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ABSTRACT

Polarization is an important tool to further the understanding of interstellar dust and the sources behind it. In this paper we describe
our implementation of polarization that is due to scattering of light by spherical grains and electrons in the dust Monte Carlo radiative
transfer code SKIRT. In contrast to the implementations of other Monte Carlo radiative transfer codes, ours uses co-moving reference
frames that rely solely on the scattering processes. It fully supports the peel-o↵ mechanism that is crucial for the e�cient calculation
of images in 3D Monte Carlo codes. We develop reproducible test cases that push the limits of our code. The results of our program are
validated by comparison with analytically calculated solutions. Additionally, we compare results of our code to previously published
results. We apply our method to models of dusty spiral galaxies at near-infrared and optical wavelengths. We calculate polarization
degree maps and show them to contain signatures that trace characteristics of the dust arms independent of the inclination or rotation
of the galaxy.
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1. Introduction

Many astronomical objects contain or are shrouded by dust. Of-
ten, a non-negligible fraction of ultraviolet (UV) to near-infrared
(NIR) radiation emitted by embedded sources is scattered or ab-
sorbed by dust grains before leaving the system. Scattered radia-
tion is generally polarized. The polarization state of the light can
be used to deduce information about the grains that would not
be available using intensity measurements alone (Scicluna et al.
2015). There are indications that dust properties di↵er widely
and systematically between galaxies (Fitzpatrick & Massa 1990;
Gordon et al. 2003; Rémy-Ruyer et al. 2015; Dale et al. 2012;
De Vis et al. 2016) and that they can vary significantly within
a galaxy (Draine et al. 2014; Mattsson et al. 2014). Polarimet-
ric studies can help in constraining these properties. Theoretical
frameworks for modeling radiative transfer therefore usually in-
clude a section on polarization (see, e.g., Chandrasekhar 1950;
Van De Hulst 1957).

Numerical simulations of dust radiative transfer most com-
monly use the Monte Carlo technique (see, e.g., Whitney 2011;
Steinacker et al. 2013). Codes using this method track many in-
dividual photon packages as they propagate through the dusty
medium, simulating emission, scattering, and absorption events
based on random variables drawn from the appropriate probabil-
ity distributions. While it is conceptually straightforward to track
the polarization state of a photon package as part of this process,
there are many details to be considered, and the implementa-
tion complexity depends on the assumptions and approximations
one is willing to make. Moreover, the dust model used by the

code must provide the extra properties necessary to calculate the
changes to the polarization state for each interaction with a dust
grain.

As a result, various authors have made di↵erent choices
for implementing polarization in Monte Carlo radiative trans-
fer (MCRT) codes. Most commonly, the MCRT codes con-
sider only scattering by spherical dust grains (e.g., Bianchi et al.
1996; Pinte et al. 2006; Min et al. 2009; Robitaille 2011;
Goosmann et al. 2014). Some codes include more advanced sup-
port for polarization by absorption and scattering o↵ aligned
spheroids (Whitney & Wol↵ 2002; Lucas 2003; Reissl et al.
2016) and/or for polarized dust emission (Reissl et al. 2016).

To verify the correctness of the various polarization im-
plementations, authors sometimes compare the results between
codes (e.g. Pinte et al. 2009). Because of the variations in as-
sumptions and capabilities, however, such a comparison is tricky
and the “correct” result is usually simply assumed to be the re-
sult obtained by a majority of the codes. Even when the basic
assumptions about grain shape and alignment as well as the dust
mixture are the same and the codes support the same polarization
processes, comparing results is usually complicated.

In this paper we present a robust framework that is in-
dependent of a coordinate system for implementing polariza-
tion in a tree-dimensional (3D) MCRT code. The mathemati-
cal formulation and the numerical calculations in our method
rely solely on reference frames determined by the physical pro-
cesses under study (i.e., the propagation direction or the scatter-
ing plane) and not on those determined by the coordinate system
(i.e., the z-axis). This approach avoids numerical instabilities for
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special cases (i.e., a photon package propagating in the direc-
tion of the z-axis or close to it) and enables a more streamlined
implementation.

We have implemented this framework in SKIRT1 (Baes et al.
2003, 2011; Camps & Baes 2015), a versatile multipurpose
Monte Carlo dust radiative transfer code. It has been designed
and optimized for systems with a complex 3D structure, as
multiple components are configured separately and construct
a more complex model for the dust and/or radiation sources
(Baes & Camps 2015). The code is equipped with a range
of e�cient grid structures on which the dust can be spa-
tially discretized, including octree, k-d tree, and Voronoi grids
(Saftly et al. 2013, 2014; Camps et al. 2013). A powerful hybrid
parallelization scheme has been developed that guarantees an op-
timal speed-up and load balancing (Verstocken et al., in prep.),
and it opens up a wide range of possible polarization applica-
tions. In order to test the correct behavior and the accuracy of
our implementation, we have developed a number of analytical
test cases designed to validate polarization implementations in a
structured manner. Furthermore, we carefully match our polari-
metric conventions to the recommendations issued by the Inter-
national Astronomical Union (IAU 1974).

In large-scale dust systems complex geometries arise and
need to be handled by the codes. We first apply our method
to some elementary models of dusty disk galaxies, enabling a
qualitative comparison with the two-dimensional (2D) models
of Bianchi et al. (1996). We also perform the polarization part
of the Pinte et al. (2009) benchmark and compare with the pub-
lished results.

We then implement spiral arms into dusty disk galaxy mod-
els and show that this produces a marked polarimetric signa-
ture tracing the positions of the arms. Our current implemen-
tation supports only scattering by spherical grains. Dichroic
extinction and more complex grain shapes may also have
a strong influence (Voshchinnikov 2012; Siebenmorgen et al.
2014; Draine & Fraisse 2009) and will be supported in future
work.

In Sect. 2 we summarize the notation and conventions used
in this paper to describe the polarization state of electromagnetic
radiation, and we provide recipes for translation into other con-
ventions. We then present our method and its implementation
in Sect. 3, and the accompanying analytical test cases and their
results in Sect. 4. The application of our method to benchmark
tests is described in Sect. 5. The dusty spiral galaxy model is de-
scribed and implemented in Sect. 6. We summarize and conclude
in Sect. 7.

2. Polarization

2.1. Stokes vector

The polarization state of electromagnetic radiation is commonly
described by the Stokes vector, S (see, e.g., Van De Hulst 1957;
Chandrasekhar 1950; Bohren & Hu↵man 1998; Mishchenko
et al. 1999),

S =

0
BBBBBBBBBBB@

I

Q

U

V

1
CCCCCCCCCCCA
, (1)

where I represents the intensity of the radiation, Q and U de-
scribe linear polarization, and V describes circular polarization.
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Fig. 1. Illustration of the Stokes vector conventions recommended by
IAU (1974) and used in this paper. The radiation beam travels along
its propagation direction, k, out of the page. The electric field vector
describes an ellipse over time. The linear polarization angle, �, is given
by the angle between the primary axis of the ellipse (green line) and
the reference direction, d. The position angle of the electric field vector
increases with time, the beam has right-handed circular polarization.

