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ABSTRACT

N-body simulations have unveiled several apparently universal properties of dark matter halos, including a cusped
density profile, a power-law pseudo-phase-space density ρ

/
σ 3

r , and a linear β–γ relation between the density
slope and the velocity anisotropy. We present a family of self-consistent phase-space distribution functions (DFs)
F(E, L), based on the Dehnen–McLaughlin Jeans models, that incorporate these universal properties very accurately.
These DFs, derived using a quadratic programming technique, are analytical, positive, and smooth over the entire
phase space and are able to generate four-parameter velocity anisotropy profiles β(r) with arbitrary asymptotic
values β0 and β∞. We discuss the orbital structure of six radially anisotropic systems in detail and argue that,
apart from its use for generating initial conditions for N-body studies, our dynamical modeling provides a valuable
complementary approach to understand the processes involved in the formation of dark matter halos.
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1. INTRODUCTION

In theoretical astrophysics the steady increase in computa-
tional power has sparked a proportional interest and progress
in the study of large-scale structure formation. In particular,
as N-body simulations of cold dark matter halos have become
more detailed, several “universal” properties have emerged. We
highlight three important characteristics.

First, numerous cosmological studies (e.g., Dubinski &
Carlberg 1991; Crone et al. 1994; Navarro et al. 1996, 1997;
Fukushige & Makino 1997; Carlberg et al. 1997; Moore et al.
1998, 1999; Jing & Suto 2000) revealed similar density profiles
over several orders of magnitude in halo mass, with a central
cusp and a ρ(r) ∝ r−3 falloff at large radii. These generalized
Navarro–Frenk–White (NFW) models can be described by a
general three-parameter family, referred to as the Zhao models
(or αβγ -models; Hernquist 1990; Zhao 1996). They are defined
by the density

ρ(r) = 2(γ∞−γ0)/η ρs

(r/rs)γ0 (1 + (r/rs)η)(γ∞−γ0)/η , (1)

or in terms of the logarithmic slope,

γ (r) = −d ln ρ

d ln r
(r) = γ0 + γ∞ (r/rs)η

1 + (r/rs)η
. (2)

Although in recent years alternative profiles based on the Sérsic
law have produced equally good results (Navarro et al. 2004;
Merritt et al. 2005), the generalized NFW models remain very
popular and successful to represent dark matter halos.

A second relation was found by Taylor & Navarro (2001).
These authors identified that the quantity Q(r) = ρ/σ 3(r),
which has become known as the pseudo-phase-space density,
behaves as a power law over 2–3 orders of magnitude in radius
inside the virial radius,

Q(r) ∝ r−α. (3)

Other studies (e.g., Rasia et al. 2004; Ascasibar et al. 2004)
have confirmed the scale-free nature of Q(r), and their results
indicate that its slope lies in the range α = 1.90 ± 0.05. This

property is remarkable since the density ρ(r) nor the velocity
dispersion σ (r) separately shows a power-law behavior.

Finally, the velocity anisotropy profiles β(r) of dark matter
systems also evolve toward a similar shape, steepening gradually
from isotropic in the center to radially anisotropic in the
outer regions. Hansen & Moore (2006) suggested a nearly
linear relation between the logarithmic density slope γ (r)
and the velocity anisotropy profile, based on various types of
equilibrated simulations. They proposed the β–γ relation

β(γ ) � 1 − 1.15(1 + γ /6). (4)

Several theoretical studies have been made to investigate
whether solutions of the Jeans equation exist that encompass
the observed properties of dark matter halos. In particular,
Dehnen & McLaughlin (2005) investigated the anisotropic Jeans
equation constrained by a slightly different form of the pseudo-
phase-space density, namely Qr (r) = ρ

/
σ 3

r with σr (r) the
radial velocity dispersion. They found a special solution, namely
an analytical self-consistent potential–density pair of the form
of Equation (1) with an anisotropy profile

β(r) = β0 + β∞(r/ra)2δ

1 + (r/ra)2δ
, (5)

that also has an exactly linear β–γ relation (in other words,
ra = rs and 2δ = η). As these Jeans models satisfy the three
universal relations mentioned above, we can consider them as
representative models for realistic dark matter halos.

The goal of this paper is to take the analytical study of dark
matter systems a step further, i.e., to look for full dynamical
models that encompass the universal properties found in N-body
simulations. In concreto we will look for phase-space distribu-
tion functions (DFs) F (�r, �v) that self-consistently generate the
required density, potential, and anisotropy profiles encountered
in dark matter halos. Such dynamical models would provide a
very useful complementary approach to gain insight into the
structure of dark matter halos.

We shall focus on spherical models, for which a dynamical
description simplifies substantially, and as in this case, the DF
can be expressed as a function F(E, L) of the binding energy
and the angular momentum. But even if we limit ourselves

1280

http://dx.doi.org/10.1088/0004-637X/690/2/1280
mailto:emmanuel@heze.ugent.be
mailto:maarten.baes@ugent.be
mailto:herwig.dejonghe@ugent.be


No. 2, 2009 THE STRUCTURE OF DM HALOS WITH UNIVERSAL PROPERTIES 1281

to the spherical case, it is not straightforward to obtain such
dynamical models. A simple approach is to solve the Jeans
equation and approximate the velocity dispersion profiles by a
multivariate Gaussian (Hernquist 1993). However, Kazantzidis
et al. (2004) demonstrated that these systems are far from
equilibrium, thus losing their initial dynamical structure as
they evolve to non-Gaussian velocity distributions in subsequent
N-body simulations. We therefore need the tools to derive full
self-consistent equilibrium models, governed by DFs with a
sufficiently general velocity anisotropy profile.

Simple analytical models are found for only a few special
cases, such as the Plummer, Hernquist, isochrone, and γ -models
(e.g., Dejonghe 1987; Hernquist 1990; Baes & Dejonghe 2002;
An & Evans 2006; Buyle et al. 2007a), none of which are able
to describe realistic dark matter halos. For general potential–
density pairs, Osipkov (1979) and Merritt (1985) provided an
algorithm to construct dynamical models with a specific velocity
anisotropy profile of the form (5), with β0 = 0, β∞ = 1, and
δ = 1, leaving ra as a free parameter. While the Osipkov–Merritt
method has been widely adopted (e.g., Widrow 2000; Łokas
& Mamon 2001; Kazantzidis et al. 2004), comparison with
simulations shows that such anisotropy profiles are too steep
to describe dark matter (Mamon & Łokas 2005). Halos are not
completely radial at infinity (i.e., β∞ < 1) and the linear β–γ
relation can only be realized with a lower transition rate δ < 1.
On a dynamical note, the associated DFs are of the form F (Q)
with Q = E − L2

/
2r2

a , creating an unphysical cutoff boundary
for orbits with Q < 0. Hence, the Osipkov–Merritt framework
is too limited to generate realistic dark matter systems, and a
more extensive method is needed.

