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J. I. Davies,2 W. Dobbels,3 S. Lianou, I. De Looze,3,7 R. Evans,2 M. Galametz,8

F. Galliano,8 A. P. Jones,9 S. C. Madden,8 A. V. Mosenkov ,10 S. Verstocken,3

S. Viaene,3,11 E. M. Xilouris12 and N. Ysard9

1Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
2School of Physics , Astronomy, Cardiff University, Queen’s Buildings, The Parade, Cardiff CF24 3AA, UK
3Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent, Belgium
4INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Florence, Italy
5INAF, Isituto di Radioastronomia, Via Piero Gobetti 101, I-I40127 Bologna, Italy
6NAF-IASF Milano, Via Alfonso Corti 12, I-20133 Milano, Italy
7Department of Physics , Astronomy, University College London, Gower Street, London WC1E 6BT, UK
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ABSTRACT
The dust mass absorption coefficient, κd is the conversion function used to infer physical dust
masses from observations of dust emission. However, it is notoriously poorly constrained, and
it is highly uncertain how it varies, either between or within galaxies. Here we present the
results of a proof-of-concept study, using the DustPedia data for two nearby face-on spiral
galaxies M 74 (NGC 628) and M 83 (NGC 5236), to create the first ever maps of κd in galaxies.
We determine κd using an empirical method that exploits the fact that the dust-to-metals ratio
of the interstellar medium is constrained by direct measurements of the depletion of gas-phase
metals. We apply this method pixel-by-pixel within M 74 and M 83, to create maps of κd. We
also demonstrate a novel method of producing metallicity maps for galaxies with irregularly
sampled measurements, using the machine learning technique of Gaussian process regression.
We find strong evidence for significant variation in κd. We find values of κd at 500μm spanning
the range 0.11–0.25 m2 kg−1 in M 74, and 0.15–0.80 m2 kg−1 in M 83. Surprisingly, we find
that κd shows a distinct inverse correlation with the local density of the interstellar medium.
This inverse correlation is the opposite of what is predicted by standard dust models. However,
we find this relationship to be robust against a large range of changes to our method – only
the adoption of unphysical or highly unusual assumptions would be able to suppress it.

Key words: methods: observational – ISM: abundances – galaxies: general – galaxies: ISM –
submillimetre: ISM.

1 IN T RO D U C T I O N

Interstellar dust provides an indispensable window for studying
galaxies and their evolution. Dust, which primarily emits in the

� E-mail: cclark@stsci.edu

mid-infrared (MIR) to far-infrared (FIR) to submillimetre (submm)
wavelength regime, can be observed in very large numbers of
galaxies very rapidly, with the beneficial effects of negative k-
correction enhancing our ability to detect dusty galaxies out to high
redshift (Eales et al. 2010a; Oliver et al. 2012). This has made dust
a standard proxy for studying galaxies’ star formation (Kennicutt
1998; Buat et al. 2005; Kennicutt et al. 2009), gas mass (Eales
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et al. 2012; Scoville et al. 2014; Lianou et al. 2016), and chemical
evolution (Rowlands et al. 2014; Zhukovska 2014; De Vis et al.
2017a,b, 2019) – which are otherwise difficult and time consuming
to observe directly.

However, many of the valuable insights that dust can provide rest
upon one simple expectation – that we are able to use observations of
dust emission to actually infer physical dust masses. Unfortunately,
astronomers remain terrible at this. This is due to the fact that κd

(variously called the dust mass absorption coefficient, or the dust
mass opacity coefficient), the wavelength-dependent conversion
factor used to calculate dust masses from FIR–submm dust spectral
energy distributions (SEDs), is extremely poorly constrained.

κd is essentially a convenience factor, amalgamating the various
properties of dust grains that dictate their emissivity – such as the
distributions of size, morphology, density, and chemical compo-
sition. These individual properties are extremely hard to constrain
observationally, and highly degenerate with each other in their effect
upon dust emission (Whittet 1992); combining them in κd allows
them to be considered in terms of their net effect. Dust emission
in the FIR–submm regime is traditionally modelled as a modified
blackbody (MBB; or, ‘greybody’), where the observed flux density
Sλ at wavelength λ is described by

Sλ = 1

D2

n∑
i

Miκλi
B(λ, Ti), (1)

where D is the distance to the source of the dust emission, n is
the number of dust components being modelled, Mi is the mass
of dust component i, κλi

is the value of κd at wavelength λ for
dust component i, and Bλ(Ti) is the Planck function evaluated
at wavelength λ for temperature Ti of dust component i. While
the dust population of a source will in reality span a continuum
of temperatures, availability of FIR–submm data typically forces
observers to fit their data with only 1 or 2 components (although
point-process methods are starting to provide a way to model dust in
a more continuous manner; see Marsh, Whitworth & Lomax 2015;
Marsh et al. 2017).

The value of κd can be estimated in various ways, usually by
some combination of: consideration of the elemental constituents
of dust (derived from depletions); physical modelling of possible
grain structures; chemical modelling of likely dust compositions;
radiative transfer modelling; analysis of ultraviolet (UV) to near-
infrared (NIR) extinction and scattering; laboratory analysis of
artificial dust grain analogues; and examination of retrieved grains
of interplanetary and interstellar dust. For a fuller summary, and
compilation of references, see section 1 of Clark et al. (2016).
Troublingly, the various methods that have been employed for
estimating κd yield a very wide range of possible values. In order to
directly compare different values of κd, they need to be converted to
the same reference wavelength. This can be done using the formula

κλ = κ0

(
λ0

λ

)β

, (2)

where κλ is the value of κd at a particular wavelength λ, κ0 is the
value of κd at a reference wavelength λ0, and β is the dust emissivity
spectral index. Laboratory analysis of dust analogues and chemical
modelling suggest that this relation is reliable in the wavelength
range 150μm � λ � 1000μm; at wavelengths shorter than this
the variation of κd with wavelength becomes much more complex,
whilst at longer wavelengths the behaviour of κd is less clear, with
some evidence of an upturn (Demyk et al. 2017a,b; Ysard et al.
2018).

Figure 1. Literature values of κ500, plotted against the year in which they
were published. This is an updated version of fig. 1 from Clark et al. (2016),
revised to include values published subsequent to that work, plus additional
historical values. A full list of references for the plotted values is provided
as a footnote to this figure.a All values were converted to the 500μm
reference wavelengthb according to equation (2), assumingc β = 2. Several
prominent values have been highlighted. Rectangular markers indicate the
range encompassed by a particular set of values. The 5th–95th percentile
ranges we find for M 83 and M 74 in this work are also plotted, for later
reference (with the overlap between their ranges correspondingly shaded).
aThe plotted values of κd include the values given in the compilation tables of
Alton et al. (2004) and Demyk et al. (2013), along with the values reported
by: Ossenkopf & Henning (1994); Agladze et al. (1996); Weingartner &
Draine (2001); James et al. (2002); Draine (2003); Dasyra et al. (2005);
Draine & Li (2007); Eales et al. (2010b); Compiègne et al. (2011); Ormel
et al. (2011); Draine et al. (2014); Gordon et al. (2014); Planck Collaboration
XI (2014); Köhler, Ysard & Jones (2015); Jones et al. (2016); Bianchi et al.
(2017); Demyk et al. (2017a,b); Roman-Duval et al. (2017); Chiang et al.
(2018). bThe choice of reference wavelength has negligible (<0.1 dex) effect
on the standard deviation of the literature κd values in the plot, as long as
100μm < λ0 < 1000μm. cChanging β to any value in the standard range
of 1–1.5 has negligible (<0.05 dex) effect on the standard deviation of the
literature κd values in the plot.

Fig. 1 compiles a wide range of κd values that have been
reported in the literature (all have been converted to a reference
wavelength of 500μm as per equation (2); we only plot values for
which the original quoted reference wavelength was in the reliable
150–1000μm range). Over 100 values are plotted, with a standard
deviation of 0.8 dex, and spanning a total range of over 3.6 orders
of magnitude. Worse still, there is no sign that values of κd reported
in the literature are converging over time.

So, despite the excellent sensitivity and wavelength coverage
provided by modern FIR–mm observatories, any dust masses
inferred from observed dust emission remain enormously uncertain,
stymieing our understanding of the interstellar medium (ISM) in
galaxies. Moreover, this high degree of uncertainty means that, out
of necessity, κd is often treated as being constant – even though
it is well understood that this cannot be true in reality. Even the
more complex, multiphase dust model frameworks, such as those
of Jones et al. (2013, 2017), usually only incorporate two or three
types of dust, each with a corresponding κd.

As such, understanding how kappa varies – both between differ-
ent galaxies, and within individual galaxies – is clearly vital for the
field.
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5258 C. J. R. Clark et al.

In this paper, we use an empirical method for determining the
value of κd – which we employ on a resolved, pixel-by-pixel basis
in two nearby galaxies – to produce the first maps of how κd varies
within galaxies, as a proof-of-concept study. The theory behind
the dust-to-metals method we employ to find κd is described in
Section 2. The galaxies and data we use in this work are described
in Section 3. The application of the technique to produce maps of
κd is Section 4. Our results are presented in Section 5, and are
discussed in Section 6. For brevity and readability, ‘flux density’
will be termed ‘flux’ throughout the rest of the paper.

2 TH E O RY

Of the many methods proposed for estimating the value of κd, one
of the most simple is that first proposed by James et al. (2002). The
James et al. (2002) method is entirely empirical, and relies upon just
one central assumption – that the dust-to-metals ratio in the ISM, εd,
has a known value. If the ISM mass of a galaxy is known, along with
the metallicity of that ISM, it is straightforward to calculate the total
mass of interstellar metals in that galaxy; then, by assuming a fixed
dust-to-metals ratio, it is possible to infer a galaxy’s dust mass a
priori, without any reference to the dust emission. This a priori dust
mass can then be compared to that galaxy’s observed dust emission,
and hence κd can be calibrated. Here we use the εd notation for the
dust-to-metals ratio, instead of DTM. This maintains consistency
with James et al. (2002) and Clark et al. (2016), and avoids any
ambiguity arising from the fact that DTM is often used to denote
a dust-to-metals ratio normalized by the Milky Way value, whereas
our quoted dust-to-metals ratios are always absolute values.

The vast majority of all reported values of εd lie in the range
0.2–0.6 (considering only values of εd that are not based upon
some assumed value of κd: Issa, MacLaren & Wolfendale 1990;
Luck & Lambert 1992; Pei 1992; Whittet 1992; Dwek 1998; Meyer,
Jura & Cardelli 1998; Pei, Fall & Hauser 1999; Weingartner &
Draine 2001; James et al. 2002; Kimura, Mann & Jessberger 2003;
Draine et al. 2007; Jenkins 2009; Peeples et al. 2014; McKinnon,
Torrey & Vogelsberger 2016; Wiseman et al. 2017; Telford et al.
2019). As such, it seems fair to conclude that εd is significantly better
constrained than κd – making the former a useful tool for pinning
down the value of the latter. And whilst some authors suggest larger
values of εd (for instance De Cia et al. 2013, who find values in the
region of 0.8), we can at least be confident that, by definition, no
galaxy has a dust-to-metals ratio greater than 1 – no such helpful
constraint exists for κd. Furthermore, thanks to observations of
elemental depletions in the neutral ISM, εd can be determined far
more directly than κd.

Clark et al. (2016) built upon the James et al. (2002) method,
to correct for a number of systematics that affected that original
implementation, and to enable it to take advantage of higher quality
modern FIR–submm data. In this work, we apply the Clark et al.
(2016) iteration of the dust-to-metals method on a resolved basis,
in nearby galaxies. Therefore, for completeness, we here provide a
cursory description of the technique as implemented in this work;
for a full derivation and description, refer to section 2 of Clark
et al. (2016). The final form of the method can be rendered as the
following formula for computing κλ for the ISM of a source:

κλ = D2

ξ (MH I + MH2 ) εd fZ

n∑
i

(
Sλi

Bλ(Ti)

)
i

, (3)

where ξ is a correction factor to account for the fraction of ISM mass
due to elements other than hydrogen, MH I is the atomic hydrogen

mass, MH2 is the molecular hydrogen mass, εd is the dust-to-metals

ratio, and fZ is the ISM metal mass fraction. The
∑n

i (
Sλi

Bλ(Ti )
)i term

corresponds to the model used to fit the observed dust emission of
the target source – in this instance, n MBBs, as per equation (1);
n is the number of dust components being modelled, Sλi

is the
flux emitted at wavelength λ by dust component i, and Bλ(Ti) is the
Planck function evaluated at wavelength λ for temperature Ti of dust
component i; our SED-fitting procedure is described in Section 4.2.

The formulation in equation (3) gives a combined κd value,
that incorporates the contribution from all dust species present,
for each temperature component (for n > 1). The problem becomes
unconstrained if each dust component is treated as having a different
κd. The potential impact of line-of-sight mixing of dust components
at different temperatures is discussed in Section 4.2.

The correction factor ξ is required in equation (3), as the dust-
to-metals method is concerned with the total mass of the ISM, not
just the mass of hydrogen. It is standard in the literature to account
for mass other than hydrogen by applying a fixed factor of 1.36
– corresponding to the Milky Way helium abundance. However
this fails to consider how helium abundance varies with galaxy
evolution, or the contribution of metals to the mass of the ISM.
Thus ξ is defined as

ξ = 1

1 −
(
fHep + fZ

[
	fHe
	fZ

])
− fZ

, (4)

where fHep is the primordial helium mass fraction, and [ 	fHe
	fZ

]
describes the evolution of the helium mass fraction with metallicity.
We use fHep = 0.2485 ± 0.0002 from Aver et al. (2013), and
[ 	fHe

	fZ
] = 1.41 ± 0.62 from Balser (2006). Given equation (4), ξ can

therefore vary from 1.33 (for low-metallicity galaxies where Z →
0) to 1.45 (for high-metallicity giant ellipticals where Z = 1.5 Z�).

It is important to note that 12 + log10[ O
H ] measurements trace gas-

phase metallicity in the ionized phase (predominantly H II regions),
whereas we are concerned with the metallicity of the ISM at large.
This means that we must account for the fraction of interstellar
oxygen mass in H II regions depleted on to dust grains, δO, and
hence missed by gas-phase metallicity estimators. We use a value
of δO = 1.32 ± 0.09 from Mesa-Delgado et al. (2009), which is in
good agreement with numerous other reported values (Peimbert &
Peimbert 2010; Kudritzki et al. 2012; Bresolin et al. 2016). Whilst
the oxygen depletion factor in the ISM at large is known to vary
by at least 0.3 dex (Jenkins 2009), oxygen depletion in H II regions
is found to be remarkably constant, at ∼1.3 (i.e. ∼0.1 dex) across
nearby galaxies (evaluated by comparing abundances in H II regions
to abundances in the atmospheres of nearby B stars; Bresolin
et al. 2016 and references therein). Additionally, given that the
elemental composition of oxygen-rich dust is found to exhibit
minimal variation at intermediate-to-high metallicities (Mattsson
et al. 2019), the assumption of a constant δO is valid modulo a
constant εd – which is the central premise of our method.

