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A reference . . .

This talk is based on

V. Ledoux, M. Van Daele
Solving the time-dependent Schrödinger problem

using the CP approach
Computer Physics Communications 185 (2014) 1589-1594.
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Sturm-Liouville problems

MATSLISE is a Matlab package for solving
Sturm-Liouville and Schrodinger equations

It has been developed by Veerle Ledoux under the supervision
of Guido Vanden Berghe and VD in a close collaboration with

Liviu Ixaru (Bucharest).

V. Ledoux, VD Matslise 2.0, a Matlab toolbox for Sturm-Liouville
computations, Transactions on Mathematical Software, 22 4

(2016) article 29.
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Sturm-Liouville problems

Find an eigenvalue E and corresponding eigenfunction y(x)
6≡ 0 such that

− (p(x)y ′(x))′ + q(x)y(x) = Ew(x)y(x)

with boundary conditions

a1y(a) + a2p(a)y ′(a) = 0, b1y(b) + b2p(b)y ′(b) = 0,

where |a1|+ |a2| 6= 0 6= |b1|+ |b2|.

Schrödinger equation : special case whereby p = w = 1

y ′′ + q(x) y = E y
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Regular Sturm-Liouville problems
The eigenvalues of a regular SLP can be ordered as an

increasing sequence tending to infinity

E0 < E1 < E2 < . . .

Ek has index k .
The corresponding yk (x) has ex-
actly k zeros on the open interval
(a,b).

Distinct eigenfunctions are orthog-
onal with respect to w(x)∫ b

a
yi(x)yj(x)w(x)dx = 0, i 6= j .
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How to solve Sturm-Liouville problems
Problem: as the index k increases, the corresponding yk

become increasingly oscillatory.
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Standard numerical methods for ODEs encounter difficulties in
efficiently estimating the higher eigenvalues.

Naive integrators will be forced to take increasingly smaller
steps, thereby rendering them exceedingly expensive.
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Example : the Paine problem

−y ′′ + exp(x) y = E y y(0) = y(π) = 0

The errors (×103) obtained with the Numerov algorithm, the Numerov
method with correction technique and the EF-Numerov scheme.

k Ek 103 (Ek − Ẽk ) 103 (Ek − ẼCT ,k ) 103 (Ek − EEF ,k )
0 4.8966694 0.0028 0.0027 0.0014
2 16.019267 0.2272 0.1114 0.0424
4 32.263707 2.8802 0.3879 0.1959
6 56.181594 19.687 0.8159 0.4535
8 88.132119 87.276 1.4108 0.8115

10 128.10502 290.92 2.1961 1.2859
12 176.08900 797.57 3.2082 1.9073
14 232.07881 1898.8 4.5015 2.6947
16 296.07196 4063.9 6.1589 3.7168
18 368.06713 8000.6 8.3076 5.0273
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How to solve Sturm-Liouville problems

Taking into account the characteristic features of the SL
problem, one can construct specialized numerical algorithms
having some crucial advantages over general-purpose codes.

Some early (seventies to nineties) codes on SL problems :
• SLEIGN (Bailey et al.)
• SLEDGE (Fulton-Pruess)
• SL02F (Marletta-Pryce)
• SLCPM12 (Ixaru-Vanden Berghe-De Meyer)

MATSLISE originates from SLCPM12 .

In the next slides we focus on the special techniques used in
MATSLISE .
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Basic ideas: 1. Shooting
Shooting methods transform the boundary value problem into

an initial value problem.

One solves the differential equation for a succession of trial
values of E which are adjusted till the boundary conditions at
both ends can be satisfied at once, at which point we have an

eigenvalue.

The simplest technique is to shoot
from a to b, but multiple shooting is
preferred.

The eigenvalues are the solutions of a mismatch function φ(E):

φ(E) = yL(xm,E)p(xm)y ′R(xm,E)− yR(xm,E)p(xm)y ′L(xm,E).
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Basic ideas: 2. Prüfer transformation
Suppose we have found an eigenvalue : φ(E) = 0.

What is its index?