Recently, Wojtak et al. (2008) presented an interesting ap-
proach to generate dynamical models for potential–density pairs
with a more general anisotropy profile. They proposed to express
the DF as a separable function of the form fE(E) fL(L) where
fL(L) is a double power-law function with three parameters
β0, β∞, and L0. Once their values have been determined, the
function fE(E) is derived from the observed density profile by
a numerical inversion. This technique yields a three-parameter
anisotropy profile that resembles Equation (5), where L0 has a
similar role as ra, and a fixed transition rate 0.5 < δ < 1. In
this manner, the authors were able to construct models with an
NFW density with velocity dispersion profiles that agreed with
their dark matter simulations.

In this paper, we present a technique that enables us to obtain
dynamical models with exactly the four-parameter anisotropy
profile of Equation (5). We demonstrated in a previous paper
(Baes & Van Hese 2007, hereafter Paper I) how this can be
achieved, by postulating a separable parameterized form of
the so-called augmented density, which provides an equivalent
description of a dynamical system. In certain special cases
the transformation from the augmented density to the DF is
analytically tractable. We were thus able to derive a family of
DFs for the generalized Plummer models (also called α-models
or Veltmann models, Veltmann 1979) with a linear β–γ relation.

Since the generalized Plummer potential–density pairs form
a special class of the Zhao models (1), we will now demonstrate
that this result is a first step toward more representative dark
matter profiles. In particular, we seek a family of DFs for the
Dehnen–McLaughlin systems, because of their unique property
to satisfy a universal density, a power-law Qr (r), and a linear
β–γ relation. We use a quadratic programming technique
(Dejonghe 1989) to build DFs as a linear combination of
base functions of the form derived in Paper I. In this manner,

we demonstrate that it is indeed possible to generate full
dynamical models for the Dehnen–McLaughlin Jeans models,
thus providing DFs that encompass the observed properties of
dark matter halos.

Our paper is organized as follows. In Section 2, we describe
the notion of a dynamical model and briefly summarize the
main aspects of the Dehnen–McLaughlin halos. Next we outline
our modeling technique in Section 3: we explain the quadratic
programming algorithm and recapitulate the functions that we
derived in Paper I. With these components, we can build a li-
brary to apply the QP-method to the Dehnen–McLaughlin halos.
In Section 4, we present our results for a set of systems with
different velocity anisotropy profiles and discuss the moments,
phase-space DFs, and energy and angular momentum distribu-
tions for these models. Finally, we formulate our conclusions in
Section 5.

2. PRELIMINARIES

2.1. Dynamical Models

The dynamical structure of a gravitational equilibrium system
is completely determined by the DF F (�r, �v), which describes
the probability distribution of particles in six-dimensional phase
space. A dynamical model is only physical if its DF is non-
negative everywhere. In the case of spherical symmetry, this DF
can be written as a function F(E, L) of two isolating integrals,
namely the binding energy and the angular momentum

E = ψ(r) − 1
2v2

r − 1
2v2

T , (6)

L = r vT , (7)

with
vT =

√
v2

θ + v2
ϕ, (8)

the transverse velocity, and ψ(r) the positive binding potential.
For circular orbits the integrals of motion can be written as a
function of the radius r,

Ec(r) = ψ(r) +
r

2

dψ

dr
(r), (9)

Lc(r) = −r3 dψ

dr
(r), (10)

which can be solved to obtain Ec(L) and Lc(E). All dynamical
properties can be derived from the DF, such as the anisotropic
velocity moments

μ2n,2m(r) = 2πMtot

∫ +∞

−∞
dvr

∫ +∞

0
F (E,L) v2n

r v2m+1
T dvT ,

(11)
with Mtot the total mass. If the system is self-consistent, then
the density ρ(r) = μ00(r) is connected to the potential via the
Poisson equation

1

r2

d

dr

(
r2 dψ

dr

)
(r) = −4πGρ(r). (12)

Furthermore, the second-order moments determine the ra-
dial and tangential velocity dispersions μ20(r) = ρσ 2

r (r) and
μ02(r) = 2ρσ 2

θ (r), and the velocity anisotropy profile

β(r) = 1 − σ 2
θ (r)

σ 2
r (r)

. (13)
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A DF is only fully determined when all velocity moments
in Equation (11) are known (Dejonghe 1987). However, it is
already far from trivial to obtain any nonnegative DF that
adequately generates a given density ρ(r) and anisotropy profile
β(r). In this paper, we will focus our attention on one specific
family of halos, namely the Dehnen–McLaughlin Jeans models,
and demonstrate that a family of DFs can indeed be constructed
for these systems.

2.2. The Dehnen–McLaughlin Halos

In the context of theoretical dark matter studies, the model
derived by Dehnen & McLaughlin (2005) is of particular
interest. We summarize their main results in this section. Instead
of fitting a parameterized density profile to N-body simulations,
they investigated the solution space of the Jeans equation to
search for models that explicitly obey the power-law behavior
of the pseudo-phase-space density. With the extra condition of
a linear β–γ relation they found a critical solution that satisfies
the condition

ρ

σ ε
r

(r) = ρ

σ ε
r

(rs)

(
r

rs

)−αcrit

, (14)

with rs being the scale radius. In the remainder of this paper,
we adopt the common value ε = 3 and use the notation
Qr (r) = ρ

/
σ 3

r . Dehnen and McLaughlin derived for this case
the exponent

αcrit = η +
3

2
, (15)

η = 4 − 2β0

9
, (16)

with β0 being the central velocity anisotropy. The corresponding
potential–density pair is fully analytical, given by

ψ(r) = GMtot

rs

1

η
B 1

1+xη

(
1

η
,

1 − β0

η
+

1

2

)
, (17)

ρ(r) = 4 + η − 2β0

8π

Mtot

r3
s

x−γ0 (1 + xη)−(γ∞−γ0)/η, (18)

where x = r/rs, By(a, b) is the incomplete beta function and

γ0 = 7 + 10β0

9
, (19)

γ∞ = 31 − 2β0

9
. (20)

The density can be equivalently written in terms of the slope
γ (r), which has the same elegant form as the velocity anisotropy
profile β(r),

γ (r) = γ0 + γ∞xη

1 + xη
, (21)

β(r) = β0 + β∞xη

1 + xη
. (22)

Finally, the authors derived the corresponding velocity disper-
sions

σ 2
r (r) = 1

4 + η − 2β∞

GMtot

rs
x−1

(
xη

1 + xη

)(γ∞−γ0)/η−2

, (23)

σ 2
θ (r) = σ 2

ϕ (r) = 1

2
σ 2

T (r) = (1 − β(r))σ 2
r (r). (24)

Equations (14)–(24) characterize the Dehnen–McLaughlin
models; we refer to their paper for more details. These sys-
tems are determined by five parameters: the exponent ε in the
pseudo-phase-space density, two scaling constants, i.e., the total
mass Mtot and the scale radius rs, and the asymptotic anisotropy
parameters β0 and β∞. The authors also noted the remarkable
property that the shape of the density profile (and hence the
gravitational potential) only depends on β0 and not on β∞.

