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Abstract

Computer simulations of photon transport through an absorbing and/or scattering medium form an important
research tool in astrophysics. Nearly all software codes performing such simulations for three-dimensional
geometries employ the Monte Carlo (MC) radiative transfer (RT) method, including various forms of biasing to
accelerate the calculations. Because of the probabilistic nature of the MC technique, the outputs are inherently
noisy, but it is often assumed that the average values provide the physically correct result. We show that this
assumption is not always justified. Specifically, we study the intensity of radiation penetrating an infinite, uniform
slab of material that absorbs and scatters the radiation with equal probability. The basic MCRT method, without
any biasing mechanisms, starts to break down for transverse optical depths τ20 because so few of the simulated
photon packets reach the other side of the slab. When including biasing techniques such as absorption/scattering
splitting and path length stretching, the simulated photon packets do reach the other side of the slab but the biased
weights do not necessarily add up to the correct solution. While the noise levels seem to be acceptable, the average
values sometimes severely underestimate the correct solution. Detecting these anomalies requires the judicious
application of statistical tests, similar to those used in the field of nuclear particle transport, possibly in combination
with convergence tests employing consecutively larger numbers of photon packets. In any case, for transverse
optical depths τ75 the MC methods used in our study fail to solve the one-dimensional slab problem, implying
the need for approximations such as a modified random walk.
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1. Introduction

Astronomical observations are shaped by the transport of
electromagnetic radiation within and in front of the object
being studied. The affecting medium can be, for example, the
diffuse interstellar medium, clumpy dust structures near active
galactic nuclei, protoplanetary dust disks, or stellar or planetary
atmospheres. To help understand the structure and inner
workings of the observed systems, researchers develop
software codes that simulate the radiation transport in carefully
constructed computer models of these objects. Typical models
include photon transport in various wavelength ranges, and
may focus on emission and absorption lines of the elements in
the gas phase and/or on the continuum effects caused by solid
dust grains.

The Monte Carlo (MC) radiative transfer (RT) simulation
technique is very popular (see, e.g., Whitney 2011; Steinacker
et al. 2013) because it is conceptually simple, and it supports
complex three-dimensional (3D) geometries, multiple aniso-
tropic scattering events, and additional physics such as
polarization in a straightforward manner. In the basic MCRT
method (Cashwell & Everett 1960), the program follows a
large but finite number of individual photon packets, each
representing a fraction of the total source luminosity, along
their journey through the transfer medium. The program draws
pseudo-random numbers from the appropriate probability
distributions to determine a packet’s fate at each event in its
life cycle. A packet is terminated when it is absorbed by the
transfer medium or when it escapes the system (and possibly is
detected by a synthetic instrument). Modern MCRT codes
incorporate various variance reduction techniques that involve
replacing the physically appropriate probability distribution by
a biased probability distribution that favors the desired range of
outcomes (see, e.g., Yusef-Zadeh et al. 1984; Lucy 1999;

Niccolini et al. 2003; Baes et al. 2016). The resulting bias is
compensated by adjusting the weight of each photon packet,
effectively scaling the luminosity it represents.
The output quantities of an MCRT simulation, such as

spatially integrated fluxes or the surface densities in a pixel
image, are obtained by summing the contributions of a finite
number of photon packets. By the nature of the randomized
MC process, these quantities are subject to noise, which can
generally be reduced by tracing a larger number of photon
packets (see, e.g., Gordon et al. 2001). Individual image pixels
naturally show higher noise levels than integrated fluxes
because fewer packets contribute to each pixel. Still, in our
experience with galaxy modeling (see, e.g., Baes et al. 2010;
De Looze et al. 2012, 2014; Camps et al. 2016), even noisy
images will usually provide a good “average” approximation of
the correct result. This can be understood intuitively by noting
that the MCRT algorithm, by construction, statistically
preserves the total luminosity of the source (after subtracting
the fraction absorbed by the transfer medium). As a result, we
were quite puzzled by the atypical RT simulation results
described in the next paragraph.
We recently participated in a benchmark effort by Gordon

