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Exponential fitting

PART ONE



Exponential fitting

Exponential fitting

Since about 1990, the research group of Guido Vanden Berghe
at Ghent University did a lot of work on EF methods.

interpolation
guadrature (Newton-Cotes, Gauss)
differentiation

integration (linear multistep methods,
Runge-Kutta(-Nystrom) methods for IVP and BVP,
eigenvalue problems, ...)

integral equations (Fredholm, Volterra)

Aim

: build methods which perform very good when the solution

has a known exponential of trigonometric behaviour.
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A model problem

Consider the initial value problem
y'+w?y =g(y) y@=va Y@=V
If lg(y)| < |w?y| then
y(X) = a cos(wXx + ¢)

To mimic this oscillatory behaviour, we construct methods
which yield exact results when the solution is of trigonometric
(in the complex case : exponential) type.

These methods are called Exponentially-fitted methods.
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Exponentially fitted methods

e researchers involved at Ghent University:
Guido Vanden Berghe, Hans De Meyer, Jan Vanthournout,
Marnix Van Daele, Philippe Bocher, Hans Vande Vyver,
Veerle Ledoux and Davy Hollevoet

e collaboration with Liviu Ixaru (Bucarest)

e work on EF by Vigo-Aguiar, Calvo, Paternoster, Simos,
...and co-workers.
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implicit Runge-Kutta methods

n with EF

Different ways to develop EF methods

e starting from interpolation function

n—2
pi,(x) = acoswx +b sinwx + Y cix
i=0
with
J p(x) = pa(x ZC'

e starting from linear functional and imposing that for the set
of functions {coswx, sinwx, 1, x, x?, ..., x""2} the
method produces exact results.

w which is either real (trigonometric case) or purely imaginary
(exponential case), is determined from the expression for the
local error.
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Deferred Correction Mono-implicit Runge-Kutta methods
OO0 DO

Example : Numerov method

y"=fly) vy@=ya yb)=w
classical Numerov method :
1
yn+1 - 2yn + Yn—l - E h2 (f (yn+1) + 10f(Yn) + f(yn_l))

b—-a

=12, ...,N h=
n )y e ’ N+1

Construction :
impose L[z(x);h] = 0for z(x) € S = {1, x, x?, x3, x*} where
Llz(x);h] :=z(X +h)+apz(x)+a_1z(x —h)
—h?Z (b1 2"(x +h) +boz”(x) + b_1 2"(x — h))

1
L[z(x);h] = —ﬁohez(a)(x)qLO(hg) — order 4
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EF Numerov method

Construction : impose L[z(x); h] = 0 for z(x) € S with
S =1{1, x, x2, sin(wx), cos(wx)}

or S={1,x, x% exp(ux), exp(—ux)} pi=iw
Llz(x);h] :=z(x +h)+apz(x)+a_;z(x —h)
—h2 (by 2”(x + h) + bo 2" (x) + b_1 2"(x — h))
f(

Yni1 — 2Yn +Yno1 = h? (M(Yn_1) + (L = 2X) f(yn) + Af(Yni1))

1 1 1 1 1
AN = —— = =4 9= pr 0:=wh
asin?f 62 12 220" Teoag” T w

1 1 1 1,

_4sinh2%+ﬁ_ﬁ_mlj 6048

vi4+... v:i=ph
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Exponential Fitting
¥ L. Ixaru and G. Vanden Berghe
Exponential fitting
Kluwer Academic Publishers, Dordrecht, 2004
[ cos(|z|*?) ifz <0
§2)= { cosh(z¥/?) ifz >0
sin(|z|42)/|z|M? itz <0 Z = (ph)? = —(wh)?
n(Z)=4q 1 ifz=0
sinh(z1/2)/z1/2 ifz >0
Extensionto Z € C :
sin(ivz) .
£(z) =cos(ivZ) and 77(2){ vz 1270
1 ifZz=0
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correction with EF

rvm

EF Numerov method
Construction : impose L[z(x); h] = 0 for z(x) € S with
S = {1, x, x?, sin(wx), cos(wx)}
or S ={1,x, x% exp(ux), exp(—ux)} pi=iw
Llz(x);h] :=z(X +h)+apz(x)+a_1z(x —h)
—h? (by 2”(x + h) + boz"(x) + b_1 2"(x — h))
Yni1 —2Yn +Yn-1 = h? (Af(yn-1) + (1 = 2A) F(yn) + Af(Ynt1))