While the Dehnen–McLaughlin Jeans models are derived
from theoretical considerations, they also fit adequately galaxy-
sized and certain cluster-sized halos generated by N-body
simulations (Diemand et al. 2005; Merritt et al. 2006). But
as mentioned in the previous section, the density and velocity
dispersions alone do not determine the complete dynamical
state of dark matter systems. We therefore aim to incorporate
these profiles into self-consistent dynamical models, described
by non-negative DFs.

3. THE MODELING TECHNIQUE

To find DFs that describe the Dehnen–McLaughlin Jeans
models, we adopt the mathematical framework that we derived
in Paper I. These tools enabled us to construct a family of com-
ponents with the anisotropy profile of Equation (5), by means of
the powerful augmented density concept. We summarize these
results and demonstrate how to build a linear combination of
these components using a quadratic programming (QP) tech-
nique (Dejonghe 1989). In this manner, we can fit a dynamical
model to a given halo.

3.1. The Augmented Density Concept

Since our dynamical models have to reproduce the moments
in Equations (18), (23), and (24), we first seek DFs that
are specifically designed for this task. This can be done by
introducing the augmented densities ρ̃(ψ, r) (Dejonghe 1986),
which extend the densities to explicit functions of both the radius
and the gravitational potential. Like the DF, the augmented
density uniquely determines the dynamical state of a spherical
equilibrium system. Both functions are connected by the relation

ρ̃(ψ, r) = 2πMtot

∫ ψ

0
dE

∫ 2(ψ−E)

0

F (E, r vT )√
2(ψ − E) − v2

T

dv2
T .

(25)
If we define that all functions are zero when their arguments lie
outside their physical bounds, we can use the Laplace–Mellin
transforms

L
E→ξ

M
L→λ

{F } =
∫ +∞

0
e−ξE dE

∫ +∞

0
Lλ−1F (E,L) dL, (26)

L
ψ→ξ

M
r→λ

{ρ̃} =
∫ +∞

0
e−ξψ dψ

∫ +∞

0
rλ−1ρ̃(ψ, r) dr, (27)

with the inverse transforms

F (E,L) = − 1

4π2

∫ ξ0+i∞

ξ0−i∞
eξE dE

×
∫ λ0+i∞

λ0−i∞
L−λ L

E→ξ
M

L→λ
{F } dL, (28)

ρ̃(ψ, r) = − 1

4π2

∫ ξ0+i∞

ξ0−i∞
eξψ dψ

×
∫ λ0+i∞

λ0−i∞
r−λ L

ψ→ξ
M
r→λ

{ρ̃} dr. (29)
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Combining these expressions with Equation (25), we obtain

L
ψ→ξ

M
r→λ

{ρ̃} = 2πMtot

∫ +∞

0
e−ξψ dψ

∫ +∞

0
v−λ

T Lλ−1 dL

×
∫ ψ

0
dE

∫ 2(ψ−E)

0

F (E,L) dv2
T√

2 (ψ − E) − v2
T

. (30)

Interchanging the integrals yields the formal relation

L
E→ξ

M
L→λ

{F } = 2λ/2

Mtot(2π )3/2

ξ (3−λ)/2

Γ
(
1 − λ

2

) L
ψ→ξ

M
r→λ

{ρ̃}. (31)

The main strength of the augmented density formalism is the
ability to impose very specific conditions on these functions, to
obtain our objective. More precisely, we demonstrated in Paper I
that separable functions of the form

ρ̃(ψ, r) = f (ψ) g(r) (32)

are particularly interesting, since in this case g(r) is directly
related to the velocity anisotropy profile,

β(r) = −1

2

d ln g

d ln r
(r). (33)

With this formalism it is therefore at least formally possible to
generate a DF for a dynamical system with a given potential
ψ(r), density ρ(r), and velocity anisotropy profile β(r). If we
postulate an anisotropy profile of the form of Equation (5), the
modeling procedure reduces to the computation of f (ψ) such
that

ρ(r) = f (ψ(r))

(
r

ra

)−2β0
(

1 +
r2δ

r2δ
a

)βδ

, (34)

with 0 < δ � 1 and

βδ = β0 − β∞
δ

. (35)

Evidently, the exact solution f (ψ) is generally of numerical
form, except for a few special cases. This creates a problem
to recover the DF from the augmented density, because a direct
inversion of the Laplace–Mellin transformation in Equation (31)
is, in general, numerically unstable (Dejonghe 1986). Indeed, the
double integration in Equation (25) smoothes features in F(E, L),
and the inversion procedure of determining F(E, L) from ρ̃(ψ, r)
has the delicate job of unsmoothing the information contained in
ρ̃(ψ, r). Consequently, a direct inversion can only be performed
safely for sufficiently simple forms of f (ψ).

We therefore take an alternative approach. Instead of solv-
ing Equation (34) directly, we will approximate the given den-
sity profile by a linear combination of simple base functions
ρ̃i(ψ(r), r) for which the Laplace–Mellin inversions are ana-
lytical. The corresponding DF is then simply the same linear
combination of the associated base DFs Fi(E,L), resulting
in an analytically tractable function. This can be achieved by
a least-squares fit to a set of density data points, defining a
quadratic programming problem in the unknown coefficients.
Various authors have successfully used a similar modeling tech-
nique (Kuijken & Merrifield 1993; Merrifield & Kuijken 1994;
Gerhard et al. 1998). A QP-algorithm, suited for this task, has
been developed in our department (Dejonghe 1989), which we
outline in the following section.