Solution: use the (scaled) Prüfer transformation.
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Basic Ideas: 3. Coefficient Approximation

Idea behind second order Pruess method:

Let a = x0 < x1 < x2 < · · · < xn = b be a partition of [a,b].

Replace

−(p(x)y ′(x))′+q(x)y(x) = Ew(x)y(x)

in the interval (xi−1, xi), i = 1, . . . ,n by

−(p̄y ′(x))′ + q̄y(x) = Ew̄y(x).

where p̄, q̄, w̄ are constant.
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Basic Ideas: 4. Perturbation theory

Higher order methods are obtained by expressing the solution
as a series and by adding correction terms to the second order
method.

All terms in this series can be computed analytically if the
coefficient functions are polynomials.

Therefor, we first approximate the coefficient functions by
polynomials of degree N
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CPM[N,Q] : Convergence results

for problems that are reformulated in Schrödinger form . . .

Let N be the degree of the polynomial approximating q(x) and
let Q be the number of correction terms. The corresponding
CPM method is denoted is CPM[N,Q].

L.Gr. Ixaru, H. De Meyer and G. Vanden Berghe, CP methods
for the Schrödinger equation, revisited, J. Comput. Appl. Math.
88 (1997) 289–314.

The error in the eigenvalue Ek , obtained with CPM[N,Q],
• is of order O(h2N+2) for small E if Q ≥ b2

3Nc+ 1

• is of order O(h2N)/
√

E for large E if Q ≥ δN0
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Time-dependent Schrödinger equation

ı
∂ψ(x , t)
∂t

= Ĥ(x , t)ψ(x , t), x ∈ R, t > 0

with the one-dimensional time-dependent Hamiltonian

Ĥ(x , t) = − 1
2µ

∂2

∂x2 + V (x , t),

initial data ψ(x ,0) = ψ0(x)

µ is the reduced mass

units are chosen such that ~ = 1
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Standard techniques

Standard techniques lead to the linear system

ı
d
dt

Z (t) = H(t)Z (t)

Z = (Z1, . . . ,ZN)T

H: N × N hermitian matrix
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Standard technique 1

Discretisation of the spatial variable x

Define ψ(xj , t) = Zj(t), j = 1, . . . , N

ı
d
dt

Zj(t) = − 1
2µ

Zj+1(t)− 2 Zj(t) + Zj−1(t)
∆x2 + V (xj , t)
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Standard technique 2

Spectral decomposition of ψ(x , t):

ψ(x , t) =
N∑

m=1

Zm(t) ym(x)

whereby {ym(x)|m ∈ N} is an orthonormal basis
(of eigenfunctions of some time-independent Hamiltonian)

E.C. Titchmarsh
Eigenfunction expansions associated with second order

differential equations
Oxford University Press, Oxford, 1962.
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Our approach: sector-dependent expansion

We use an idea by L.Gr. Ixaru:

L.Gr. Ixaru, New Numerical method for the eigenvalue problem
of the 2D Schrödinger equation

Computer Physics Communications 181 (2010) 1738-1742.

x ∈ [xmin, xmax]

t ∈ [0,T ]

Inspired by Ixaru, [0,T ] is divided into sectors.
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Our approach: sector-dependent expansion

Sector k : t ∈ [tk−1, tk ]

In sector k we approximate V (x , t) by V̄ [k ](x), such that

Ĥ(x , t) = − 1
2µ

∂2

∂x2 + V (x , t)

is approximated by

Ĥ [k ](x) = − 1
2µ

d2

dx2 + V̄ [k ](x)
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Sectorwise approximation of V (x , t)

In [tk−1, tk ] we approximate V (x , t) by

V̄ [k ](x) = V (x , (tk−1 + tk )/2)

x
t

 
 

 
 

 
 

 

x
t

V (x , t) and V̄ (x , t)
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Propagation of the solution over one sector

Assume ψ(x , tk−1) is known

In [tk−1, tk ] we approximate the solution ψ(x , t) of the TDSE by

ψ[k ](x , t) =
N∑

m=1

c[k ]
m (t)y [k ]

m (x)
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Step 1 : choice of {y [k ]
m (x)|m ∈ N}

Let {y [k ]
m (x)|m ∈ N} be

the set of orthogonal eigenfunctions of Ĥ [k ](x).