Atomic hydrogen mass, MH I (in M�), is determined using
observations of the 21 cm hyperfine structure line, according to
the standard prescription

MH I = 2.356 × 10−7 SH ID
2, (5)

where SH I is the velocity-integrated flux density of the 21 cm line
(in Jy km s−1), and the source distance D is here in units of pc.

The mass of molecular hydrogen associated with a source cannot
be determined directly from emission; because the H2 molecule is
non-polar, it does not radiate when in the ground state (which is
the case for the bulk of molecular hydrogen in galaxies). Instead,
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The first maps of κd 5259

molecular hydrogen masses are typically inferred by treating CO
as a tracer molecule, via observations of the 12C16O(1–0) rotational
line (referred to as CO(1–0) hereafter). The mass of molecular
hydrogen, MH2 (in M�), can thus be calculated using the relation

MH2 = ICOαCO

(
2 D tan

(
θ

2

))2

, (6)

where ICO is the velocity-integrated main-beam brightness tem-
perature of the CO(1–0) line (in K km s−1), αCO is the CO-to-
H2 conversion factor (in K−1 km−1 s M� pc−2), θ is the angular
diameter of the target source, and the source distance D is here
in units of pc. The value of αCO is a matter of much debate, but
the standard Milky Way value is αCOMW = 3.2 K−1 km−1 s M� pc−2,
which is treated as uncertain by a factor of 2 (see Obreschkow &
Rawlings 2009, Saintonge et al. 2011, Bolatto, Wolfire & Leroy
2013, and references therein). Note that equation (6) is simply
the standard H2 mass surface-density prescription, H2 = ICOαCO

(where H2 is in units of M� pc2), rendered in terms of MH2 for
consistency with equations (3) and (5). The CO-to-H2 conversion
factor can alternatively be expressed as XCO, which is in terms
of column number density of molecules, being related to αCO

according to XCO = 6.3 × 1019 αCO.
The galaxies considered in this work contain environments with

metallicities that vary by a factor of 2.5, spanning 0.4–1 Z� (see
Section 4). When considering locales with significantly varying
metallicities, it is important to account for the corresponding varia-
tion of αCO with metallicity (Bolatto et al. 2013). In lower metallicity
environments, there will be reduced abundances of C and O, relative
to H. Additionally, there is less dust available in low-metallicity
environments to shield the CO – which is less able to self-shield
than H2 – from photodisassociation (see Wolfire, Hollenbach &
McKee 2010, Clark & Glover 2015, and references therein). Here
we opt to use the metallicity-dependent αCO prescription of Amorı́n
et al. (2016), described by

αCO = αCOMW

(
Z

Z�

)−y CO

, (7)

where Z
Z� is the ISM metallicity in terms of the Solar value, and

yCO is an empirical power-law index with a value of 1.5 ± 0.3.
The Amorı́n et al. (2016) rule is calibrated on a sample of galaxies

spanning over an order of magnitude in metallicity (7.69 < 12 +
log10[ O

H ] < 8.74), by using the star formation efficiency (SFE) and
star formation rate (SFR) to infer the molecular gas supply present.
They do this by employing the relation αCO

αCOMW
= τH2

SFR
MH2

; effectively

inverting the Kennicutt–Schmidt law (Kennicutt 1998) to infer the
molecular gas mass present, anchored by the known SFE of the
Milky Way. Resolved studies such as Bigiel et al. (2011) and Utomo
et al. (2019) find remarkably little variation in SFE within face-on
local normal spirals like those studied in this work; this supports the
reliability of using an SFE-calibrated method for estimating αCO

in a resolved study such as ours. Additionally, the Amorı́n et al.
(2016) prescription effectively traces the median of the commonly
cited metallicity-dependent literature prescriptions (see fig. 11 of
Amorı́n et al. 2016 and fig. 6 of Accurso et al. 2017 for comparisons
of prescriptions), making it the choice most likely to not conflict
with other works.

Regarding the Solar metallicity, we use the canonical value
for the Solar oxygen abundance of [12 + log10

O
H ]� = 8.69 ± 0.05

(Asplund et al. 2009), corresponding to a Solar metal mass fraction
of fZ� = 0.0134 (Asplund et al. 2009, uncertainty deemed to be
negligible). In common with the literature at large, we assume that

oxygen abundance traces total metallicity. Whilst this assumption
has its limits, oxygen is the most abundant metal in the Universe,
and a dominant constituent of dust (Savage & Sembach 1996;
Jenkins 2009), making it a useful metallicity tracer for our purposes.
Although the ratio of oxygen to carbon (the other main constituent
of dust by mass) is known to vary with metallicity (Garnett et al.
1995), this systematic trend is no more prominent than the intrinsic
scatter over the 0.4–1.0 Z� metallicity range relevant to this work
(Pettini et al. 2008; Berg et al. 2016).

Although a D2 term appears in equation (3), the MH I and MH2

terms are also both proportional to D2, which therefore ultimately
cancels out. This renders the resulting values of κλ independent of
distance, removing a potentially large source of uncertainty.

Throughout this work, when employing values from the literature,
we take care to only use values that do not themselves rely upon
any assumed value of κd.

For the value of the dust-to-metals ratio, εd, in equation (3),
we take two approaches. For our fiducial analysis, presented in
Section 5, we assume a constant value of εd = 0.4 ± 0.2. This
is smaller than the value of 0.5 assumed in Clark et al. (2016),
as more recent works (De Cia et al. 2016; McKinnon et al.
2016; Wiseman et al. 2017) suggest that for most galaxies with
metallicities > 0.1 Z�, the dust-to-metals ratio is slightly below the
Milky Way’s average value of 0.5 (James et al. 2002; Jenkins 2009).

The assumption of a constant dust-to-metals ratio is an ap-
proximation that will break down at some point. Therefore, in
Section 6.2.1, we construct an alternate analysis where εd increases
as a function of ISM surface density. This is a more physical
treatment, as depletion of ISM metals on to dust grains is found
to increase in regions of greater ISM column density (Jenkins 2009;
Roman-Duval et al. 2019). This is in agreement with the fact that
grain growth in the ISM is required to explain the dust budgets
in many galaxies (Galliano, Dwek & Chanial 2008; Rowlands
et al. 2014; Zhukovska 2014). As a result, dust grain growth in
denser ISM (with the corresponding increase in εd) is a feature of
dust evolution models such as The Heterogeneous dust Evolution
Model for Interstellar Solids (THEMIS; Jones et al. 2013, 2017;
Jones 2018). Unfortunately, the exact form of the relationship
between εd and ISM (surface) density is very poorly constrained
(the relationship we assume for our analysis is described in detail
in Section 6). As such, the variable-εd model represents a more
physical, but worse-constrained approach; whilst the fixed-εd model
represents a less physical, but better constrained approach. For this
reason, whilst the fixed-εd approach is our fiducial model, we none
the less consider both scenarios.

3 DATA

An initial attempt by Clark et al. (2016) to detect variation in κd

using the dust-to-metals method was unsuccessful; however, that
study only considered the global dust properties of galaxies, and
considered a sample of 22 objects, all of which were of similar
masses, metallicities, and environments. A promising avenue for
finding variation in κd is to look within well-resolved nearby
galaxies. Many studies have found that dust properties can vary
significantly – and sometimes dramatically – within galaxies (Smith
et al. 2012; Roman-Duval et al. 2017; Relaño et al. 2018). It would
be surprising if this variation did not extend to κd.

Creating a κd map of a galaxy using the dust-to-metals method
requires resolved data for its dust emission, atomic gas, molecular
gas, and metallicity; with the resolution provided by modern obser-
vations, it is possible to make many hundreds, or even thousands, of
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5260 C. J. R. Clark et al.

independent κd determinations within a galaxy. For this proof-of-
concept demonstration we map κd within two nearby face-on spiral
galaxies – M 74 (NGC 628) and M 83 (NGC 5236). We select these
galaxies on account of their particularly extensive metallicity data
(see Section 3.3), coupled with their resolution-matched multiphase
ISM observations (see Section 3.4).

We obtained the bulk of the necessary data from the DustPedia
archive.1 DustPedia (Davies et al. 2017) is a European Union project
working towards a comprehensive understanding of dust in the
local Universe, capitalizing on the legacy of the Herschel Space
Observatory (Pilbratt et al. 2010). A centrepiece of the project is the
DustPedia data base, which includes every galaxy observed by Her-
schel that has recessional velocity within 3000 km s−1 (∼40 Mpc),
has optical angular size in the range 1 arcmin < D25 < 1◦, and has
a detected stellar component.2

The continuum data we employ are described in Section 3.2,
the metallicity data (and the process by which we use it to create
metallicity maps) are described in Section 3.3, and the atomic and
molecular gas data in Section 3.4.

3.1 Target galaxies

We selected M 74 and M 83 as the subject galaxies for this work;
a summary of their basic characteristics is provided in Table 1.
Both are very nearby, highly extended, and almost perfectly face-
on, making them two of the most heavily studied galaxies in the
sky, and ideally suited to serving as our proof-of-concept targets for
mapping κd.

Both galaxies are classified as ‘grand design’ (Elmegreen &
Elmegreen 1987) type Sc spirals, with M 83 also displaying a
prominent bar (de Vaucouleurs et al. 1991). M 74 has a physical
diameter of 29 kpc – similar to that of the Milky Way (Goodwin,
Gribbin & Hendry 1998; Rix & Bovy 2013) – and about 50 per cent
greater than that of M 83 (diameter defined according to the optical
D25, being the isophotal major axis at which the optical surface
brightness falls beneath 25 mag arcsec2).

Despite being the physically smaller of the two, M 83 has a stellar
mass 2.2 times greater, and an SFR 2.7 times greater (Nersesian
et al. 2019). M 83 has a correspondingly higher surface brightness
in dust emission, averaging 4.2 MJy sr−1 at 500μm within its D25,
compared to 1.6 MJy sr−1 for M 74. The nuclear region of M 83
is currently undergoing a bar-driven starburst, concentrated in the
central 250 pc, accounting for ∼10 per cent of the galaxy’s total
ongoing star formation (Sérsic & Pastoriza 1965; Harris et al. 2001;
Fathi et al. 2008). The optical disc of M 83 has a minimal systematic
metallicity gradient, with oxygen abundances varying by only about
0.1 dex from place to place; in contrast, M 74 has a pronounced
metallicity gradient, with oxygen abundances in its centre about
0.3 dex greater than at its R25 (De Vis et al. 2019).

Many of the differences between M 74 and M 83 – such as in
their stellar surface densities (and therefore interstellar radiation
fields), star formation characteristics, metallicity profiles, ISM
distributions, etc., – have the potential to affect dust properties,
and thereby provide useful scope for us to contrast how κd can vary
due to a range of factors.

1https://dustpedia.astro.noa.gr/
2As defined according to detection by the Wide-Field Infrared Survey
Explorer (WISE; Wright et al. 2010), at its all-sky sensitivity, in 3.4μm
(its most sensitive band).

Table 1. Basic properties of M 74 and M 83, the galaxies studied in this
work. All values derived from the data presented in Clark et al. (2018),
unless otherwise specified.

M 74 M 83

NGC No NGC 628 NGC 5236
RA (J2000) 24.174◦ 204.254◦

(01h 36m 41.s 8) (13h 37m 01.s 0)
Dec. (J2000) + 15.783◦ −29.866◦

(+ 15◦46
′
58.′′ 8) (−29◦ 51

′
57.′′ 6)

Distance (Mpc) a 10.1 4.9
Hubble Type SAc SBc

(5.2) (5.0)
D25 (arcmin) 10.0 13.5
D25 (kpc) 29.4 19.2
A25 (kpc2) 683 290
M∗ (log10 M�)b 10.1 10.5
MH I (log10 M�)c 9.9 10.0
MH2 (log10 M�)d 9.4 9.5
Md (log10 M�)e 7.5 7.4
SFR (M� yr−1)b 2.4 6.7
FUV-KS (mag) 2.9 3.4
NUV-r (mag) 2.5 2.8

aAs a first-order estimate of the uncertainty on the distance, we use
the standard deviation of the redshift-independent distances listed in the
NASA/IPAC Extragalactic Data base (NED; https://ned.ipac.caltech.edu/ui/)
for each galaxy. This gives uncertainties of 3.2 and 3.4 Mpc for M 74 and
M 83, respectively.
bNersesian et al. (2019).
cH I mass from total single-dish flux in the HI Parkes All Sky Survey
(HIPASS; Meyer et al. 2004; Wong et al. 2006).
dThis work (see Section 3.4).
eThis work (using the pixel-by-pixel κd values calculated in produced 5).

The appearances of both galaxies, in various parts of the spec-
trum, are illustrated in Figs 2 and 3. The stellar masses and SFRs
for the DustPedia galaxies, as presented in Nersesian et al. (2019),
were estimated using the Code Investigating GALaxy Emission
(CIGALE; Burgarella, Buat & Iglesias-Páramo 2005; Noll et al. 2009)
software, incorporating the THEMIS dust model.

3.2 Continuum data

Multiwavelength imagery and photometry for the DustPedia galax-
ies (spanning 42 ultraviolet–millimetre bands), along with dis-
tances, morphologies, etc., are presented in Clark et al. (2018). Our
analysis makes use of observations from several of the facilities
included in the DustPedia archive.

In the submm, we use observations at 250, 350, and 500μm
from the Spectral and Photometric Imaging REceiver (SPIRE;
Griffin et al. 2010) instrument onboard Herschel. In the FIR, we
use observations at 160 and 70μm from the Photodetector Array
Camera and Spectrometer (PACS; Poglitsch et al. 2010) instrument,
also onboard Herschel (PACS did not perform 100μm observations
for M 83, so for consistency we make no use of the PACS 100μm
data for M 74). In the MIR, we use observations at 22μm from
the WISE.3 A compilation of the MIR–FIR–submm data for each
galaxy is shown in the centre left panels of Figs 2 and 3.

3Whilst 24μm Spitzer data does exist for these galaxies, the background is
better behaved in the WISE data, due to the superior mosaicking permitted
by the larger field of view.
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The first maps of κd 5261

Figure 2. Multiwavelength overview of M 74. First: Three-colour UV–optical–NIR image, composed of GALEX NUV (blue), SDSS g (green), and Spitzer-
IRAC 3.6μm (red) data. Second: Three-colour MIR–FIR–submm image, composed of WISE 22μm (blue), Herschel-PACS 160μm (green), and Herschel-
SPIRE 350μm (red) data. Third: THINGS H I moment-0 map. Fourth: HERACLES CO(2–1) moment-0 map. Except for the UV–optical–NIR image, all maps
are convolved to the 36 arcsec limiting resolution at which we perform our analysis (beam size indicated in the second panel). The dotted line in the far right
panel marks the SNR = 2 contour of the CO(2–1) map, which is the region within which we mapped κd.