et al. (2017) comparing the solutions produced by seven RT
simulation codes for an externally illuminated slab of dust with
well-defined material properties and 3D geometry. For
transverse optical depths of the order of unity, the flux
penetrating the slab was reproduced by all codes to within less
than 10%. For optical depths τ≈30, the solutions differed by
up to 100%, and for τ≈75 they differed by several orders of
magnitude. Optical depths of this magnitude are observed in
various astrophysical systems, including planetary disks (Jin
et al. 2016) and active galactic nuclei (Tristram et al. 2007),
and they occur in other fields as well, for example shielding
in nuclear reactors and for medical imaging applications. It
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therefore seems relevant to understand these discrepancies
between the various RT codes.

In unpublished tests for optical depths τ≈75 with our own
3D dust MCRT code SKIRT (Baes et al. 2011; Camps &
Baes 2015), both the intensity profile along the slab and the
integrated flux changed substantially with the number of
photon packets launched into the slab, even if the noise level in
the intensity profile seemed acceptable. This result implied that
the noise level is not a sufficient indicator of convergence when
facing higher optical depths in an MCRT simulation, and it
prompted us to further investigate the matter and report our
findings in the present paper.

In Section 2, we present a simplified, plane–parallel and
single-wavelength version of the Gordon et al. (2017) slab
problem (Section 2.1). The one-dimensional geometry allows us
to solve the RT problem using spherical harmonics (see, e.g.,
Roberge 1983; di Bartolomeo et al. 1995; Baes & Dejonghe
2001) and using a finite-difference approach (Milkey et al.
1975; Mihalas et al. 1978; Bruzual et al. 1988), providing
unambiguous and deterministic reference solutions (Section 2.2).
We also describe our implementation of the MCRT photon life
cycle for the plane–parallel slab problem, including two biasing
techniques that can be turned on or off (Section 2.3).

In Section 3, we compare the solutions produced by our
MCRT program for varying optical depth and number of
photon packets to the corresponding reference solutions, and
we show that the behavior noted for the Gordon et al. (2017)
benchmark is reproduced in our simplified version. We study
the performance of the two optional biasing techniques
implemented in our program, and we attempt to understand
why the MCRT method breaks down for higher optical depths
(Section 3.1). Moreover, we discuss some statistical tests that
were developed in the context of MC simulations of particle
transport in nuclear physics (see, e.g., Pederson et al. 1997) to
help determine whether a particular simulation result is
sufficiently converged (Section 3.2). We then indicate some
possibilities for tackling problems that the traditional MCRT
methods cannot handle (Section 3.3). Finally, in Section 4, we
summarize our findings.

2. Methods

2.1. The Plane–Parallel Slab

Our goal is to solve the RT problem in a plane–parallel slab
of uniform density and without internal sources, illuminated
from the top side by an isotropic radiation field at a given
(arbitrary) wavelength. Instead of the regular Cartesian
coordinates, we use the optical depth coordinate τ to indicate
the depth into the slab perpendicular to the surface of the slab,
so that τ=0 corresponds to the bottom layer of the slab, and
τ=τmax corresponds to the top layer (see Figure 1). The
angular dependence of the radiation field is parameterized by
the cosine m q= cos of the angle between the propagation
direction and the normal direction. Given these conventions,
the time-independent transfer equation for the radiation
intensity I(τ, μ) can be written as (Baes & Dejonghe 2001),
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with ω being the scattering albedo and Ψ(μ, μ′) being the
angular redistribution function normalized to unity over both
incoming and outgoing directions. The boundary conditions for
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For the purposes of this paper, we assume that absorption and
scattering in the slab material are equally probable and that
scattering is isotropic, so that
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2.2. Nonprobabilistic Numerical Methods