3.2. The Quadratic Programming Procedure

Consider a given potential ψ(r), an anisotropy profile β(r)
of the form of Equation (5) and a set of M density data points
ρobs(rm), m = 1, . . . ,M . To model these data, we first construct
a library of Nlib base functions

ρ̃i(ψ, r) = fi(ψ)

(
r

ra

)−2β0
(

1 +
r2δ

r2δ
a

)βδ

, (36)

with fi(ψ) sufficiently simple to compute the associated distri-
butions Fi(E,L). From these components, we can extract the
corresponding values

ρi(rm) = ρ̃i(ψ(rm), rm), m = 1, . . . , M. (37)

Now our aim is to construct a linear combination of N compo-
nents from this library that provides an adequate fit to the given
data. Such a fit can be obtained in a statistically meaningful way
by minimizing the quantity

χ2
N = 1

M

M∑
m=1

wm

(
ρobs(rm) −

N∑
i=1

aN,i ρi(rm)

)2

, (38)

which is a quadratic function of the coefficients aN,i , con-
sequently defining a quadratic programming problem. The
data points are given equal weights by setting the constants
wm = 1

/
ρ2

obs(rm).
To find such a set, we use an iterative algorithm (Dejonghe

1989). With this method, a set of components is successively
built in N steps. In the first step, Nlibχ

2-minimizations are
performed using in turn each component of the library. The
base function that yields the lowest χ2-value (hereafter denoted
as χ2

1 ) is retained as the first element of our best-fitting set,
with the corresponding coefficient a1,1. In each next iteration,
the functions in this set are preserved, while the coefficients are
allowed to vary. The set is subsequently extended by adding the
component from the library that yields the most improvement
of the fit, minimizing over all coefficients. In other words,
suppose we have obtained the best-fitting set of N − 1 base
functions, with indices n1, . . . , nN−1. Then, we add in turn
the remaining Nlib − N + 1 components from the library, and
calculate the N coefficients for each combination by means of
the χ2-minimizations

χ2
(nN ) = min

a1,...,aN

1

M

M∑
m=1

wm

(
ρobs(rm) −

N∑
i=1

ai ρni
(rm)

)2

,

with nN ∈ {1, . . . , Nlib}\{n1, . . . , nN−1}. (39)

From these Nlib − N + 1 values, we determine the best fit

χ2
N = χ2

(nmin) = min
nN

χ2
(nN ), (40)

and add the base function with index nmin to the best-fitting set,
denoting nN = nmin. By renaming the indices of this set, we thus
obtain a linear combination of N base functions ρ̃i(ψ, r) with
coefficients aN,i and a goodness of fit χ2

N . The corresponding
DF is then simply

F (E,L) =
N∑

i=1

aN,iFi(E,L). (41)
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The QP-algorithm allows additional linear constraints on the co-
efficients. In particular, we impose upper and lower boundaries

amin � aN,i � amax, ∀N; i = 1, . . . , N. (42)

These constraints are not necessary, but they greatly reduce the
computational cost in the calculation of the DF. The reason for
this is straightforward: if the components are computed with
numerical errors δiFi then the total numerical error of the DF is

δF (E,L) =
∑N

i=1 |a|N,i δiFi(E,L)∑N
i=1 aN,i

. (43)

The higher the absolute values of the coefficients |a|N,i , the
smaller the errors δiFi need to be to obtain a given δF , which in-
creases the computational time. Sensible boundary values in (42)
enable efficient calculations of the DF, while maintaining satis-
factory fits.

The resulting DF also needs to be physical, i.e., nonneg-
ative everywhere in phase space. We found that all our DFs
automatically satisfy this condition without imposing explicit
constraints.

This procedure has several advantages. The resulting DF re-
mains analytically tractable, which also simplifies the computa-
tion of all the moments of this dynamical model. Furthermore,
only a limited number of data points are required, rather than the
entire density profile. The same algorithm can also be applied to
data extracted from simulations or observations, and a variety of
different moments besides the density can be used in the fitting
procedure.

Finally, since all components have a priori the desired β(r),
their linear combination will automatically generate the same
anisotropy profile. This is a very significant benefit. Indeed,
practice has shown that it is particularly difficult to construct
radially anisotropic systems from base functions that are too
simple (such as Fricke components, Fricke 1952) with different
constant anisotropies. In this case an additional fitting is required
to the second-order moments. But more importantly, because
radial orbits influence the density at both small and large radii,
the summation of components with different anisotropies results
in a delicate fine-tuning to obtain adequate fits to both the
density and the velocity anisotropy. These problems are avoided
if the components already have the correct anisotropy profile,
and although it is more intricate to design such functions,
this approach greatly reduces the complexity of the quadratic
programming procedure.

3.3. The Base Functions

We are now left with the construction of a library of adequate
base functions ρ̃i(ψ, r). The success of our modeling is largely
determined by this library. As stated above, the components
have to generate the anisotropy profile of (5), while being
sufficiently simple to retrieve the corresponding DFs Fi(E,L)
from Equation (31). In addition, the subsequent densities ρi(rm)
need to be able to reproduce the specific characteristics of the
given data to obtain a satisfactory fit. In the particular case of
the Dehnen–McLaughlin halos of Equation (18), this implies
that the components should incorporate the central density cusp
and the asymptotic density slope at large radii, using the given
potential in Equation (17). In Paper I, we derived a family of
base functions that meet all these requirements. Consider the

family of augmented densities

ρ̃i(ψ, r) = ρ0i

(
ψ

ψ0

)pi
(

1 − ψsi

ψ
si

0

)qi
(

r

ra

)−2β0
(

1 +
r2δ

r2δ
a

)βδ

,

(44)
where ρ0i are normalization constants such that

4π

∫ +∞

0
ρ̃i(ψ(r), r)r2 dr = 1, (45)

and ψ0 denotes the depth of the (finite) potential well, ψ0 =
ψ(0). The normalization constants are chosen such that the sum
of the coefficients of a good fit should approximate the total
mass of the input data, i.e.,

∑N
i=1 aN,i � Mtot.

Apart from the four fixed parameters that determine the
anisotropy profile of Equation (22), the f (ψ)-part of these
functions contains three additional free parameters pi, qi, and si,
which respectively determine the asymptotic behavior at infinity,
the inner slope, and the transition rate between these two regions.
They satisfy the conditions pi + 2β∞ > 3, qi � 0, and si > 0.

All other dynamical properties can be calculated from these
augmented densities. The augmented higher-order moments
are derived in the Appendix, and we demonstrated in the
Appendices of Paper I that for these ρi(ψ, r) the inverse
Laplace–Mellin transforms can be performed analytically in
Equation (31). The corresponding DFs can be expressed as a
series of Fox H-functions (Fox 1961):

Fi(E,L) = ρ0i

Mtot(2π ψ0)3/2

×
∞∑

j=0

(−1)j
(

qi

j

)
Γ(1 + pi + jsi)

δ Γ(−βδ)

(
E

ψ0

)pi+jsi−3/2

× H
1,1
2,2

(
L2

2r2
a E

∣∣∣∣∣
(
1 − β∞

δ
, 1

δ

)
,
(
pi + jsi − 1

2 , 1
)

(− β0

δ
, 1

δ

)
, (0, 1)

)
,

(46)

which can be written as a double series

Fi(E,L) = ρ0i

Mtot(2π ψ0)3/2

∞∑
j=0

(−1)j
(

qi

j

) (
E

ψ0

)pi+jsi−3/2

×
∞∑

k=0

(
βδ

k

)
Γ(1 + pi + jsi)

Γ
(
pi + jsi − 1

2 + βk

)
Γ (1 − βk)

×
(

L2

2r2
a E

)−βk

, (47)

where we used the auxiliary notation

βk =
{
β0 − kδ for L2 < 2r2

a E,

β∞ + kδ for L2 > 2r2
a E.

