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Exponential fitting

PART ONE
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Exponential fitting

Since about 1990, the research group of Guido Vanden Berghe
at Ghent University did a lot of work on EF methods.

• interpolation

• quadrature (Newton-Cotes, Gauss)

• differentiation

• integration (linear multistep methods,
Runge-Kutta(-Nystrom) methods for IVP and BVP,
eigenvalue problems, ...)

• integral equations (Fredholm, Volterra)

• . . .

Aim : build methods which perform very good when the solution
has a known exponential of trigonometric behaviour.
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A model problem

Consider the initial value problem

y ′′ + ω2 y = g(y) y(a) = ya y(a) = y ′

a .

If |g(y)| ≪ |ω2 y | then

y(x) ≈ α cos(ω x + φ)

To mimic this oscillatory behaviour, we construct methods
which yield exact results when the solution is of trigonometric
(in the complex case : exponential) type.
These methods are called Exponentially-fitted methods.
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Exponentially fitted methods

• researchers involved at Ghent University:
Guido Vanden Berghe, Hans De Meyer, Jan Vanthournout,
Marnix Van Daele, Philippe Bocher, Hans Vande Vyver,
Veerle Ledoux and Davy Hollevoet

• collaboration with Liviu Ixaru (Bucarest)

• work on EF by Vigo-Aguiar, Calvo, Paternoster, Simos,
. . . and co-workers.
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Different ways to develop EF methods

• starting from interpolation function

p(ω)
n−2(x) = a cosω x + b sinω x +

n−2
∑

i=0

ci x i

with

lim
ω→0

p(ω)
n−2(x) = pn(x) =

n
∑

i=0

ci x i

• starting from linear functional and imposing that for the set
of functions

{

cosω x , sinω x , 1, x , x2, . . . , xn−2
}

the
method produces exact results.

ω which is either real (trigonometric case) or purely imaginary
(exponential case), is determined from the expression for the
local error.
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Example : Numerov method

y ′′ = f (y) y(a) = ya y(b) = yb

classical Numerov method :

yn+1 − 2 yn + yn−1 =
1

12
h2 (f (yn+1) + 10 f (yn) + f (yn−1))

n = 1, 2, . . . , N h =
b − a
N + 1

Construction :
impose L[z(x); h] = 0 for z(x) ∈ S = {1, x , x2, x3, x4} where

L[z(x); h] := z(x + h) + a0 z(x) + a−1 z(x − h)

−h2 (b1 z ′′(x + h) + b0 z ′′(x) + b−1 z ′′(x − h)
)

L[z(x); h] = − 1
240

h6 z(6)(x) +O(h8) =⇒ order 4
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EF Numerov method

Construction : impose L[z(x); h] = 0 for z(x) ∈ S with

S = {1, x , x2, sin(ω x), cos(ω x)}

or S = {1, x , x2, exp(µ x), exp(−µ x)} µ := iω

L[z(x); h] := z(x + h) + a0 z(x) + a−1 z(x − h)

−h2 (b1 z ′′(x + h) + b0 z ′′(x) + b−1 z ′′(x − h)
)

yn+1 − 2 yn + yn−1 = h2 (λf (yn−1) + (1 − 2λ) f (yn) + λ f (yn+1))

λ =
1

4 sin2 θ
2

− 1
θ2 =

1
12

+
1

240
θ2 +

1
6048

θ4 + . . . θ := ω h

= − 1

4 sinh2 ν
2

+
1
ν2 =

1
12

− 1
240

ν2 +
1

6048
ν4 + . . . ν := µ h
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Exponential Fitting
L. Ixaru and G. Vanden Berghe
Exponential fitting
Kluwer Academic Publishers, Dordrecht, 2004

ξ(Z ) =

{

cos(|Z |1/2) if Z < 0
cosh(Z 1/2) if Z ≥ 0

η(Z ) =







sin(|Z |1/2)/|Z |1/2 if Z < 0
1 if Z = 0
sinh(Z 1/2)/Z 1/2 if Z > 0

Z := (µ h)2 = −(ω h)2

Extension to Z ∈ C :