Figure 3. Multiwavelength overview of M 83. Description as per Fig. 2, with the exceptions that the green channel in the far left three-colour UV–optical–NIR
image corresponds to DSS B band, the CO moment-0 map is SEST CO(1–0) data, and that the limiting resolution of our M 83 data is 42 arcsec (images
convolved accordingly).

Although not required for the creation of the κd maps, we use
various additional data for reference and comparison, also drawn
from the DustPedia archive. This includes UV observations from
GALaxy Evolution eXplorer (GALEX; Morrissey et al. 2007); UV,
optical, and NIR observations from the Sloan Digital Sky Survey
(SDSS; York et al. 2000; Eisenstein et al. 2011); optical observations
from the Digitized Sky Survey (DSS); plus NIR observations from
the InfraRed Array Camera (IRAC; Fazio et al. 2004) and Multiband
Imager for Spitzer (MIPS; Rieke et al. 2004) instruments onboard
the Spitzer Space Telescope (Werner et al. 2004). A compilation of
the UV–optical–NIR data for each galaxy is shown in the far-left
panels of Figs 2 and 3.

3.3 Metallicity data

Galaxies sufficiently extended to have well-resolved global FIR–
submm observations, atomic gas observations, and molecular gas
observations, are generally too extended to have their UV–NIR
nebular spectral emission – and hence metallicities – fully mapped
by Integral Field Unit (IFU) spectrometry. Whilst some large-area
IFU surveys of nearby galaxies have now been undertaken, these are
still very much the exception rather than the rule, and even the very
largest can currently only cover ∼50 per cent of the area of galaxies

as extended as M 74 and M 83. (Rosales-Ortega et al. 2010; Sánchez
et al. 2011; Blanc et al. 2013). As such, the few DustPedia galaxies
with mostly complete IFU coverage do not have the well-resolved
gas and dust data needed for this analysis.

However, extended nearby galaxies are popular targets for spec-
troscopic observation; most have had large numbers of individual
slit and fibre spectra taken, supplementing partial IFU coverage like
that described above. For DustPedia, De Vis et al. (2019) have
compiled a sizeable data base of emission-line fluxes, collated
from 42 literature studies plus all available archival Multi Unit
Spectroscopic Explorer (MUSE; Bacon et al. 2010) data that covers
the DustPedia galaxies. The De Vis et al. (2019) spectroscopic data
base contains emission-line fluxes from 10 000 spectra, with data
for 492 (56 per cent) of the DustPedia galaxies. De Vis et al. (2019)
also present consistent gas-phase metallicity measurements for all
of these spectra, for five different strong-line relation prescriptions
(all of which yield standard 12 + log10[ O

H ] metallicities). Following
their tests of the internal consistency of the prescriptions considered,
De Vis et al. (2019) find the Pilyugin & Grebel (2016) ‘S’ prescrip-
tion most reliable; we therefore use these metallicities throughout
the rest of this work. A recent study by Ho (2019) also supports the
validity of the Pilyugin & Grebel (2016) prescriptions at the metal-
licities of our target galaxies. As an additional test, we also repeat
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5262 C. J. R. Clark et al.

Figure 4. The radial metallicity profiles of M 74 (left) and M 83 (right). The black lines show the radial metallicity profiles; the shaded grey areas indicate
the intrinsic scatter (all based on median posterior values of mZ, cZ, and ψ). For ease of viewing, a handful of points are not shown in these plots (being at
12 + log10[ O

H ] < 8.2, and/or radii beyond R25); such points are none the less included in all modelling.

the entire κd-mapping process using metallicity data produced using
four other strong-line relations; this is presented in Appendix F.

M 74 and M 83 both have large numbers of metallicities in the
De Vis et al. (2019) data base – 510 and 793 measurements, respec-
tively, more than any other DustPedia galaxy (except UGC 09299,
which lacks the resolved gas data we require). These metallicity
points sample the entirety of both galaxies’ optical discs. The
positions of these spectra, and the metallicities derived from them,
are plotted in the upper left panels of Figs 5 and 6. Our region of
interest for each galaxy4 extends approximately out to 0.55 R25 for
M 74, and to 0.7 R25 for M 83. So whilst the bulk of the metallicity
points lie within the region of interest of each galaxy, providing
dense sampling, there are also sufficient points outside it to constrain
the metallicity variations over larger scales.

In order to produce maps of κd, it was necessary to first have
maps of the metallicity distributions of our target galaxies. The first
step towards achieving this was modelling their radial metallicity
profiles. The spectra metallicity points for M 74 and M 83, plotted as
a function of their deprojected galactocentric radius, r, are shown in
Fig. 4. As can be seen, there is significant scatter around the radial
trends of both galaxies, far in excess of what would be expected
if it were driven solely by the uncertainties on the individual
metallicity points. Indeed, if one fits a naı̈ve metallicity profile
where the only variables are the gradient and the central metallicity,
then the majority of data points would count as > 5 σ ‘outliers’
in M 83 (and most would count as > 2 σ outliers for M 74). This
scatter represents localized variations in metallicity, which are not
azimuthally symmetric – and which therefore cannot be captured
by a one-dimensional model. Such variation becomes apparent
when sampling the metallicity within galaxies at such high spatial
resolution (Moustakas et al. 2010; Rosales-Ortega et al. 2010).
For example, note the localized region of significantly depressed
metallicity in the western part5 of the disc of M 83, visible in the
upper left panel of Fig. 6.

4The region of interest being the area where we map κd; illustrated in Figs 2
and Fig. 3, and defined in Section 4.1.
5Centred at approximately: α = 204.20◦, δ = −29.87◦.

Table 2. Results of our modelling of the radial metallicity profiles of
M 74 and M 83. Stated values are posterior medians, with uncertainties
indicating the 68.3 per cent credible interval (all posteriors were symmetric
and Gaussian).

M 74 M 83

mZ (dex r−1
25 ) − 0.27 ± 0.04 − 0.14 ± 0.02

cZ (12 + log10[ O
H ]) 8.59 ± 0.02 8.62 ± 0.01

ψ (dex) 0.044 ± 0.01 0.048 ± 0.01

We had to take this intrinsic scatter into account when modelling
the radial metallicity profiles of our target galaxies; we therefore
used a model with 3 parameters: the metallicity gradient mZ (in
dex r−1

25 ), the central metallicity cZ (in 12 + log10[ O
H ]), and the

intrinsic scatter ψ (in dex). We employed a Bayesian Monte Carlo
Markov Chain (MCMC) approach to fit this model, the full details of
which are given in Appendix A; the resulting parameter estimates,
with uncertainties, are listed in Table 2.

It would technically be possible to create metallicity maps
of our target galaxies using only these fitted radial metallicity
profiles. However, using this simple one-dimensional approach
(i.e. where metallicity varies only as a function of r) leads to
very large uncertainties on the metallicity value of each pixel
in the resulting maps, thanks to the considerable intrinsic scatter
values (ψ = 0.044 dex for M 74, and ψ = 0.049 dex for M 83). In
contrast, most of the individual spectra metallicity data points have
uncertainties much smaller than this, with median uncertainties of
0.010 and 0.025 dex for M 74 and M 83, respectively (NB, spectra
located in close proximity tend to have metallicities that are in
good agreement – see the densely sampled area in Figs 5 and 6).
In other words, there are many areas of these galaxies where the
metallicity is known to much greater confidence than is reflected
by the global radial metallicity gradient – therefore, relying upon
the global one-dimensional model alone would mean ‘throwing
away’ that information. As such, we opted to model the metallicity
distributions of our target galaxies in two dimensions. To achieve
this, we employed Gaussian process regression.
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The first maps of κd 5263

Figure 5. Illustration of our Gaussian process regression (GPR) metallicity mapping procedure, for M 74. Upper left: Markers show the positions of spectra,
colour coded to indicate their metallicity (as per the colour bar at the lower right of the figure), plotted on a Spitzer 3.6μm image. Upper right: Points show the
residual between the metallicity of each spectra, and the global radial metallicity profile at that position. Red points have a positive residual, blue points have a
negative residual. Background image shows the GPR model to these residuals. Lower left: Background image shows the uncertainty on the GPR, with positions
of spectra plotted on top (again colour coded according their individual metallicities, as per the colour bar at the lower right of the figure). The regression tends
to have much lower uncertainty in area more densely sampled with spectra. Lower right: Same as upper left panel, but now with the final GPR metallicity map
traced with colour-coded contours. This final metallicity map was produced by adding the GPR residual model shown, in the upper right panel, to the global
radial metallicity profile. The colour scale used to indicate metallicity is red-to-red circular (therefore preserving sequentiality for all kinds of colour blindness)
and approximately isoluminant (therefore reverting to a near-constant shade when displayed in greyscale).

3.3.1 Gaussian process regression

Gaussian process regression (GPR) is a form of probabilistic
interpolation that makes it possible to model a data set without
having to assume any sort of underlying functional form for the
model. GPR (and Gaussian process methodology in general) is
a commonly applied tool in the field of machine learning – and
in recent years GPR has seen increasing use in astronomy, to
tackle problems where stochastic (and therefore impractical to
model directly) processes give rise to complex features in data
(for instance, capturing the effect of varying detector noise levels
in time-domain data). For a full introduction to Gaussian process

methodology, including GPR, see Rasmussen & Williams (2006);
for an extensive list of works where Gaussian processes have been
successfully applied to problems in astronomy, see section 1 of
Angus et al. (2018).

Instead of trying to model the underlying function that gave rise
to the observed data, GPR models the covariance between the data
points. The covariance is modelled using a kernel, which describes
how the values of data points are correlated with one another, as a
function of their separation in the parameter space.

This covariance-modelling approach is well suited to the problem
we face with mapping metallicity within our target galaxies. Spectra
located very close together (e.g. within a few arcseconds) will
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5264 C. J. R. Clark et al.

Figure 6. Metallicity mapping for M 83. Description as per Fig. 5. Localized variations in metallicity are as prominent as the global gradient, as expected
given Fig. 4. The high-metallicity (and high-uncertainty) region extrapolated by the GPR to the north-west of M 83 is driven by the fact that the closest spectra
to this area have metallicities above what would be predicted from the global gradient.

tend to have very similar metallicities, whilst spectra with greater
separations (e.g. arcminutes apart) will only be weakly correlated
with one another (this is readily apparent from visual inspection of
Figs 5 and 6).

For the covariance function, we used a Mátern kernel (Stein
1999). The Mátern function is a standard choice for modelling the
spatial correlation of two-dimensional data (Minasny & McBratney
2005; Rasmussen & Williams 2006; Cressie & Wikle 2011) –
especially physical data (Schön et al. 2018). In practice, a Mátern
kernel is similar to a Gaussian kernel, but has a narrower peak
(allowing it to be sensitive to variations over short distances)
whilst also having thicker tails (letting it maintain sensitivity to the
covariance over large distances). Like a Gaussian, the tails extend to
infinity. The Mátern kernel has two hyperparameters: kernel scale
and kernel smoothness (essentially how ‘sharp’ the peak of the
kernel is).

Once the covariance has been modelled, it is used in combination
with the observed data to trace the underlying distribution. The

result is a full posterior probability distribution function (PDF) for
the likely value of the underlying function at that location. The
uncertainties in each input data point are fully considered by GPR.
In regions where the input data points have large uncertainties, or
where data points in close proximity disagree with one another,
the output PDF will be less well constrained, reflecting the greater
uncertainty on the underlying value at that location.

3.3.2 Metallicity maps via Gaussian process regression

We opted to apply the GPR to the residuals between the individual
spectra metallicity points and the global radial metallicity profile
(i.e. Fig. 4). By fitting to the residuals, the global radial metallicity
profile effectively serves as the prior for the regression. The
regression then traces the structure of the local deviations from
the global radial metallicity profile. In regions where there are no
data points, the GPR therefore tends to revert to the metallicity
implied by the global radial profile.
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The first maps of κd 5265

This process is illustrated in the upper right panels of Figs 5 and 6
for M 74 and M 83, respectively. The circular points mark the posi-
tions of the individual spectra metallicities, colour coded to show the
residual of each (the median absolute residual is 0.026 dex for both
galaxies). The coloured background shows the Gaussian process
regression to these residuals, similarly colour coded. We used
GaussianProcessRegressor, the GPR implementation of
the Scikit-Learn machine learning package for PYTHON (Pedregosa
et al. 2011). The hyperprior for the kernel scale was flat, but limited
to a range of 0.05–0.5 D25, to prevent the modelled regression being
either featurelessly smooth, or unrealistically granular. The kernel
smoothness hyperprior was set to 1.5, which is a standard choice due
to being computationally efficient, differentiable, and often found to
be effective in practice (Rasmussen & Williams 2006; Gatti 2015).

The final metallicity map for each galaxy was produced by adding
the residual distribution traced by the GPR to the global radial
metallicity profile, for each pixel. The resulting metallicity maps are
plotted as contours in the lower right panels of Figs 5 and 6, for M 74
and M 83, respectively. Visual inspection indicates that the GPR
does a good job of tracing the metallicity distribution as sampled
by the spectra metallicity points (i.e. the contours consistently have
the same levels as the points they pass through).

Our full procedure for calculating the uncertainty on the GPR
metallicity in each pixel is presented in Appendix C. The resulting
metallicity uncertainty maps are shown in the lower left panels of
Figs 5 and 6.

We validated the reliability of the metallicities predicted by
GPR by performing a jackknife cross-validation analysis, which
is described in detail in Appendix B. This analysis found that
the predicted values exhibit no significant bias, and the associated
uncertainties are reliable.

There are areas in both galaxies where the data points suggest
a steadily increasing residual in a certain direction; the GPR then
extrapolates that this increase continues for some distance (defined
by the modelled kernel scale) into regions where there are no data
points. For instance, in the south-western part of M 74, the data
points suggest that the metallicity gradient is steeper than for the
rest of the galaxy (i.e. a trend of increasingly negative residuals) –
the GPR extrapolates that this increased steepness will continue for
a certain distance into an area where there are no metallicity points.
A similar situation occurs in the north-west portion of M 83 (but
instead with a positive residual). Naturally, extrapolations such as
these are highly uncertain; but this is quantified by the uncertainty
on the regression at these locations. This is illustrated in the lower
left panels of Figs 5 and 6, which show the uncertainty for each
pixel’s predicted metallicity.

Utilizing GPR provides a marked reduction in the uncertainty of
our metallicity maps, relative to using the global radial metallicity
profiles alone. If we were to use that simple global approach, every
pixel in our metallicity map for M 74 would have an uncertainty
at least as large as the intrinsic scatter of 0.044 dex (Table 2). In
contrast, with our GPR metallicity map of M 74, 91 per cent of the
pixels within the region of interest4 have uncertainties <0.044 dex;
the median GPR uncertainty within this region is only 0.016 dex.
Similarly, whereas the intrinsic scatter on the global radial profile
of M 83 is 0.048 dex, the median error on the GPR metallicity map
is only 0.037 dex within the region of interest; the GPR uncertainty
is less than the global intrinsic scatter for 66 per cent of the pixels
within this region.

