
A&A 554, A10 (2013)
DOI: 10.1051/0004-6361/201220854
c© ESO 2013

Astronomy
&

Astrophysics

Using hierarchical octrees
in Monte Carlo radiative transfer simulations

(Research Note)

W. Saftly1, P. Camps1, M. Baes1, K. D. Gordon2,1, S. Vandewoude1, A. Rahimi3, and M. Stalevski1,4,5

1 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, 9000 Gent, Belgium
e-mail: waad.saftly@ugent.be

2 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
3 National Astronomical Observatories, Chinese Academy of Sciences, 100012 Beijing, PR China
4 Astronomical Observatory, Volgina 7, 11060 Belgrade, Serbia
5 Isaac Newton Institute of Chile, Yugoslavia Branch, Volgina 7, 11060 Belgrade, Serbia

Received 5 December 2012 / Accepted 3 April 2013

ABSTRACT

A crucial aspect of 3D Monte Carlo radiative transfer is the choice of the spatial grid used to partition the dusty medium. We critically
investigate the use of octree grids in Monte Carlo dust radiative transfer, with two different octree construction algorithms (regular
and barycentric subdivision) and three different octree traversal algorithms (top-down, neighbour list, and the bookkeeping method).
In general, regular octree grids need higher levels of subdivision compared to the barycentric grids for a fixed maximum cell mass
threshold criterion. The total number of grid cells, however, depends on the geometry of the model. Surprisingly, regular octree grid
simulations turn out to be 10 to 20% more efficient in run time than the barycentric grid simulations, even for those cases where the
latter contain fewer grid cells than the former. Furthermore, we find that storing neighbour lists for each cell in an octree, ordered
according to decreasing overlap area, is worth the additional memory and implementation overhead: using neighbour lists can cut
down the grid traversal by 20% compared to the traditional top-down method. In conclusion, the combination of a regular node
subdivision and the neighbour list method results in the most efficient octree structure for Monte Carlo radiative transfer simulations.

Key words. radiative transfer – methods: numerical

1. Introduction

Cosmic dust is present in and around many astrophysical
systems, ranging from planetary and stellar atmospheres to
the diffuse interstellar medium in galaxies. Dust grains have a
profound effect on the radiation field, as they efficiently scat-
ter, absorb, and re-emit radiation from these sources. Radiative
transfer calculations are required if we want to understand the
intrinsic properties of dusty objects, or predict the observable
properties of artificial systems simulated using hydrodynamical
simulations. In the past decade, several codes have been devel-
oped that can handle the full dust radiative transfer problem in a
general 3D geometry; for a general overview of 3D dust radiative
transfer we refer to Steinacker et al. (2013).

Virtually all 3D radiative transfer codes are based on the
Monte Carlo technique1 (e.g. Gordon et al. 2001; Juvela &
Padoan 2003; Wolf 2003; Jonsson 2006; Pinte et al. 2006; Baes
et al. 2011; Robitaille 2011). In Monte Carlo dust radiative trans-
fer simulations, the dusty medium is divided into a large num-
ber of tiny grid cells. Each of these cells is typically character-
ized by a constant dust density, temperature, radiation field, etc.
Their size sets the effective resolution of the simulation. On the
1 Monte Carlo techniques have been applied to different 3D trans-
port problems, including neutron, neutrino, UV ionizing radiation,
and Lyα radiation transport (e.g. Ciardi et al. 2001; Wood et al.
2004; Verhamme et al. 2006; Tasitsiomi 2006; Laursen et al. 2009;
Abdikamalov et al. 2012). The focus of this Research Note is on
dust radiative transfer, but the results are equally applicable to other
Monte Carlo transport problems.

one hand, it is useful to maximize the number of cells, in or-
der to obtain the highest resolution possible. On the other hand,
the memory requirements and run time of the simulation scales
as O(N1/3) to O(N) with N the number of grid cells, which puts
a limit to this number. The choice of the grid structure is, there-
fore, a crucial ingredient of a modern 3D radiative transfer sim-
ulation. Ideally, the size of the grid cells should be linked to the
dust mass, optical depth or temperature of the dusty medium: the
cells should be small where the dust density is high or the radi-
ation field shows a large gradient, and they can be bigger where
the dust density is low and the radiation field does not change
significantly.