ξ(Z ) = cos(i
√

Z ) and η(Z ) =







sin(i
√

Z )

i
√

Z
if Z 6= 0

1 if Z = 0
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EF Numerov method
Construction : impose L[z(x); h] = 0 for z(x) ∈ S with

S = {1, x , x2, sin(ω x), cos(ω x)}

or S = {1, x , x2, exp(µ x), exp(−µ x)} µ := iω
L[z(x); h] := z(x + h) + a0 z(x) + a−1 z(x − h)

−h2 (b1 z ′′(x + h) + b0 z ′′(x) + b−1 z ′′(x − h)
)

yn+1 − 2 yn + yn−1 = h2 (λf (yn−1) + (1 − 2λ) f (yn) + λ f (yn+1))

λ =
1

4 sin2 θ
2

− 1
θ2 =

1
12

+
1

240
θ2 +

1
6048

θ4 + . . . θ := ω h

= − 1

4 sinh2 ν
2

+
1
ν2 =

1
12

− 1
240

ν2 +
1

6048
ν4 + . . . ν := µ h

=
1
Z

(

1 − 1

η2(Z
4 )

)

=
1
12

− 1
240

Z +
1

6048
Z 2 + . . . Z := ν2 = −θ2
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λ as a function of Z
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Choice of ω

• local optimization
based on local truncation error (lte)
ω is step-dependent

• global optimization
Preservation of geometric properties (periodicity, energy,
. . . )
ω is constant over the interval of integration
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EF Numerov method

S = {1, x , x2, sin(ω x), cos(ω x)}

yn+1 − 2 yn + yn−1 = h2 (λf (yn−1) + (1 − 2λ) f (yn) + λ f (yn+1))

L[z(x); h] = − 1
240

h6
(

z(6)(x)+ω2 z(4)(x)
)

+O(h8) =⇒ order 4

A value for the parameter ω can be obtained from the
expression for the lte :

y (6)(xn)+ω
2
n y (4)

n (xn) = 0 .
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Exponentially-fitted Runge-Kutta methods

For methods of collocation type (Gauss, LobattoIIIA, . . . ) linear
functionals can be introduced































Li [y(x); h] = y(x + ci h)− y(x)− h
s
∑

j=1

aij y ′(x + cj h)

i = 1, . . . , s

L[y(x); h] = y(x + h)− y(x)− h
s
∑

i=1

bi y ′(x + ci h) .

A fitting space S is introduced such that ∀u ∈ S
{

Li [u(x); h] = 0 i = 1, . . . , s

L[u(x); h] = 0
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Exponentially-fitted trapezoidal rule

S = {1, exp(ωx), exp(−ωx)}

0 0 0
1 s(ω/2)

c(ω/2)ω h
s(ω/2)

c(ω/2)ω h
s(ω/2)

c(ω/2)ω h
s(ω/2)

c(ω/2)ω h

c(t) := cosh(t h) s(t) := sinh(t h)

lteEFTR = −h3

12

(

y (3)(xk )− ω2 y ′(xk )
)

+O(h4)
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EF as a correction technique

In the past, EF has been successfully applied as a correction
technique, see e.g.

• G. VANDEN BERGHE, H. DE MEYER, ON A CORRECTION

OF NUMEROV-LIKE EIGENVALUE APPROXIMATIONS FOR

STURM-LIOUVILLE PROBLEMS, JCAM 37 (1991)
179-186.

• G. VANDEN BERGHE, H. DE MEYER, A MODIFIED

NUMEROV INTEGRATION METHOD FOR SECOND ORDER

PERIODIC INITIAL-VALUE PROBLEMS, INTERN. J. COMPUT.
MATH. 37 (1990) 233-242.

• G. VANDEN BERGHE, M. VAN DAELE,
EXPONENTIALLY-FITTED NUMEROV METHODS, JCAM 200
(2007) 140-153.
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EF as a correction technique . . .

