the coefficient matrix

◆ロ▶ ◆母▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Fourth-order boundary value problems

Numerical Illustrations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Condition number of the coefficient matrix The (classical) discretisation of $y_{\rho}^{(4)}$ gives rise to the coefficient matrix

Fourth-order boundary value problems

Numerical Illustrations

Condition number of the coefficient matrix The (classical) discretisation of $y_{\rho}^{(4)}$ gives rise to the coefficient matrix

900

ъ

Fourth-order boundary value problems

Numerical Illustrations

Condition number of the coefficient matrix The (classical) discretisation of $y_{\rho}^{(4)}$ gives rise to the coefficient matrix

Fourth-order boundary value problems

Numerical Illustrations

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Conclusions

E 990

Factorisation of the coefficient matrix

Fourth-order boundary value problems

Numerical Illustrations

< ロ > < 同 > < 回 > < 回 >

3

Conclusions

Factorisation of the coefficient matrix

Fourth-order boundary value problems

Numerical Illustrations

Factorisation of the coefficient matrix

| ◆ □ ▶ | ◆ □ ▶ | ◆ □ ▶ | ○ 三 ● ○ への

Fourth-order boundary value problems

Numerical Illustrations

Factorisation of the coefficient matrix

▲□▶▲□▶▲目▶▲目▶ 目 のへで

Fourth-order boundary value problems

Numerical Illustrations

Factorisation of the coefficient matrix

Fourth-order boundary value problems

y(

Numerical Illustrations

Conclusions

Problem 2

$$y^{(4)} - t = 4 e^{t}$$

-1) = -1/e $y(1) = e^{t}$

$$y''(-1) = 1/e$$
 $y''(1) = 3e$

Solution : $y(t) = e^t t$

In theory, this problem is solved up to machine accuracy by any EF-rule with $P \ge 1$ and $\mu_j = 1$.

・ロト・日本・日本・日本・日本・日本

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Problem 2

$$y^{(4)} - t = 4 e^t$$

$$y(-1) = -1/e$$
 $y(1) = e$
 $y''(-1) = 1/e$ $y''(1) = 3e$

Solution : $y(t) = e^t t$

In theory, this problem is solved up to machine accuracy by any EF-rule with $P \ge 1$ and $\mu_i = 1$.

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

M = 6

$$\mathbf{P} = \mathbf{1} : \mathbf{y}^{(6)}(t_j) - \mathbf{2} \, \mathbf{y}^{(4)}(t_j) \, \mu_j^2 + \mathbf{y}^{(2)}(t_j) \, \mu_j^4 = \mathbf{0}$$

differentiating the differential equation :

$$(y^{(2)}(t_j) + 4e^{t_j}) - 2(y_j + 4e^{t_j})\mu_j^2 + y^{(2)}(t_j)\mu_j^4 = 0$$

Fourth-order boundary value problems

Numerical Illustrations

Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

M = 6

$$P = 1 : y^{(6)}(t_j) - 2 y^{(4)}(t_j) \mu_j^2 + y^{(2)}(t_j) \mu_j^4 = 0$$

differentiating the differential equation :

$$(y^{(2)}(t_j) + 4 e^{t_j}) - 2 (y_j + 4 e^{t_j}) \mu_j^2 + y^{(2)}(t_j) \mu_j^4 = 0$$

Fourth-order boundary value problems

Numerical Illustrations

▲□▶▲□▶▲□▶▲□▶ □ のQ@

M = 6

$$P = 1 : y^{(6)}(t_j) - 2 y^{(4)}(t_j) \mu_j^2 + y^{(2)}(t_j) \mu_j^4 = 0$$

differentiating the differential equation :

$$(y^{(2)}(t_j) + 4 e^{t_j}) - 2(y_j + 4 e^{t_j})\mu_j^2 + y^{(2)}(t_j) \mu_j^4 = 0$$

Fourth-order boundary value problems

Numerical Illustrations

(日) (日) (日) (日) (日) (日) (日)

M = 6

$$P = 1 : y^{(6)}(t_j) - 2 y^{(4)}(t_j) \mu_j^2 + y^{(2)}(t_j) \mu_j^4 = 0$$

differentiating the differential equation :

$$(y^{(2)}(t_j) + 4 e^{t_j}) - 2 (y_j + 4 e^{t_j}) \mu_j^2 + y^{(2)}(t_j) \mu_j^4 = 0$$