Because of its one-dimensional nature, the plane–parallel
slab problem formulated in the previous section can be solved
using nonprobabilistic numerical methods, including the
spherical harmonics method and the finite-difference method
discussed below. These methods cannot be readily applied to
arbitrary three-dimensional configurations, which is why other
methods, such as MCRT, are used in modern codes.
The spherical harmonics method for solving the RT equation

was pioneered by Davison (1958), and later adopted by several
others (van de Hulst 1970; Flannery et al. 1980; Roberge 1983;
di Bartolomeo et al. 1995; Corradi et al. 1996). We follow the
approach used by Baes & Dejonghe (2001), which is based on
Roberge (1983) and the adaptations of di Bartolomeo et al.
(1995). These authors describe the procedure in detail and we
provide only a very brief summary here.
The terms in the RT equation (Equation (1)) are expanded

in spherical harmonics, which, in plane–parallel symmetry,
reduce to the Legendre polynomials PL. Truncating the series
expansion at some selected order L leads to an finite set of
linear first-order differential equations in the coefficients of the
expansion. This set of equations can be reformulated as a classic
eigenvalue problem and thus solved by matrix diagonalization.
The boundary conditions listed in Equation (2) can only be
satisfied for (L+1)/2 directions μj given by the positive zeros
of the Legendre polynomial of order L+1. The intensity at an
arbitrary direction μ can be obtained by interpolation.
It turns out that the solution converges even for short series

expansions (L15 according to Baes & Dejonghe 2001). We
use a larger value of L for calculating our reference solutions
(the dots in Figure 2) so that we obtain a fair number of
intensity values without the need for interpolation. Even with
L=81 (resulting in intensity values for 41 directions) the

Figure 1. Geometry of a plane–parallel slab. The slab is illuminated from the
top side, corresponding to τ=τmax, by an isotropic radiation field. The
observer is located below the slab.
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calculations complete in a fraction of a second on a modern
desktop computer.

The finite-difference method for solving the plane–parallel
RT problem is often called Feautrier’s method (Feautrier 1964).
After its initial formulation, the technique was further extended
by authors including Hummer & Rybicki (1971), Milkey et al.
(1975), Mihalas et al. (1978), Bruzual et al. (1988), and Baes &
Dejonghe (2001), whose approach we follow. In short, the
technique relies on the discretization of a differential form of
Equation (1) on a uniform mesh of K points in optical depth
space. The integrals over μ are approximated by M-point
Gauss–Legendre quadrature. This procedure eventually leads to
a set of coupled equations that can be solved recursively, taking
into account the boundary conditions given in Equation (2).

The value of M sets the resolution of the solution in μ space
and it is similar to the value of (L+1)/2 in the spherical
harmonics method. The second discretization parameter K sets
the resolution of the optical depth grid on which the calculations
are performed. Its value affects the accuracy of the results,
especially at high optical depths. The reference solutions shown
as solid lines in Figure 2 were obtained using K=5000. This
high value was needed to ensure that the finite-difference
solution for τmax=75 would match the corresponding spherical
harmonics solution. Although the finite-difference method is
more resource-intensive than the spherical harmonics method,
the calculations plotted in Figure 2 still complete in a few
seconds on a modern desktop computer.

For a transverse optical depth of τmax=75, the intensity
penetrating the slab is more than 30 orders of magnitude below
the source intensity (bottom curve of Figure 2). In most
astrophysical objects, the faint radiation penetrating such an
optically thick barrier would be dominated by radiation from
another source located on that side of the barrier, or radiation at a

different wavelength would dominate the physics. In those cases,
obtaining an accurate simulation result for the penetrating
radiation would be noncritical. Still, there might be configurations
where even a faint nonlocal radiation component, perhaps
Doppler-shifted as a result of relative velocities, would excite a
specific atomic or molecular line that would not be triggered by a
local radiation field that is much stronger but includes different
wavelengths.