There exist ‘direct’ electron temperature metallicity measure-
ments for M 74, produced by the CHemical Abundances Of Spirals
(CHAOS; Berg et al. 2015). Electron temperature metallicities are

at reduced risk of systematic errors, compared to strong-line values
like those provided by De Vis et al. (2019). However, the CHAOS
data for M 74 only consists of 45 measurements. Whilst we trialled
producing metallicity maps with these data, the sparse sampling
meant that the uncertainty on the metallicity at any given point was
extremely large. Maps of κd produced with these metallicity maps
(as per the procedure described in Section 4) were so dominated by
the resulting noise that they were not informative.

3.4 Atomic and molecular gas data

Atomic and molecular gas data for a sample of extended, face-on
spiral galaxies in DustPedia – including those studied in this work
– is presented in Casasola et al. (2017). For both of our target
galaxies, we followed Casasola et al. (2017) and use H I data from
The HI Nearby Galaxy Survey (THINGS; Walter et al. 2008), which
conducted 21 cm observations of 34 nearby galaxies with the Very
Large Array, at 6–16 arcsec resolution. We retrieved the naturally
weighted moment 0 maps for M 74 and M 83 from the THINGS
website.6 The H I maps for both galaxies are shown in the third
panels of Figs 2 and 3.

To obtain CO observations for M 74 we again followed Casasola
et al. (2017), and used data from the HERA CO Line Extragalactic
Survey (HERACLES; Leroy et al. 2009), which performed CO(2–1)
observations of 18 nearby galaxies using the IRAM 30 m telescope,
at 13 arcsec resolution. We retrieved the moment 0 maps, as
associated uncertainty maps, from IRAM’s official HERACLES
data repository.7 The CO(2–1) map for M 74 is shown in the fourth
panel of Fig. 2.

Although M 74 has been observed in CO(1–0) by various authors
(Young et al. 1995; Regan et al. 2001), these observations are all
lacking in either resolution, sensitivity, and/or coverage, in compar-
ison to the HERACLES data. We therefore found it preferable to
use the CO(2–1) data of HERACLES, despite the fact this requires
applying a line ratio, r2:1 = ICO(2–1)/ICO(1–0), in order to find ICO(1–0),
and hence calculate H2 mass as per equation (6).

In nearby late-type galaxies, r2:1 has an average value of ∼0.7
(Leroy et al. 2013; Casasola et al. 2015; Saintonge et al. 2017). How-
ever, it is also known that r2:1 varies significantly with galactocentric
radius (Casoli et al. 1991; Sawada et al. 2001; Leroy et al. 2009). As
such, accurately inferring the CO(1–0) distribution in M 74 using
the HERACLES CO(2–1) map required a radially dependent r2:1. To
produce this, we used the data presented in fig. 34 (lower right panel)
of Leroy et al. (2009), where they compare the HERACLES ICO(2–1)

maps to literature ICO(1–0) maps of the same galaxies produced by
several other telescopes (with appropriate corrections applied to
account for differences in spatial and velocity resolution). This
yielded ≈450 directly measured r2:1 values, spanning radii from 0–
0.55 R25, for nine of the HERACLES galaxies. Leroy et al. (2009)
simply binned these points to trace the radial variation in r2:1;
however, we chose to take a fully probabilistic approach, and use
GPR to infer the underlying radial trend in r2:1. In Fig. 7, we plot
all of the r2:1 points from fig. 34 (lower right panel) of Leroy et al.
(2009). We applied a GPR to these data, using a Mátern covariance
kernel. Because r2:1 is a ratio, we constructed the regression so
that the output uncertainties are symmetric in logarithmic space;
otherwise, output uncertainties symmetric in linear space would

6https://www.mpia.de/THINGS/Overview.html
7https://www.iram-institute.org/EN/content-page-242-7-158-240-242-0.h
tml
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Figure 7. r2:1 values from fig. 34 (lower right panel) of Leroy et al. (2009),
plotted against galactocentric radius in terms of R25. The black line shows
our Gaussian process regression to these data, with the grey shaded area
indicating the 1σ uncertainty.

extend to unphysical values of r2:1 < 0 at larger radii. The resulting
regression is shown in black in Fig. 7. It is in excellent agreement
with the radial trend that Leroy et al. (2009) traced by binning
the data, with r2:1 elevated to ∼1 in the galaxies’ centres, falling
to 0.7–0.8 over the rest of the sampled region – but our approach
has the added benefit over binning of providing well-constrained
uncertainties on r2:1 values produced using the regression. The
uncertainty associated with the regression is a factor of ≈1.3 over
the 0 < R/R25 < 0.55 range in radius sampled by the HERACLES
measurements, reflecting the intrinsic scatter present in the data
points; beyond this, the uncertainty steadily increases, reaching a
factor of ≈2 at R = R25. Given the uncertainty on αCO, this does not
represent a large addition to the total uncertainty on the molecular
gas masses we calculated.

M 83 was not observed by HERACLES. So we instead used
the CO(1–0) observations presented in Lundgren et al. (2004),
which were made using the Swedish–ESO Submillimetre Telescope
(SEST) at a resolution of 42 arcsec, to a uniform depth of 74 mK
(Tmb). The CO(1–0) map for M 83 is shown in the far right panel of
Fig. 3.

We determined αCO pixel-by-pixel using our metallicity maps
according to equation (7), and thereby produced H2 maps of our
target galaxies. The total H2 masses contained in these maps are the
H2 masses listed in Table 1.

4 A PPLICATION

4.1 Data preparation

We background subtracted all continuum maps following the
procedure described in Clark et al. (2018), using the background
annuli they specify for our target galaxies.

All data (continuum observations, gas observations, and metal-
licity maps) were smoothed to the resolution of the most poorly
resolved observations for each galaxy. This was done by convolving
each image with an Airy disc kernel of full width at half-maximum
(FWHM) given by θkernel = (θ2

worst − θ2
data)

1
2 . We therefore convolve

all of our M 74 data to the 36 arcsec resolution of the Herschel-
SPIRE 500μm observations. Likewise, we convolved all of our
M 83 data to the 42 arcsec resolution of the SEST H I observations.

We reprojected all of our data to a common pixel grid for each
galaxy, on an east–north gnomic tan projection. We wished to
preserve angular resolution, ensuring that our data remain Nyquist
sampled, to maximize our ability to identify any spatial features or
trends in our final κd maps. We therefore used projections with 3
pixels per convolved FWHM. This corresponds to 12 arcsec pixels
for M 74, and 14 arcsec pixels for M 83.

For each galaxy, we defined a region of interest, within which
all required data are of sufficient quality to effectively map κd.
We defined this as being the region within which all pixels in the
smoothed and reprojected versions of the H I map, CO map, and 22–
500μm continuum maps, have SNR > 2 (as defined by comparison
to their respective uncertainty maps). For both M 74 and M 83,
the data with the limiting sensitivity are the CO observations. The
borders of our regions of interest for both galaxies are shown in the
far right panels of Figs 2 and 3.

4.2 SED fitting

As described in Section 2, the dust-to-metals method lets us
establish dust masses a priori; then, by comparing this a priori
dust mass to observed FIR–submm dust emission, we can calibrate
the value of κd. This necessitates having a model that describes that
FIR–submm dust emission. We wished to minimize the scope for
potentially incorrect model assumptions to corrupt our resulting κd

values. We therefore modelled the dust emission with the simplest
model that is able to fit FIR–submm fluxes – a one-component MBB
(i.e. equation 1, with n = 1). A one-component MBB model has been
shown by many authors to break down in various circumstances (e.g.
Jones 2013; Clark et al. 2015; Chastenet et al. 2017; Lamperti et al.
accepted). However, these primarily concern either submillimetre
excess in low-metallicity and/or low-density environments (which
are not present in the regions of interest within our target galaxies),
the emission from hotter dust components at short wavelengths
(which we do not attempt to model; see below), or features only
discernible in spectroscopy (which we are not employing). In
‘normal’ galaxies, a one-component MBB can be expected to fit
FIR–submm fluxes successfully (Nersesian et al. 2019).

Note that, as a test, we also repeated the entire SED-fitting process
described in this section with a two-component MBB model (i.e.
equation 1, with n = 2, giving dust components at two temperatures).
However, when comparing the χ2 values of both sets of fits, we
found that adopting the two-component MBB approach adds little
benefit to the quality of the fits. The median reduced χ2 values (of
all posterior samples, from all pixels) for the one-component MBB
fits were 0.61 for M 74 and 0.94 for M 83 – compared to 0.59 and
0.65, respectively, for the two-component fits. This indicates that
the two-component MBB fits offer minimal improvement over the
one-component fits (and, indeed, may be straying into the realm
of overfitting). Given our desire to employ the simplest applicable
model, we therefore opt to proceed with the one-component MBB
approach for this work. None the less, in Appendix G, we verify that
the choice of one- or two-component SED fitting does not result in
considerable changes to our overall results.

By performing our SED fitting pixel-by-pixel, we are reducing
the degree to which there will be contributions from multiple
dust components at different temperatures. None the less, there
will inevitably be some degree of line-of-sight mixing of dust
populations. This risk will be greatest in the densest regions, where
fainter emission from colder, but potentially more massive, dust
components can be dominated by brighter emission from warmer,
but less massive, components heated by star formation (Malinen
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et al. 2011; Juvela & Ysard 2012). If this does occur, then the
resulting κd values will, in effect, factor in the mass of any cold
dust component too faint to affect the SED (assuming the a priori
dust masses calculated by the dust-to-metals method are accurate).
In this scenario, the κd values we calculate may not be valid if
applied to observations with good enough spatial resolution that
line-of-sight mixing becomes negligible.

Although we use equation (1) to model SEDs, we assign an
arbitrary value of κλ during the fitting process (as, of course, the
SED fitting is being performed in order to allow us to find a value of
κλ using the results). This means that the ‘mass’ parameter yielded
by our SED fitting merely serves as a normalization term for the
SED amplitude. This is not a problem, as the only output values
actually required is the temperature of the dust, and its flux at the
reference wavelength; these are needed in equation (3) to calculate
values of κd.

We also incorporate a correlated photometric error parameter,
υSPIRE, into our SED fitting. The photometric calibration uncertainty
of the Herschel-SPIRE instrument contains a systematic error
component that is correlated between bands (Griffin et al. 2010;
Bendo et al. 2013; Griffin et al. 2013). This arises from the
fact that Herschel-SPIRE was calibrated using observations of
Neptune; however, the reference model of Neptune’s emission has
a ±4 per cent uncertainty. We account for this by parametrizing the
correlated Herschel-SPIRE error as υSPIRE. The ±4 per cent scale
of υSPIRE accounts for the majority of the combined 5.5 per cent
calibration uncertainty of Herschel-SPIRE.8 As such, for high-SNR
sources (such as bright pixels within our target galaxies), where
the photometric noise is minimal, the correlated calibration error
can actually dominate the entire uncertainty budget. Moreover,
the ±4 per cent error on υSPIRE does not follow the Gaussian or
Student’s t distribution typically assumed for photometric uncer-
tainties – rather, it is essentially flat, with the true value of the
correlated systematic error almost certainly lying somewhere within
the ±4 per cent range (Bendo et al. 2013; A. Papageorgiou, private
communication; C. North, private communication). Explicitly han-
dling υSPIRE as a nuisance parameter allows us to properly account
for this with a matching prior. Gordon et al. (2014) highlight the
significant differences that can be found in dust SED fitting when
the correlated photometric uncertainties are considered, compared
to when they are not.

The Herschel-PACS instrument also has a systematic calibration
error, of ±5 per cent, arising from uncertainty on the emission
models of its calibrator sources, a set of five late-type giant stars
(Balog et al. 2014). However, the error budget on the emission
models is dominated by the ±3 per cent uncertainty on the line
features in the atmospheres of the calibrator stars (see table 2 of
Decin & Eriksson 2007), which are different in each band, and hence
not correlated. Only the uncertainty on the continuum component of
the emission model, of ±1–2 per cent, will be correlated between
bands. Given the small scale of this correlated error component,
and given that systematic error makes up a smaller fraction of
the total Herschel-PACS calibration uncertainty than it does for
Herschel-SPIRE, and given that the greater instrumental noise for
Herschel-PACS means that calibration uncertainty makes up a small
fraction of the total photometric uncertainty budget than it does for
Herschel-SPIRE, we opt to not model the correlated uncertainty for
Herschel-PACS as we do with υSPIRE.

8SPIRE Instrument & Calibration Wiki: https://herschel.esac.esa.int/twiki/
bin/view/Public/SpireCalibrationWeb

Our one-component MBB SED model therefore has four vari-
ables: the dust temperature, Td; the dust ‘mass’ normalization,
M

(norm)
d ; the emissivity slope, β; and the correlated photometric

error in the Herschel-SPIRE bands, υSPIRE.
The resulting likelihood function, for a set of fluxes S (in Jy),

observed at a set of wavelengths λ (in m), with a corresponding set
of uncertainties σ (in Jy), for a set of size nλ, takes the form

L(S| λ, σ, Td, M
(norm)
d , β, υSPIRE)

=
nλ∏
i

(
t(d, Sdi

, σi) + Sdi
υSPIRE

)
(8)

where, for the ith wavelength in the set, Sdi
is the flux arising

from dust emission given the SED model parameters, and σ i is
the corresponding uncertainty; t(d, Sdi

, σi) is a dth-order Student
t distribution,9 centred at a mode of Sdi

, with a width of σ i. The
expected dust emission Sdi

is given by

Sdi
= 1

D2
κ0

(
λ0

λi

)β

M
(norm)
d B(λi, Td). (9)

We treat photometric uncertainties as being described by a first-
order (i.e. one degree of freedom) Student t distribution. The
Student t distribution has more weight in the tails than a Gaussian
distribution, allowing it to better account for outliers. This makes
the Student t distribution a standard choice for Bayesian SED fitting
(da Cunha, Charlot & Elbaz 2008; Kelly et al. 2012; Galliano
2018).

For the photometric uncertainty in each pixel, we used the values
provided by the uncertainty maps, added in quadrature to the
calibration uncertainty of each band: 5.6 per cent for WISE 22μm,10

7 per cent for Herschel-PACS 70–160μm,11 and 2.3 per cent12 for
Herschel-SPIRE 250–500μm8. Both of our target galaxies lie in
regions with negligible contamination from Galactic cirrus. The
WISE and Herschel-PACS backgrounds are dominated by instru-
mental noise, whilst the Herschel-SPIRE background has a sig-
nificant contribution from the confused extragalactic background.
Therefore, for the Herschel-SPIRE data, we also add in quadrature
the contribution of confusion noise; for this we use the values given
in Smith et al. (2017), of 0.282, 0.211, and 0.105 MJy sr−1 at 250,
350, and 500μm, respectively, derived from the Herschel-ATLAS
fields (although the instrumental noise level still dominates over
this in all of our Herschel-SPIRE data).