The most popular candidate for such grid structures are hi-
erarchical octree grids, in which the 3D space is partitioned
by recursively subdividing it into eight subcubes. Octrees are
widely used in all areas of science and engineering, especially in
computer graphics and 3D game engines (Jackins & Tanimoto
1980). In astronomy, they are most popular in N-body and
hydrodynamics codes (Barnes & Hut 1986; Hernquist 1987;
Hernquist & Katz 1989; Teyssier 2002; Springel 2005). Octree
grid structures, or more general hierarchical grid-in-grid struc-
tures, have now been implemented in several Monte Carlo
dust radiative transfer codes (e.g. Kurosawa & Hillier 2001;
Wolf 2003; Harries et al. 2004; Jonsson 2006; Bianchi 2008;
Niccolini & Alcolea 2006; Robitaille 2011; Heymann &
Siebenmorgen 2012; Lunttila & Juvela 2012), and UV ioniza-
tion and Lyα transfer codes (e.g. Tasitsiomi 2006; Laursen et al.
2009).

Article published by EDP Sciences A10, page 1 of 6

http://dx.doi.org/10.1051/0004-6361/201220854
http://www.aanda.org
http://www.edpsciences.org


A&A 554, A10 (2013)

In this Research Note we investigate two different aspects
of the use of octree grid structures in 3D Monte Carlo radiative
transfer simulations. The first aspect concerns the construction
of the grid, and more specifically the way dust cells are subdi-
vided. All radiative transfer codes with octree dust grids subdi-
vide the cells in a regular way, whereas we investigate whether a
barycentric subdivision is more efficient. Second, we concentrate
on the traversal of photon packages through the dust grid. Most
Monte Carlo codes use a simple top-down method to traverse the
octree. Other bottom-up octree traversal algorithms have been
developed in the field of computer graphics and it remains to be
investigated whether these might be more efficient in the con-
text of radiative transfer simulations. In Sect. 2 we present the
algorithms proposed for the construction of the octree and the
traversal of photon packages through the octree. In Sect. 3 we
present three different test models on which we test the different
algorithms. In Sect. 4 we present the results of our simulations,
and in Sect. 5 we present the conclusion.

2. Octree algorithms

2.1. Construction of the octree grid

We have implemented an octree dust grid structure in the SKIRT
Monte Carlo radiative transfer code (Baes et al. 2003, 2011)
based on a dust mass threshold, in the sense that each dust
cell (i.e. each leaf node in the tree) can contain at most a frac-
tion δmax of the total dust mass in the system. The construction
of the octree grid is done as it is in most other radiative trans-
fer codes with octrees (Kurosawa & Hillier 2001; Wolf 2003;
Harries et al. 2004; Bianchi 2008) and is very straightforward.
We create a list of nodes over which we run a loop. The first
node in the list is a cuboidal root node that encloses the entire
dusty medium. While running the loop, we test whether each
node should be subdivided by calculating the ratio δ = M/Mtot,
where M is the estimated dust mass in the node (determined us-
ing a Monte Carlo integration) and Mtot is the total dust mass
in the system. If δ < δmax there is no subdivision, the node is
a leaf node and hence an actual dust cell. On the other hand, if
δ > δmax, we partition the node into eight subnodes and append
them at the end of the node list. In either case, we subsequently
move to the next node in the node list and repeat the same test.
This loop is repeated until the entire list of nodes is finished.

2.2. Octree subdivision

Standard octree algorithms subdivide each node by taking the
centre of the node as the subdivision point, such that all eight
subnodes of a node have the same size (and in general, all nodes
corresponding to the same level of subdivision have exactly the
same dimensions). We denote this method as regular subdivi-
sion. One might wonder whether this is the ideal situation. In a
node with a large density gradient, applying a regular subdivi-
sion might result in a set of eight subnodes in which nearly all
the dust mass is concentrated in only one of the subnodes, which
might lead to frequent nested subdivision. An alternative could
be to choose the division point of the node such that the mass
distribution is divided more or less equally over the eight subn-
odes. This can be achieved by choosing the barycentre rather
than the geometrical centre of the node as the subdivision point.
With a barycentric subdivision, one would expect to be able to
zoom in faster on high density regions. It is straightforward to
see that both the memory penalty and the computational cost are

minimal compared to the complete simulation memory require-
ment and run time.