2.3. The Monte Carlo Method

The MCRT method essentially follows the individual path
of a very large number of photon packets through the
transfer medium. The life cycle of each packet is governed by
a number of quantities such as the free path length between two
interactions, the nature of the interaction (scattering or absorp-
tion) and the direction change during a scattering event. Each of
these quantities can be described by a random variable, taken
from a particular probability distribution. These principles are
described in detail by, e.g., Cashwell & Everett (1960), Mattila
(1970), Yusef-Zadeh et al. (1984), and Bianchi et al. (1996). The
MCRT method has been implemented, with various optimiza-
tions and refinements (e.g., Lucy 1999; Niccolini et al. 2003;
Baes et al. 2016), in quite a number of codes in several
astrophysical domains (see, e.g., Steinacker et al. 2013, for a
review of 3D dust continuum RT).
For the purposes of this paper, we wrote a small computer

program that solves the plane–parallel slab problem using four
variations of the MCRT method, which we call Basic, Split,
Stretch, and Split and Stretch, respectively. We now describe
these variations in some detail, starting with the Basic method,
which uses a bare-bones MCRT life cycle without any biasing.
In the plane–parallel slab geometry (see Figure 1), a photon

packet is characterized by two variables: the optical depth
coordinate τ (corresponding to a vertical position in the slab)
and the direction cosine μ. We launch N identical packets at the
top of the slab, i.e., with τ=τmax. To obtain an isotropic
intensity distribution, we need to take into account the
dependence of the luminosity L on the propagation direction
given by m mµdL d dI . As a result, the normalized probability
distribution from which we must sample the direction of
packets carrying equal amounts of luminosity becomes

 m m m m m=( ) ( )p d d2 , 0 1. 4

We can pick a random direction from this distribution using the
inversion method,
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where 1 is a uniform deviate (a random number uniformly
distributed over the unit interval).
Next, we generate a random free path length t (also in optical

depth units) by setting (Baes & Dejonghe 2001),
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where 2 is another uniform deviate. This randomly deter-
mined free path length is then compared to the maximum free
path length T of the packet under consideration,
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Figure 2. Reference solutions calculated with the spherical harmonics method
(dots) and the finite-difference method (lines) for the radiative transfer problem
illustrated in Figure 1, with transverse optical depths from 1 to 75. The vertical
axis is “broken” in two places to allow for the wide intensity range.
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If t>T, the photon packet leaves the slab, and if it is moving
downward (μ>0), its direction μ is recorded. If t<T, the
packet interacts with the slab material. The nature of this
interaction is determined by generating another uniform deviate
3 and selecting scattering if  w< =3

1

2
and absorption

otherwise.
If the interaction is an absorption, the photon packet

disappears and does not contribute to the output intensity. If
the interaction is a scattering, the packet acquires a new
position and a new direction. Given the free path length t and
the original position τ and direction μ, the new position is
easily obtained as τ′=τ−μt. Because we assume isotropic
scattering, the new direction is independent of the previous
direction and uniform in μ; it is determined from yet another
uniform deviate using m¢ = -2 14 . The procedure is now
repeated until the photon packet is either absorbed or leaves
the slab.

To capture the angular dependence of the intensity at the
bottom of the slab, we setup a grid in μ space over the interval
[0, 1] with M equally sized bins. For each photon packet
emerging from the bottom of the slab, we increment the counter
for the corresponding μ-bin. When all photon packet life cycles
have been completed, we convert these counts to intensities.
Using the dependence m mµ ( )dI dL d yields

m m
= = ( )I
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where the index j refers to the jth μ-bin. We set M=41 for all
results in this paper, providing a similar directional resolution
as for the reference solutions (but with different spacing
because the points in the reference solutions are not equidistant
in μ-space).

In the method variations other than Basic, each photon
packet is additionally assigned a weight w that serves as a
multiplier adjusting the luminosity carried by the packet. All
photon packets are launched at the top of the slab with a
“neutral” weight w=1. However, the weights are adjusted
along the way as compensation for biasing the probability
distributions governing the photon packet life cycle. When
detecting a photon packet at the bottom of the slab, we now add
its weight to the appropriate bin instead of simply counting it.

In the Split method, we allow a photon packet to contribute
to both absorption and scattering at each interaction site.
Instead of randomly choosing the nature of the interaction, the
packet is “split” in two parts: one that is absorbed and one that
scatters and continues its life cycle. In other words, instead of
simulating absorption as described above, we always let the
packet scatter and we multiply its weight by a bias factor of 1/2
(the value of the scattering albedo ω under our assumptions),
effectively removing the average amount of absorbed lumin-
osity from the packet. Because photon packets are now only
terminated when they actually escape the slab, we can expect to
properly sample the problem with fewer photon packets.