This requires the solution of the TISE

Ĥ [k ](x)y [k ]
m (x) = E [k ]

m y [k ]
m (x)
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Step 2: Computation of c[k ]
m (t)

Substitute ψ[k ](x , t) =
∞∑

m=1

c[k ]
m (t)y [k ]

m (x)

in the TDSE ı
∂ψ(x , t)
∂t

= Ĥ(x , t)ψ(x , t) .

ı
d
dt

c[k ]
n (t) =

∞∑
m=1

[
∆V [k ]

nm(t) + E [k ]
m δnm

]
c[k ]

m (t), n = 1,2,3, . . .

∆V [k ]
nm(t) =

∫ xmax

xmin

y [k ]
n (x)

[
V (x , t)− V̄ [k ](x)

]
y [k ]

m (x)dx
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Step 2: Computation of c[k ]
m (t)

Initial values are obtained imposing continuity at tk−1:

ψ[k−1](x , tk−1) = ψ[k ](x , tk−1)

∞∑
m=1

c[k−1]
m (tk−1)y [k−1]

m (x) =
∞∑

m=1

c[k ]
m (tk−1)y [k ]

m (x).

Multiply by y [k ]
n (x), integrate over x ,

and use orthonormality in the r.h.s. to obtain

c[k ]
n (tk−1) =

∞∑
m=1

s[k ]
nmc[k−1]

m (tk−1) s[k ]
nm =

xmax∫
xmin

y [k ]
n (x)y [k−1]

m (x)dx
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Conclusion: to solve the TDSE in [tk−1, tk ]

1. solve the TISE Ĥ [k ](x)y [k ](x) = E [k ]y [k ](x)

2. compute integrals

s[k ]
nm =

xmax∫
xmin

y [k ]
n (x)y [k−1]

m (x)dx

∆V [k ]
nm(t) =

∫ xmax

xmin

y [k ]
n (x)

[
V (x , t)− V̄ [k ](x)

]
y [k ]

m (x)dx

3. solve a linear system C[k ]′(t) = A[k ](t)C[k ](t)

initial conditions : C[k ](tk−1) = S[k ]C[k−1](tk−1)

A[k ]
nm(t) = −ı

[
∆V [k ]

nm(t) + E [k ]
n δnm

]
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1. Solution TISE

In order to have
• a computationially efficient approximation technique for the

solution of the TISE,
• and to obtain a uniform high accuracy approximation to the

eigenvalues and eigenfunctions
we use Constant Perbutation methods as in MATSLISE).

Here we use CP methods with a predefined uniform mesh (in
order to minimize the number of CP eigenfunction evaluations).
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2. Computation of the integrals

Instead of using standard quadrature rules for integrands with a
highly oscillatory or exponential character

we use so-called exponentially-fitted quadrature rules
especially adapted to this particular problem:

the CP approach does not only provide us with the values of
the wavefunctions at the meshpoints but also those of their first

derivative.

Ixaru L. Gr. Ixaru, and G. Vanden Berghe,
Exponential Fitting, Kluwer, 2004.
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Computation of s[k ]
nm =

xmax∫
xmin

y [k ]
n (x)y [k−1]

m (x)dx

Suppose one approximates

y ′′(x) = 2µ(V (x)− E) y(x)

by

ȳ ′′(x) = 2µ(V̄ − E)ȳ(x) .