The degrees of total and linear polarization, P and PL, can be
written as a function of the Stokes parameters,

P =
p

Q

2 + U

2 + V

2/I, (2)

PL =
p

Q

2 + U

2/I. (3)

The (linear) polarization angle, �, can be written as

� =
1
2

arctan2

 
U

Q

!
, (4)

where arctan2 denotes the inverse tangent function that preserves
the quadrant. Combining Eqs. (3) and (4), we can also write

Q = IPL cos 2�, (5a)
U = IPL sin 2�. (5b)

The values of Q and U depend on the polarization angle �, which
describes the angle between the direction of linear polarization
and a given reference direction, d, in the plane orthogonal to
the propagation direction, k. The angle is measured counter-
clockwise when looking at the source, as illustrated in Fig. 1.
A linear polarization angle in the range 0 < � < ⇡/2 implies a
positive U value. A radiation beam is said to have right-handed
circular polarization (with V > 0) when the electric field vec-
tor position angle increases with time, and left-handed when it
decreases.

The reference direction, d, can be chosen arbitrarily as long
as it is well defined and perpendicular to the propagation direc-
tion. However, when the polarization state changes as a result of
an interaction (e.g., a scattering event), most recipes for prop-
erly adjusting the Stokes vector require the reference direction
to have a specific orientation (e.g., lying in the scattering plane).
Before applying the recipe, the existing reference direction must
be rotated about the propagation direction to match this require-
ment. This is accomplished by multiplying the Stokes vector by
a rotation matrix, R('),

Snew = R(') S. (6)

A rotation about the direction of propagation by an angle ',
counter-clockwise when looking toward the source of the beam,
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is described by the matrix

R(') =

0
BBBBBBBBBBB@

1 0 0 0
0 cos 2' sin 2' 0
0 � sin 2' cos 2' 0
0 0 0 1

1
CCCCCCCCCCCA
. (7)

To record the polarization state change for a scattering event,
the Stokes vector is multiplied by the Müller matrix, M, corre-
sponding to the event, assuming that the reference direction lies
in the scattering plane (as well as in the plane orthogonal to the
propagation direction). The Müller matrix components depend
on the geometry of the scattering event and the physical proper-
ties of the scatterer, and they often depend on the wavelength. In
general, the Müller matrix is

M(✓, �) =

0
BBBBBBBBBBB@

S 11 S 12 S 13 S 14
S 21 S 22 S 23 S 24
S 31 S 32 S 33 S 34
S 41 S 42 S 43 S 44

1
CCCCCCCCCCCA
, (8)

where ✓ is the angle between the propagation directions before
and after the scattering event, and � is the wavelength of the
radiation. For clarity of presentation, we drop the dependencies
from the notation for the individual Müller matrix components.
Including the reference direction adjustments before and after
the actual scattering event, ' and 'new, the transformation of a
Stokes vector for a scattering event can thus be written as

Snew = R('new) M(✓, �) R(') S. (9)

For scattering by spherical particles, the Müller matrix simplifies
to (Krügel 2002)

MSph(✓, �) =

0
BBBBBBBBBBB@

S 11 S 12 0 0
S 12 S 11 0 0
0 0 S 33 S 34
0 0 �S 34 S 33

1
CCCCCCCCCCCA
, (10)

again assuming that the reference direction lies in the scattering
plane. The Müller matrices for a particular grain size and mate-
rial can be calculated using Mie theory (see e.g., Voshchinnikov
& Farafonov 1993; Bohren & Hu↵man 1998; Peña & Pal 2009).

For scattering by electrons, also called Thomson scattering,
the Müller matrix is wavelength-independent and can be ex-
pressed analytically as a function of the scattering angle (Bohren
& Hu↵man 1998),

MTh(✓) =
1
2

0
BBBBBBBBBBB@

cos2 ✓ + 1 cos2 ✓ � 1 0 0
cos2 ✓ � 1 cos2 ✓ + 1 0 0

0 0 2 cos ✓ 0
0 0 0 2 cos ✓

1
CCCCCCCCCCCA
. (11)

2.2. Conventions

In this paper we define the Stokes vector following the rec-
ommendations of the International Astronomical Union (IAU
1974), as presented in Sect. 2.1 and illustrated in Fig. 1. His-
torically, however, authors have used various conventions for the
signs of the Stokes parameters U and V (Hamaker & Bregman
1996, see also a recent IAU announcement2). For example, the
polarization angle � is sometimes measured while looking to-
ward the observer rather than toward the source, flipping the sign
2
http://iau.org/static/archives/announcements/pdf/

ann16004a.pdf

Table 1. Conventions adopted by various authors regarding the sign of
the Stokes parameters U and V relative to IAU (1974) (+U, +V).

+U �U

+V

IAU (1974) Chandrasekhar (1950)
Martin (1974) Van De Hulst (1957)
Tsang et al. (1985) Hovenier & Van der Mee (1983)*
Trippe (2014) Fischer et al. (1994)*

Code & Whitney (1995)*
Mishchenko et al. (1999)*
Gordon et al. (2001)*
Lucas (2003)
Górski et al. (2005)

�V

Shurcli↵ (1962) Bohren & Hu↵man (1998)
Bianchi et al. (1996)* Mishchenko et al. (2002)

Notes.

(⇤) Convention indicated by citing papers with this convention.

of both U and V . Reversing the definition of circular polarization
handedness also flips the sign of V . Table 1 lists a number of ref-
erences with the conventions adopted by the authors.

Assuming that the adopted conventions are properly docu-
mented, translating the values of the Stokes parameters from one
convention into another is straightforward – by flipping the signs
appropriately. When comparing or mixing formulas and recipes
constructed for di↵erent conventions, changes in the signs of U

and V a↵ect the sign of the Müller matrix components (Eq. (8))
in the third row and column and fourth row and column, respec-
tively. Mathematically this can be described by multiplying the
Müller matrix by signature matrices,

M+U,+V =

0
BBBBBBBBBBB@

1 0 0 0
0 1 0 0
0 0 � 0
0 0 0 &

1
CCCCCCCCCCCA

M�U,&V

0
BBBBBBBBBBB@

1 0 0 0
0 1 0 0
0 0 � 0
0 0 0 &

1
CCCCCCCCCCCA

(12)

=

0
BBBBBBBBBBB@

S 11 S 12 �S 13 &S 14
S 21 S 22 �S 23 &S 24
�S 31 �S 32 S 33 �&S 34
&S 41 &S 42 �&S 43 S 44

1
CCCCCCCCCCCA
, (13)

with � and & being +1 or �1. In case of the rotation matrix,
Eq. (7), this implies that the signs in front of the sine functions
change based on the chosen convention.

3. Method

3.1. SKIRT code

SKIRT (Baes et al. 2003, 2011; Camps & Baes 2015) is a pub-
lic multipurpose MCRT code for simulating the e↵ect of dust
on radiation in astrophysical systems. It o↵ers full treatment of
absorption and multiple anisotropic scattering by the dust, self-
consistently computes the temperature distribution of the dust
and the thermal dust reemission, and supports stochastic heating
of dust grains (Camps et al. 2015). The code handles multiple
dust mixtures and arbitrary 3D geometries for radiation sources
and dust populations, including grid- or particle-based represen-
tations generated by hydrodynamical simulations (Camps et al.
2016).
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SKIRT is predominantly used to study dusty galaxies
(Baes et al. 2010; De Looze et al. 2012, 2014; De Geyter et al.
2014, 2015; Saftly et al. 2015; Mosenkov et al. 2016; Viaene
et al. 2017), but it has also been applied to active galactic nu-
clei Stalevski et al. 2012, 2016), molecular clouds (Hendrix et al.
2015), and binary systems (Deschamps et al. 2015; Hendrix
et al. 2016).