2.3. Octree traversal

During a Monte Carlo simulation, the life cycle of every photon
package implies the calculation of several random straight paths
through the dust grid. This essentially comes down to the deter-
mination of the ordered list of dust cells that the path intersects
and the physical distance covered in each individual cell. As a
Monte Carlo simulation typically follows many millions of pho-
ton packages, it is obvious that this task should be implemented
as efficiently as possible.

The grid traversal is a loop that consists of a repetition of two
simple steps. The first step is to determine in which cell the ini-
tial path position is located, and the next step is to follow the path
to the boundary of the cell while recording the covered distance.
While the second step is straightforward, the first step is less so
in an octree grid structure. Actually, the traversal of rays in oc-
trees has been a topic of investigation in the computer graphics
literature (e.g. Glassner 1984; Amanatides & Woo 1987; Samet
1989, 1990; Agate et al. 1991; Revelles et al. 2000; Frisken &
Perry 2002). Loosely based on these methods, we have imple-
mented three different methods to perform octree traversal as
appropriate for Monte Carlo radiative transfer simulations.

The most straightforward method to traverse an octree grid
is a top-down method (Glassner 1984). The idea of this method
is simple: once a photon package hits the boundary of a cell and
we have determined the new position (which is now in a yet
unidentified cell), we start from the root node and descend the
tree. For every node along the tree, we determine in which of
its subnodes the new position is located. This loop ends when
the node is a leaf node, i.e. an actual dust cell. This top-down
method is very easy to implement, and it does not depend on
whether the subdivision is regular or barycentric. This algorithm
is implemented in most Monte Carlo radiative transfer codes that
operate on octree grids (e.g. Kurosawa & Hillier 2001; Bianchi
2008).

An alternative method of traversing an octree makes use of
a list of the neighbouring cells of each node. This method was
first advocated by Samet (1989, 1990) in the frame of computer
graphics ray-tracing. Instead of blindly looking for the cell that
contains the position of the photon package once it has traversed
a cell wall, we make use of the fact that the yet unknown cell
is a neighbour of the previous dust cell. In our implementation,
every dust cell contains six different lists (one for each cell wall)
with pointers to the neighbouring cells, ordered by decreasing
area of overlap. If we know through which wall the photon pack-
age has escaped the previous cell, we just have to go down the
corresponding list of neighbour cells. This algorithm is straight-
forward and simple to implement, and again is applicable both
to regular and barycentric octree grids. The additional memory
usage of this method is usually not a problem: six pointer lists
need to be stored for each cell (one list for every cell wall). For
typical dust radiative transfer simulations that require the stor-
age of many properties per cell, this is a negligible addition.
Moreover, the neighbour lists can be created in a very straight-
forward way during the construction of the octree grid, with
very limited computational overhead. For the computations we
discuss in this work, the computational overhead is less than
1 per cent of the simulation time; for realistic simulations, the
relative overhead will be even much smaller.

Finally, we explored a third method of traversing an octree
grid that is inspired by the work of Frisken & Perry (2002) and

A10, page 2 of 6



W. Saftly et al.: Octrees in Monte Carlo radiative transfer (RN)

which we denote as the bookkeeping method. One of the draw-
backs of the top-down method is that, for every passage through
a wall, the search for the new cell has to start from the root node.
This is unfortunate, as we often know in which branch of the
tree the next position will be: indeed each node in the octree has
a place-awareness, i.e. the knowledge of its position as a subnode
with respect to its sibling nodes. If a transition is internal, i.e. if
the path crosses a cell wall that does not leave the parent cell, we
know that the next cell is one of its siblings (or its children if the
sibling is not a leaf node). A slightly more difficult case occurs
when the transition through a wall is not an internal transition.
One option could be to start the search then from the root node
as in the standard top-down method. An alternative, which we
have implemented, is to iteratively go up the tree starting from
the current node until the transition is an internal transition, and
then iteratively descend the tree until the node is a leaf node. Of
the three methods presented, this method is the most complex in
terms of implementation. However, it is still very manageable,
it implies no memory overhead or additional computations, and
it is, again, applicable to regular as well as barycentric octree
grids.