• Sturm-Liouville problem in normal form :
−y ′′ + q(x) y = λ y , y(0) = y(π) = 0

• Numerov’s method is used to discretize the differential
equation, leading to the algebraic eigenvalue problem

A v + B Q v = ΣB v

of size N, whereby (N + 1) h = π

• The eigenvalues λ1 < λ2 < λ3 < · · · of the differential
equation are approximated by the eigenvalues
Λ1 < Λ2 < Λ3 < · · · < ΛN of the algebraic eigenvalue
problem

• ‖Λk − λk‖ = O(k6 h4)

• with EF, the error can be reduced seriously . . .
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. . . EF as a correction technique
• suppose you need a better approximation for λk

• first the approximation yk of the eigenvector vk is computed
• this approximation is used to annihilate the

error-expression of the EF Numerov method
y (6)

k (tn)+ω2
n y (4)

k (tn) = 0, n = 1, . . . ,N
• the ω2

n values thus obtained are then used to apply the EF
Numerov method

• this leads to a new EF algebraic eigenvalue problem

AEF v + BEF Q vEF = ΣEF BEF vEF

• the eigenvalues λ1 < λ2 < λ3 < · · · of the differential
equation are approximated by the eigenvalues
ΛEF ,1 < ΛEF ,2 < ΛEF ,3 < · · · < ΛEF ,N of the algebraic
eigenvalue problem

• ‖ΛEF ,k − λk‖ = O(k3 h4)



Exponential fitting Deferred Correction Mono-implicit Runge-Kutta methods Deferred correction with EF

Deferred Correction

PART TWO
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Deferred correction
Following idea’s of FOX (1947), LINDBERG (1980)
Consider the nonlinear two-point boundary value problem

dy
dx

= f (x , y(x)), g(y(a), y(b)) = 0, a ≤ x ≤ b

• discretise the ODE by Runge-Kutta method φp of order p
• this leads to a system of nonlinear algebraic conditions

φp(η) = 0

• In Lindbergs approach, the basic deferred correction
algorithm is then to use a second Runge-Kutta formula
φp+r of order p + r as follows

φp(η) = −φp+r (η).

−φp+r (η) provides an estimate of the local truncation error
of the lower order formula φp.
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Iterated deferred correction

• This idea can be extended to allow for more deferred
correction iterations.

• In the widely used code TWPBVP.f (Cash, Mazzia), the
algorithm is

φ4(η) = 0

φ4(η̄) = −φ6(η)

φ4(¯̄η) = −φ6(η)− φ8(η̄)

where the Runge-Kutta formulae φ4, φ6 and φ8 are MIRK
formulae of order 4, 6 and 8, respectively.
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Iterated deferred correction

• Lindberghs (iterated) approach offers important
computational advantages:

• the solutions η, η, . . . are computed on the same grid, and
this generally leads to a large saving in the cost of the linear
algebra

• The local error estimates η − η, η − η are immediately
available at no extra cost

• If the error is less than a user supplied tolerance, then the
most accurate solution is accepted. If the error criterion is
not satisfied, then the mesh is refined and the deferred
correction scheme is applied on the new mesh.



Exponential fitting Deferred Correction Mono-implicit Runge-Kutta methods Deferred correction with EF

The overall order of a DC-scheme

The criteria under which the numerical solution of a deferred
correction scheme reaches a certain order, were established by
Skeel for the problem

φ(η) = 0 (1)

φ(η̄) = ψ(η). (2)

φ : basic discretization scheme ψ(η) : estimate of the residual

We assume that the solutions η and η̄ are computed on a grid

π : a = x1 < x2 < . . . < xN+1 = b.

∆y : restriction of continuous solution y(x) to the finite grid π
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The overall order of a DC-scheme
SKEEL, R. D.,A THEORETICAL FRAMEWORK FOR PROVING

ACCURACY RESULTS FOR DEFERRED CORRECTIONS, SINUM
19 (1982) 171-196

Let φ be a stable numerical method and assume that the
following conditions hold for the deferred correction scheme (1),
(2) :

(i) ‖η −∆y‖ = O(hp)

(ii) ‖ψ(∆y)− φ(∆y)‖ = O(hr+p)

(iii) ψ(∆w) = O(hr )

for arbitrary functions w having at least r continuous derivatives
and ‖.‖ is a suitable finite norm. If φ(η̄) = ψ(η) then

‖η̄ −∆y‖ = O(hr+p) .
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The overall order of a DC-scheme

The real difficulty in satisfying the conditions of Skeel’s theorem
comes from condition (iii).