Employing the MCRT technique, SKIRT represents electro-
magnetic radiation as a sequence of discrete photon packages.
Each photon package carries a specific amount of energy (lu-
minosity) at a given wavelength. A SKIRT simulation follows
the individual paths of many photon packages as they propagate
through the dusty medium. The photon package life cycle is gov-
erned by various events determined stochastically by drawing
random numbers from the appropriate probability distributions.
A photon package is created at a random position based on the
luminosities of the sources and is emitted in a random direction
depending on the (an)isotropy of the selected source. Depending
on the dust material properties and spatial distribution, the pho-
ton package then undergoes a number of scattering events at ran-
dom locations (using forced scattering; see Cashwell & Everett
1959), and is attenuated by absorption along its path (using con-
tinuous absorption; see Lucy 1999; Niccolini et al. 2003).

To boost the e�ciency of the simulation and reduce the
noise levels at the simulated observers, SKIRT employs the com-
mon peel-o↵ optimization technique (Yusef-Zadeh et al. 1984).
Rather than waiting until a photon package happens to leave the
system under study in the direction of one of the observers, a
special photon package is peeled o↵ in the direction of each ob-
server at each emission and scattering event, including an appro-
priate luminosity bias for the probability that a photon package
would indeed be emitted or scattered in that direction. Mean-
while, the original or main photon package continues its trajec-
tory through the dust until its luminosity has become negligible
and the package is discarded.

For the purposes of this paper, we assume that a newly emit-
ted photon package represents unpolarized radiation, and its po-
larization state is not a↵ected by the attenuation along its path
through the dusty medium. We assume that the photon package
is scattered by spherical dust grains (which does a↵ect the po-
larization state). This leaves us with three types of events: scat-
tering the main photon package into a new direction, peeling o↵
a special photon package toward a given observer, and detecting
a peel-o↵ photon package at an observer. As a first step toward
describing the procedures for each of these events, we discuss
our approach for handling the Stokes vector reference direction.

3.2. Reference direction

As noted in Sect. 2, the Stokes vector describing the polarization
state of a photon package is defined relative to a given reference
direction, d, in the plane perpendicular to the propagation di-
rection. We define a new direction, n, perpendicular to both the
propagation direction, k, and the reference direction, d, which
are perpendicular to each other as well, so that

n = k ⇥ d and d = n⇥ k, (14)

assuming all three vectors are unit vectors. By definition, the
scattering plane contains both the incoming and outgoing prop-
agation directions k and knew. Consider the situation before the
event (also, see Fig. 2). If the reference direction d, which is
always perpendicular to k, lies in the scattering plane as well,
then n corresponds to the normal of the scattering plane. A sim-
ilar situation applies after the scattering event. We store n rather

n

k

nnew

�

knew
�

Fig. 2. Geometry of a scattering event. The angle ✓ is between the in-
coming and outgoing propagation directions k and knew. The angle ' is
given by the normals of the previous and the present scattering planes n
and nnew.

than d with each photon package, and our procedures below are
described in terms of n.

Some authors (e.g., Chandrasekhar 1950; Code & Whitney
1995; Gordon et al. 2001) choose to rotate the Stokes reference
direction in between scattering events into the meridional plane
of the coordinate system. Their procedure uses two rotation op-
erations for each scattering event, one before and one after the
event, and requires special care to avoid numerical instabilities
when the propagation direction is close to the z-axis. The latter
occurs because the meridional plane is then ill defined.

We leave the reference direction unchanged after a scattering
event and instead perform a single rotation as part of the next
scattering event. This method is also applied by Fischer et al.
(1994) and Goosmann & Gaskell (2007) and illustrated in Fig. 2.
The current scattering plane (red) includes the incoming and
outgoing propagation directions k and knew, defining the scat-
tering angle ✓. After the previous scattering event, the refer-
ence direction has been left in the previous scattering plane
(blue), so the angle between the normals n and nnew to the pre-
vious and the current scattering planes determines the angle '
over which the Stokes vector must be rotated to end up in the
current scattering plane. The transformation of the Stokes vector
given in Eq. (9) can therefore be simplified to

Snew =M(✓, �) R(') S. (15)

Care must be taken to properly set a reference normal n for
newly emitted photon packages that have not yet experienced
a scattering event. Because we assume our sources to emit unpo-
larized radiation, we can pick any direction perpendicular to the
propagation direction. We postpone the details and justification
for this procedure to Sect. 3.7.

3.3. Scattering phase function

The probability that a photon package leaves a scattering event
along a particular direction knew for an incoming direction k is
given by the phase function, �(k, knew) ⌘ �(✓,'), where ✓ and
' represent the inclination and azimuthal angles of knew relative
to k, and where we omit the wavelength dependency from the
notation. In the formulation of Sect. 2, we can say that the phase
function is proportional to the ratio of the beam intensities, I and
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Inew, before and after the scattering event,

�(✓,') / Inew(✓,')
I

· (16)

For spherical grains, combining Eqs. (7), (10), and (15) leads to

Inew(✓,') = IS 11 + S 12 (
Q cos 2' + U sin 2') (17)

and therefore,

�(✓,') / S 11 + S 12

✓
Q

I

cos 2' +
U

I

sin 2'
◆
. (18)

Using Eq. (5) and introducing a proportionality factor, N, we can
write

�(✓,') = N S 11

 
1 + PL

S 12

S 11
cos 2(' � �)

!
. (19)

The proportionality factor is determined by normalizing the
phase function (a probability distribution) to unity. Integration
over the unit sphere yields

N =
1

R 2⇡
0

R ⇡
0 (

S 11 + PLS 12 cos 2(' � �)) sin ✓ d✓ d'
(20)

=
1

2⇡
R ⇡

0 S 11 sin ✓ d✓
· (21)

3.4. Sampling the phase function

After scattering, a new direction of the photon package is de-
termined by sampling random values for ✓ and ' from the
phase function �(✓,'). To accomplish this, we use the condi-
tional probability technique. We reduce the phase function to the
marginal distribution �(✓),

�(✓) =
Z 2⇡

0
�(✓,') d' = 2⇡ N S 11 =

S 11R ⇡
0 S 11 sin ✓0 d✓0

· (22)

We sample a random ✓ value from this distribution through nu-
merical inversion, that is to say, by solving the equation

X =
R ✓

0 S 11 sin ✓0 d✓0
R ⇡

0 S 11 sin ✓0 d✓0
(23)

for ✓, where X is a uniform deviate, that is, a random number
between 0 and 1 with uniform distribution.