3. Test models

To test these algorithms, we have considered three different chal-
lenging test models. They were chosen to accommodate a vari-
ety of possible geometries that can be encountered in realistic
3D Monte Carlo radiative transfer simulations.

Our first model is an idealized model for a disc galaxy
with a three-armed logarithmic spiral structure. This model is
completely analytical and is inspired by the models used by
Misiriotis et al. (2000) and Schechtman-Rook et al. (2012). Stars
in the model galaxy are distributed in two components: a double-
exponential disk with a spiral arm perturbation, and a flattened
Sérsic bulge. The dust is only distributed in a double-exponential
disc; with a spiral perturbation. For the parameters of the stellar
and dust distribution, we used typical values applicable for spi-
ral galaxies (Kregel et al. 2002; Hunt et al. 2004; Cortese et al.
2012); for other parameters, we were specifically inspired by the
results obtained from radiative transfer fits to nearby edge-on
spiral galaxies (Xilouris et al. 1999; Bianchi 2007; Baes et al.
2010) and (MacLachlan et al. 2011). An illustration of the dust
density in the central plane of the galaxy is shown on the top left
panel of Fig. 1.

Our second test model is a model for the central region
of an active galactic nucleus (AGN), and consists of a central,
isotropic source surrounded by an optically thick dust torus. It is
similar to the AGN torus models presented by Stalevski et al.
(2012), in that it consists of a number of compact and opti-
cally thick clumps embedded in a smooth interclump medium.
Contrary to the approach adopted by Stalevski et al. (2012),
where the two-phase clumpy medium was generated in a sta-
tistical way by applying a clumpiness algorithm (Boissé 1990;
Witt & Gordon 1996; Wolf et al. 1998), we now consider a torus
model consisting of a smooth distribution of dust to which we
add 4000 individual clumps (as in Bianchi 2008). An illustration
of the dust density in the xz plane of the model is shown on the
central left panel of Fig. 1.

The last test model we use is a completely numerical spi-
ral galaxy model created by means of a hydrodynamic simula-
tion. The galaxy model we consider is the 1 Gyr snapshot of
model run number 6 from Rahimi & Kawata (2012), which rep-
resents an M33-sized late-type spiral galaxy. It was run using

the N-body/SPH code GCD+ (Kawata et al. 2012) in a fixed
dark matter halo, and includes self-gravity, hydrodynamics, ra-
diative cooling, star formation, supernova feedback, metal en-
richment and metal diffusion. The snapshot is characterized by
410 372 stellar particles and 189 628 gas particles. For the cal-
culation of the dust mass density distribution, we follow the ap-
proach of Jonsson et al. (2010) and assume that, at every position
in the galaxy, a fixed fraction of the metal content is locked in
dust grains. To obtain the dust density at a given position, we
interpolate the metal density over the SPH gas particles and use
a metal depletion in the dust grains of 40% (Dwek 1998). The
resulting dust mass density in the equatorial plane of the galaxy
can be seen in the bottom left panel of Fig. 1. The holes and bub-
bles caused by the feedback from supernovae and stellar winds
are clearly visible.

4. Results

In this section we compare the statistics on the number of cells in
the different models, and the efficiency of the path calculations
within the different grids. We stress that the different grid struc-
tures for the six models (i.e. three geometries, each with regular
and barycentric octree subdivision) have been constructed based
on exactly the same criterion (δmax = 10−6).

Intuitively, one would expect that the barycentric subdivi-
sion is more efficient in following the mass distribution. When a
node is subdivided with the barycentre as the subdivision point,
the mass of the parent node is redistributed more or less equally
among the eight child subnodes. This means that the subdivision
needs to be repeated less often in the barycentric case compared
to the regular case. This is confirmed in Row 5 of Table 1, which
shows that the average level of a cell in the barycentric grids is
about 7.6, whereas it is about 8.6 for the regular grids.

Surprisingly at first sight, this does not systematically lead
to a smaller total number of cells in the barycentric grids com-
pared to the equivalent regular octree grids (Row 4 of Table 1).
For the spiral galaxy model, the smoothest of the three test ge-
ometries, the barycentric grid contains some 3% fewer cells than
the regular grid. For the AGN torus and the SPH galaxy models,
with their strong density gradients, the barycentric grids con-
tains more cells than the regular grids, with differences of 11%
and 2% respectively.