We treat fluxes at wavelengths <100μm as upper limits, as
emission in this regime will include contributions from hot dust
and stochastically heated small grains (Boulanger & Perault 1988;
Desert, Boulanger & Puget 1990; Jones et al. 2013) that will not be
accounted for by our MBB model. Therefore at these wavelengths,
any proposed model flux that falls below the observed flux will be
deemed as likely as the observed flux itself (i.e. no proposed model
will be penalized for underpredicting the flux in these bands). Only
for proposed model fluxes greater than the observed flux will the

9Standardized to allow modes and widths other than zero, as per the SCIPY

(Jones et al. 2001) implementation: https://docs.scipy.org/doc/scipy/referen
ce/generated/scipy.stats.t.html
10WISE All-Sky Release Explanatory Supplement (Cutri et al. 2012): https:
//wise2.ipac.caltech.edu/docs/release/allsky/expsup/sec4 4h.html
11PACS Instrument & Calibration Wiki: https://herschel.esac.esa.int/twiki/
bin/view/Public/PacsCalibrationWeb
122.3 per cent being the non-correlated component of the Herschel-SPIRE
calibration uncertainty, separate from υSPIRE.
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Figure 8. The posterior SED modelled by our SED fitting for an example
pixel in M 74 (specifically, at α = 24.1820◦, δ = 15.7755◦). The black
crosses show standard fluxes, whilst the grey crosses are fluxes that serve
as upper limits; error bars are drawn for both. The pale red translucent lines
show the SEDs corresponding to 500 samples from the posterior distribution.
The solid red line shows the data space median posterior SED (being the
posterior sample for which half of all other samples are brighter, and half
fainter, averaged over the wavelength range for which data are present),
and the text in the figure gives its parameters. The corresponding posterior
parameter distributions are shown in Fig. 9.

likelihood decrease according to the Student t distribution, as per
usual.

We sample the posterior probability distribution of the SED
model parameters in each pixel using the EMCEE (Foreman-Mackey
et al. 2013) MCMC package for PYTHON. We perform 750 steps
with 500 chains (‘walkers’); the first 500 steps from each chain were
discarded as burn-in, and non-convergence was checked for using
the Geweke diagnostic13 (Geweke 1992). Our priors are detailed in
Appendix D.

Our SED-fitting routine incorporates colour corrections to ac-
count for the effects of the instrumental filter response functions
and beam areas.14,15,16,17 An example posterior SED, along with the
corresponding parameter distributions, are shown in Figs 8 and 9.

Figs 10 and 11 show maps of the median values of dust mass
surface density, temperature, and β values for each pixel. We assume
that the low temperatures and large β values found in the centre of
M 83 are non-physical, and instead are due to non-thermal emission
from the nuclear starburst affecting the SED fitting. This is limited
to a beam-sized area, consisting of 9 pixels – we therefore exclude
these pixels from analysis in later sections, where noted.

13Comparing the means of the last 90–100 per cent quantile of the combined
chains to the 50–60 per cent quantile.
14WISE colour corrections from Wright et al. (2010).
15Spitzer-MIPS colour corrections from the MIPS Instrument Handbook,
version 3 (Colbert 2011): https://irsa.ipac.caltech.edu/data/SPITZER/docs/
mips/mipsinstrumenthandbook/51/# Toc288032329
16Herschel-PACS colour corrections from the PACS Handbook, version
4.0.1 (Exter et al. 2019): https://www.cosmos.esa.int/documents/12133/996
891/PACS+Explanatory + Supplement
17Herschel-SPIRE colour corrections from the SPIRE Handbook, version
3.1 (Valtchanov et al. 2017): https://herschel.esac.esa.int/Docs/SPIRE/spire
handbook.pdf

Figure 9. Corner plot showing the covariances of the posterior distributions
of the free parameters modelled in our SED fitting, for an example pixel
in M 74 (specifically, at α = 24.1820◦, δ = 15.7755◦). The two-parameter
distributions have contours indicating the regions containing 68.3 per cent,
95.5 per cent, 99.7 per cent, and 99.9 per cent of the posterior samples;
probability density is indicated as a shaded density histogram within the
contoured region, whilst outside of the contoured region the samples are
plotted as individual points. The individual parameter distributions, plotted
at the top of each column as Kernel density estimates (KDEs), are annotated
with the median values, along with the boundaries of the 68.3 per cent
credible interval as ± values (with masses given in units of log10 M�).
The corresponding posterior SEDs, plotted in data space, are shown in
Fig. 8.

Unsurprisingly, the maps of dust mass surface density closely
match the morphology of the dust emission (see Figs 2 and 3). The
temperature map for M 74 is ‘blotchy’, with warmer dust being
located around areas of particularly active star formation (compare
to the regions of bright MIR emission in Fig. 2 in the northern and
southern parts of the disc). The temperature map for M 83 more
visibly traces the overall spiral structure; in particular, elevated
temperatures are found on the exterior edges of the spiral arms.
The β maps for both galaxies show correlations with the dust mass
surface density; in M 74 this manifests as a broad global trend of beta
decreasing with radius, whilst in M 83 beta again more obviously
traces the spiral structure.

There is a well-known anticorrelation between temperature and
β when performing MBB SED fits (Shetty et al. 2009; Kelly et al.
2012; Galliano, Galametz & Jones 2018). This is clearly in evidence
in Fig. 9. However, as demonstrated by Smith et al. (2012), this does
not introduce systematic errors into the results of such fits. And given
this lack of systematic bias, the anticorrelation will not introduce
spurious trends into resolved SED fits – because fits separated by
more than one beam width will be independent, and will be no more
likely to be biased one way than the other. Combined with the fact
that we sample the full posterior in our SED fits, and propagate this
into the final calculation of our κd maps (see Section 5), we do not
believe that the temperature–β anticorrelation will compromise the
validity of our final results.
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Figure 10. Maps showing the results of our SED fitting of M 74. Left: Map of dust mass surface density (d, in M� pc2). Centre: Map of dust temperature
(Td, in K). Right: Map of dust emissivity spectral index (β).

Figure 11. Maps showing the results of our SED fitting of M 83. Description as per Fig. 10.

Our SED-fitting code has been made freely available online as a
PYTHON 3 package.18

5 R ESULTS

We now have the atomic gas, molecular gas, metallicity, and dust
emission data necessary for every pixel in order to create maps of
κd for our target galaxies.

For every pixel within the region of interest for each galaxy, we
produced a full posterior probability distribution for κd. We did
this by drawing random samples from the posterior distributions
provided by our SED and metallicity maps (which are independent
of one another), and inputting them into equation (3) (with number
of MBB SED components i = 1, as per Section 4.2). For all
other input values (SH I, ICO, αCO, αCOMW , yCO, r2:1, δO, fZ� ,
[12 + log10

O
H ]�, fHep , [ 	fHe

	fZ
], and εd) we drew random samples

from the Gaussian distributions described by their adopted values
and associated uncertainties (effectively assuming flat priors, so that
these can be treated as posterior probabilities).

We calculated κd for a reference wavelength of 500μm, as this
is the longest wavelength for which we have data, and therefore the
wavelength where emission is least sensitive to dust temperature;
this minimizes the degree to which uncertainty in temperature

18https://github.com/Stargrazer82301/ChrisFit

is propagated to κd. Our resulting maps of κ500, produced by
taking the posterior median in each pixel, are shown in Figs 12
and 13. These maps contain 585 and 1269 pixels for M 74 and
M 83, respectively. Throughout the rest of this work, quoted κ500

values are pixel medians. The overall median across M 74 is
κ500 = 0.15 m2 kg−1, whilst the overall median across M 83 is κ500 =
0.26 m2 kg−1.

The uncertainties on these κ500 values (defined by the
68.3 per cent quantile in absolute deviation away from the median
along the posterior distribution) span the range 0.21–0.28 dex, with
a mean uncertainty of 0.25 dex for both galaxies. Note that a
large degree of this uncertainty is shared across all pixels, due
to the contributions of systematics (such as the uncertainties on
εd, αCOMW , etc.), which is why the 0.25 dex average uncertainty
is large relative to the scatter in κ500 values. We determined the
contribution of the systematic components to the overall uncertainty
via a Monte Carlo simulation, in which κ500 values were generated
according to equation (3), but where only input parameters with
systematic uncertainties were allowed to vary. The scatter on the
output dummy values of κ500 was taken to represent the total
systematic uncertainty. On average, we found that the systematic
components contribute 0.20 dex to the uncertainty. Taking the
quadrature difference between this and our average total uncertainty
gives an average statistical uncertainty of 0.15 dex in κ500.

The values in our κ500 maps are not fully independent, as they
have a pixel width of 3 pixels per FWHM; this will render adjacent
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Figure 12. Left: Map of κ500 within M 74. Right: UV–NIR–FIR three-colour image of M 74, shown for comparison.

Figure 13. Left: Map of κ500 within M 83. Right: UV–NIR–FIR three-colour image of M 83, shown for comparison.

pixels correlated. Therefore we also produced a version of the
κ500 maps with pixels large enough to be independent (i.e. 1 pixel
per FWHM). These maps contained 65 and 141 independent κ500

measurements for M 74 and M 83, respectively. When performing
statistical analyses throughout the rest of this work, we used these
maps in order to ensure the validity of the results. However, the use
of larger pixels for these maps does involve throwing away spatial
information. We therefore present the standard, Nyquist-sampled
maps in Figs 12, 13, and elsewhere, in order to display all of the
spatial information our data are able to resolve. Similarly, individual
points plotted in Fig. 14 and elsewhere represent the pixels from
the Nyquist-sampled maps, although the trend lines shown on these
plots are derived from the independent-pixel data.

In order to calculate a robust estimate of the underlying range of
κ500 values, we performed a non-parametric bootstrap resampling
of the pixel medians. This non-parametric bootstrap approach will
account for the statistical scatter, and not encompass the systematics.

This gives a median underlying range for 0.11–0.25 m2 kg−1 for
M 74 (a factor of 2.3 variation) and 0.15–0.80 m2 kg−1 for M 83 (a
factor of 5.3 variation).

There is a strong relationship between κ500 and ISM (the ISM
mass surface density, where ISM = H I + H2 + d) as shown
in Fig. 14. Both galaxies exhibit this relation, but are curiously
separated, with the relation for M 74 lying ∼0.3 dex beneath that
of M 83. We are able to trace this behaviour over a much larger
range of ISM for M 83 than for M 74 – the densest regions of M 83
are much denser than those of M 74, whilst the deeper CO data for
M 83 allows us to probe to regions of lower density. This neatly
accounts for the fact that we find a narrower range of κ500 values
for M 74 than M 83 – whilst we probe a 1.7 dex range in density in
the latter, we only probe 0.7 dex in the former. We estimated κ500

versus ISM power laws for each galaxy by performing a Theil–Sen
regression (Theil 1992) to each set of posterior samples in our κ500

and ISM maps (specifically, the independent-pixel version of the

MNRAS 489, 5256–5283 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/489/4/5256/5549843 by G
hent U

niversity user on 14 N
ovem

ber 2019



The first maps of κd 5271

Figure 14. Plot of κ500 against ISM surface density (as traced by molecular
and atomic gas) for M 74 and M 83. The best-fitting power laws for both
galaxies are shown, with shaded regions indicating the 68.3 per cent credible
intervals. The black cross indicates the median 1σ error bars (indicating only
the statistical uncertainty, omitting systematics uncertainties, as discussed
in the text).

maps, as discussed above). The resulting power-law slopes for both
galaxies are in good agreement, with their indices being −0.35+0.26

−0.21

for M 74 and −0.36+0.04
−0.05 for M 83. As discussed in Section 6.3,

this behaviour is in contradiction to positive correlation between κd

and ISM density predicted by standard dust models. The median
statistical uncertainty on pixel values of ISM is 0.13 dex; given the
similarly small 0.15 dex average statistical uncertainty on κ500, we
can be confident that the trend in Fig. 14, which spans 1.7 dex for
M 83, is not merely a spurious noise induced correlation. The rank
correlation coefficient of the relationship is τ = −0.36 for M 74,
and τ = −0.57 for M 83 (from a Kendall tau rank correlation test;
Kendall & Gibbons 1990).

In Fig.15, we see that it is the overall ISM density that is
driving this trend, rather than the density of either the molecular
gas, atomic gas, or dust components of the ISM alone, as all three
have much weaker relationships with κ500 than is the case for the
combined ISM. For H2 , τM74 = −0.18 and τM83 = −0.55; for
d, τM74 = −0.28 and τM83 = −0.42; for d, τM74 = 0.10 and
τM83 = −0.34.

The relationship between κ500 and gas-phase metallicity is plotted
in Fig. 16. Once again, whilst M 83 shows no correlation, there
does appear to be a trend for M 74, with larger values of κ500

being associated with higher metallicities (Pnull = 10−3.5 from a
Kendall rank correlation test). On the one hand, metallicity is a
parameter in equation (3), so once again there is a definite risk of
spurious correlations arising. However, if all other parameters in
equation (3) are held fixed, higher metallicity (therefore higher
fZ) leads to lower values of κ500, meaning the trend for M 74
in Fig. 16 is being driven by the data in spite of this. Greater
ISM metallicity will lead to increased grain growth (Dwek 1998;
Zhukovska 2014; Galliano et al. 2018), and larger grains should give
rise to larger values of κd (Li 2005; Köhler et al. 2015; Ysard et al.
2018).

We wished to assess whether local star formation has an effect
on our calculated values of κ500. There are several mechanisms by
which recent star formation can process dust grains in its vicinity
(see review in Galliano et al. 2018). For instance, photodestruction
by high-energy photons from massive (therefore young) stars can

directly break down dust grains (Boulanger et al. 1998; Beirão et al.
2006), whilst the shocks produced by the supernovae of massive
stars will sputter dust grains (Bocchio, Jones & Slavin 2014; Slavin,
Dwek & Jones 2015). FUV emission should be a good proxy of
these two environmental conditions; unobscured FUV emission
is indicative of massive stars that are old enough to cleared their
birth clouds, and hence represent the regions where supernovae
will be occurring. And of course, regions with greater amounts
of unobscured FUV emission demonstrably have an interstellar
radiation field (ISRF) with greater amounts of high-energy photons.
If the environmental effects of recent star formation were impacting
κ500, this could manifest as a correlation with the total UV energy
density, or with the UV energy density per dust mass (similar to the
‘heating parameter’ of Foyle et al. 2013), as the dust will be better
shielded in areas with greater dust density. Therefore, in the two
leftmost panels of Fig. 17, we plot κ500 against both the GALEX far-
ultraviolet (FUV) luminosity surface density19 (FUV), and against
the FUV luminosity per dust mass surface density (FUV/d). No
trend is apparent in either plot; M 74, with its generally lower values
of κ500, has a higher average value of FUV/d, but this is to be
expected given its bluer colours and lower submm surface brightness
(see Table 1).