Once we have selected a random scattering angle ✓, we sam-
ple a random azimuthal angle ' from the normalized conditional
distribution,

�✓(') =
�(✓,')

R 2⇡
0 �(✓,'0) d'0

(24)

=
1

2⇡

 
1 + PL

S 12

S 11
cos 2(' � �)

!
, (25)

where the ratio S 12/S 11 depends on ✓. This can again be done
through numerical inversion, by solving the equation

X =
Z '

0
�✓('0) d'0 (26)

=
1

2⇡

 
' + PL

S 12

S 11
sin' cos(' � 2�)

!
(27)

for ', with X being a new uniform deviate.

3.5. Updating the photon package

After randomly selecting both angles ✓ and ', we can use
Eq. (15) to adjust the main photon package’s Stokes vector. We
can also calculate the outgoing propagation direction knew and
the new reference normal nnew from the incoming propagation
direction k and the previous reference normal n (see Fig. 2). We
use Euler’s finite rotation formula (Cheng & Gupta 1989) to ro-
tate a vector u about an arbitrary axis a over a given angle �
(clockwise while looking along a),

unew = u cos � + (a ⇥ u) sin � + a(a · u)(1 � cos �). (28)

The last term of the right-hand side vanishes when the vector u
is perpendicular to the rotation axis a.

In our configuration, the reference normal n rotates about the
incoming propagation direction k over the azimuthal angle '.
Because n is perpendicular to k, we have

nnew = ncos' + (k ⇥ n) sin'. (29)

Furthermore, the propagation direction rotates in the current
scattering plane, that is, about nnew, over the scattering angle ✓.
Again, k is perpendicular to nnew, so that

knew = k cos ✓ + (nnew ⇥ k) sin ✓. (30)

3.6. Peel-off photon package

As described in Sect. 3.1, a common MCRT optimization is to
send a peel-o↵ photon package toward every observer from each
scattering site. The peel-o↵ photon package must carry the polar-
ization state after the peel-o↵ scattering event, and its luminosity
must be weighted by the probability that a scattering event would
indeed send the outgoing photon package toward the observer.
To obtain this information, we need to calculate the scattering
angles ✓obs and 'obs, given the outgoing direction of the peel-o↵
scattering event, or in other words, the direction toward the ob-
server, kobs. This is e↵ectively the scattering problem in reverse,
in which random angles were chosen based on their probabil-
ity, and the new propagation direction was calculated from these
angles.

Finally, when the peel-o↵ photon package reaches the ob-
server, its Stokes reference direction must be rotated so that it
lines up with the direction of north in the observer frame, kN,
according to the IAU (1974) conventions. The scattering angle
✓obs is easily found through the scalar product of the incoming
and outgoing directions,

cos ✓obs = k · kobs. (31)

Because 0  ✓obs  ⇡, the cosine unambiguously determines the
angle.

To derive the azimuthal angle 'obs, we recall (Fig. 2) that it is
the angle between the normal to the previous scattering plane, n,
and the normal to the peel-o↵ scattering plane, nobs. The latter
can be obtained through the cross product of the incoming and
outgoing directions,

nobs =
k ⇥ kobs

||k ⇥ kobs||
· (32)

We need both cosine and sine to unambiguously determine 'obs
in its 2⇡ range. We easily have

cos'obs = n · nobs. (33)
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Because k is perpendicular to both n and nobs, the following re-
lation holds,

sin'obs k = n⇥ nobs, (34)

or, after projecting both sides of the equation on k,

sin'obs = (n⇥ nobs) · k. (35)

This derivation of 'obs breaks down for a photon package that
happens to be lined up with the direction toward the observer
before the peel-o↵ event. Indeed, in this special case of perfect
forward or backward peel-o↵ scattering, Eq. (32) is undefined.
However, because the scattering plane does not change, it is jus-
tified to simply set 'obs = 0 instead.

We insert the calculated ✓obs and 'obs values into Eq. (15) to
adjust the peel-o↵ photon package’s Stokes vector, and we also
update the reference normal to nobs. When the photon package’s
polarization state is recorded at the observer, its Stokes vector
reference direction must be parallel to the north direction, kN, in
the observer frame. This is equivalent to orienting the reference
normal along the east direction, kE = kobs ⇥ kN. The angle, ↵obs,
between nobs and kE can be determined using a similar reasoning
as for 'obs, so that

cos↵obs = nobs · kE (36)

and

sin↵obs = (nobs ⇥ kE) · kobs. (37)

The final adjustment to the Stokes vector is thus a rotation (see
Eqs. (6) and (7)) with the matrix R(↵obs). The Stokes vector is
indi↵erent to rotations by ⇡. Using kW = �kE yields the same
result.

3.7. Reference direction for new photon packages

We now return to the issue of selecting a reference direction,
or more precisely, a reference normal, for newly emitted photon
packages. We stated at the end of Sect. 3.2 that we can pick any
direction perpendicular to the propagation direction, because we
assume our sources to emit unpolarized radiation. Indeed, it is
easily seen from Eq. (25) that the probability distribution for the
azimuthal angle ' becomes uniform for unpolarized incoming
radiation, that is, with PL,in = 0. Consequently, our choice of
reference normal in the plane perpendicular to the propagation
direction will be completely randomized after the application of
the scattering transformation (Eq. (15)).

We determine the reference normal, n = (n
x

, ny, nz

), perpen-
dicular to the propagation direction, k = (k

x

, ky, kz

), using

n

x

= �k

x

k

z

�q
1 � k

2
z

(38)

ny = �kykz

�q
1 � k

2
z

(39)

n

z

=
q

1 � k

2
z

. (40)

When k is very closely aligned with the Z-axis, the root in these
equations vanishes, and we instead select n = (1, 0, 0) as the
reference direction.
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Fig. 3. Top: geometry used in the analytical test cases. The z-axis is
toward the reader. For test case 1, a central point source illuminates
thin slabs of electrons that are slanted by 45� toward the observer. The
central source is replaced by a small blob of electrons for the other test
cases. The blob is illuminated by a collimated beam from within the
xy plane for test case 2 and from below the xy plane for test cases 3
and 4. Bottom: intensity map of test case 1 as seen from the observer.

4. Validation

4.1. Test setup

In order to confirm the validity of our method and its implemen-
tation in SKIRT, we develop four test cases for which the results
can be calculated analytically. The analytical results are obtained
solely using the formalisms of Sect. 2, so that taken together,
the test cases verify most aspects of the procedures presented in
Sect. 3.

The overall setup for the test cases is illustrated in Fig. 3.
A central source illuminates two physically and optically thin
slabs of material, which scatter part of the radiation to a dis-
tant observer. The slabs are arranged on the sides of a square
rotated by 45� relative to the line of sight and are spatially re-
solved by the observer’s instrument. To simplify the calculations
we only consider radiation detected close to the xy plane, es-
sentially reducing the geometry to two dimensions. Because of
the low scattering probability in the slabs, the path with the least
number of scattering events will greatly dominate the polariza-
tion state at each instrument position. This allows us to deduce
the dominating scattering angle, ✓, corresponding to each instru-
ment position along the x-axis. Referring to Fig. 3, geometrical
reasoning leads to

✓ =
⇡

2
± arctan

 
1
|x| � 1

!
, (41)

with the plus sign for x > 0 and the minus sign for x < 0. In com-
bination with analytical scattering properties for the slab mate-
rial, it then becomes possible to derive a closed-form expression
for the components of the Stokes vector at each position.
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Because the observer is considered to be at “infinite” dis-
tance, we can use parallel projection, and the distance from the
slabs to the observer does not vary with x. However, we do need
to take into account the variations in the path length ` from the
central source to the slabs because it a↵ects the amount of radia-
tion arriving at the slabs as a function of x. Geometrical reason-
ing in Fig. 3 again leads to

` =
p

x

2 + (1 � |x|)2. (42)

The scattering properties of the slabs and the makeup of the cen-
tral source vary between the test cases. For test cases 1 through
3, the slabs contain electrons, with scattering matrix MTh given
by Eq. (11). We study the observed intensity, I, the degree of
linear polarization, PL, and the linear polarization angle, �, of
these test cases in Sect. 4.2. Scattering by electrons never causes
circular polarization. Therefore in Sect. 4.3 we introduce slabs
that contain synthetic particles with custom-designed scattering
properties (test case 4). This allows us to study the observed cir-
cular polarization.