To understand this, consider a subnode with δ = 10 δmax and
a strong density gradient within the cell. In the barycentric oc-
tree, this cell will be subdivided and each of the subnodes will
contain approximately δ ≈ 1.25 δmax, which means they will
all be subdivided again, resulting in 64 cells in total. In a reg-
ular grid, it is possible that one subnode contains most of the
mass and the remaining seven subnodes do not need to subdi-
vided again. Most probably, several (but not all) of the children
of this one subnode will have to subdivided again. This could
lead to a set of leaf cells with, on average, a deeper level of sub-
division, but the total number of cells could be either less or
more compared to the barycentric grid, subtly depending on the
distribution of the density within the cell.

The main goal of this Research Note is to find the most effi-
cient algorithm for the grid construction and traversal. We tested
the efficiency by doing accurate timings of the Monte Carlo rou-
tine, for each of the 18 models in our test suite (i.e. for the
three geometries, the two grid subdivision methods, and the
three grid traversal algorithms). Obtaining precise and repeat-
able timings is trickier than it might seem, as even in single-
thread simulations modern hardware features can complicate
matters. We performed our timing tests on a server installed in

A10, page 3 of 6



A&A 554, A10 (2013)

Fig. 1. Illustration of the geometry and the octree grid structures for the three test models: the logarithmic spiral galaxy (top row), the AGN torus
(middle row), and the galaxy from an SPH simulation (bottom row). In each row, the left column represents a cut through the dust density. For the
two galaxy models, this cut corresponds to the xy plane; for the AGN torus model it is a cut through the xz plane. The central and right columns
are cuts through the octree grids corresponding to the same planes, and correspond to the regular and barycentric subdivision recipes, respectively.
The different shades of gray in the middle and right columns illustrate the density of the cells: darker gray means higher density.

Table 1. Statistics of the different models and grids.

Spiral galaxy AGN torus SPH galaxy
regular barycentric regular barycentric regular barycentric

Top-down run time (s) 878 975 1171 1350 1142 1322
Neighbour list run time (s) 713 800 938 1104 897 1082
Bookkeeping run time (s) 893 1006 1168 1374 1117 1351
Number of cells 3 252 264 3 150 295 3 050 573 3 383 906 3 315 075 3 373 280
Average level of each cell 8.37 7.45 7.99 7.56 9.48 7.82
Average level of each cell crossed 7.84 7.29 7.67 7.19 8.84 7.38
Average number of paths per photon package 3.69 3.70 1.85 1.99 3.76 3.76
Average number of cells crossed per path 94.8 102.5 126.9 139.7 124.8 150.3
Average number of neighbours per wall 1.02 1.87 1.06 1.85 1.03 1.87
Average number of neighbours per wall crossed 1.01 1.95 1.22 2.15 1.07 2.04
Average number of neighbours tested per wall crossed 1.01 1.14 1.10 1.20 1.03 1.17

A10, page 4 of 6

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201220854&pdf_id=1


W. Saftly et al.: Octrees in Monte Carlo radiative transfer (RN)

a temperature-controlled room, in a single execution thread on
otherwise idle computers. Numbering the 18 tests from 1 to 18,
we ran the sequence 1–18, 1–18, 18–1. The timing variations be-
tween the three runs turned out to be less than 2 s for each simu-
lation, well below the differences between the various methods.

The average run times for each of the different runs2 can
be found in the top three rows of Table 1. Ignoring intrica-
cies such as loop overhead, the run time of each simulation can
schematically be written as

trun = Npp〈Npath〉
[
〈tlaunch〉 + 〈Ncross〉

(
〈tid〉 + 〈tcross〉

)]
, (1)