A = — = — 70 794 — h
4 sin 9 92 12 T 240 + 6048 =+ 0= w
= l 1 = 1 1 5 1 4 ._
~ 4sinh?y T2 12 240" Teoag” T D

1 1 11 1
T B LI T
z( n2(§)> 12 240° " 6048° vi=-0
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A as a function of Z

o 0.084F |

-1.833 ‘ ‘
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Choice of w

¢ local optimization
based on local truncation error (lte)
w is step-dependent

e global optimization

Deferred correction with EF
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Preservation of geometric properties (periodicity, energy,

)

w IS constant over the interval of integration
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EF Numerov method

S = {1, x, x2, sin(wx), cos(wx)}

Ynt1 — 2¥n +Yn-1 = h? (Af(Yn-1) + (1 = 2X) f(yn) + Af(Yns1))

Llz(x);h] = — =" (2(6)(x)+w22(4)(x)>+(9(h8) — order 4

A value for the parameter w can be obtained from the
expression for the Ite :

y© () +w2 v Y (%) = 0.
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Exponentially-fitted Runge-Kutta methods

For methods of collocation type (Gauss, LobattolllA, ...) linear
functionals can be introduced

Lily(x);h] =y(x +cih) —y(x) —h Zauy +¢jh
i=1,...,s

Lly(x);hl =y(x +h) —y(x) —=h > biy'(x +cih).
i=1

A fitting space S is introduced such thatVu € S

Lilu(x);h] =0 i=1,...,s
{ Llu(x);h] =0
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Exponentially-fitted trapezoidal rule

S = {1, exp(wx), exp(—wx)}

0 0 0
1 s(w/2) s(w/2)
c(w/2)wh  c(w/2)wh
‘ s(w/2) s(w/2)
c(w/2)wh c(w/2)wh
c(t) := cosh(t h) s(t) := sinh(t h)

Ite ——h?’((S) — w2y o(h*
EFTR = — 75 Yy (X)) —w Yy (X)) +O(h")
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EF as a correction technique

In the past, EF has been successfully applied as a correction
technique, see e.qg.

e G. VANDEN BERGHE, H. DE MEYER, ON A CORRECTION
OF NUMEROV-LIKE EIGENVALUE APPROXIMATIONS FOR
STURM-LIOUVILLE PROBLEMS, JCAM 37 (1991)
179-186.

e G. VANDEN BERGHE, H. DE MEYER, A MODIFIED
NUMEROV INTEGRATION METHOD FOR SECOND ORDER
PERIODIC INITIAL-VALUE PROBLEMS, INTERN. J. COMPUT.
MATH. 37 (1990) 233-242.

e G. VANDEN BERGHE, M. VAN DAELE,
EXPONENTIALLY-FITTED NUMEROV METHODS, JCAM 200
(2007) 140-153.
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EF as a correction technique ...

Sturm-Liouville problem in normal form :

—y"+a(x)y =Ay,y(0) =y(r) =0

Numerov’s method is used to discretize the differential
equation, leading to the algebraic eigenvalue problem

Av+BQv=XBv

of size N, whereby (N+1)h =7

The eigenvalues \1 < Xy < A3 < --- of the differential
equation are approximated by the eigenvalues

N < Ny < A3 < --- < Ay Of the algebraic eigenvalue
problem

1A = Akl = O(k®h*)
with EF, the error can be reduced seriously ...
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... EF as a correction technique

suppose you need a better approximation for \g

first the approximation yy of the eigenvector vy is computed
this approximation is used to annihilate the
error-expression of the EF Numerov method

y Ot +w2yP(t)=0,n=1,...,N

the w? values thus obtained are then used to apply the EF
Numerov method

this leads to a new EF algebraic eigenvalue problem

Aer V + Ber Q VEr = Xer Ber VEF

the eigenvalues A\; < Ay < A3 < --- of the differential
eqguation are approximated by the eigenvalues

/\EF,l < /\EF,2 < AEF,3 <0 < /\EF,N of the algebraic
eigenvalue problem

IAgr ik — Al = O(k? h*)
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Deferred correction
Following idea’s of
Consider the nonlinear two-point boundary value problem

gizf(X,y(x)L g(y(a),y(b))=0, a<x<b

e discretise the ODE by Runge-Kutta method ¢, of order p
e this leads to a system of nonlinear algebraic conditions
¢p(n) =0

e In Lindbergs approach, the basic deferred correction
algorithm is then to use a second Runge-Kutta formula
¢p4r Of order p +r as follows

®p (M) = —Ppr (n)-

—o¢p+r(n) provides an estimate of the local truncation error
of the lower order formula ¢p.
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Ilterated deferred correction

e This idea can be extended to allow for more deferred
correction iterations.