Test case 1 has a central point source. For the remaining test
cases, the central source is replaced by a small blob of electrons
illuminated by a collimated beam positioned at varying angles,
so that the center becomes the site of first scattering.

A numerical implementation of the test cases will always
discretize certain aspects of the theoretical test setup. For our
implementation in SKIRT, we made the following choices.
The spatial domain of the setup is divided into 601 ⇥ 601 ⇥
61 cuboidal grid cells lined up with the coordinate axes (we use
odd numbers to ensure that the origin lies in the center of a cell).
The cells overlapping the slabs (and where applicable, the central
blob) contain electrons, the other cells represent empty space.
The edges of the cells and slabs are not aligned. Each detec-
tor pixel provides averages over multiple cells, and the slabs are
optically thin (⌧ = 10�3 along their depth). The length of the
slabs is 1.141, their depth is 0.006, and their height is 2 ⇥ 10�5.
The detector in the observer plane has a resolution of 201 pixels
along the x-axis. We use 1010 photon packages for each test case
to minimize the stochastic noise characteristic of Monte Carlo
codes. SKIRT uses precomputed tables of various quantities with
a resolution of 1� in ✓ and ', to help perform the numerical in-
versions in Eqs. (23) and (27).

4.2. Linear polarization

Test case 1 is designed to test the peel-o↵ procedure described
in Sect. 3.6. The slabs contain electrons, and the central point
source emits unpolarized photon packages. When a photon pack-
age’s direction is toward one of the slabs, the forced interaction
algorithm of SKIRT initiates a scattering event at the slab and a
peel-o↵ photon package is sent toward the observer. Because the
slabs are optically thin, the luminosity of the scattered original
photon package is small. It is subsequently deleted and a new
photon package is launched.

As a result, the Stokes vector of the observed photon pack-
ages can be written as

STC1 = `�2
R

✓⇡
2

◆
MTh(✓) (1, 0, 0, 0)T, (43)

reflecting from right to left a scattering transformation starting
from an unpolarized state (and thus ' = 0), a rotation to align
the reference direction with the observer frame, and the depen-
dency on the path length from the source to the slab. We can
now substitute Eqs. (7), (11), (41), and (42) into this equation.

Because the arctangent of Eq. (41) is used as an argument for
the cosine in Eq. (11), the final equations for the intensity and
the linear polarization degree reduce to polynomials,

I

TC1 =
3x

2 � 4|x| + 2
2(2x

2 � 2|x| + 1)2 , (44)

P

TC1
L =

x

2

3x

2 � 4|x| + 2
· (45)

The orientation of the polarization is perpendicular to the scatter-
ing plane, that is, north/south or along the y-axis in the observer
frame.

In test case 2 we add a scattering event to verify part of the
procedures for scattering the main photon package. To this end,
we replace the central point source with a small blob of electrons
at the same location, and illuminate this electron blob with a
collimated beam positioned at (�1, 1, 0) and oriented parallel to
the slabs toward the bottom right (see Fig. 3). In this setup, a
photon package emitted by the collimated source can reach the
slabs only after being scattered by the electrons in the central
blob. This e↵ectively adds a forced first scattering event to all
photon packages reaching the observer, with a scattering angle
that can be deduced from the geometry. The peel-o↵ scattering
angle is still given by Eq. (41). The scattering angle for the first
scattering event in the central electron blob is

✓1 = ✓ ±
✓
�⇡

4

◆
, (46)

again with the plus sign for x > 0 and the minus sign for x < 0.
Because all components of the setup are in the same plane, the
scattering plane is always the same (the xy-plane). The Stokes
vector of the observed photon packages can thus be written as

STC2 = `�2
R

✓⇡
2

◆
MTh(✓) MTh(✓1) (1, 0, 0, 0)T. (47)

The intensity and linear polarization degree for test case 2 are

I

TC2 =
12x

4 � 28|x|3 + 29x

2 � 14|x| + 3
4(2x

2 � 2|x| + 1)3 , (48)

P

TC2
L =

4x

4 � 4|x|3 + 3x

2 � 2|x| + 1
12x

4 � 28|x|3 + 29x

2 � 14|x| + 3
· (49)

The orientation of the polarization is north/south.
In the third test case we move the collimated source below

the xy-plane to (�
p

3,�1,�4 � 2
p

3), so that we can test the ro-
tation of the Stokes vector reference direction between scattering
events. The source is now placed at an inclination of 165� (rela-
tive to the z-axis) and an azimuthal angle of 30� (clockwise from
the x-axis). It still points toward the central electron blob, that
is, toward the top right and out of the page in Fig. 3. As a result,
the normal of the first scattering plane is tilted, while the normal
of the peel-o↵ scattering plane remains aligned with the z-axis.
With some trigonometry, we arrive at expressions for the an-
gles involved in the first (main) and second (peel-o↵) scattering
events,

✓1 = arccos
0
BBBBB@±
�1 +

p
3 + (4 � 2

p
3)|x|

4
p

2 � 4|x| + 4x

2

1
CCCCCA , (50)

'1 = ± arctan
0
BBBBB@

2(1 +
p

3)
p

1 � 2|x| + 2x

2

3 �
p

3 � 2|x|

1
CCCCCA , (51)

✓2 = ⇡/2 ± arctan(1/|x| � 1), (52)
'2 = ⇡/2, (53)
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Fig. 4. Intensity (top row), linear polarization degree (middle row), and polarization angle (bottom row) of the observed radiation in test cases 1
through 3 (left to right columns). The top section in each panel shows the analytical solution (black) and the model results (dashed orange). The
bottom section in each panel shows the absolute di↵erences (blue) and relative di↵erences (shaded area) of the analytic solution and the model.
The green lines are calculated using twice the resolution of the ✓ scattering angle.

with the plus sign for x > 0 and the minus sign for x < 0. The
expression provided in Eq. (51) for '1 is simplified and shifted
by ±⇡ for some x. The Stokes vector is invariant under rotations
by ⇡.