• For general implicit Runge-Kutta formulae it can be shown
that r = 1, and so the deferred correction scheme only
gives an increase of one order of accuracy.

• To obtain r = 2 it was necessary to rewrite the
Runge-Kutta formula defining ψ in a symmetrized way, and
this is possible by the introduction of parameterized IRK
(PIRK) methods
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Mono-implicit Runge-Kutta methods

PART THREE
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Parameterized Runge-Kutta methods
Any Runge-Kutta method

yk+1 = yk + h
s
∑

i=1

bi f (xk + cih,Yi)

Yi = yk + h
s
∑

j=1

aij f (xk + cjh,Yj), i = 1 . . . s

can be written in a parameterized form

yk+1 = yk + h
s
∑

i=1

bi f (xk + cih,Yi)

Yi = (1 − vi)yk + viyk+1 + h
s
∑

j=1

xij f (xk + cjh,Yj), i = 1 . . . s
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Parameterized Runge-Kutta methods

Any Runge-Kutta method

c A

bT

can be written in a parameterized form

c v X

bT

whereby
A = X + v bT
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Example 1: the trapezoidal rule

yk+1 = yk +
h
2
(f (xk , yk ) + f (xk+1, yk+1))

• written as a Runge-Kutta method (= 2-stage Lobatto IIIA)

yk+1 = yk + h
2 (f (xk ,Y1) + f (xk+1,Y2))

Y1 = yk

Y2 = yk + h
2 (f (xk ,Y1) + f (xk+1,Y2))

0 0 0
1 1

2
1
2

1
2

1
2

• written as a PIRK method

yk+1 = yk + h
2 (f (xk ,Y1) + f (xk+1,Y2))

Y1 = yk

Y2 = yk+1

0 0 0 0
1 1 0 0

1
2

1
2
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Example 2: the 3-stage Lobatto IIIA method

0 0 0 0
1
2

5
24

1
3

−1
24

1 1
6

2
3

1
6

1
6

2
3

1
6

• PIRK version 1:

0 0 0 0 0
1
2 0 5

24
1
3

−1
24

1 1 0 0 0

1
6

4
6

1
6

yk+1 = yk + h
6

(

f (xk , yk ) + 4 f (xk + h
2 ,Y2) + f (xk+1, yk+1)

)

Y2 = yk + h
24

(

5 f (xk , yk ) + 8 f (xk + h
2 ,Y2)− f (xk+1, yk+1)

)
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Example 2: the 3-stage Lobatto IIIA method

0 0 0 0
1
2

5
24

1
3

−1
24

1 1
6

2
3

1
6

1
6

2
3

1
6

• PIRK version 2:

0 0 0 0 0
1 1 0 0 0
1
2

1
2

1
8 −1

8 0

1
6

1
6

4
6

MIRK: mono-implicit RK

yk+1 = yk + h
6

(

f (xk , yk ) + 4 f (xk + h
2 ,Y2) + f (xk+1, yk+1)

)

Y2 = 1
2yk + 1

2yk+1 +
h
8 ( f (xk , yk )− f (xk+1, yk+1))
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Parameterized Runge-Kutta methods

• For a given Rung-Kutta method, there thus exist infinitely
many PIRK versions.

• As standalone method, all parameterized versions of a
given Runge-Kutta method give (in exact arithmetic) the
same result

• But in a deferred correction setting, all PIRK versions are
quite different.
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Example : y ′ = y y(0) = 1 y(x) = exp(x)
• φ: trapezoidal rule: −y1 + y0 +

h
2 (y0 + y1) = 0

=⇒ y1 =
1 + h

2

1 − h
2

= exp(h) +
1

12
h3 +O(h4)

• ψ: PIRK version 1 of Lobatto IIIA

−ȳ1 + ȳ0 +
h
2
(ȳ0 + ȳ1) = −est1

est1 = −y1 + y0 +
h
6
(y0 + 4 Y2 + y1)

Y2 = y0 +
h
24

(5 y0 + 8 Y2 − y1)