Fourth-order boundary value problems

Numerical Illustrations

M = 6

$$P = \mathbf{1} : \mathbf{y}^{(6)}(t_j) - 2 \, \mathbf{y}^{(4)}(t_j) \, \mu_j^2 + \mathbf{y}^{(2)}(t_j) \, \mu_j^4 = \mathbf{0}$$

differentiating the differential equation :

$$(y^{(2)}(t_j) + 4 e^{t_j}) - 2 (y_j + 4 e^{t_j}) \mu_j^2 + y^{(2)}(t_j) \mu_j^4 = 0$$

Numerical Illustrations

$$y^{(0)} \xrightarrow{\mu^{(1)}} y^{(1)} \xrightarrow{\mu^{(2)}} y^{(2)} \cdots$$

- $y^{(0)}$ is obtained from classical, second order method
- compute µ⁽¹⁾ from y⁽⁰⁾ with classical second order schemes to approximate the derivatives that appear in the lte
- $y^{(1)}$ is obtained from EF method with P = 1 and $\mu = \mu^{(1)}$
- compute $\mu^{(2)}$ from $y^{(1)}$ with EF schemes (P = 1) to approximate the derivatives that appear in the Ite
- $y^{(2)}$ is obtained from EF method with P = 1 and $\mu = \mu^{(2)}$...

Numerical Illustrations

 $v^{(0)} \xrightarrow{\mu^{(1)}} v^{(1)} \xrightarrow{\mu^{(2)}} y^{(2)} \dots$

- $y^{(0)}$ is obtained from classical, second order method
- compute µ⁽¹⁾ from y⁽⁰⁾ with classical second order schemes to approximate the derivatives that appear in the lte
- $y^{(1)}$ is obtained from EF method with P = 1 and $\mu = \mu^{(1)}$
- compute $\mu^{(2)}$ from $y^{(1)}$ with EF schemes (P = 1) to approximate the derivatives that appear in the Ite
- $y^{(2)}$ is obtained from EF method with P = 1 and $\mu = \mu^{(2)}$

Numerical Illustrations

$$y^{(0)} \xrightarrow{\mu^{(1)}} y^{(1)} \xrightarrow{\mu^{(2)}} y^{(2)} \cdots$$

- y⁽⁰⁾ is obtained from classical, second order method
- compute µ⁽¹⁾ from y⁽⁰⁾ with classical second order schemes to approximate the derivatives that appear in the lte
- $y^{(1)}$ is obtained from EF method with P = 1 and $\mu = \mu^{(1)}$
- compute $\mu^{(2)}$ from $y^{(1)}$ with EF schemes (P = 1) to approximate the derivatives that appear in the Ite
- $y^{(2)}$ is obtained from EF method with P = 1 and $\mu = \mu^{(2)}$...

Numerical Illustrations

$$y^{(0)} \stackrel{\mu^{(1)}}{\rightarrow} y^{(1)} \stackrel{\mu^{(2)}}{\rightarrow} y^{(2)} \dots$$

- $y^{(0)}$ is obtained from classical, second order method
- compute µ⁽¹⁾ from y⁽⁰⁾ with classical second order schemes to approximate the derivatives that appear in the lte
- $y^{(1)}$ is obtained from EF method with P = 1 and $\mu = \mu^{(1)}$
- compute $\mu^{(2)}$ from $y^{(1)}$ with EF schemes (P = 1) to approximate the derivatives that appear in the Ite
- $y^{(2)}$ is obtained from EF method with P = 1 and $\mu = \mu^{(2)}$

Numerical Illustrations

$$y^{(0)} \xrightarrow{\mu^{(1)}} y^{(1)} \xrightarrow{\mu^{(2)}} y^{(2)} \dots$$

- $y^{(0)}$ is obtained from classical, second order method
- compute µ⁽¹⁾ from y⁽⁰⁾ with classical second order schemes to approximate the derivatives that appear in the lte
- $y^{(1)}$ is obtained from EF method with P = 1 and $\mu = \mu^{(1)}$
- compute $\mu^{(2)}$ from $y^{(1)}$ with EF schemes (P = 1) to approximate the derivatives that appear in the Ite
- $y^{(2)}$ is obtained from EF method with P= 1 and $\mu=\mu^{(2)}$