The Stokes vector of the observed photon packages can now
be written as

STC3 = `�2
R('2) MTh(✓2) R('1) MTh(✓1) (1, 0, 0, 0)T. (54)

To limit the complexity of presentation, we provide expressions
for the Stokes parameters from which the linear polarization de-
gree and angle can be calculated using Eqs. (3) and (4),

I

TC3 =
1

32`6
h
(62 � 16

p
3)x

4 � (150 � 30
p

3)|x|3

+ (156 � 25
p

3)x

2 � (78 � 8
p

3)|x| + 18 �
p

3
i
, (55)

Q

TC3 =
1

32`6
h
(2 � 16

p
3)x

4 + (22 + 34
p

3)|x|3

� (28 + 39
p

3)x

2 + (14 + 24
p

3)|x| � (2 + 7
p

3)
i
, (56)

U

TC3 =
1

8`4
h
(1 +

p
3)x

2 � (1 + 2
p

3)|x| +
p

3
i
, (57)

V

TC3 = 0. (58)

Figure 4 compares the analytical solutions and SKIRT results for
the observed intensity, linear polarization degree, and polariza-
tion angle for these three test cases. The intensity curves show a
relative noise level of on average about 3%. The linear polariza-
tion degrees are identical to below 0.1% absolute for test cases 1
and 2 and below 1% absolute for test case 3. The polarization an-
gles from north are correct to below 0.05� for test cases 1 and 2
and below 1� for test case 3. While the linear polarization degree
and position angle can be determined from a simulation with rel-
atively few photon packages, reducing the noise in the intensity
requires significantly more photon packages. This is because the
number of photon packages arriving at each pixel is subject to
Poisson noise, whereas the path that each photon package takes
to the same pixel is defined within tight boundaries. The intensity
curve depends on the number of photons. The linear polarization
degree and angle are independent of the number of photon pack-
ages. Their noise is due to the size of the pixels. Slightly di↵erent
paths and scattering angles might contribute to the same pixel.

The polarization angle for test case 1 shows an intriguing
spike near x = 0. As we can see in the linear polarization de-
gree curve and from Eq. (45), the radiation arriving at x = 0 is
unpolarized. This implies that both the Q and U components of
the Stokes vector are zero and the polarization angle becomes
undefined (see Eq. (4)). This in turn causes small numerical
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inaccuracies in the calculations for photon packages arriving
very close to x = 0.

The relative di↵erences for the other quantities are generally
smaller than a fraction of a percent. In the results of test case 3
the residuals of the linear polarization degree and polarization
angle contain spikes that are resolved by multiple pixels each
and symmetric with respect to x = 0. The residual of the inten-
sity curve shows a similar e↵ect. It tends to be lower than ex-
pected in the outer regions and higher than expected in the inner
region. These orderly deviations indicate a systematic di↵erence
rather than noise. In fact, these discrepancies are caused by res-
olution e↵ects in the SKIRT implementation of our method (see
Sect. 4.1 for a description of our discretization choices). For ex-
ample, consider the interval 0.6 < x < 0.7 for test case 3, which
is resolved by 10 pixels along the x-axis of the detector in the ob-
server frame. The corresponding interval for scattering angle ✓1
(see Eq. (50)) is 75.0� < ✓1 < 75.1�, that is, only a fraction of the
1� resolution in the SKIRT calculations related to ✓. It is obvious
that this lack of angular resolution relative to the output resolu-
tion will cause inaccuracies. We calculated the residuals in the
polarization degree and angle from north using twice the ✓ reso-
lution and show them in pale green in Fig. 4. They confirm that
increasing the ✓ resolution in the calculations indeed reduces the
discrepancies accordingly.

4.3. Circular polarization

To include circular polarization in test case 4, we use synthetic
particles similar to electrons, but with a scattering matrix that
mixes the U and V components of the Stokes vector:

Msyn(✓)=
1
2

0
BBBBBBBBBBBB@

cos2 ✓ + 1 cos2 ✓ � 1 0 0
cos2 ✓ � 1 cos2 ✓ + 1 0 0

0 0 2 cos2 ✓ �2 cos ✓ sin ✓
0 0 2 cos ✓ sin ✓ 2 cos2 ✓

1
CCCCCCCCCCCCA
.

(59)

We use the same geometry as for test case 3, replacing the elec-
trons in the two slabs and in the central blob by particles de-
scribed by Eq. (59). The angles are still described by Eqs. (50)
through (53), Eq. (54) still holds, and the Stokes parameters of
the observed photon packages become

I

TC4 = I

TC3, (60)

Q

TC4 = Q

TC3, (61)

U

TC4 =
±1
8`5

h
(1 +

p
3)|x|3 � (2 + 3

p
3)x

2

+(1 + 3
p

3)|x| �
p

3
i
, (62)

V

TC4 =
1

8`5
h
�(1 +

p
3)|x|3 + (1 + 2

p
3)x

2 �
p

3|x|
i
. (63)

In Eq. (62) the plus sign is again for x > 0 and the minus sign
for x < 0.

Figure 5 shows the (relative) circular polarization, V/I, for
this test case, again comparing the analytical solutions with the
SKIRT results. The relative di↵erences between the analytical
and simulated results for |x| < 0.7 are below one percent. The
larger discrepancies for |x| > 0.7 are again due to the limited
resolution in the SKIRT calculations related to ✓. The pale green
line again shows the residuals when calculating with 0.5� reso-
lution and has a significantly smaller residual curve. Disregard-
ing the outer part, the circular polarization is correct to 0.1%
absolute.
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Fig. 5. Fraction of circular polarization, V/I, of the observed radiation
in test case 4. The top panel shows the observed surface brightness over-
laid with arrows indicating the handedness. The arrow length scales lin-
early with the magnitude. The middle and bottom panels compare the
analytical solution with the model results, as in Fig. 4.

5. Benchmark tests

5.1. Disk galaxy

We compare results of our code to Bianchi et al. (1996) as a first
test of our implication of dust scattering polarization (rather than
just Thompson scattering). Bianchi and collaborators describe
the polarization e↵ects of scattering by spherical dust grains in
monochromatic MCRT simulations of 2D galaxy models at the
B band (0.44 µm) and I band (0.9 µm). The models include a
stellar bulge, a stellar disk, and a dust disk. The stellar bulge
is described by Ja↵e (1983; scale radius 1.86 kpc, truncated at
14.8 kpc), and the stellar disk is a double-exponential disk (scale
length 4 kpc, truncated at 24 kpc; scale height 0.35 kpc, trun-
cated at 2.1 kpc). The relative strength of the stellar components
and the stellar sources is varied. In all models, the dust is as-
sumed to be homogeneously distributed in a double-exponential
disk embedded in the stellar disk, with the same horizontal pa-
rameters as the stellar disk, but much thinner vertically (scale
height 0.14 kpc, truncated at 0.84 kpc). The central face-on opti-
cal depth of the dust disk ⌧V is a free parameter. The properties
of the dust are taken from the MRN dust model (Mathis et al.
1977), which includes graphite grains and astronomical silicates
with a size distribution n(a) / a

�3.5, 0.005 µm < a < 0.25 µm.
Polycyclic aromatic hydrocarbons (PAHs) and very small grains
are not included.