(48)

The double summation
∑

j

∑
k can be computed by changing

the indices to
∑

l

∑
j+k=l , so that the inner summation becomes a

finite sum of l+1 terms for each value of l; the index l is increased
until the total sum alters by less than a required numerical error
δiFi . Due to the double summation, the computational time is
approximately an inverse quadratic function of δiFi .

We proved in Paper I that these base DFs are continuous
and nonnegative everywhere in physical phase space. Moreover,
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we showed that they generate exactly the generalized Plummer
potential–density pairs (Veltmann 1979)

ψgp(r) = GMtot(
r

η
s + rη

)1/η
, (49)

ρgp(r) = (1 + η) Mtot

4π

r
η
s

r2−η
(
r

η
s + rη

)2+1/η
, (50)

with a linear β–γ relation. Since these systems are closely
related to the Dehnen–McLaughlin halos, this is a promising
result for the success of the quadratic programming routine.

The Fortran source code with the DF base functions and
the augmented moments is available on request.

3.4. The Library of Components

Every given Dehnen–McLaughlin halo requires a specific
component library. In particular, the parameters pi and qi are
constrained by the potential. If we examine the asymptotic
behavior of the Dehnen–McLaughlin potential in Equation (17)
in more detail, we find

ψ(r) ∼ ψ0 − a r (11−10β0)/9 + · · · for r → 0,

ψ(r) ∼ 1

r
for r → ∞.

(51)

Introducing these asymptotic expansions in the expression (44)
we find for the inner and outer slopes of the density

ρ̃i(ψ(r), r) ∼ r−2β0+qi (11−10β0)/9 for r → 0,

ρ̃i(ψ(r), r) ∼ r−2β∞−pi for r → ∞.
(52)

Evidently, the parameters pi stipulate the density slope at
large radii. Because the models fall as r−γ∞ , no components
can be used in the fitting routine that fall less rapidly. Using
Equation (20), this puts a boundary on the pi,

pi � 31 − 2β0 − 18β∞
9

≡ pmin(β0, β∞). (53)

Conversely, the density slope at small radii depends on the
parameters qi. The density diverges toward the center as r−γ0 ,
and we cannot use components in the fitting routine that have a
steeper slope. Thus we obtain from Equation (20)

qi � − 7 − 8β0

11 − 10β0
≡ qmin(β0). (54)

So if a fit to a halo has at least one component with parameter
pmin and one with qmin, this fit has the same slope as the given
density at small and large radii.

Finally, the parameters si have a similar role as δ, in the sense
that they control the transition rate between the inner and outer
density slopes. Their value can be chosen freely, but we found
that excellent results are obtained with a single fixed value

si ≡ 2δ = η, (55)

for all components. This is the same choice as the generalized
Plummer models in Paper I. It also simplifies the computation
of the DFs in Equations (47) and (48), and it further facilitates
the fitting process, leaving only pi and qi as free parameters.

Figure 1. Obtained χ2
N for the six QP-models, explicitly as a function of the

number of components in the fit. The different curves correspond to β∞ = 0,
0.2, 0.4, 0.6, 0.8, and 1, with a gray scale ranging from black (β∞ = 0) to light
gray (β∞ = 1).

4. RESULTS

4.1. The Minimization

Now that we have derived the necessary mathematical tools,
we can present the results for the Dehnen–McLaughlin halos.
Without loss of generality, we can work in dimensionless units
G = Mtot = rs = ra = 1, and we limit ourselves to ε = 3.
Consequently, the models are determined by the anisotropy
parameters β0 and β∞. Although we are able to generate models
with arbitrary values for these parameters, realistic dark matter
halos are nearly isotopic near the center and radially anisotropic
at large radii, so that we concentrate on six representative models
with β0 = 0 and β∞ = 0, 0.2, 0.4, 0.6, 0.8, 1. We verified that
the modeling procedure works equally well for models with
nonzero values of β0. Finally, it is evident from Equation (16)
that β0 = 0 sets the parameters si ≡ 2δ = η = 4/9.

As we demonstrated above, the very specific form of the
base functions in Equation (44) simplifies our QP-algorithm
considerably for these models. Only the parameters pi and qi
remain to construct a library of components, and we have found
that only 30 components are sufficient to yield excellent fits.
The parameters pi take five values, ranging from pmin(0, β∞) to
10 or 12, depending on the model. The parameters qi take six
values from qmin(0) to 0. We list these values for each model in
the headers of Table 1.

We extract M = 25 values of the density (18) at radii rm,
distributed logarithmically between 10−3 rs and 104 rs, that
serve as input data ρobs(rm) in each QP-procedure. Evidently,
this range is much larger than the virialized region in N-body
simulations. This larger range is therefore not intended to be
realistic, but rather to demonstrate that our models are accurate
to arbitrary distances. Furthermore, this makes it possible to
create discrete equilibrium systems from the DFs, by means of
Monte Carlo simulators, that trace very closely the Dehnen–
McLaughlin halos. After calculating the densities in Equation
(44) of every library component at these radii ρ̃i(ψ(rm), rm),
we can perform the QP-algorithm for the six values of β∞,
constructing iteratively the best-fitting linear combination (38)
of N components with additional constraints of the form (42),

−100 � aN,i � 100, ∀N; i = 1, . . . , N. (56)

We show the results for the six models in Table 1. The columns
list the components of the fits. Every χ2

N denotes the goodness of
fit of the best linear combination of the components in columns
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Table 1
Components of the Six QP-models

1 2 3 4 5 6 7 8 9 10
β∞ = 0.0, β∞ = 0.0, s = 4/9, δ = 2/9 pi = 3.44, 4, 5, 7.5, 10 qi = −0.63,−0.5,−0.4,−0.3,−0.15, 0

a10,i 0.2047 −0.0380 −0.5411 1.6652 0.0414 −3.8806 0.1312 2.5207 −0.2684 1.1652
ρ0i 0.0053 1.9783 0.0009 2.5540 0.4890 3.0677 0.0384 3.6728 6.1920 0.0008
pi 4.0000 10.0000 3.4444 10.0000 7.5000 10.0000 5.0000 10.0000 10.0000 3.4444
qi −0.6364 −0.6364 0.0000 −0.5000 −0.6364 −0.4000 −0.6364 −0.3000 0.0000 −0.6364
χ2