We also wished to assess whether the ISRF arising from evolved
stars could be influencing κ500, given that radiation from evolved
stars can be the dominant source of energy received by dust in certain
environments (Boquien et al. 2011; Bendo et al. 2012; Nersesian in
press). Observations in the NIR provide a good tracer of the evolved
stellar population, and the ISRF it produces. Therefore, as with FUV,
we plot κ500 against the WISE 3.4μm luminosity surface density19

(3.4μm), and against the 3.4μm luminosity per dust mass surface
density (3.4μm/d), shown in the two rightmost panels of Fig. 17.
In M 74, it seems that the pixels with 3.4μm

d
> 6 × 10−4 L� M−1

�
are exclusively associated with higher values of κ500. And most
interestingly, there is for both galaxies a positive correlation between
κ500 and 3.4μm/d). Whilst there is appreciable scatter, a Kendall
rank correlation test gives Pnull > 0.023 for both – so it seems that
this relationship, whilst broad, has probably not arisen by chance.20

Plus, the WISE 3.4μm data played no part in our κ500 calculations,
making it hard to see how this relation could have arisen spuriously
from our methodology.

A downside to using 500μm as the reference wavelength is that
carbonaceous species are expected to have considerably larger κ500

values than silicate species at these longer wavelengths (due to
the steeper β for silicates; Ysard et al. 2018). Whereas at shorter
wavelengths, the difference in κd between carbonaceous and silicate
dust is smaller. Thus the choice of the longer reference wavelength
might be limiting our ability to use the κd maps to trace such
compositional variation. We therefore also produced versions of
our κd maps at a reference wavelength of 160μm. These κ160 maps
are presented in Appendix E; however, they exhibit no difference in
structure to the κ500 maps.

19Maps were reprojected to the same pixel grid as the κ500 maps, then
background subtracted in the same manner as the continuum maps in
Section 4.1. We manually masked pixels containing obvious foreground
Milky Way stars.
20Spearman and Pearson rank correlation tests similarly both give Pnull <

0.025, with correlation coefficients > 0.2.
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Figure 15 Plots of κ500 against the surface density of molecular gas (left), atomic gas (centre), and dust (right), for M 74 and M 83.

Figure 16. Plot of κ500 against gas-phase metallicity, expressed in terms of
oxygen abundance, for M 74 and M 83.

6 D ISCUSSION

6.1 Robustness of findings

Within M 74 and M 83, we find values of κ500 that vary by factors
of 2.3 and 5.3, respectively. This is, to our knowledge, the first
observational mapping of variation in κd within other galaxies.
However, it is important to critically evaluate how much of this
apparent variation could simply be an artefact of our method.

In a companion study to this work, Bianchi et al. (submitted)
use the dust-to-metals method to calculate global κd values for 204
DustPedia galaxies. As that study uses integrated gas measurements,
they are unable to directly constrain ISM density. However, they do
find that galaxies with higher H2/H I ratios (typically associated with
denser ISM) tend to have lower values of κd. This is what would
be expected if the anticorrelation we find between κd and ISM

continues on global scales, between galaxies. They also find large
(a factor of several) scatter in their κd values between galaxies; in
this context, the differences between the values we find for M 73
and M 83 are not conspicuous.

Our key assumption of a fixed dust-to-metals ratio, εd, deserves
particular scrutiny. As mentioned in Section 2, the vast majority of
directly measured21 values of εd lie in the range 0.2–0.6. Whilst this
factor of 3 variation could notionally, in the worse-case scenario, be
sufficient to nullify the factor 2.3 variation in κd we find in M 74, it

21By ‘direct’, we refer to those measurements where εd is determined from
observing the mass fraction of metals depleted from the gas phase.

could not nullify the factor 5.3 variation in M 83. Moreover, as we
show in Section 6.2.1, in the physically most likely scenario where
εd scales with density, the variation in κ500 actually increases. None
the less, it is undoubtedly worth considering how, precisely, different
kinds of systematic variations in εd within our target galaxies could
be influencing our results.

There is evidence that εd is significantly reduced at low metal-
licities (Galliano et al. 2005; De Cia et al. 2016; Wiseman et al.
2017). However, there appears to be reduced variation in εd at
intermediate-to-high metallicity. De Cia et al. (2016) and Wiseman
et al. (2017) use depletions in damped Ly α absorbers to find only
a factor of ∼2 variation in εd at metallicities above 0.1 Z�, with at
most a weak dependence on metallicity in that regime. Given that
our analysis is concerned only with environments at 
0.1 Z�, our
results should be minimally susceptible to this scale of metallicity
effect. Additionally, it should be noted that a number of studies have
used visual extinction per column density of metals as a proxy for
εd, and found it to be constant down to metallicities of 0.01 Z�, over
a redshift range of 0.1 < z < 6.3 (Watson 2011; Zafar & Watson
2013; Sparre et al. 2014).

A number of simulations have addressed the question of how
εd varies. McKinnon et al. (2016) trace εd in cosmological zoom-
in simulations, finding it varies by up to a factor of ∼3.5 in the
modern universe; however, they find minimal systematic variation
within galaxies, except for enhanced values in galactic centres (see
their figs 1, 2, and 14). Popping, Somerville & Galametz (2017)
trace εd in semi-analytic models, and find that it can vary with
metallicity by up to a factor of ∼2 at metallicities > 0.5 Z� (with
the degree and nature of this variation depending considerably upon
the specific model).

However, if εd does indeed vary significantly with metallicity
within our target galaxies, that will actually increase the amount of
variation in κ500 in M 83. The highest metallicities are at the inner
regions of the disc, where κ500 is already lowest; if increasing fZ

in equation (3) also increases εd, then this will drive down κd still
further. On the other hand, because the lowest values of κd in M 74
are found in the spiral arms, away from the centre, a correlation of
εd with metallicity could indeed suppress some variation in κ500 –
although M 74 already exhibits a much smaller range in κ500 than
M 83.

Theoretical dust models can make specific predictions about how
εd is expected to vary in different conditions. For instance, the
THEMIS model traces how dust populations are expected to change
in different interstellar environments, predicting that εd will increase
monotonically with ISM density by a factor of ∼3.5, from 0.27 in
the diffuse ISM (nH = 103 cm3) to 0.88 in the dense ISM (nH =
106 cm3), driven by the accretion of gas-phase metals on to grains
(Jones 2018). We explore the potential effects of this in detail in
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Figure 17. Plots of κ500 against the surface density of FUV luminosity surface density (first), FUV luminosity per dust mass (second), 3.4μm luminosity
surface density (third), and 3.4μm luminosity per dust mass (fourth), for M 74 and M 83.

Section 6.2.1, where we find that it would further increase the
variation in κ500.

There are several observational studies that report variation of εd

between and within galaxies, inferred from the fact that the gas-to-
dust ratio is found to vary with metallicity (Rémy-Ruyer et al. 2014;
Chiang et al. 2018; De Vis et al. 2019). However, these studies all
rely upon an assumed value of κd to infer dust masses, and hence
εd. Given that we, conversely, use an assumed εd to infer κd, it
is not really possible to compare such results with ours in a valid
way. However, we note with interest that these studies tend to find
much larger ranges of εd than are suggested by either depletions,
simulations, or theoretical dust models – up to 1 dex of scatter at a
given metallicity, with up to 3 dex total range over all metallicities.
One way to explain this discrepancy would be if κd is depressed at
lower metallicity (which is potentially hinted at for M 74 in Fig. 16).

Beside a breakdown in our assumption of a fixed εd, it is possible
that our method is being corrupted by the presence of ‘dark gas’ –
H2 at intermediate densities that CO fails to trace (Reach, Koo &
Heiles 1994; Grenier, Casandjian & Terrier 2005; Wolfire et al.
2010). The presence of dark gas would have the effect of causing us
to underestimate the value of MH2 in equation (3), thereby artificially
driving up κ500. The elevated areas of κ500 in our maps are indeed
mainly associated with the interarm regions, where the fraction
of dark gas is expected to be greatest (Langer et al. 2014; Smith
et al. 2014). Estimates of the fraction of galactic gas mass that is
dark range from 0 per cent from dust and gas observations in M 31
(Smith et al. 2012), to 30 per cent in theoretical models (Wolfire et al.
2010), to 42 per cent in hydrodynamical simulations of galactic discs
(Smith et al. 2014), to 10–60 per cent from Planck observations of
the Milky Way (Planck Collaboration XXI 2011), to 6–60 per cent
from Milky Way γ -ray absorption studies (Grenier et al. 2005).
Even assuming a worst-case scenario of a 60 per cent dark gas
fraction for the interarm regions of our target galaxies (an extreme
scenario, given that the 60 per cent represents the single largest
fraction amongst the wide range of values reported within the Milky
Way), dark gas could only reduce the variation in κ500 we find by a
factor of 1.7.

In a similar vein, another potential confounder would be system-
atic variation in αCO. If αCO increases in denser ISM (independent
of metallicity, which we account for), then this could counteract the
variation in κd we find. However, evidence to date does not indicate
that αCO varies systematically in this way (Sandstrom et al. 2013).
This of course could be due to the fact that the uncertainty on αCO

(and the scatter on the relations used to derive it) is large – however
this uncertainty is propagated through our calculations.

In the course of determining κ500 for each pixel, values for the
gas-to-dust ratio, G/D, are also generated. We find 176 < G/D <

277 for M 74, and 140 < G/D < 275 for M 83. Note that these are

the ratios of total gas mass to dust mass. In the literature, quoted
G/D values are often hydrogen to dust ratios (i.e. no factor of ξ

is applied to account for the masses of helium and metals); our
hydrogen-to-dust ratios, GH/D, are 127 < GH/D < 201 for M 74,
and 100 < GH/D < 196. For high-metallicity systems such as of
our target galaxies, these are normal values when compared to the
literature (Sandstrom et al. 2013; Rémy-Ruyer et al. 2015; De Vis
et al. 2017b). Indeed, we neatly reproduce the factor of 2–3 radial
variation in GH/D in M 74 reported by Vı́lchez et al. (2019) and
Chiang et al. (2018) over the 8.35–8.60 (12 + log10[ O

H ]) metallicity
range we sample; although their adoption of fixed κd limits the
scope for detailed comparison. None the less we can say that our
inferred dust masses yield sensible G/D values, following expected
trends.

Overall, we are confident that our finding of an inverse correlation
of κ500 is indeed robust against a wide range of changes to the initial
assumptions of our method.

6.2 Alternate models

6.2.1 Variable dust-to-metals ratio

As discussed in Section 2, the assumption of a fixed εd is a
simplification. Observed depletions in nearby portions of the Milky
Way’s diffuse ISM indicate that in reality, εd increases with column
density (Jenkins 2009; Draine et al. 2014; Roman-Duval et al.
2019). However, the form of this relation in extragalactic systems,
where only integrated column density data are available, is not well
constrained. None the less, we can still explore, in general terms,
how such a model would affect the manner in which κd scales. Even
if this approach requires more assumptions, it may be more physical
than our fiducial model.

We therefore repeated our κ500 mapping, setting εd to vary
linearly as a function of ISM, with εd = 0.75 at the point in each
galaxy where ISM is highest, and εd = 0.25 at the point where ISM

is lowest. This specific choice of relationship is effectively arbitrary,
but approximates the trend reported by Chiang et al. (2018) within
M 101, whilst also matching the range of εd values reported by De
Vis et al. (2019) (although both of these sets of εd values were
calculated with FIR–submm data, using an assumed value of κd,
limiting scope for direct comparison).

The κ500 maps produced using the εd ∝ ISM model are shown
in the left-hand panels of Figs 18 and 19, for M 74 and M 83,
respectively. The trend of κ500 being depressed in the denser
environments of the spiral arms remains. In fact, the anticorrelation
between κ500 against ISM is even more exaggerated than was the
case for our fiducial model, as can be seen in the left-hand panel of
Fig. 20. The Kendall rank correlation coefficients for the εd ∝ ISM

MNRAS 489, 5256–5283 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/489/4/5256/5549843 by G
hent U

niversity user on 14 N
ovem

ber 2019



5274 C. J. R. Clark et al.

Figure 18. Maps of κ500 within M 74, calculated using different model
assumptions than for our fiducial map in Fig. 12. Left: With the dust-to-
metals ratio, εd, set to vary linearly as a function of ISM. Right: With a toy
model where αCO, r2:1, Td, β, εd, and [12 + log10

O
H ] are kept constant.

Figure 19. Maps of κ500 within M 83, each calculated using different model
assumptions than for our fiducial map in Fig. 13. Model descriptions the
same as for Fig. 18.

Figure 20. Alternate versions of Fig. 14, again plotting κ500 against ISM
surface density for M 74 and M 83, but for κ500 calculated using different
model assumptions than for our fiducial method. Model descriptions the
same as for Fig. 18. For comparison, the distributions for our fiducial maps,
as plotted in Fig. 14, are indicated with contours (showing the 5th, 25th, 50th,
75th, and 95th percentiles); M 74 as blue dashed, M 83 as red dot–dashed.

results are more strongly negative than those of the fiducial version,
being τ = −0.66 for both M 74 and M 83. The range of κ500 values
when using the εd ∝ ISM model increases to a factor 5 in M 74,
and to a factor of 20 in M 83.

It appears that our choice of fixed εd in our fiducial model actually
serves to reduce the variation in κ500, and that the (probably) more
physical εd ∝ISM model suggests a notably greater range of values.
This increases our confidence that the variation in κ500 we see is a

real effect. Whilst we could, for instance, construct a model where
εd decreases with ISM density by a factor of > 5.3, this would be
completely unphysical, and would represent an entirely contrived
attempt to minimize the κd variation we find. Similarly, we could
construct a model where εd increases with radius – but whilst this
would decrease the κd variation in M 83, it would increase it for
M 74 (and would again be an unphysical contrivance).

6.2.2 ‘Toy’ model

To establish the degree to which our results might simply be an
artefact of our method, we again repeated our κ500 mapping, using a
‘toy’ model. For this repeat, metallicity was fixed at the Solar value
of 12 + log10[ O

H ] = 8.69, αCO was fixed at the standard Milky Way
value of 3.2 K−1 km−1 s pc−2, r2:1 was fixed at the local-Universe
average of 0.7, Td was fixed at 20 K, β was fixed at 2, and εd was
fixed at 0.4. Although this toy model is unphysical, it strips out as
many assumptions as possible – allowing us to be confident that any
trends that persist are not due to our GPR metallicity mapping, our
SED fitting, our r2:1 prescription, etc.