Figure 6 displays our results, which correspond to the
Bianchi et al. (1996) model shown in their Fig. 8. We use the
same geometry, described above, and the same bulge-to-total
ratio (B/T = 0.5), wavelength (� = 0.44 µm), and optical
depth (⌧V = 10). We use a di↵erent dust model. It includes
a wider range of graphite and silicate grain sizes following
the Zubko et al. (2004) size distribution, in addition to a small
fraction of PAHs as described in Camps et al. (2015). The dif-
ferences between the dust models do not a↵ect the qualita-
tive results at optical wavelengths, but do prevent a quantitative
comparison.
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Fig. 6. B-band surface brightness maps (color scale) overlaid with linear polarization maps (line segments) for inclinations of 20� (left), 75�
(middle), and 90� (right column). The top row shows a model with only a stellar bulge, the middle row a model with only a stellar disk, and the
bottom row a model with both stellar bulge and disk with a ratio of bulge to total luminosity of B/T = 0.5. The dust disk is the same in the three
cases and has a central face-on V-band optical depth of 10.

Surface brightness maps (color scale) overlaid with a linear
polarization maps (line segments) are shown in Fig. 6. The in-
clinations range from nearly face-on (20�, left) to edge-on (90�,
right). The top and middle rows show models from which the
stellar disk and the stellar bulge, respectively, was removed. The
bottom row shows the B/T = 0.5 model, that is to say, the model
including both stellar bulge and stellar disk. The dust disk is
identical for the three models.

Overall, our results are compatible with those reported by
Bianchi et al. (1996). The largest polarization degrees are ob-
served near the major axis. For pure disks, the face-on view
shows very little polarization. The polarization degree increases
with inclination to a maximum near an inclination of about 80�
and slightly decreases again when approaching 90�. The polar-
ization degree averaged over all pixels is below 1% for all in-
clinations. For pure bulges, the maximum polarization degree is
largely independent of the inclination. In the outer regions of the
dust disk, the linear polarization degree is 22%. In the mixed
B/T = 0.5 model, the polarization degrees are drastically re-
duced. We find values up to 1.6%, comparable to the results of
Bianchi et al. (1996), who find 1 to 1.5%.

We also test the corresponding model for the I band (� =
0.9 µm) with a color-adjusted bulge luminosity (B � I = 1 mag),
again confirming overall agreement Bianchi et al. (1996).

5.2. Dusty disk around star

To test the performance of our code on a problem of a di↵erent
scale, we compute polarization results of Pinte et al. (2009). In
it, a thick dusty disk surrounds a central star. The star extends
out to 2 AU and has a temperature of 4000 K. The dust consists
of spherical grains with a radius of 1 µm, and the light has a
wavelength of 1 µm as well. The dust density distribution ⇢ is
cylindrical,

⇢(R, z) =
3⌃0

2R0

 
R

R0

!�5/2

exp
2
666664�

1
2

 
z

h0

!2  
R

R0

!�9/43777775 , (64)

with a surface density ⌃0, scale radius R0 = 100 AU, radial dis-
tance from the center R, vertical distance from the midplane z,
and scale height h0 = 10 AU. The disk is truncated at Rmin =
0.1 AU and Rmax = 400 AU. The surface density depends on the
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Fig. 7. Polarization degree maps for two inclinations of a disk with high optical density (⌧ = 106). On the left are the linear polarization degree
maps we calculated using SKIRT. The dust grain size is the same as the wavelength (1 µm), creating the intricate pattern of the polarization degree.
On the right are cuts 1–6 through the maps along with results of various codes. Pinball (Watson & Henney 2001) in green, MCMax (Min et al.
2009) in black, MCFOST (Pinte et al. 2006) in blue, TORUS (Harries 2000) in dashed orange, and SKIRT in red. The data of the other codes were
taken from the o�cial website.

total dust mass m = 3 ⇥ 10�5
M� by

⌃0 = m/

"
12
5

(2⇡)3/2
h0R0

⇣
(Rmin/R0)5/8 � (Rmax/R0)5/8

⌘#
(65)

and the albedo of the dust is 0.6475 and the opacity 4752 cm2/g
at 1 µm. We adopt the scattering matrix as provided by
Pinte et al. (2009)3. The system is resolved at a distance of
140 pc by a detector with 251 ⇥ 251 pixels covering 900 ⇥
900 AU2.

Figure 7 shows the linear polarization maps calculated by
our code for inclinations of 69.5� and 87.1�. The flux di↵erence
from the borders to the center area is about 17 orders of mag-
nitude. The maps are displayed in gray outside the truncation
radius, where no flux was recorded. The intricate pattern of the
polarization degree is a result of the uniform grain radius being

3
http://ipag.osug.fr/~pintec/benchmark/

equal to the wavelength. The phase function therefore contains
resonances and steep gradients for small changes of the scat-
tering angle. We compare our results to the results of the four
polarization capable codes in Pinte et al. (2009) along six cuts
through the maps. The first and third row show the polarization
degree along the cuts, and the second and fourth row show the
di↵erence of the codes to the average of all results. The TORUS
code (Harries 2000) is not included in calculating the averages
because its signal-to-noise ratio is too low. In the central area the
codes agree within 10% of absolute polarization, but as the true
result is unknown, a quantitative analysis of the results of this
benchmark is di�cult. In general, the results of the SKIRT code
are close to the average result, and SKIRT seems to agree par-
ticularly well with the Pinball code (Watson & Henney 2001).
Pinball employs some of the same optimization techniques that
SKIRT uses (e.g., forced interaction and peel-o↵, named “forced
escape” in their paper).

A92, page 11 of 15

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201630157&pdf_id=7
http://ipag.osug.fr/~pintec/benchmark/


A&A 601, A92 (2017)

Fig. 8. Spiral galaxy model described in Sect. 6 and Table 2 observed at a wavelength of 1 µm. Rows from top to bottom: face-on, inclined (53�),
and edge-on surface brightness (color scale) overlaid with linear polarization degree and orientation (line segments); linear polarization degree
of the edge-on view, averaged over the vertical axis. Columns from left to right: the reference model; the same model observed from a di↵erent
azimuth angle (rotated clockwise by 120�); a model without the spiral arm perturbations in the stellar disks, with the rotated orientation.

6. Application: spiral galaxy models

We study the polarization properties of a 3D galaxy model in-
cluding spiral arms to investigate how the spiral arm structure is
imprinted in the polarization structure. We also study this in the
edge-on view when the structure is not easily characterized from
the intensity alone.

We still assume a homogeneous distribution for the stellar
sources and the dust. The model includes a stellar bulge and
disk with an older star population, a second stellar disk with a
younger star population, and a dust disk. The relevant parame-
ters are listed in Table 2. The bulge is modeled by a spheroidal
density distribution obtained by flattening a spherical Sérsic pro-
file (Sérsic 1963), as implemented by Baes & Camps (2015).
The distributions of the two stellar and the dust disks are trun-
cated double-exponential disks. The spiral arm structure is in-
troduced by adding a perturbation to the overall density profile,

as presented by Baes & Camps (2015). We have made the spiral
arms in the older stellar population “lead” those in the younger
stellar population and in the dust disk by varying the spiral arm
phase zero-points. The emission of the stellar populations is
modeled as blackbody spectra at the indicated temperatures. We
use the dust model of Sect. 5.1 (Camps et al. 2015). The total
dust mass is given in Table 2, the central face-on B-band optical
depth of the dust disk is ⌧V ⇡ 1.3.