where Npp is the total number of photon packages in the simula-
tion, 〈Npath〉 is the average number of random straight paths in a
photon package, 〈tlaunch〉 is the average time needed to generate
the starting location and orientation of a path, 〈Ncross〉 is the av-
erage number of cells crossed by a path, 〈tid〉 is the average time
necessary to identify the next cell along the path, and 〈tcross〉 is
the average time necessary to cross this cell (i.e. to find the exit
point and the covered pathlength within the cell). Of these six
factors, Npp is the same for all runs, and 〈tcross〉 is nearly iden-
tical (tiny differences can occur because of cache misses). The
quantities 〈Npath〉 and 〈tlaunch〉 are similar for all runs correspond-
ing to a given test model. Furthermore, 〈tlaunch〉 is expected to
be small compared to the grid traversal, which was indeed con-
firmed in separate timing experiments. For a fixed geometry, the
differences in run time are therefore dominated by differences
in 〈Ncross〉 and 〈tid〉, where the former depends only on the grid
subdivision method (regular or barycentric), and the latter de-
pends on both the grid subdivision method and the grid traversal
method.

The first clear result that we find from a comparison of the
run times listed in Table 1, is that for all simulations in our suite,
the neighbour list algorithm is the fastest method to traverse pho-
ton packages through the dust grid. It is faster than the other two
methods, which are almost equally efficient, by about 20%. For
the neighbour list method, 〈tid〉 is proportional to the number of
neighbouring dust cells that needs to be tested every time a cell
is crossed. In this respect, it is important to make the distinc-
tion between the average number of neighbours of each cell wall
(Row 9 in Table 1), the average number of neighbours of every
wall crossed (Row 10) and the number of neighbours that need
to be tested for each crossing (Row 11). These statistics turn
out to be substantially different, because some cells are crossed
more often than others and because neighbouring cells with the
largest overlap area are tested first in the neighbour search algo-
rithm. The ordering of the neighbour list by overlapping surface
area makes the neighbour list algorithm extremely efficient.

Another remarkable result is that simulations with a barycen-
tric grid are always slower than the corresponding simulations
with a regular grid, even if the number of cells in the barycen-
tric grid is smaller than in the regular grid. At first sight, this is
surprising. Consider, for example, the top-down method, where
〈tid〉 is proportional to the average level of every cell crossed.
As the average level of each cell in a barycentric grid is lower

2 Octree construction times are not considered in this table. In the
current SKIRT implementation (which was not optimized for octree
construction, as this needs to be done only once for each simulation),
the octree construction time is a few minutes at most (depending on
the complexity of the dust density field), whereas a typical full-scale ra-
diative transfer simulation can last several hours. In other applications
where the efficiency of the octree construction is important, more ad-
vanced tree construction algorithms can be applied (Sundar et al. 2008;
Burstedde et al. 2011).

than in a regular grid (Rows 5 and 6 in Table 1), one would ex-
pect the barycentric grid to be more efficient than the regular
grid. However, the difference in 〈Ncross〉, i.e. the average num-
ber of cells crossed per path, means that the opposite is true.
Row 8 of Table 1 shows that 〈Ncross〉 is indeed systematically
larger for the barycentric octrees compared to the corresponding
regular octrees. The reason for the difference in 〈Ncross〉 (and so
in efficiency) is geometrical in nature. By construction, barycen-
tric grids are more irregular in structure, with more neighbours
per cell wall. In a regular grid, every cell has, on average, only
1.03 neighbours per wall, whereas the barycentric grid cells
have, on average, 1.86 neighbours per wall. Having more neigh-
bours and a more irregular distribution also leads to shorter paths
crossed per cell and so more cells along each path.

5. Discussion and conclusion

In this Research Note, we have critically investigated the use of
hierarchical octree grids to partition a dusty medium in the frame
of 3D dust radiative transfer codes, but the results are equally ap-
plicable to other Monte Carlo transport problems. Octree grids
can refine the gridding in higher density regions without the need
to create undesirable dust cells in low density regions. We have
implemented a flexible octree structure in the 3D Monte Carlo
code SKIRT (Baes et al. 2003, 2011), which allows for either a
regular or a barycentric iterative subdivision of the cells. We im-
plemented two alternative methods for octree traversal (neigh-
bour list search and bookkeeping), and we compared them with
a more straightforward top-down method. We ran simulations on
three representative astrophysical models (spiral galaxy model,
clumpy AGN torus, and galaxy from SPH simulation) to test the
efficiency of the octree construction types and the traversal meth-
ods in typical Monte Carlo radiative transfer environments.