=⇒ ȳ1 = exp(h)− 1
36

h4 +O(h5)
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Example : y ′ = y y(0) = 1 y(x) = exp(x)

• φ: trapezoidal rule: −y1 + y0 +
h
2 (y0 + y1) = 0

=⇒ y1 =
1 + h

2

1 − h
2

= exp(h) +
1

12
h3 +O(h4)

• ψ: PIRK version 2 of Lobatto IIIA

−ȳ1 + ȳ0 +
h
2
(ȳ0 + ȳ1) = −est2

est2 = −y1 + y0 +
h
6
(y0 + 4 Y2 + y1)

Y2 = (y0 + y1)/2

=⇒ ȳ1 = exp(h)− 1
120

h5 +O(h6)
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Mono-implicit Runge-Kutta methods

Restricting X to lower triangular matrices only reveals the class
of mono-implicit Runge-Kutta (MIRK) methods.
A MIRK method is only implicit in the next knot point, which
makes such a method very suitable for solving boundary value
problems and using deferred correction, while maintaining a
good stability:

- if φp is an s-stage MIRK method, then the dimension of the
system to be solved in each step of the deferred correction
process is equal to the number of gridpoints in the
integration interval, whereas for a general PIRK method
the dimension will be s times larger

- if ψ is a MIRK method, then the error estimator can be
computed explicitly, i.e. at a very low cost.
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Deferred correction with EF

PART FOUR

joint work with Davy Hollevoet
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Exponentially-fitted mono-implicit trapezoidal rule

S = {1, exp(ωx), exp(−ωx)}

0 0 0 0
1 1 0 0

s(ω/2)
c(ω/2)ω h

s(ω/2)
c(ω/2)ω h

c(t) := cosh(t h) s(t) := sinh(t h)

lteEFTR = −h3

12

(

y (3)(xk )− ω2 y ′(xk )
)

+O(h4)
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Exponentially-fitted mono-implicit Lobatto IIIA method

S = {1, x , exp(µx), exp(−µx)}

0 0 0 0 0
1 1 0 0 0
1
2

1
2

s(µ/2)
2µ h(1+c(µ/2))

s(µ/2)
−2µ h(1+c(µ/2)) 0

µ h−2 s(µ/2)
2µ h(1−c(µ/2))

µ h−2 s(µ/2)
2µ h(1−c(µ/2))

2 s(µ/2)−c(µ/2)µ h
µ h(1−c(µ/2))

c(t) := cosh(t h) s(t) := sinh(t h)

lteEFLob = − h5

2880

(

y (5)(xk )− µ2 y (3)(xk )

−5 fy
(

y (4)(xk )− µ2y (2)(xk )
))

+O(h6)
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Analysis of the error

As it is the spirit of EF methods, we want to increase the
accuracy of the overall method by the introduction of EF
methods

This requires a detailed analysis of the expression for the error
of a DC scheme.

Analysis in terms of P-series (details can be found in Ph.D.
thesis of Davy Hollevoet)
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Residual of a RK method
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Example: trapezoidal rule
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Residual of an EF RK method
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Example: The EF trapezoidal rule
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Residual of a DC scheme
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Residual of an EF DC scheme
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The overall error of TR - RadauI
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The overall error of TR - RadauI
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The overall error of TR - LobattaIIIA
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Analysis of the error

Three approaches

• scheme-level approach

• method-level approach

• a priori knowledge
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1. The scheme-level approach
Goal : annihilate (or minimize) the leading term of the error of
the entire DC scheme.

• one first applies a classical method (such as trapezoidal
rule)

• with this numerical solution locally appropriate values for
the parameters ω and µ are determined.

• problems with 2 components at most : annihilate the
leading error term

• problems with more than 2 components : minimize the
leading error term

• Once these values have been obtained, the entire EFDC
scheme is applied, giving rise to a method of order

• p + r + 1 for problems with 2 components at most
• p + r for problems with more than 2 components
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1. The scheme-level approach

This algorithm has following properties:

- extra work involved to obtain an initial solution (with a
classical method) to estimate values for the parameters ωk

and µk .

- computation of the error expression is rather expensive
(the higher the order, the higher the number of elementary
differentials involved)

- The values for ωk and µk that are obtained in this way,
depend upon the specific methods used and they do not
necessarily reflect the nature of the problem.