The κ500 maps produced using the toy model are shown in the
right-hand panels of Figs 18 and 19, for M 74 and M 83, respectively.
The corresponding plot of κ500 against ISM is shown in the right-
hand panel of Fig. 20, where it can be seen that the scatter is
markedly increased for both galaxies. For M 83, the trend is none the
less still present, with a Kendall rank correlation test giving Pnull <

10−5; the lowest values of κ500 are still visibly associated with the
largest values of ISM, and vice-a-versa. For M 74, the correlation
of κ500 with ISM is lost; however the far smaller dynamic range in
ISM density for this galaxy made it more susceptible to the trend
being removed by the toy model’s increase in scatter. The fact the
trend with ISM density persists for M 83 despite the use of the toy
model is extremely informative. It implies that the basic negative
correlation is being driven by the interplay between the 21 cm data,
CO data, and 500μm data – not by the specifics of our method.

6.2.3 Other alternate models

To provide further methodological checks, we produced additional
alternate κ500 maps. In Appendix F, we present κ500 maps generated
using metallicities calculated via different strong-line prescriptions
than the one employed for our fiducial κ500 maps. In Appendix G, we
present κ500 maps generated fitting a two-component MBB model
to the FIR–submm fluxes, as opposed to the one-component MBB
model used for our fiducial κ500 maps. In all cases the resulting κ500

maps display the same general morphology as our fiducial ones,
with lower values of κ500 associated with denser regions.

6.3 Implications of findings

Our finding that κ500 shows a strong negative correlation with
ISM density is in direct contradiction to standard models of dust
emission, which predict that the densest regions of the ISM should
exhibit the highest values of κd (Ossenkopf & Henning 1994; Li &
Lunine 2003; Jones 2018). This expectation arises from the fact that
dust grains in the densest parts of the ISM are predicted to be larger,
due to the coagulation of grains and the growth of (icy) mantles on
their surfaces, and that larger grains should be more emissive per
unit mass (Köhler et al. 2012; Jones et al. 2013; Ysard et al. 2018).
The apparent incompatibility of our results with these predictions
presents one of two possibilities.
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The first possibility is that our method has some fundamental
flaw that has systematically affected the results. We have made an
effort to construct our method so that it only relies upon standard,
widely used assumptions. If one (or more) of these assumptions
breaks down systematically, in a manner such that the bias is a
function of ISM density, and the bias is a factor of > 5, then this
could give rise to the results we see. We have tried to inoculate our
findings against even this scenario (for instance, by trying the toy
model where all possible variables were kept fixed). However if,
for example, dark gas represents 75 per cent of the total gas mass
in interarm space (artificially suppressing our assumed MH2 ), this
could negate our results for M 74. If dark gas represents 75 per cent
of the total gas mass in interarm space if and if H II region oxygen
depletion were a factor of 2 lower in interarm space versus other
metals (compromising its use as a metallicity tracer), then our results
for M 83 could be negated – however scenarios this extreme are
unlikely, being unprecedented in the literature, and would have
significant implications for extragalactic studies in general.

The second possibility is that κ500 truly does decrease in denser
ISM. This would help explain some observational results. For
instance, an excess in submm emission has been found in lower
density areas within galaxies (Relaño et al. 2018), and within
galaxies dominated by diffuse regions (Lamperti et al. accepted;
De Looze et al. in preparation); if κ500 is indeed elevated in low-
density regions, it could give rise to this effect.

It is hard to explain decreasing κ500 in denser ISM in the context
of current dust physics. However it is possible to construct scenarios
where it is not entirely unreasonable. Ysard et al. (2018) present a
detailed exploration of how changes in various physical parameters
of dust should affect κd. For instance, spherical grains are predicted
to have lower κ500 than oblate or prolate grains, by up to a factor
of ∼1.5 (see their fig. 5); and hydrogenated amorphous carbon
grains are expected to have much lower κ500 than amorphous silicate
or unhydrogenated amorphous carbon grains (by up to an order
magnitude). Whilst we do not suggest that this (or any other) specific
physical scenario is the cause of our observed trend, it demonstrates
that it is at least possible to envisage an evolution in dust properties
that does not entail an uninterrupted monotonic increase in κd with
ISM density.

On that theme, we also note that our data only provides physical
resolution of 590 pc pix−1 in M 74 and 330 pc pix−1 in M 83. As
such, we can do no better than distinguish between arm and interarm
pixels. This will have ‘smeared out’ the properties of the denser
clouds within the spiral arms. When studies discuss grain growth
in the dense ISM, and the associated increases in κd, the dense
medium in question is typically described as having at least 1500–
10000 nH cm−3, compared to 20–50 nH cm−3 in the diffuse ISM
(Ferrière 2001; Köhler et al. 2015; Jones 2018) – a difference in
density of at least a factor of 30. However, our data only traces a
dynamic range in density of a factor of 5 in M 74, and a factor of 50
in M 83 (discounting pixels within 1 beam of the nuclear starburst,
where our κ500 values become unreliable, as per Section 5). So
whilst we are probing a wide range of ISM conditions, we are
unable to perform a ‘clean’ sampling of the densest grain-growth
environments. Likewise, we only performed our analysis for pixels
with sufficient SNR for all data – thereby excluding regions of
particularly low ISM density, especially at the outskirts of the target
galaxies. As such, it seems likely that, in practice, we are effective
probing intermediate density environments.

Some grain models do indeed predict that κ500 should drop
at intermediate densities, before increasing again at the highest
densities. For example, the Köhler et al. (2015) description of the

THEMIS model finds that the grain-mixture average κ500 should
fall by a factor of 2.3 (relative to the diffuse ISM) for grains
undergoing accretion at intermediate densities (1500 nH cm−3) –
with κ500 falling by a factor of 26 for amorphous carbon grains in
particular. Then at even higher densities, as grains start to aggregate,
κ500 will increase again, becoming even higher in the densest regions
where icy mantles can form. Again, we do not argue that these
specific effects are what are responsible for the relationship we find
(as we lack the density resolution, and volume density informa-
tion, necessary to test this). However, THEMIS does demonstrate
that it is possible to construct a physical dust framework where
κ500 falls as ISM increases, over some intermediate transition
regime.

It is also worth considering why our distribution of κ500 values
for M 74 is offset from that of M 83, by about 0.3 dex. The most
obvious difference in the properties of the two galaxies is the greater
ISM surface density of M 83; but given the apparent anticorrelation
of κ500 with ISM, this seems unlikely to be the driver of the in κ500.
M 83 has almost 3 times the SFR of M 73 (Nersesian et al. 2019),
despite being physically more compact (see Table 1), giving it an
average SFR surface density that is > 6 times greater. Despite this,
M 74 has bluer colours, and the relative scale lengths of the dust
and stars in M 74 and M 83, as reported in Casasola et al. (2017),
differ considerably – in M 74, the dust and gas have very different
scale lengths (2.35 arcmin versus 1.04 arcmin), whereas in M 83,
the dust and gas scale lengths are effectively identical (1.66 arcmin
versus 1.68 arcmin). So there is clearly a difference in the relative
geometries of the stars and ISM in these galaxies. When comparing
resolved observations of spiral galaxies, it is well established that
there can be appreciable differences in ISM properties, even at a
given surface density (Usero et al. 2015; Gallagher et al. 2018; Sun
et al. 2018). Therefore, it is not necessarily surprising that κd may
also have different values in different galaxies, at a given surface
density.

X-ray observations of M 74 and M 83 indicate that their interstel-
lar media contain diffuse hot gas components (Owen & Warwick
2009) that span much of their discs. Such gas could process the
dust in a galaxy, sputtering the grains, and (in standard models)
therefore decreasing the grains’ κd (Galliano et al. 2018). That said,
we find decreased κd in the denser ISM, where grains should be
more shielded from X-ray gas. None the less, it is possible that the
trends we find may not be applicable to galaxies with less prominent
X-ray gas content.

7 C O N C L U S I O N

Using a homogenous data set assembled as part of the DustPedia
project (Davies et al. 2017), we have produced the first maps of the
dust mass absorption coefficient, κd, within two nearby galaxies:
M 74 (NGC 628) and M 83 (NGC 5236).

Our method for finding κd is empirical, and avoids making any
assumptions about the composition or radiative properties of the
dust. Instead, our approach exploits the fact that the ISM dust-to-
metals ratio seems to exhibit minimal variation at high metallicity.
With this one assumption, we can use gas and metallicity data
to determine dust masses a priori; by comparing these masses to
observed dust emission, we are able to calibrate values for κd. Given
that the value of the dust-to-metals ratio is much less uncertain than
the value of κd, we are able to leverage the one to explore the
other.

As a proof-of-concept demonstration, we have applied this
method on a resolved, pixel-by-pixel basis to M 74 and M 83, two
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nearby face-on spiral galaxies, that have well-suited atomic gas,
molecular gas, dust emission, and ISM metallicity data available.
We have produced gas-phase metallicity maps for these galaxies,
using the many hundreds of available spectra measurements, via a
novel application of Gaussian process regression, with which we
infer the underlying metallicity distribution.

We find strong evidence for significant variation in κ500 within
both galaxies – by a factor of 2.3 within M 74 (0.11–0.25 m2 kg−1),
and by a factor of 5.3 within M 83 (0.15–0.80 m2 kg−1).

We examine whether κd shows variation with other measured
and derived properties of the target galaxies. We find that κd

exhibits a distinct negative correlation with the surface density of the
ISM, following a power-law slope of index −0.36+0.26

−0.21 (although
the power laws for the two galaxies are offset by 0.3 dex). This
trend appears to be dictated by the total ISM surface density, as
opposed to the surface density of either its atomic, molecular, or
dust components. This trend is the opposite of what is predicted
by most dust models. However, the relationship is robust against
a wide range of changes to our method – only the adoption of
unphysical or highly unusual assumptions would be able to suppress
it. We discuss possible ways of reconciling this finding with the
current understanding of dust physics – such as the possibility
that our combination of resolution and sensitivity means that we
biased towards probing regimes of intermediate density where the
broader expected correlation between density and κd may not hold
true.

We also find tentative indications of correlation of κd with other
properties, such as metallicity, NIR radiation field intensity, and
dust emissivity slope β. However, the evidence for these is less
conclusive (and some of these parameters were inputs to our κd

calculations), so we are more cautious about the significance of
these relationships.

This study lays the groundwork for a wide range of future work.
An expanded study of resolved κd is possible with the DustPedia
data set, but at present the availability of well-resolved metallicity
data would limit it to a sample of only 10–20 galaxies. But in future,
large IFU surveys of highly extended nearby galaxies, especially
the SDSS-V Local Volume Mapper (Kollmeier et al. 2017) will
dramatically improve this situation. Simultaneously, data now exists
to apply the dust-to-metals method to large, statistical samples of
galaxies on a global basis; in particular, the JCMT dust and gas In
Nearby Galaxies Legacy Exploration (JINGLE; Saintonge et al.
2018), which is assembling consistent high-quality CO, H I, dust,
and IFU data for almost 200 galaxies, would be well suited to this
task.

Most importantly, many of the questions raised could be tackled
by conducting a similar analysis at improved spatial resolution.
For this reason, we have begun work on applying this method as
part of an analysis of several Local Group galaxies – including the
Large and Small Magellanic Clouds, where we enjoy particularly
exquisite resolution. Most significantly, better resolution will allow
us to cleanly probe a larger range of density, from the densest grain-
grown regions, down to the most diffuse ISM. We will thereby
test if the surprising anticorrelation between κ500 and ISM holds
true. Another benefit to expanding our analysis to the Magellanic
Clouds is that they are the subjects of ongoing work to perform the
first extragalactic depletion analyses (Jenkins & Wallerstein 2017;
Roman-Duval et al. 2019). Exploiting that data will allow us to use
in situ measurements of the dust-to-metal ratio, removing the single
largest source of uncertainty we presently face, and allowing us
to produce the most reliable empirical κd determinations available
with current data.
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APPENDI X A : RADI AL METALLI CI TY
PROFILE FITTING

The model we employed to fit the radial metallicity profiles of our
target galaxies in Section 3.3 is described by the likelihood function

L(Z[ O
H ]|R, σ, mZ, cZ, ψ)

n∏
i

⎛
⎝ 1√

2π (σ 2
i + ψ2)

× exp

⎛
⎝−(Z

[ O
H ]

i − mZRi − cZ)

2
√

σ 2
i + ψ2

⎞
⎠
⎞
⎠ ,

(A1)

where Z
[ O

H ]
i is the 12 + log10[ O

H ] metallicity of the ith data point, Ri

is the deprojected galactocentric radius of the ith data point (as a
fraction of the R25), mZ is the metallicity gradient (in dex R−1

25 ), cZ is
the central metallicity (in 12 + log10[ O

H ]), ψ is the intrinsic scatter
(in dex), and n is the number of data points.

We determined the posterior probability of our variables of
interest – mZ, cZ, and ψ – in a Bayesian manner, sampling the
posterior PDF using the PYMC3 (Salvatier et al. 2016) MCMC
package for PYTHON.

To inform the priors, we first performed a simple, preliminary
least-squares fit, with only the gradient and central metallicity as
free parameters. The priors on all three parameters then took the
form of normal distributions. For cZ, the mean of the prior was set to
the central metallicity found by the preliminary least-squares fit, and
the standard deviation on the prior was set to the standard deviation
of all the input metallicity values. For mZ, the mean of the prior was
set to the gradient found by the preliminary least-squares fit, and
standard deviation of the prior was set to the absolute value of the
gradient found by the preliminary least-squares fit. For ψ , both the
mean and standard deviation of the prior were set to the root-mean-
square of the residuals between the input metallicity values and the
preliminary least-squares fit.

APPENDI X B: UNCERTAI NTI ES O N G PR
META LLI CI TY MAPPI NG

To determine the uncertainty of the GPR metallicity maps, we
repeated the regression procedure 1000 times. For each iteration,
we draw a random sample from the posterior PDF of our radial
metallicity profile model, and used that sample to calculate the
residual on each data point; we then applied the GPR to these
residuals in the same manner as described above. For each iteration,
the GPR produced a full posterior PDF for the predicted metallicity
in each pixel (and by definition, Gaussian process regression yields
Gaussian posterior PDFs).

Having repeated this process for the 1000 iterations, we had
1000 posterior PDFs for each pixel; these are then combined to give
each pixel’s final metallicity PDF. To quantify the uncertainty in
each pixel, we take the 63.3 per cent quantile around the posterior
median; these are the uncertainty values plotted in the lower left
panels of Figs 5 and 6. As can be seen, the uncertainty on the
regression is low (<0.05 dex) for pixels that have plenty of spectra
metallicities; whilst for pixels more distant from any spectra,
making the predicted values more dependent upon extrapolation,
the uncertainty is much larger (> 0.25 dex). Indeed, for pixels with
few or no spectra metallicities in the immediate vicinity, relying
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upon the metallicity predicted by a one-dimensional globally fitted
gradient could provide a false sense of confidence – especially
in M 83, where the metallicity data are concentrated in a central
band. We therefore argue that in these areas, the larger uncertainties
predicted by our GPR approach are likely to be more realistic.