Our main conclusions are the following:

1. A barycentric subdivision leads to a lower average level of
subdivision compared to regular subdivision. This, however,
does not directly imply that barycentric octree grids contain
fewer dust cells than the corresponding regular grids.

2. The neighbour list method is consistently the most efficient
way to calculate paths through an octree, with a 20% advan-
tage compared to the other two methods. The efficiency of
the neighbour list method is achieved in part by ordering the
neighbour lists according to decreasing overlap area.

3. Octree traversal is less efficient in barycentric octrees than in
the corresponding regular octrees in all cases, even for simu-
lations in which the regular grid contains more grid cells. The
reason is the average number of grid cells crossed by a path,
which is significantly larger in barycentric grids compared to
the corresponding regular octree grids.

Based on the above, we conclude that, while they are designed
to follow the mass distribution more closely, barycentric octree
grids are less efficient than regular octree grids, and we strongly
recommend the neighbour list method as the preferred method to
traverse octrees in the frame of 3D radiative transfer simulations.

Taking a step back, the underlying goal of this research is to
find better ways for partitioning a dusty medium into cells in the
context of a 3D Monte Carlo RT simulation. We have considered
a criterion based on the mass in each cell. Is this the best possible
criterion? One could consider an alternative criterion based on
the density gradient within each cell. This may be particularly in-
teresting for a density distribution with strong gradients or sharp
boundaries such as the AGN torus model, where the barycentric

A10, page 5 of 6



A&A 554, A10 (2013)

grid subdivision results in large elongated grid cells in regions
with a sharp boundary (see Fig. 1). Furthermore, for radiative
transfer simulations including thermal emission, the ideal grid
depends not only on the dust density, but also on the mean inten-
sity of the radiation field, which can only be determined through
the radiative transfer simulation itself. Possible ways to deal with
this include using knowledge of the source function when con-
structing the dust grid (Stamatellos & Whitworth 2005), or re-
fining the grid structure based on low-resolution pre-calculations
(Niccolini & Alcolea 2006). The most general approach is prob-
ably to use an iterative scheme for the determination of the grid:
start with an initial grid structure derived from the dust density
field (based on total mass and/or density gradient), determine
the radiation field in every cell using the radiative transfer sim-
ulation, and iteratively refine/redetermine the grid based on the
properties of the cell-to-cell variance of the radiation field. This
is beyond the scope of the present Research Note and may be
investigated in future work.

Acknowledgements. We thank the referee for his/her constructive referee report
that improved the content and presentation of this Research Note. W.S. acknowl-
edges the support of Al-Baath University and The Ministry of High Education
in Syria in the form of a research grant. This work fits in the CHARM frame-
work (Contemporary physical challenges in Heliospheric and AstRophysical
Models), a phase VII Interuniversity Attraction Pole (IAP) programme organised
by BELSPO, the BELgian federal Science Policy Office. M.S. acknowledges the
support of the Ministry of Education, Science and Technological Development
of the Republic of Serbia through the projects “Astrophysical Spectroscopy of
Extragalactic Objects” (176001) and “Gravitation and the Large Scale Structure
of the Universe” (176003).

References
Abdikamalov, E., Burrows, A., Ott, C. D., et al. 2012, ApJ, 755, 111
Agate, M., Grimsdale, R. L., & Lister, P. F. 1991, in Advances in Computer

Graphics Hardware IV, Eurographics’89 Workshop, (London, UK: Springer-
Verlag), 61

Amanatides, J., & Woo, A. 1987, in Eurographics, 87, 3
Baes, M., Davies, J. I., Dejonghe, H., et al. 2003, MNRAS, 343, 1081
Baes, M., Fritz, J., Gadotti, D. A., et al. 2010, A&A, 518, L39
Baes, M., Verstappen, J., De Looze, I., et al. 2011, ApJS, 196, 22
Barnes, J., & Hut, P. 1986, Nature, 324, 446
Bianchi, S. 2007, A&A, 471, 765
Bianchi, S. 2008, A&A, 490, 461
Boissé, P. 1990, A&A, 228, 483
Burstedde, C., Wilcox, L. C., & Ghattas, O. 2011, SIAM J. Sci. Comput., 33,