Since

ȳ(x) = f1 exp(2µ
√

V̄ − Ex) + f2 exp(−2µ
√

V̄ − Ex)

one may expect

y(x) = f1(x) exp(2µ
√

V̄ − Ex) + f2(x) exp(−2µ
√

V̄ − Ex) .
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Computation of s[k ]
nm =

xmax∫
xmin

y [k ]
n (x)y [k−1]

m (x)dx

If

y [k ]
n (x) = f1(x) exp(ω

[k ]
n x) + f2(x) exp(−ω[k ]

n x)

y [k−1]
m (x) = g1(x) exp(ω

[k−1]
m x) + g2(x) exp(−ω[k−1]

m x)

then

y [k ]
n (x)y [k−1]

m (x) = h1(x) exp(µ1x) + h2(x) exp(−µ1x)

+h3(x) exp(µ2x) + h4(x) exp(−µ2x)

µ1 = ω
[k ]
n + ω

[k−1]
m and µ2 = ω

[k ]
n − ω

[k−1]
m
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Computation of s[k ]
nm =

xmax∫
xmin

y [k ]
n (x)y [k−1]

m (x)dx

We choose to use a 4-point Lobatto-EF algorithm of the form∫ X+h

X−h
I(x)dx ≈ h

4∑
n=1

a(0)
n I(X + xnh) + h2

4∑
n=1

a(1)
n I′(X + xnh)

which is exact for the functions

exp(±µ1x),exp(±µ2x), x exp(±µ1x), x exp(±µ2x) .
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Computation of

∆V [k ]
nm(t) =

∫ xmax

xmin

y [k ]
n (x)

[
V (x , t)− V̄ [k ](x)

]
y [k ]

m (x)dx

If V (x , t) is explicitly known and the first derivative w.r.t. x of
V (x , t)− V̄ [k ](x) can be evaluated,
then the same rule can be applied.

If this is not the case, then we use a Lobatto-type rule∫ X+h

X−h
I(x)dx ≈ h

4∑
n=1

a(0)
n I(X + xnh)

which is exact for the functions

exp(±µ1x),exp(±µ2x) .
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3. Solving linear system of ODEs

C[k ]′(t) = A[k ](t)C[k ](t) A[k ]
nm(t) = −ı

[
∆V [k ]

nm(t) + E [k ]
n δnm

]
initial conditions : C[k ](tk−1) = S[k ]C[k−1](tk−1)

Idea : use coefficient approximation

To obtain a second order method:

replace A[k ](t) in [tk−1, tk ] by Ā[k ] = A[k ]((tk−1 + tk )/2).

In that case Ā[k ] is diagonal such that

C[k ](t) = exp[(t − tk−1)Ā[k ]]C[k ](tk−1), t ∈ [tk−1, tk ].
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3. Solving linear system of ODEs
To obtain higher order methods, we use similar techniques as
in MATSLISE (perturbation theory and approximation of the

coefficient functions by polynomials)

C[k ](t) = DT D(t − tk−1)DT C[k ](tk−1)

with

T D(δ) = exp(δAD
0 ) + P1(δ) + P2(δ) + ...

This is equivalent to using modified Neumann integral series.

We have used a fourth order method with

T D(δ) = exp(δAD
0 ) + P1(δ)
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3. Solving linear system of ODEs

We use this fourth order scheme and applied it
• once over the full sector-length [tk , tk+1] or
• (if needed to ensure accuracy) on a subdivision of the

sector [tk , tk+1].
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3. Solving linear system of ODEs

Remark:

Only second order method is unitary, such that the norm is
preserved over time.

For the higher order methods, this is not the case. But: the
correction terms are small and loss of norm conservation is

consequently also likely to be small.
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Example 1

V (x , t) = x2/2− 2t

x ∈ [−10,10], t ∈ [0,T ] = [0,20]

µ = 1

ψ(x ,0) = (2nn!
√
π)−1/2 exp(−x2/2)Hn(x)

Hn:Hermite polynomial of degree n

ψ(x , t) = ψ(x ,0) exp(−ı(n + 1
2)t + ıt2)
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Example 1: t ∈ [0,5]

Re ψ(x , t) Im ψ(x , t)

−10
0

10

0

5
−1

0

1

x
t

−10
0

10

0

5
−1

0

1

xt

∆x = 0.5,∆t = 0.25,N = 12

n = 2
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Example 1: t ∈ [20,21]

Re ψ(x , t) Im ψ(x , t)