APPENDIX C : VALIDATION O F G PR
META LLICITY MAPPING

To verify that our GPR metallicity mapping technique is reliable,
and not generating spurious features in the final metallicity maps,
we used a Monte Carlo jackknife cross-validation analysis. For this,
we performed 500 repeats of the GPR metallicity mapping; for each
repeat, half of the spectra metallicity points were selected at random
to be excluded from the fitting, to serve as a control sample for later
reference. The GPR was then computed using the remaining half of
the points (but otherwise following the modelling process as laid out
above). By comparing the metallicity values of the masked spectra
to the metallicities predicted by the GPR method at their positions,
we can evaluate the accuracy of the generated metallicity maps.

For each of the 500 jackknife iterations, we found the deviations
between the known metallicities of the control spectra, and the
metallicity predicted by the GPR at those positions. We assessed
the deviation at each position in terms of χ , defined as

χ = Z
[ O

H ]
GPR − Z

[ O
H ]

spec√(
σ

[ O
H ]

GPR

)2

+
(

σ
[ O

H ]
spec

)2
, (C1)

where Z
[O/H]
GPR is the metallicity predicted by the GPR at the position

in question, Z[O/H]
spec is the actual metallicity of the spectra, σ

[O/H]
GPR

is the uncertainty on the GPR at the position in question, and
σ [O/H]

spec is the uncertainty on the spectra metallicity (all Z and σ

terms expressed in 12 + log10[ O
H ] units). In short, χ expresses

the deviation in terms of the mutual uncertainty on the spectra
metallicity and the GPR.

If the metallicities predicted via GPR suffer from no systematic
offset, then the mean χ should be 0 ± n− 1

2 (where n is the number
of control spectra). Similarly, if the uncertainties on the GPR
metallicities are Gaussian and accurate, then 68.3 per cent of the
values of χ should lie in the range −1 < χ < 1.

The distribution of jackknife χ values we find for both galaxies
are shown in Fig. C1. The distributions are symmetric, near-
Gaussian, and centred close to zero. The mean jackknife χ values
are 0.0079 ± 0.0029 and −0.0057 ± 0.0023 for M 74 and M 83,
respectively. These offsets are >2σ , suggesting that there tends to
be a small systematic offset (positive for M 74, and negative for
M 83) between the metallicity predicted by the GPR, and the actual
metallicity of the spectra. But whilst technically significant, these
systematic offsets are none the less vanishingly small in terms of
actual metallicity – the mean jackknife deviation in 12 + log10[ O

H ]
units is 0.00056 for M 74, and −0.00037 for M 83. We are satisfied
that systematic effects at this scale are minute enough to have no
appreciable impact on any of our results.

For M 74, 80.5 per cent of the jackknife χ values lie in the −1
< χ < 1 range; for M 83 the fraction is 85.4 per cent. These are
both somewhat larger than the expectation of 68.3 per cent, which
suggests that our GPR maps are actually somewhat more precise
than suggested by their uncertainties. In other words, it appears that
the GPR uncertainties are overestimated by factors of approximately
1.18 and 1.25 (for M 74 and M 83, respectively) – a small enough

Figure C1. Distribution of χ values found for our jackknife cross-
validation of the GPR metallicity mapping. Distributions plotted as KDEs,
using an Epanechnikov kernel, with bandwidth calculated using the
Sheather–Jones rule (Sheather & Jones 1991).

difference that we judge it unnecessary to attempt a post-hoc fine
tuning of the output uncertainties.

Additionally, see the discussion in Section 6.1 of the effect of the
metallicity maps upon our resulting maps of κd.

APPENDI X D : DUST SED PRI ORS

Our SED-fitting procedure, detailed in Section 4.2, has six free
parameters: dust temperature, Td; dust ‘mass’ normalization,
M

(norm)
d ; emissivity slope, β; and correlated photometric error in the

Herschel-SPIRE bands, υSPIRE. The prior probability distributions
for all these free parameters are shown in Fig. D1.

D1 Temperature prior

The prior on temperature is given by a standardized42 gamma
distribution of the form

P(T ) =
(

T −l
s

)α−1
exp

(
T −l

s

)
s �(α)

, (D1)

where Td is the temperature, l is the location parameter, s is the scale
parameter, and α is the shape parameter. The location parameter l
functions such that P(T < l) = 0. We define the scale parameter
in relation to the distribution mode Ť (i.e. the temperature with the
peak prior probability), according to

s = Ť − l

α − 1
(D2)

where, for our Td prior, these parameters take values of α = 2.5, l =
5, and Ť = 20.

For Td, the modal value of 20 K corresponds to the approximate
average of the cold dust temperatures seen in nearby galaxies, in
both global (Galametz et al. 2012; Clemens et al. 2013; Ciesla
et al. 2014) and resolved (Smith et al. 2012; Gordon et al. 2014;
Tabatabaei et al. 2014) analyses. Across the 13–30 K temperature
range, P(Tc) > 0.8P(Ťc); this corresponds to range spanned by

42Standardized as per the SCIPY (Jones et al. 2001) gamma distribution
implementation: https://docs.scipy.org/doc/scipy/reference/generated/scipy
.stats.gamma.html
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Figure D1. Prior probability distributions for Td, M
(norm)
d , β, and υSPIRE. For ease of viewing and comparison, all distributions have been normalized so

that they peak at a probability density of 1. The prior for M
(norm)
d is computed for each source (e.g. pixel) based on its brightness and distance; the exemplar

distribution displayed in the upper right panel is for the pixel in M 83 centred at α = 204.2841◦, δ = −29.8559◦.

the lower cold dust temperatures seen in blue dust- and gas-rich
galaxies (Clark et al. 2015; Dunne et al. 2018), to the higher cold
dust temperatures seen in dust-poor dwarf galaxies (Rémy-Ruyer
et al. 2013; Izotov et al. 2014). In other words, temperatures across
this ‘standard’ temperature range are only slightly less favoured than
Ťc. Outside this range, there is an increasing penalty – especially
towards lower temperatures, where P(Tc < 5) = 0, to rule out
unphysically cold dust.

D2 Mass prior

As described in Section 4.2, our SED-fitting procedure uses an
arbitrary placeholder value of κd (because the whole purpose of the
SED fitting is to find values of κd); as a result, the ‘mass’ variable
being fitted simply serves as a normalization parameter.

Our mass normalization prior takes the form of a first-order (i.e.
1 degree of freedom) Student t distribution, constructed in base-
10 logarithmic space (see Fig. D1), with widths of σ = 10 dex.
The peak of the mass normalization prior is computed separately
for each source (e.g. pixel), based on its distance and brightness,
according to the formula

log10 (M̌) = log10 (SmaxD
2) +

(
Ť − 20

−15

)
+ 4, (D3)

where M̌ (norm) is the modal mass of the prior probability distribution,
Smax is the brightest flux measured in the 150–1000μm range (in
Jy), and D is the source distance (in Mpc). For MBB dust SEDs
with temperatures in the 15–25 K range, the brightest flux in the
Spitzer and Herschel bands will be the 160μm measurement.

Equation (D3) is a purely empirical relation, derived from the
SED fitting of Herschel Reference Survey (Boselli et al. 2010)
galaxies, as performed in Clark et al. (2015) and Clark et al. (2016).

The prior on M(norm) shown in Fig. D1 is for an example pixel
from our M 83 data (processed as per Section 4.1), centred at
α = 204.2841◦, δ = −29.8559◦. The brightest band for this
pixel is 160μm, where the flux is 1.18 Jy. Given a distance to
M 83 of 4.9 Mpc, that corresponds to a priors centred at M̌ (norm) =
5.45 log10 M�, as per equation (D3).

The mass normalization prior is designed to be very weak.
This is because the strong M ∝ T4 + β dependence of mass on
temperature (for a given luminosity) means that the fitted value of
the mass normalization term is often driven primarily by the fitted
temperature.

D3 β prior

The prior on β takes the form of a standardized gamma distribution,
identical to equations (D1) and (D2), except with β replacing Td,
and β̌ replacing Ť . The parameters for our β prior take values of
α = 2.75, l = 0, and β̌ = 1.75.

For nearby galaxies and the Milky Way, β is typically found
to lie in the range 1.5–2.0, with resolved analyses finding values
spanning 1.0–2.75 (Smith et al. 2012; Kirkpatrick et al. 2013; Planck
Collaboration XI 2014). We therefore construct our prior such that
it peaks at β̌ = 1.75, with P(β) > 0.8P(β̌) across the 1.0–2.75
range. To exclude dubiously physical low β values, P(β < 0) = 0.

D4 υSPIRE prior

As discussed in Section 4.2, the calibration uncertainties on
Herschel-SPIRE photometry has a correlated systematic error
component, which we term υSPIRE, arising from uncertainty on the
emission model of Neptune, the instrument’s primary calibrator.
υSPIRE has a value of ±4 per cent; the true value of the systemic
error is believed to be equally likely to lie anywhere in that range,
with minimal likelihood (∼5 per cent) of the value lying outside
it (Bendo et al. 2013; A. Papageorgiou, private communication;
C. North, private communication).

We therefore use a prior for υSPIRE that takes the form of a
boxcar function convolved with a Gaussian distribution. The boxcar
function has a value of 1 over the range −0.04 to 0.04, with a value
of 0 beyond this. The Gaussian with which it was smoothed has a
standard deviation of 0.005. In the resulting prior, as shown in the
lower right panel of Fig. D1, 95 per cent of the probability density
is contained within the −0.04 to 0.04 range.

APPENDI X E: κD M A P S AT 1 6 0 μM

As discussed in Section 5, we calculated our κd maps at a reference
wavelength of 500μm. This is the longest wavelength at which we
have data, making it less sensitive to uncertainties in temperature
derived from the SED fitting. However, many authors opt to present
κd at 160μm, as this is the wavelength regime at which the κd of
carbonaceous and silicate dust is most comparable.

For completeness, we therefore also produced κ160 maps, which
are shown in Fig. E1. The maps are noisier than those computed at
500μm, but the overall morphology of κ160 in both galaxies is none
the less the same as that of κ500.

Using the same independent-pixel non-parametric bootstrap ap-
proach as in Section 5, we find a median underlying range of κ160

values of 0.74–2.4 m2 kg−1 for M 74 (a factor of 3.2 variation), and
2.1–12 m2 kg−1 for M 83 (a factor of 5.7 variation).
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Figure E1. Maps of κ160 within M 74 (left) and M 83 (right).

APPENDIX F: κ500 MAPS USING D IFFERENT
STRO NG-LINE METALLICITY
PRESCRIPTIONS

As described in Section 3.3, our metallicity maps were produced
using metallicities calculated using the ‘S’ strong-line prescription
of Pilyugin & Grebel (2016). To ensure that our specific choice of
metallicity prescription was not driving our results, we also repeated
our κ500 mapping using metallicity maps produced using four
other strong-line prescriptions; the O3N2 prescription of Pettini &
Pagel (2004), the N2 prescription of Pettini & Pagel (2004), the
prescription of Tremonti et al. (2004), and the IZI prescription
of Blanc et al. (2015). As with our fiducial Pilyugin & Grebel
(2016) ‘S’ prescription values, these metallicities are all taken from
the standardized data base produced by De Vis et al. (2019). The

Figure F1. Maps of κ500 within M 74, calculated using metallicities
produced via different strong-line prescriptions. Upper left: the O3N2
prescription of Pettini & Pagel (2004). Upper right: The N2 prescription
of Pettini & Pagel (2004). Lower left: The prescription of Tremonti et al.
(2004). Lower right: the IZI prescription of Blanc et al. (2015).

Figure F2. Maps of κ500 within M 83, calculated using metallicities
produced using different strong-line prescriptions, but otherwise following
the same method as for our fiducial map in Fig. 13. Prescription descriptions
the same as for Fig. F1.

resulting κ500 maps for all four prescriptions for both galaxies are
presented in Figs F1 and F2. These κ500 maps all display the same
general morphology as the fiducial maps in Figs 12 and 13 – with
lower values of κ500 associated with regions of denser ISM. The
exceptions to this are the maps produced using the Tremonti et al.
(2004) prescription, which causes a negative radial gradient in κ500

to dominate over the density-anticorrelated variations; but none the
less, at a given radius, areas of lowest κ500 are associated with the
same areas of denser ISM as seen in the other maps.

APPENDI X G : κD MAPS FROM
TWO-COMPONENT MBB SEDS

As discussed in Section 4.2, we opt to use a one-component MBB
model to fit the FIR–submm SEDs for our fiducial κ500 maps.
However, as a test, we also produced κ500 maps using a two-
component MBB model for the SED fitting. In practice, this entailed
replacing equation (9) with

Sdi
= κ0

D2

(
λ0

λi

)β (
M (norm)

c B(λi, Tc) + M (norm)
w B(λi, Tw)

)
(G1)

where subscripts c and w denote the cold and warm dust
components, respectively. There are therefore six free parameters
for the two-component MBB modelling: Tc, M (norm)

c , Tw , M (norm)
w ,

β, and υSPIRE. Having performed this SED fitting, computing the
corresponding values of κ500 simply requires setting n = 2 in
equation (3) and providing T and Sλ for both MBB components.

Expanding the method to incorporate two dust components
includes the tacit assumption that both dust components have the
same dust-to-metals ratio. This is perhaps unlikely, as warmer dust
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will generally be associated with recent star formation and more
intense ISRFs, where shocks and high-energy photons might destroy
grains and return their metals to the gas phase. However, for dust
SEDs with two distinct components at different temperatures, the
total dust mass is invariably dominated by the colder component
(da Cunha et al. 2008; Kirkpatrick et al. 2014; Clark et al. 2015);
therefore the resulting value of κd will primarily reflect the κd of the
dominant component, insulating this approach against differences
in εd.

Figure G1. Maps of κ500 within M 74 (left) and M 83 (right), produced
when the FIR–submm SED is modelled with a two-component MBB, as
opposed to the one-component MBB used for our fiducial maps.

The resulting maps are shown in Fig. G1. The map for M 74
shows some increase in κ500 in the centre relative to the one-
component MBB approach, whilst the map for M 83 is practically
identical.

The median for M 74 is κ500 = 0.20 m2 kg−1, and the median
for M 83 is κ500 = 0.25 m2 kg−1. The ranges of values (estimated
via same the non-parametric independent-pixel bootstrap method
as used in Section 5) are 0.13–0.28 m2 kg−1 for M 74 (a factor
of 2.2 variation), and 0.12–0.72 m2 kg−1 for M 83 (a factor of
6.0 variation). The differences between these values and their
counterparts for our fiducial maps are all much less than the average
0.15 dex statistical uncertainty on each pixel’s κ500 value (and well
within the 0.2 dex systematic uncertainty).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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