¢ In the widely used code TWPBVP. f (Cash, Mazzia), the
algorithm is

¢a(n) = 0
oa() = —d6(n)
da(n) = —¢s(n) — d8(7)

where the Runge-Kutta formulae ¢4, ¢ and ¢g are MIRK
formulae of order 4, 6 and 8, respectively.
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Ilterated deferred correction

e Lindberghs (iterated) approach offers important
computational advantages:

e the solutions 7, 7, ... are computed on the same grid, and
this generally leads to a large saving in the cost of the linear
algebra

e The local error estimates 77 — n, 7 — 77 are immediately
available at no extra cost

o |f the error is less than a user supplied tolerance, then the
most accurate solution is accepted. If the error criterion is
not satisfied, then the mesh is refined and the deferred
correction scheme is applied on the new mesh.
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The overall order of a DC-scheme

The criteria under which the numerical solution of a deferred
correction scheme reaches a certain order, were established by
Skeel for the problem

¢(n) =0 1)
¢(17) = ¥ (n)- )
¢ : basic discretization scheme ¢ (n) : estimate of the residual

We assume that the solutions n and 7; are computed on a grid
mra=X; <Xp<...<Xnyy1=Dh.

Ay : restriction of continuous solution y(x) to the finite grid =
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The overall order of a DC-scheme
SKEEL, R. D.,A THEORETICAL FRAMEWORK FOR PROVING
ACCURACY RESULTS FOR DEFERRED CORRECTIONS, SINUM
19 (1982) 171-196

Let ¢ be a stable numerical method and assume that the
following conditions hold for the deferred correction scheme (1),

2):
(i) [ln— Ay| =0O(hP)
(i) lo(Ay) — ¢(Ay)|| = O(h™*P)
(i) ¥(Aw) =0(h")
for arbitrary functions w having at least r continuous derivatives
and ||.|| is a suitable finite norm. If ¢(77) = ¢ (n) then

17— Ay|| = O(h™*P).
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The overall order of a DC-scheme

The real difficulty in satisfying the conditions of Skeel's theorem
comes from condition (iii).
e For general implicit Runge-Kutta formulae it can be shown
that r = 1, and so the deferred correction scheme only
gives an increase of one order of accuracy.

e To obtain r = 2 it was necessary to rewrite the
Runge-Kutta formula defining ¢ in a symmetrized way, and
this is possible by the introduction of parameterized IRK
(PIRK) methods
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Mono-implicit Runge-Kutta methods

PART THREE
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Parameterized Runge-Kutta methods
Any Runge-Kutta method

S
Va1 = Yk +h o bif(x+cih,Yi)
i—1

S
Yi = y+h) af(xc+ghY), i=1..s
j=1

can be written in a parameterized form
S
Ykt = Y +h)_bif(x+cih,Y))
i=1

S
Yi = (L=Vi)yk+Vivkr +h D xf(xc+ghY)), i=1..s
=1
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Parameterized Runge-Kutta methods

Any Runge-Kutta method

c| A
bT
can be written in a parameterized form
clv|X
bT
whereby
A=X+vb'
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Example 1: the trapezoidal rule

h
Yir1 =Yk + 5 (F(Xk, Yk ) + F(Xk+1, Y1)

e written as a Runge-Kutta method (= 2-stage Lobatto IIIA)

Vi1 = Yk + 5 (F(Xc, Y1) + f (X1, Y2))
Y1 =Yk
Yo =y + 5 (F(%, Y1) + f (%11, Y2))

e written as a PIRK method

Yir1 =Yk + 5 (F(4, Y1) +f(xii1.Y2))  0]0]0 0
Vi, 1|10 0
11
> 2

Y2 = Yk41
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Example 2: the 3-stage Lobatto IlIA method