Numerical Illustrations

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$y^{(0)} \xrightarrow{\mu^{(1)}} y^{(1)} \xrightarrow{\mu^{(2)}} y^{(2)} \dots$$

- $y^{(0)}$ is obtained from classical, second order method
- compute µ⁽¹⁾ from y⁽⁰⁾ with classical second order schemes to approximate the derivatives that appear in the lte
- $y^{(1)}$ is obtained from EF method with P = 1 and $\mu = \mu^{(1)}$
- compute μ⁽²⁾ from y⁽¹⁾ with EF schemes (P = 1) to approximate the derivatives that appear in the Ite
- $y^{(2)}$ is obtained from EF method with P = 1 and $\mu = \mu^{(2)}$...

. . .

Numerical Illustrations

$$y^{(0)} \stackrel{\mu^{(1)}}{\rightarrow} y^{(1)} \stackrel{\mu^{(2)}}{\rightarrow} y^{(2)} \dots$$

- $y^{(0)}$ is obtained from classical, second order method
- compute μ⁽¹⁾ from y⁽⁰⁾ with classical second order schemes to approximate the derivatives that appear in the Ite
- $y^{(1)}$ is obtained from EF method with P = 1 and $\mu = \mu^{(1)}$
- compute μ⁽²⁾ from y⁽¹⁾ with EF schemes (P = 1) to approximate the derivatives that appear in the Ite
- $y^{(2)}$ is obtained from EF method with P = 1 and $\mu = \mu^{(2)}$

Fourth-order boundary value problems

Numerical Illustrations

How to improve the accuracy ?

case M = 6, h = 1/4

Fourth-order boundary value problems

Numerical Illustrations

How to improve the accuracy ?

case M = 6, h = 1/8

Fourth-order boundary value problems

Numerical Illustrations

How to improve the accuracy ?

case M = 6, h = 1/16

Fourth-order boundary value problems

Numerical Illustrations

How to improve the accuracy?

case M = 6

Fourth-order boundary value problems

Numerical Illustrations

How to improve the accuracy?

case M = 8

Fourth-order boundary value problems

Numerical Illustration

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Conclusions

- Fourth-order boundary value problems are solved by means of parameterized exponentially-fitted methods.
- A suitable value for the parameter can be found from the roots of the leading term of the local truncation error.
- If a constant value is found, then a very accurate solution can be obtained.
- However, the methods strongly suffer from the fact that the system to be solved is ill-conditioned for small values of the mesh size.

Fourth-order boundary value problems

Numerical Illustration

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Conclusions

- Fourth-order boundary value problems are solved by means of parameterized exponentially-fitted methods.
- A suitable value for the parameter can be found from the roots of the leading term of the local truncation error.
- If a constant value is found, then a very accurate solution can be obtained.
- However, the methods strongly suffer from the fact that the system to be solved is ill-conditioned for small values of the mesh size.
Introduction 0 0000 Fourth-order boundary value problems

Numerical Illustration

Conclusions

(日)

Conclusions

- Fourth-order boundary value problems are solved by means of parameterized exponentially-fitted methods.
- A suitable value for the parameter can be found from the roots of the leading term of the local truncation error.
- If a constant value is found, then a very accurate solution can be obtained.
- However, the methods strongly suffer from the fact that the system to be solved is ill-conditioned for small values of the mesh size.

Introduction 0 0000 Fourth-order boundary value problems

Numerical Illustration

Conclusions

(日)

Conclusions

- Fourth-order boundary value problems are solved by means of parameterized exponentially-fitted methods.
- A suitable value for the parameter can be found from the roots of the leading term of the local truncation error.
- If a constant value is found, then a very accurate solution can be obtained.
- However, the methods strongly suffer from the fact that the system to be solved is ill-conditioned for small values of the mesh size.

Introduction 0 0000 Fourth-order boundary value problems

Numerical Illustration

Conclusions

(日)

Conclusions

- Fourth-order boundary value problems are solved by means of parameterized exponentially-fitted methods.
- A suitable value for the parameter can be found from the roots of the leading term of the local truncation error.
- If a constant value is found, then a very accurate solution can be obtained.
- However, the methods strongly suffer from the fact that the system to be solved is ill-conditioned for small values of the mesh size.