N 0.44 × 100 0.17 × 100 0.67 × 10−1 0.33 × 10−1 0.24 × 10−2 0.17 × 10−2 0.53 × 10−4 0.36 × 10−4 0.48 × 10−5 0.82 × 10−7

β0 = 0.0 β∞ = 0.2, s = 4/9, δ = 2/9 pi = 3.04, 4, 5, 7.5, 10 qi = −0.63,−0.5,−0.4,−0.3,−0.15, 0

a10,i −0.1534 15.5467 −0.0006 0.4549 −0.2707 74.2329 −88.6417 0.5880 −0.7724 0.0165
ρ0i 0.0238 0.0017 3.4087 4.4609 11.3269 0.0014 0.0015 8.6356 5.4102 0.9797
pi 4.0000 3.0444 10.0000 10.0000 10.0000 3.0444 3.0444 10.0000 10.0000 7.5000
qi −0.6364 0.0000 −0.6364 −0.5000 0.0000 −0.6364 −0.5000 −0.1500 −0.4000 −0.6364
χ2

N 0.48 × 100 0.27 × 100 0.43 × 10−1 0.93 × 10−2 0.13 × 10−2 0.88 × 10−3 0.10 × 10−4 0.95 × 10−5 0.48 × 10−5 0.32 × 10−7

β0 = 0.0 β∞ = 0.4, s = 4/9, δ = 2/9 pi = 2.64, 4, 5, 8, 12 qi = −0.63,−0.5,−0.4,−0.3,−0.15, 0

a10,i 8.2375 −1.4318 −0.0467 0.2297 2.2705 −0.0111 0.1299 10.3097 −0.3108 −18.3771
ρ0i 0.0832 0.0032 10.9019 14.9246 0.0028 2.4301 23.3335 0.1015 18.6978 0.0934
pi 4.0000 2.6444 12.0000 12.0000 2.6444 8.0000 12.0000 4.0000 12.0000 4.0000
qi −0.6364 0.0000 −0.6364 −0.5000 −0.6364 −0.6364 −0.3000 −0.4000 −0.4000 −0.5000
χ2

N 0.48 × 100 0.18 × 100 0.28 × 10−1 0.93 × 10−2 0.42 × 10−2 0.14 × 10−3 0.36 × 10−4 0.13 × 10−4 0.68 × 10−5 0.24 × 10−6

β0 = 0.0, β∞ = 0.6, s = 4/9, δ = 2/9 pi = 2.24, 3.5, 5, 8, 12 qi = −0.63,−0.5,−0.4,−0.3,−0.15, 0

a10,i 0.3552 2.0738 −0.0094 0.0086 16.3498 −17.4861 0.0731 −0.3019 −0.2109 0.1477
ρ0i 0.1222 0.0063 16.7922 23.2672 0.0053 0.0055 4.3156 0.1372 8.0592 10.5109
pi 3.5000 2.2444 12.0000 12.0000 2.2444 2.2444 8.0000 3.5000 8.0000 8.0000
qi −0.6364 0.0000 −0.6364 −0.5000 −0.6364 −0.5000 −0.6364 −0.5000 −0.3000 −0.1500
χ2

N 0.44 × 100 0.15 × 100 0.18 × 10−1 0.67 × 10−2 0.31 × 10−2 0.16 × 10−4 0.13 × 10−4 0.10 × 10−4 0.17 × 10−5 0.20 × 10−6

β0 = 0.0, β∞ = 0.8, s = 4/9, δ = 2/9 pi = 1.84, 3, 5, 8, 12 qi = −0.63,−0.5,−0.4,−0.3,−0.15, 0

a10,i −0.0321 −6.1421 0.0008 −0.0013 24.5830 −100.0000 −0.0163 −0.0926 40.5233 42.1774
ρ0i 0.1791 0.0121 25.3820 35.5933 0.0101 0.0109 2.3877 0.2367 0.0105 0.0116
pi 3.0000 1.8444 12.0000 12.0000 1.8444 1.8444 5.0000 3.0000 1.8444 1.8444
qi −0.6364 0.0000 −0.6364 −0.5000 −0.6364 −0.4000 −0.3000 −0.3000 −0.5000 −0.1500
χ2

N 0.40 × 100 0.11 × 100 0.11 × 10−1 0.46 × 10−2 0.22 × 10−2 0.66 × 10−5 0.26 × 10−5 0.13 × 10−5 0.47 × 10−6 0.24 × 10−6

β0 = 0.0, β∞ = 1.0, s = 4/9, δ = 2/9 pi = 1.44, 3, 5, 8, 12 qi = −0.63,−0.5,−0.4,−0.3,−0.15, 0

a10,i −5.2047 0.1086 62.6962 40.1800 −0.0002 0.0003 −96.6969 −0.1234 0.0273 0.0128
ρ0i 0.0192 2.9967 0.0201 0.0213 37.6938 44.2497 0.0207 3.7237 7.8118 0.8543
pi 1.4444 5.0000 1.4444 1.4444 12.0000 8.0000 1.4444 5.0000 5.0000 3.0000
qi −0.6364 −0.6364 −0.5000 −0.3000 −0.6364 0.0000 −0.4000 −0.5000 0.0000 −0.1500
χ2

N 0.35 × 100 0.36 × 10−1 0.10 × 10−1 0.24 × 10−3 0.41 × 10−4 0.16 × 10−4 0.13 × 10−4 0.45 × 10−6 0.89 × 10−7 0.22 × 10−8

Notes. Our six models are determined by the anisotropy parameters β0 = 0 and β∞. With the QP-algorithm, we built linear combinations up to 10 components, each
characterized by s, δ, pi, qi, and ρ0i . The parameters s and δ are the same for each component, while pi and qi are selected from a library of 30 components. The five
pi values and six qi values in each library are given in the headers. Every Nth column lists the value χ2

N of the best fit with the first N components. The coefficients are
given for the final fit with 10 components, i.e., a10,i .

1 to N. Each component is determined by the parameters pi and
qi, which in turn define the normalization constants ρ0i from
Equation (45). The coefficients are only given for the final fit
with 10 components, i.e., a10,i . It can be checked that for each
model

10∑
i=1

a10,i � Mtot = 1, (57)

indicating excellent fits. Combining this result with
Equations (43) and (56), it can be seen that if N = 10, the
numerical errors of the base functions δiFi need at most to be
a factor of 103 smaller than a given error δF , allowing efficient
computations of the DF with sufficient accuracy.

The resulting χ2
N for each model are also displayed in

Figure 1. Evidently, N = 10 components are more than suffi-
cient to obtain very accurate dynamical models. As an example,
Figure 2 shows the 10 individual components of the QP-model
with β∞ = 0.4. Although this fit has the highest χ2

10 of our set,

its total density is a very close approximation to the given data
over the entire range in radius.