0|0 O O
105 1 -1
2124 3 24
SEN
1 2 1
6 3 6
0/j0|0 O O
1lpl5 1 =1

) 2 24 3 24

e PIRKversion1: 1 |4 0 0 O
..;4;
6 6 6

Vier = Vi + 3 (FO Vi) + 41 (4 + 5, Y2) + F (X1, Yier))
Yo =Yk + 25 (5F (%, Vi) + 8F (% + 5, Y2) — F(Xkt1, Vi+1))
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Example 2: the 3-stage Lobatto IlIIA method

0|0 O
175 1 -1
2|24 3 24
1 2 1
1/ 35 &
‘ 102 1
6 3 6
0|j0j0O O O
1/1({0 O O
e PIRKversion2: 1|11 _1 g

212 |8 8
‘ 1 4
6 6

K

MIRK: mono-implicit R

Ve = Vi + 0 (FOu Vi) + 4F (e + 0, Y2) + F(Xksa, Vira))
Y2 = ¥k + 3Yicrs + g (04, Vi) = F (a1, Vi 1)
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Parameterized Runge-Kutta methods

e For a given Rung-Kutta method, there thus exist infinitely
many PIRK versions.

e As standalone method, all parameterized versions of a
given Runge-Kutta method give (in exact arithmetic) the
same result

e But in a deferred correction setting, all PIRK versions are
quite different.
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Example :y' =y y(0) =1 y(x) = exp(x)
o ¢: trapezoidal rule: —y; +Yo + 3 (Yo +y1) =0

\Slj=

1+
1—

1
—yi= 2 =exp(h) + -h°+ O(h?)

\Slj=

e ). PIRK version 1 of Lobatto IlIA
- - h _
“YitYo+ 5 (Yo + V1) = —esty

h
esti = —y1+Yo+ ¢ (Yo+4Y2+Yy1)

h
YZZYO+ﬂ(5yO+8Y2_yl)

_ 1
— y1 = exp(h) — %h"’ + O(h%)
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Example :y' =y y(0) =1 y(x) = exp(x)
o ¢: trapezoidal rule: —y; +Yo + 3 (Yo +y1) =0

[N ]j=g

1+
1-—

_ 1.3 4
= exp(h) + 12h + O(h")

[N ]j=g

e 9. PIRK version 2 of Lobatto I1I1A

_ _ h _ _
“Yi+Yo+ 5 (Yo +V1) = —est,

h
est, = —y1 + Yo + 5 (Yo+4Y2+Yy1)
Yo = (Yo+Y1)/2

_ 1
— y; = exp(h) — Hoh5 + O(h®)
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Mono-implicit Runge-Kutta methods

Restricting X to lower triangular matrices only reveals the class
of mono-implicit Runge-Kutta (MIRK) methods.

A MIRK method is only implicit in the next knot point, which
makes such a method very suitable for solving boundary value
problems and using deferred correction, while maintaining a
good stability:

- if ¢p is an s-stage MIRK method, then the dimension of the
system to be solved in each step of the deferred correction
process is equal to the number of gridpoints in the
integration interval, whereas for a general PIRK method
the dimension will be s times larger

- if ¢ is a MIRK method, then the error estimator can be
computed explicitly, i.e. at a very low cost.



Exponential fitting Deferred Correction

Mono-implicit Runge-Kutta methods Deferred correction with EF
0000000000 000 00000000 9000000000000 0
[e]e] [e]e]e} o] [e]e]e}
[e]e]e} 0000000
000

Deferred correction with EF

PART FOUR

joint work with Davy Hollevoet
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Exponentially-fitted mono-implicit trapezoidal rule

S = {1, exp(wx), exp(—wx)}

0|0 0 0
1|1 0 0
s(w/2) s(w/2)
‘ ‘ c(w/2)wh c(w/2)wh
c(t) := cosh(th) s(t) := sinh(t h)
3

h
lteertr = — 15 (Y 04) — «?¥'(%)) + O(h)
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Exponentially-fitted mono-implicit Lobatto IlIA method

S = {1,x, exp(ux), exp(—ux)}

0|0 0 0 0

11 0 0 0

1)1 s(u/2) s(p/2) 0

2 | 2| 2ph(1l+c(p/2)) —2ph(l+c(u/2))