- The raise of order is only possible iff r < p. For r = p, it
can be shown that there is an uncontrollable error
accumulation (such that the order remains p + r ).
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1. The scheme-level approach

ǫ y ′′ = y y(0) = 1 y(1) = 0 ǫ = 0.3

y(x) =
e

x
√

ǫ − e
2−x
√

ǫ

1 − e
2
√

ǫ

(test set of J. Cash, Problem 1)

This problem can be solved exactly by any EF method if the
parameter is chosen as 1/

√
ǫ ≈ 1.8, but in the scheme-level

approach (ωk , µk ) ≈ (1,−0.7 i)
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2. The method-level approach
Goal : annihilate (or minimize) the leading term of the error of
the base method and of the error estimator seperately

• one first applies a classical method (such as trapezoidal
rule)

• with this numerical solution locally appropriate values for
the parameter ω (of the base method) are determined and
the EF base method is applied

• with this numerical solution locally appropriate values for
the parameter µ (of the error estimator) are determined

• the second step of the DC scheme is applied with the EF
base method and the EF error estimator

This gives rise to a method of order
• p + r + 1 for scalar problems
• p + r for non-scalar problems
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2. The method level approach

This algorithm has following properties:

- still some extra work involved to obtain estimate values for
the parameters ωk and µk .

- the values for ωk and µk that are obtained in this way, do
reflect the nature of the problem.

- The raise of order is also possible if r = p.
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2. Method level approach
A Bernoulli-problem

y ′ =
2y + xy4

6
y(0) = −2

y(x) =
−2

(4x − 4 + 5e−x)
1
3

3
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2. Method level approach

ǫ y ′′ = y y(0) = 1 y(1) = 0 ǫ = 0.3

y(x) =
e

x
√

ǫ − e
2−x
√

ǫ

1 − e
2
√

ǫ

(test set of J. Cash, Problem 1)

This problem can be solved exactly by any EF method if the
parameter is chosen as 1/

√
ǫ ≈ 1.8. In the method-level

approach (ωk , µk ) ≈ (1.8, 1.8)
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2. The method level approach

y ′′ = −y − y3 + 0.002 cos(1.01x) (Duffing problem)

y(0) = 0.200426728067 y(2) = −0.08668702310

Approximate solution:

y(x) = 0.200179477536 cos(1.01x) + 0.000246946143 cos(3.03x)

+ 0.000000304014 cos(5.05x) + 0.000000000374 cos(7.07x)

+ . . .

EF methods can produce very accurate results for this problem
if the parameter is approximately equal to 1.01
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2. The method level approach

y ′′ = −y − y3 + 0.002 cos(1.01x) (Duffing problem)

y(0) = 0.200426728067 y(2) = −0.08668702310

EF methods can produce very accurate results for this problem
if the parameter is approximately equal to 1.01.

The computed values for ωk and µk vary in the integration
interval from 1.5 to 1
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2. The method level approach

ǫ y ′′+y ′ = (1+ ǫ) y y(−1) = 1+e−2, y(1) = 1+e−2(1+ǫ)ǫ

y(x) = ex−1 + e−
(1+ǫ)(1+x)

ǫ

ǫ : 1, 0.29240177382129, 0.085498797333835 and 0.025.
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3. A priori knowledge

Suppose we already have a good estimate for the EF
parameter ω.

• One then immediately applies an EF method (such as EF
trapezoidal rule) with that estimate

• with this numerical solution locally appropriate values for
the parameter µ (of the error estimator) are determined

• the second step of the DC scheme is applied with the
original EF base method and the EF error estimator
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3. A priori knowledge

y ′′ = −
(

100 +
1

4x2

)

y y(1) = J0(10), y(2) =
√

2J0(20)

y(x) =
√

xJ0(10x) (Bessel problem)




−


−


−


−


−


−


−




h

E

DC

Algo 1

Algo 2

O(h)

DC : classical DC scheme
Algorithm 1 : a priori fixed ω-values : ωk = 10 i

Algorithm 2 : the method-level approach
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The end

Thank you for your attention
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