4.2. The Moments

Figure 3 displays several moments for our six models, with
10 components. The top row shows the density ρ(r), the pseudo-
phase-space density Qr (r), and the β–γ relation. Below each
graph, we calculated the residual errors between the QP-fits and
the theoretical curves, i.e., for each profile f (r) we have

Δf (r) = fobs(r) − fqp(r)

fobs(r)
. (58)

As can be seen, the relative errors on the densities are less
than 10−3 along 7 orders of magnitude in radius, and the
exact asymptotic slopes of the models ensure excellent fits
even beyond this range. The power-law trend of Qr (r) and the
β–γ relations are also reproduced very accurately with errors
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Figure 2. Ten individual components of the fitted density for the QP-model with
β0 = 0 and β∞ = 0.4. Their sum is the QP-density (black thick curve), fitting
the 25 data points (dots).

∼ 10−3. Note that the small offset between the pseudo-phase-
space density profiles for the different models is due to the
dependence of σr (r) on β∞.

In the central row, we display the velocity dispersion profiles
σr (r), σθ (r), and the anisotropies β(r). It is striking that, while
the dispersion data were not used in the fit, the deviations of
these moments from the theoretical values are even smaller, less
than 5×10−4. Evidently, since the models have the anisotropies
of Equation (22) by construction, the β(r) profiles are exact,
without errors. Note also that all tangential velocity dispersion
profiles σθ (r) intersect at a common radius r = rs (9/11)1/η.

While the density and dispersions are defined by the Dehnen–
McLaughlin halos, the higher-order moments are determined by
the QP-models. The fourth-order moments (see the Appendix)
allow us to derive the radial and tangential kurtosis,

κr (r) =
〈
v4

r

〉
σ 4

r

(r) − 3, (59)

κθ (r) =
〈
v4

θ

〉
σ 4

θ

(r) − 3, (60)

Figure 3. Most important moments for our set of representative models with 10 components. Top row: the density ρ(r), the pseudo-phase-space density Qr (r), and the
β–γ relation. Below each graph, the relative errors with respect to the theoretical profiles are shown. Middle row: the radial velocity dispersion σr (r), the tangential
velocity dispersion σθ (r), and the anisotropy β(r), also with the relative errors. Bottom row: the radial kurtosis κr (r), the tangential kurtosis κθ (r), and fourth-order
anisotropy β4(r). The models and gray scaling are the same as in Figure 1.
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Figure 4. Phase-space DFs for our set of models with 10 components. The six top panels show F(E, L) as isoprobability contours in the integral space. The energy
is scaled to the central potential and the angular momentum is scaled to the angular momentum Lc(E) of a circular orbit with energy E. The contour levels and the
coloring are scaled logarithmically. The six bottom panels show the orbital DFs N (E, L/Lc(E)) for the same models.

and the fourth-order anisotropy

β4(r) = 1 −
〈
v4

θ

〉
〈
v4

r

〉 (r). (61)

Interestingly, as a result of the separable form of the augmented
densities, we find that the β4(r) profiles are only a function of
the β(r),

β4(r) = 1

2
β(r)(3 − β(r)) +

1

2βδ

(β0 − β(r))(β∞ − β(r)). (62)

These profiles are shown in the bottom row of Figure 3.
The kurtosis values describe the non-Gaussianity of the ve-
locity distributions at a certain radius. Our radial kurtosis
values are very large in the center, which indicates that the
vr-distributions are very peaked (leptokurtic) at small radii. The
κr (r) curves decrease rapidly as a function of radius: they reach
zero at radii between 0.26 and 0.36 and become negative at
larger radii, leading to flat-topped (platykurtic) radial velocity
distributions. This behavior is in accordance with N-body sim-
ulations (Kazantzidis et al. 2004; Wojtak et al. 2005). Clearly,
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Figure 5. Energy and angular momentum distributions of the six QP-models with 10 components. The angular momenta are scaled to the values Ls of a circular orbit
with radius rs. The models and gray scaling are the same as in Figure 1.

the value of β∞ has little influence on the radial kurtosis, as
in the case of Qr (r). In contrast, the tangential kurtosis κθ (r)
curves do depend significantly on β∞. All vθ -distributions are
highly peaked at small radii. For β∞ < 0.4, the tangential
kurtosis decreases to slightly negative values, i.e., at larger radii
the tangential velocity distributions become slightly flat-topped.
Models with β∞ ≈ 0.4 have nearly Gaussian vθ -distributions
for r > rs. If β∞ > 0.4, the κθ (r) profiles reach a minimum
value and increase again for larger radii.

4.3. The Distribution Functions

The six top panels of Figure 4 show the DFs F(E, L) of our
radially anisotropic systems with β0 = 0 and β∞ = 0, . . . , 1,
expressed as logarithmic isoprobability contours and a loga-
rithmic color gradient in the integral space, with L scaled to
Lc(E), denoting the angular momentum of a circular orbit with
energy E. All models are clearly physical, i.e., the DFs are non-
negative everywhere. This means that the Dehnen–McLaughlin
Jeans models can actually be realized by full dynamical mod-
els. Moreover, contrary to the Osipkov–Merritt models, these
functions fill the entire integral space. In the isotropic case, the
contours are horizontal (no dependence on angular momentum),
and their orientation alters gradually with increasing β∞ in an
intuitive way, as orbits with high eccentricities (i.e., low angular
momentum) become more abundant.

The DFs describe the probability distributions of particles in
phase space, but not in the integral space. It is more physically
meaningful to consider the true orbital distributions

N (E,L/Lc(E)) = F (E,L) g(E,L) Lc(E), (63)

with the so-called “density of states” function

g(E,L) = 16π2L

∫ r+

r−

dr√
2(ψ(r) − E) − L2/r2

, (64)

where r− and r+ are the pericenter and apocenter of an orbit
with energy E and angular momentum L, respectively. In other
words, the functions N (E,L/Lc(E)) express the likelihood of
an orbit with energy E and scaled angular momentum L/Lc(E).

The results are displayed in the bottom panels of Figure 4
as logarithmic isoprobability contours and a logarithmic color
gradient in the integral space. For high binding energies, all
orbital distributions contain increasing probabilities toward
circular orbits (high angular momentum). For low binding
energies, i.e., at large radii, the abundance of orbits with low
angular momentum gradually increases from the isotropic case
to models with high values of β∞.

4.4. The Marginal Distributions

We conclude the discussion of our Dehnen–McLaughlin DFs
with an analysis of the marginal distributions. The differential
energy and angular momentum distributions are the integrals of
the orbital distributions,

N (E) =
∫ Lc(E)

0
N (E,L) dL, (65)

N (L) =
∫ Ec(L)

0
N (E,L) dE, (66)

with

N (E,L) = 1

Lc(E)
N (E,L/Lc(E)) . (67)

These curves are displayed in Figure 5. The differential energy
distributions are all monotonously decreasing functions of E. It
is striking that these profiles are almost identical, regardless of
the anisotropy β∞. This result reinforces previous dynamical
studies (Binney 1982) and suggests that ρ(r), Qr (r), and
κr (r) are linked to a universal differential energy distribution,
independent of β∞, caused by the same physical processes.