‘ ‘ ph—2s(p/2) ph—2s(u/2) 2s(p/2)—c(p/2) ph
2ph(1-c(n/2))  2ph(1-c(p/2)) nh(1-c(p/2))
c(t) := cosh(th) s(t) := sinh(t h)
h5
lteerLob ~5880 <y(5)(xk) — 12 y®(x)

-5ty (Y9 00) = 12y @(x)) ) + O(h®)
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Analysis of the error

As it is the spirit of EF methods, we want to increase the
accuracy of the overall method by the introduction of EF
methods

This requires a detailed analysis of the expression for the error
of a DC scheme.

Analysis in terms of P-series (details can be found in Ph.D.
thesis of Davy Hollevoet)
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Residual of a RK method

o ¢l

1 0

p 0
p+1 Bl
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Example: trapezoidal rule

o(t) t PL(t)
1 g 0
7 1.1 0,0

1 1 1 1 1
s vvwll 211 1.1

3
& (), ¥(xie) = —2 0 [F(V) + 2BV + (V)

+P({) + P&)] (i y(xg)) + O(h4>

e 4
= ﬁh Y (xk)+(’)(/z).
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Residual of an EF RK method

Pplwll(t)

)
Ix  4wpx ... +w;ll><

1 ofwf) o 0 .. ¢,

o) plwll(h)

p O(‘*’rlr) 0 ‘Ptl,l
p+1 o(1) 4’},0

P, v(v) = B (pleot?, 3, ()
he® 1
= ). —a()plwl (HFE)(x y(x))
t

S )

The residual must be O(h”*l), which implies that ¢[w,,]1(t) must be O (h*’*l’f’(’)
for all trees of order < p+1. The functions under consideration actually depend
on wy, := hw, which leads us to the bounds in Table 4.3.
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Example: The EF trapezoidal rule

1
Plwl
A0 ! 1x FwpX  +wEX
1
1 . 0 0 E
2 I,I 0/0 0’0
1 1 1 1 1
R A

We find? that the leading residual term is provided by

11

1) _ 2L 1
b3(¢[“’] )’“ 1) =33

[F(V)+2F(V) +F(V)+F(£)+F(E)] .

If at every knot point x; an appropriate value for w can be found such that

b (pleot®) (xisx0)) = 0, (4.24)

then those values can be used to increase the accuracy of the exponentially
fitted trapezoid rule to order 3 for the problem at hand. This is due to the fact
that the right-hand side of (4.24) is the coefficient of /i in a seriels expansion
of the residual, perhaps more recognisable in terms of total derivatives:

1 1
ba (@lwl") (3 () = =339 ) + @ v/ (0.
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Residual of a DC scheme

o) Pt —yV
1 0 0

b0 0
p+1  ¢f P}
g ¢ P}
g+1 ¢ #¢}

Deferred correction with EF
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The overall error of TR - Radaul
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The overall error of TR - Radaul

by (pleor® + gl 1T) = % [—wzF(I)
+ <F(I) = %F(I)) w+ %P(\VHF(\V)

+ V) + %F(W)+F(K/)+F({f) +F({/)+F(§/’)}
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The overall error of TR - LobattalllA

Leading residual term
bs (¢[w11 + tp[y]"[“’]) = 771*2 [F(V) +E(V) + %F(})} w?
+ 7;70 BF(V) + 11?('\/) + 1F('\f) = P(f) = F(E)] u?
7;0 [ FCONY + F(NV ) + F(W)

+F(V)+1F(W)+ EF(I\V)+3F(%/')+...]
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Analysis of the error

Three approaches
e scheme-level approach
e method-level approach
e a priori knowledge
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1. The scheme-level approach

Goal : annihilate (or minimize) the leading term of the error of
the entire DC scheme.

e one first applies a classical method (such as trapezoidal
rule)
e with this numerical solution locally appropriate values for
the parameters w and p are determined.
e problems with 2 components at most : annihilate the
leading error term
e problems with more than 2 components : minimize the
leading error term
e Once these values have been obtained, the entire EFDC
scheme is applied, giving rise to a method of order
e p+r + 1 for problems with 2 components at most
e p +r for problems with more than 2 components
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1. The scheme-level approach

This algorithm has following properties:

- extra work involved to obtain an initial solution (with a
classical method) to estimate values for the parameters wy
and .