−10
0

10

20

20.5

21
−1

0

1

xt −10
0

10

20

20.5

21
−1

0

1

xt

∆x = 0.5,∆t = 0.25,N = 12

n = 2
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Error

errN =

xmax∫
xmin

ψ[K ](x ,T )ψ∗[K ](x ,T )dx−
xmax∫

xmin

ψexact (x ,T )ψ∗exact (x ,T )dx

errA = max
x∈meshx

|ψ(x ,T )− ψexact (x ,T )|
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Example 1

N = 10,K = 10,T = 20 N = 12,K = 5,T = 20
∆x 1 0.5 0.25 1 0.5 0.25
∆t 1 1 1 1 1 1

errN n = 2 7e-5 1e-10 8e-15 6e-5 6e-11 4e-14
n = 4 1e-3 3e-10 2e-14 7e-4 1e-10 1e-14
n = 6 1e-3 5e-10 2e-14 9e-4 2e-10 6e-14

errA n = 2 1e-4 5e-11 7e-14 5e-4 6e-11 5e-14
n = 4 5e-4 1e-10 6e-14 5e-4 2e-10 7e-14
n = 6 8e-4 1e-10 3e-14 6e-4 1e-10 5e-14

cputime (sec) 6 11 18 4 8 14
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Example 1

Crank-Nicholson T = 2 T = 5
∆x 0.02 0.01 0.02
∆t 0.02 0.01 0.02

errN n = 2 4e-4 1e-4 5e-3
n = 4 2e-3 5e-4 1e-3
n = 6 4e-3 9e-4 3e-3

errA n = 2 3e-4 8e-5 8e-3
n = 4 1 1 1
n = 6 8e-1 8e-1 6e-1

cputime (sec) 174 2450 410
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Example 2

V (x , t) = (4− 3 exp(−t)) x2/2

x ∈ [−10,10], t ∈ [0,T ] = [0,12]

µ = 1

ψ0(x) =

(
1
π

)1/4

exp(−1
2

(x −
√

2)2)
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Example 2

N = 10,K = 20 N = 15,K = 20
∆x 1 0.5 0.25 1 0.5 0.25 0.2
∆t 0.6 0.3 0.05 0.6 0.3 0.05 0.02
|errN | 2e-3 5e-5 3e-9 2e-3 5e-5 6e-9 6e-11
errA 3e-3 8e-5 1e-5 3e-3 8e-5 3e-7 3e-7
time 10 24 62 17 36 104 258

N = 20,K = 20
∆x 0.5 0.25 0.2
∆t 0.3 0.05 0.02
|errN | 6e-6 6e-9 6e-11
errA 8e-5 6e-8 2e-9
time 55 184 390
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Example 2

∆x = 0.2 and ∆t = 0.02

N K = 1 K = 10 K = 20
5 1e-2 3e-3 2e-3

10 3e-4 3e-5 9e-6
15 2e-5 3e-6 3e-7
20 7e-7 4e-8 2e-9
30 2e-9 3e-11 1e-12
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Example 3

diatomic molecule in strong laser field (Walker and Preston)

V (x , t) = D(1−e−αx )2+A cos(ωt)x

x ∈ [−1,4.32]
t ∈ [0,100τ ] τ = 2π/ω

ω = 0.01787

ψ(x ,0) = ψ0(x) = σ exp(−(ρ− 1/2)αx) exp(−ρe−αx )

µ = 1745 D = 0.2251 α = 1.1741 A = 0.011025 (a.u.)

ρ = 2D/ω0, ω0 = α
√

2D/µ and σ = 0.2411580885× 10−10
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Example 3

∆x =
xmax − xmin

64
N = 15 K = 20

∆t τ/10 τ/20 τ/50 τ/100 τ/200 τ/400
|errN | 3e-3 1e-4 1e-6 2e-9 5e-10 5e-10
errA 1e-2 7e-4 2e-5 1e-6 8e-8 5e-9
time 114 183 412 863 2041 5652
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Conclusions

We illustrated a new method to solve the TDSE.
CP technique can be used

• in the spatial discretization of a time-dependent
Schrödinger equation

• for efficient and accurate time stepping in the resulting
ODE system
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