In contrast, the angular momentum distributions depend on
β∞, most notably for high radial anisotropies. For increasing
values of β∞, the fraction of orbits with low angular momentum
increases. Bullock et al. (2001) proposed a universal form for
the integrated angular momentum distribution in dark matter
halos M(L). Alternatively, Sharma & Steinmetz (2005) found a
differential distribution

Nss(L) = 1

La
dΓ(a)

La−1e−L/Ld . (68)

Our models indicate a similar profile, with a > 0.9, although the
functions in Equation (68) fall steeper than ours as L increases.

5. CONCLUSIONS

In this paper, we presented a set of anisotropic DFs F(E, L)
for the Dehnen–McLaughlin Jeans models. We constructed
these DFs as a linear combination of base functions, which we
fitted to the halo density by means of a quadratic programming
algorithm. The base functions were specifically designed for this
task, derived from a separable augmented density that generates
exactly the general four-parameter velocity anisotropy profiles
as given by Equation (5). We demonstrated that the resulting fits
are very accurate, from the center to large radii, far beyond the
range of N-body simulations.
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This method has several advantages. The DFs can be written
as a sum of a double series, without numerical integrations or
inversions. Consequently, the DFs and all subsequent moments
can be computed with high accuracy. Moreover, the advanced
form of the base functions makes the QP-fitting very fast,
requiring only a small number of library components.

In this manner, we have constructed a family of dynamical
models that incorporate the observed features in N-body simu-
lations. We summarize their properties:

1. The models a priori have the universal properties encoun-
tered in N-body studies of dark matter halos, which formed
the building bricks of the Jeans models by Dehnen &
McLaughlin (2005): they generate a universal density pro-
file, a power-law pseudo-phase-space density Qr (r), four-
parameter velocity anisotropy profiles with arbitrary values
of β0 and β∞, and a linear β–γ relation. In particular, we
analyzed six models that are isotropic in the center and
radially anisotropic at large radii.

2. The DFs are physical, i.e., they are non-negative over
the entire phase space. This means that the Dehnen–
McLaughlin Jeans models can actually be realized by
self-consistent dynamical systems. In addition, the DFs
are continuous and smooth functions and, contrary to
the popular Osipkov–Merritt models, they fill the entire
accessible phase space.

3. The energy distributions are monotonously decreasing
functions, and like the radial kurtosis profiles, these func-
tions are nearly independent of β∞. This suggests that ρ(r),
Qr (r), κr (r), and N (E) have a universal form, caused by
the same physical processes.

In addition, we have also been able to generate dynamical
models with a nonlinear β–γ relation, i.e., δ 
= η/2 and ra 
= rs,
albeit with higher χ2

N values. From these successful results for
the Dehnen–McLaughlin halos, we expect equally adequate fits
for other Zhao models, such as the NFW halos. Other profiles,
such as the Sérsic-type densities, might require a modified
family of base functions. Such a systematic study could unravel
more hitherto hidden properties of dark matter halos and the
various connections between these characteristics.

Our set of dynamical models is not only useful for a purely
theoretical analysis. The DFs can also serve to generate ini-
tial conditions with Monte Carlo simulators (e.g., Kazantzidis
et al. 2004; Buyle et al. 2007b) to investigate the physical pro-
cesses within these equilibrium models by means of controlled
numerical N-body simulations. Finally, our algorithm and base
functions can be used in other dynamical studies, using different
data moments than the density. This could lead to a significant
improvement in the dynamical modeling of observed stellar sys-
tems, such as clusters of galaxies.

APPENDIX

DERIVATION OF THE AUGMENTED MOMENTS

In a spherical dynamical model, the anisotropic velocity
moments of the DF are

μ2n,2m(r) = 2πMtot

∫ +∞

−∞
dvr

∫ +∞

0
F (E,L) v2n

r v2m+1
T dvT .

(A1)

Using the augmented density formalism, these moments can be
calculated as μ2n,2m(r) = μ̃2n,2m(ψ(r), r), with

μ̃2n,2m(ψ, r) = 2m+n

√
π

Γ
(
n + 1

2

)
Γ(m + n)

∫ ψ

0
(ψ − ψ ′)m+n−1

× Dm
r2 [r2mρ̃(ψ ′, r)] dψ ′, (A2)

where Dm
x denotes the mth differentiation with respect to x.

Applying this to our base functions in Equation (44), we obtain
for the augmented second-order moments

μ̃20,i(ψ, r) = ρ0iψ0

si

(
r

ra

)−2β0
(

1 +
r2δ

r2δ
a

)βδ

× By

(
1 + pi

si

, 1 + qi

)
, (A3)

with y = (ψ/ψ0)si , and

μ̃02,i(ψ, r) = 2(1 − β(r)) μ̃20,i(ψ, r). (A4)

The augmented fourth-order moments have the form

μ̃40,i(ψ, r) = 3ρ0iψ
2
0

si

(
r

ra

)−2β0
(

1 +
r2δ

r2δ
a

)βδ

×
[

ψ

ψ0
By

(
1 + pi

si

, 1 + qi

)

− By

(
2 + pi

si

, 1 + qi

)]
, (A5)

μ̃22,i(ψ, r) = 2(1 − β(r)) μ̃40,i(ψ, r), (A6)

μ̃04,i(ψ, r) = 2

3

[
(1 − β(r)) (2 − β(r))

− 1

βδ

(β0 − β(r)) (β∞ − β(r))

]
× μ̃40,i(ψ, r). (A7)

The true velocity moments are connected with the anisotropic
velocity moments through the relation

μ̃2l,2m,2n(ψ, r) = 1

π
B

(
m +

1

2
, n +

1

2

)
μ̃2l,2(m+n)(ψ, r),

(A8)
so that

ρσ 2
r (r) = μ200(r) =

N∑
i=1

aN,i μ̃20,i(ψ(r), r), (A9)

ρσ 2
θ (r) = μ020(r) = 1

2

N∑
i=1

aN,i μ̃02,i(ψ(r), r), (A10)

ρ
〈
v4

r

〉
(r) = μ400(r) =

N∑
i=1

aN,i μ̃40,i(ψ(r), r), (A11)

ρ
〈
v4

θ

〉
(r) = μ040(r) = 3

4

N∑
i=1

aN,i μ̃04,i (ψ(r), r) . (A12)
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Finally, the fourth-order anisotropy profile can be derived by
combining Equations (A7), (A11), and (A12),

β4(r) = 1 −
〈
v4

θ

〉
〈
v4

r

〉 (r) = 1

2
β(r) (3 − β(r))

+
1

2βδ

(β0 − β(r)) (β∞ − β(r)) . (A13)
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