- computation of the error expression is rather expensive
(the higher the order, the higher the number of elementary
differentials involved)

- The values for wy and py that are obtained in this way,
depend upon the specific methods used and they do not
necessarily reflect the nature of the problem.

- The raise of order is only possible iffr < p. Forr = p, it
can be shown that there is an uncontrollable error
accumulation (such that the order remains p +r).
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1. The scheme-level approach

ey'=y y0)=1 y(1)=0 =03

evi et
y(X) = ——— (test set of J. Cash, Problem 1)
l-—eve

This problem can be solved exactly by any EF method if the
parameter is chosen as 1/+/e ~ 1.8, but in the scheme-level
approach (w, pk) =~ (1, —0.71)

o |——T2
——DC
——EFT2
——EFDC
- 0(?)
- o)
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2. The method-level approach
Goal : annihilate (or minimize) the leading term of the error of
the base method and of the error estimator seperately

e one first applies a classical method (such as trapezoidal
rule)

e with this numerical solution locally appropriate values for
the parameter w (of the base method) are determined and
the EF base method is applied

¢ with this numerical solution locally appropriate values for
the parameter p (of the error estimator) are determined

e the second step of the DC scheme is applied with the EF
base method and the EF error estimator

This gives rise to a method of order

e p+r + 1 for scalar problems
e p + r for non-scalar problems
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2. The method level approach

This algorithm has following properties:

- still some extra work involved to obtain estimate values for
the parameters wy and py.

- the values for wy and py that are obtained in this way, do
reflect the nature of the problem.

- The raise of order is also possible if r = p.
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2. Method level approach

A Bernoulli-problem

2y + xy*

—2
(4x — 4+ 5e—X)%

y(x) =

10!
10°°
- T2
10 ——DC
5 ——EFT2
w 10— ——EFDC
R ---O(k®)
9 ~ .3
10 |- o)
10711
101 5




Exponential fitting Deferred Correction

2. Method level approach

ey'=y y0)=1 y(1)=0 =03

evi et
y(X) = ——— (test set of J. Cash, Problem 1)
l-—eve

This problem can be solved exactly by any EF method if the
parameter is chosen as 1/+/e ~ 1.8. In the method-level
approach (wy, ux) =~ (1.8,1.8)

10°

104
X

—T2

10°¢ —-DC
——EFT2
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2. The method level approach

y” = —y —y® 4 0.002 cos(1.01x)  (Duffing problem)

y(0) = 0.200426728067 y(2) = —0.08668702310
Approximate solution:
y(x) = 0.200179477536 cos(1.01x) + 0.000246946143 cos(3.03x)

+ 0.000000304014 cos(5.05x) + 0.000000000374 cos(7.07x)
+...

EF methods can produce very accurate results for this problem
if the parameter is approximately equal to 1.01
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2. The method level approach

y” = —y —y®+0.002 cos(1.01x) (Duffing problem)
y(0) = 0.200426728067 y(2) = —0.08668702310

EF methods can produce very accurate results for this problem
if the parameter is approximately equal to 1.01.

The computed values for wx and puy vary in the integration
interval from 1.5to 1

——T2
——DC
——EFT2

——EFDC

\\\\ N \x;:“\z -~ 0(r?)
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2. The method level approach

ey'+y' =(L+ey  y(-1)=1+e2 y(1)=1+e 20+

~ (H9(1+x)

y(x)=e*"14e
€:1,0.29240177382129, 0.085498797333835 and 0.025.

107! 1072
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3. A priori knowledge

Suppose we already have a good estimate for the EF
parameter w.

¢ One then immediately applies an EF method (such as EF
trapezoidal rule) with that estimate

o with this numerical solution locally appropriate values for
the parameter p (of the error estimator) are determined

e the second step of the DC scheme is applied with the
original EF base method and the EF error estimator
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it Runge-Kutta methods

3. A priori knowledge

y'=— <1oo + 4)1(2> y  y(1)=3(10), y(2)=v23,(20)

y(x) = v/xJo(10x) (Bessel problem)

DC : classical DC scheme
Algorithm 1 : a priori fixed w-values : wy = 10i
Algorithm 2 : the method-level approach
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The end

Thank you for your attention
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