Figure 8 shows surface brightness maps (color scale) over-
laid with linear polarization maps (line segments). The leftmost
column is for this model at 1 µm. The top row shows the model
face-on, the second row inclined (53�), and the third row edge-
on. The polarization degree is up to 1% around the central part
of the models and over the whole map the average polariza-
tion degree is similar to the average polarization degree from
the B/T = 0.5 model from before. As in the B/T = 0.5 model,
the orientation of the polarization is circular around the central
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Fig. 9. Linear polarization degree, averaged over the vertical axis, of the
rotated model (column B of Fig. 8) observed at 1 µm, for inclinations
ranging from edge-on (i = 90�) to face-on (i = 0�).

Fig. 10. Averaged linear polarization degree for one side of the edge-on
view of the rotated model, observed at optical and near-infrared wave-
lengths from 0.28 µm to 2.84 µm. The red vertical bands correspond to
the bands in Fig. 9 and trace the tangent points of the dust spiral arms.

bulge, and for the inclined view the polarization degree left and
right of the center increases, while it decreases behind and in
front of it. In contrast to the azimuthally uniform model, there is
a spiral structure in the polarization map. The linear polarization
degree is higher in the arm regions and disappears in the inter-
arm region. The maximum polarization degree is slightly inward
from the regions of the arms with the highest flux. The panel in
the bottom row plots the linear polarization degree for the edge-
on view, averaged over the vertical axis. This average is obtained
by summing each individual component of the Stokes vector and

Table 2. Parameters for our spiral galaxy model, including the black-
body temperature and the bolometric luminosity of the stellar compo-
nents, and the total dust mass in the dust component.

Sérsic profile Bulge
Sérsic index 3
E↵ective radius 1.6 kpc
Flattening parameter 0.6
Temperature 3500 K
Luminosity 3 ⇥ 1010

L�
Exponential disks Old stars Young stars Dust
Scale length 4 kpc 4 kpc 4 kpc
Horizontal cuto↵ 20 kpc 20 kpc 20 kpc
Scale height 0.35 kpc 0.2 kpc 0.2 kpc
Vertical cuto↵ 1.75 kpc 1 kpc 1 kpc
Number of arms 2 2 2
Pitch angle 20� 20� 20�
Radius zero-point 4 kpc 4 kpc 4 kpc
Phase zero-point 0� 20� 20�
Perturbation weight 0.25 0.75 0.75
Arm-interarm size ratio 5 5 5
Temperature 3500 K 10 000 K
Luminosity/mass 4 ⇥ 1010

L� 1 ⇥ 1010
L� 2 ⇥ 107

M�

calculating the polarization degree from these totals. Regions
with higher linear polarization (up to 2%) clearly trace the spiral
arms and are prominent at all inclinations, including the edge-
on view. The maxima in the polarization signature of the edge-
on view match the positions of the spiral arms along the line of
sight.

To verify this, the middle column of Fig. 8 shows the same
model from a di↵erent azimuth angle. The peaks in the polar-
ization signature align with the tangent points of the spiral arms,
which are now farther out from the center of the galaxy.

In the rightmost column of Fig. 8 we remove the spiral arms
perturbations from the stellar disks in the model. The polariza-
tion signature remains essentially unchanged; the maxima are
slightly higher (by a factor of up to 1.2), but the structure is
the same. The signature could also be produced by the di↵erent
phase zero-points of the old stars and the dust (see Table 2). We
calculated results using the same phase zero-point for all compo-
nents (not shown here). The outer maxima are lower (by a factor
of 0.8), while the inner maxima are unchanged. This confirms
that the polarization signature is created by the distribution of
the dust and not by the distribution of the sources.

In Fig. 9 we further study the e↵ect of inclination on the
observed polarization signature for the reference model. In the
central region (r . 2 kpc), the bulge emission masks most polar-
ization at inclinations above 40�. Outside this region, however,
the form of the curves is very similar for all inclinations. Al-
though the polarization degree generally decreases toward lower
inclinations, the peaks remain at the spiral arm tangent points,
and the ratio between the maximum and minimum polarization
degree remains roughly stable at a factor of about 2.

In Fig. 10 we compare the edge-on polarization signature of
our reference model for various optical and NIR wavelengths.
The polarization peaks remain prominent over the wavelength
range 0.5 µm . � . 2 µm. At shorter wavelengths the general
polarization degree is higher and the signature is reversed, light
from within the arms is slightly less polarized than light from the
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inter-arm regions. The increased interaction cross section causes
the inter-arm dust to become e�cient at scattering the stellar ra-
diation, boosting the polarization degree. We find that in the spi-
ral arms the ratio of once scattered to multiple times scattered
light is 2.5:1, while in the inter-arm region it is 3.3:1. The po-
larization orientation after multiple scatterings is less uniform,
which lowers the polarization degree in the arm regions.

At longer wavelengths, the signature retains the same form,
but the reduced scattering e�ciency of the dust causes the polar-
ization degree to be very low, so that the peaks become hard to
discern.

Our results imply that polarization measurements could be
used, at least in principle, to study the spiral structure of edge-on
spiral galaxies, where intensity measurements alone have lim-
ited diagnostic power. The contrast would be highest at around
1 µm and with an expected polarization degree of up to 0.6%,
this is well within the capabilities of current polarization capa-
ble telescopes.

We note that the polarization degree of the edge-on galaxy
NGC 891 was mapped by Montgomery & Clemens (2014) at
1.6 µm. They found polarization degrees of below 1% that
varied along the disk profile. We expect the orientation of po-
larization due to scattering to be perpendicular to the disk.
Montgomery & Clemens (2014) found the orientation to be
rather parallel to the disk and attributed most of it to dichroic
extinction. Our code does not yet support dichroic extinction, so
we cannot compare the strength of these two e↵ects.

7. Conclusion

We presented a robust framework that is independent of a coordi-
nate system for implementing polarization in a 3D MCRT code,
focusing on scattering by spherical dust grains. The mathemat-
ical formulation and the numerical calculations in our method
rely solely on the scattering planes determined by the physical
processes rather than by the coordinate system. This approach
avoids numerical instabilities for special cases and enables a
more streamlined implementation. We described four test cases
with well-defined geometries and material properties, yielding
analytical solutions. These setups are designed to validate the
calculated results in a structured manner, and they can serve as
benchmarks for other implementations as well.

We reconstructed a selection of the 2D models of Bianchi
et al. (1996), confirming that our implementation reproduces
their results at least qualitatively. A quantitative comparison is
not possible because of di↵erences in the dust model. We then
calculated results for the polarization part of the Pinte et al.
(2009) benchmark and obtained similar results as the other codes
that took part in it. As an application of our code we constructed
a 3D spiral galaxy model including a stellar bulge and disk with
an older star population, a second stellar disk with a younger
star population, and a dust disk. The stellar and dust distribu-
tions feature an analytical spiral arm perturbation. We showed
that scattering of light at the dust in the spiral arms produces
a marked polarimetric signature. It traces the tangent positions
of the arms for wavelengths in the range 0.5 µm . � . 2 µm,
regardless of inclination.

It is fair to note, however, that our current implementation is
limited to scattering by spherical dust grains. We plan to add
support for polarized emission and for scattering and absorp-
tion by (partially) aligned spheroidal grains in future work. With
the relevant physics included, we can also study the influence of
changes to dust properties on the polarization signature, which
we have not addressed in this paper.
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