1103

Ciardi, B., Ferrara, A., Marri, S., & Raimondo, G. 2001, MNRAS, 324, 381
Cortese, L., Ciesla, L., Boselli, A., et al. 2012, A&A, 540, A52
Dwek, E. 1998, ApJ, 501, 643
Frisken, S. F., & Perry, R. N. 2002, J. Graphics Tools, 7, 2002
Glassner, A. S. 1984, IEEE Comput. Graph. Appl., 4, 15
Gordon, K. D., Misselt, K. A., Witt, A. N., & Clayton, G. C. 2001, ApJ, 551,

269
Harries, T. J., Monnier, J. D., Symington, N. H., & Kurosawa, R. 2004, MNRAS,

350, 565
Hernquist, L. 1987, ApJS, 64, 715
Hernquist, L., & Katz, N. 1989, ApJS, 70, 419
Heymann, F., & Siebenmorgen, R. 2012, ApJ, 751, 27
Hunt, L. K., Pierini, D., & Giovanardi, C. 2004, A&A, 414, 905
Jackins, C. L., & Tanimoto, S. L. 1980, Computer Graphics and Image

Processing, 14, 249
Jonsson, P. 2006, MNRAS, 372, 2
Jonsson, P., Groves, B. A., & Cox, T. J. 2010, MNRAS, 403, 17
Juvela, M., & Padoan, P. 2003, A&A, 397, 201
Kawata, D., Okamoto, T., Gibson, B. K., Barnes, D. J., & Cen, R. 2012, MNRAS,

115
Kregel, M., van der Kruit, P. C., & de Grijs, R. 2002, MNRAS, 334, 646
Kurosawa, R., & Hillier, D. J. 2001, A&A, 379, 336
Laursen, P., Razoumov, A. O., & Sommer-Larsen, J. 2009, ApJ, 696, 853
Lunttila, T., & Juvela, M. 2012, A&A, 544, A52
MacLachlan, J. M., Matthews, L. D., Wood, K., & Gallagher, J. S. 2011, ApJ,

741, 6
Misiriotis, A., Kylafis, N. D., Papamastorakis, J., & Xilouris, E. M. 2000, A&A,

353, 117
Niccolini, G., & Alcolea, J. 2006, A&A, 456, 1
Pinte, C., Ménard, F., Duchêne, G., & Bastien, P. 2006, A&A, 459, 797
Rahimi, A., & Kawata, D. 2012, MNRAS, 422, 2609
Revelles, J., Ureña, C., & Lastra, M. 2000, J. of WSCG, 8, 212
Robitaille, T. P. 2011, A&A, 536, A79
Samet, H. 1989, Computers and Graphics, 13, 445
Samet, H. 1990, Applications of spatial data structures: Computer graphics,

image processing, and GIS (Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc.)

Schechtman-Rook, A., Bershady, M. A., & Wood, K. 2012, ApJ, 746, 70
Springel, V. 2005, MNRAS, 364, 1105
Stalevski, M., Fritz, J., Baes, M., Nakos, T., & Popović, L. Č. 2012, MNRAS,

420, 2756
Stamatellos, D., & Whitworth, A. P. 2005, A&A, 439, 153
Steinacker, J., Baes, M., & Gordon, K. D. 2013, ARA&A, 51, in press
Sundar, H., Sampath, R. S., & Biros, G. 2008, SIAM J. Sci. Comput., 30, 2675
Tasitsiomi, A. 2006, ApJ, 645, 792
Teyssier, R. 2002, A&A, 385, 337
Verhamme, A., Schaerer, D., & Maselli, A. 2006, A&A, 460, 397
Witt, A. N., & Gordon, K. D. 1996, ApJ, 463, 681
Wolf, S. 2003, Comp. Phys. Comm., 150, 99
Wolf, S., Fischer, O., & Pfau, W. 1998, A&A, 340, 103
Wood, K., Mathis, J. S., & Ercolano, B. 2004, MNRAS, 348, 1337
Xilouris, E. M., Byun, Y. I., Kylafis, N. D., Paleologou, E. V., & Papamastorakis,

J. 1999, A&A, 344, 868

A10, page 6 of 6


	Introduction
	Octree algorithms
	Construction of the octree grid
	Octree subdivision
	Octree traversal

	Test models
	Results
	Discussion and conclusion
	References