In the Stretch method, we improve the ability of a photon
packet to penetrate an optically thick medium by biasing the
probability distribution for the free path length toward longer or
“stretched” paths. Following the composite biasing technique
presented by Baes et al. (2016), we substitute the physical
probability distribution t = t-( )p e , which is strongly peaked

toward small values, by the biased distribution
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where the exponential stretch factor α is determined as a
function of the current maximum path length T for the photon
packet under consideration. To compensate for this subsitution,
we multiply the photon packet’s weight by the corresponding
bias factor,
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We expect this method to perform better for slabs with higher
optical depth.
Finally, the Split and Stretch method combines both the Split

and Stretch biasing mechanisms.

3. Results and Discussion

3.1. The Failure of MC Radiative Transfer

Because of the nature of the MCRT method, recalculating a
solution with a different (pseudo-)random number sequence
yields a different result. However, our tests show that, as
expected, multiple runs produce similar solutions, differing
solely in the precise shape of the noise pattern. Figure 3 shows
representative solutions of the slab problem presented in
Section 2.1 calculated with various MC methods (Section 2.3,
solid lines), compared to the corresponding reference solution
(Section 2.2, red dots).
The leftmost panel in Section 3 presents the results for all

four methods and a slab with transverse optical depth τmax=5,
using a fixed number of 107 photon packets. It is fair to
conclude from this figure that the discussed MCRT methods
indeed work as advertised. The noise level increases for
directions away from the normal, i.e., for direction cosines
μ0.3. Close to the parallel direction (μ0.1), the radiation
intensity is an order of magnitude lower than close to the
normal direction (μ0.9), which means that fewer photon
packets contribute to these bins, resulting in higher noise levels.
The signal-to-noise ratio can easily be improved by launching
more photon packets (not shown in the figure but confirmed by
our tests). Closer inspection of the results for μ0.3 reveals
that the noise levels differ between the methods; for example,
the Split and Stretch method shows less noise than the other
methods. This is not surprising, because the biasing techniques
used in this method have been designed to reduce the variance
in the calculated result.
The performance differences between the methods become

much more prominent in the middle panel of Figure 3, which
presents results for τmax=20, still using the same number of
107 photon packets. The solution for the Basic method is not
shown, because in most tests not a single photon packet
actually reaches the bottom of the slab. Indeed, according to the
reference solution (red dots in middle panel of Figure 3), the
observed intensity is more than 8 orders of magnitude lower
than the source intensity. In other words, the probability that
one of the 107 photon packets penetrates the slab is smaller
than 107/108=0.1. The biasing mechanisms included in the
other methods improve the situation, with varying success.
As a first step, the absorption-scattering split implemented in

the Split method causes many more photon packets to penetrate
the slab, albeit with reduced weights (multiplication by the
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albedo for each scattering event) and at the expense of
spending more time per photon packet (because packets are
terminated only when they escape at either side of the slab).
The result calculated by the Split method (blue line in the
middle panel of Figure 3) is not only very noisy, it is also off by
many orders of magnitude, and the running average has the
incorrect shape (the deviation from the reference solution is
much larger for smaller values of μ). The Stretch method
performs much better (orange line), because the path length
stretching technique is specifically designed to penetrate high-
optical depth barriers more easily. Because of the longer free
paths, packets interact much less frequently with the slab
medium, and thus do not get terminated so easily by
absorption. The Split and Stretch method (green line), combin-
ing both techniques, performs best, though it still suffers from
noise fluctuations close to an order of magnitude for μ0.1.

When raising the transverse optical depth to τmax=75, even
the Split and Stretch method fails to produce a correct solution
without using an excessive number of photon packages. The
rightmost panel in Figure 3 shows results for the Split and Stretch
method with τmax=75 and an increasing number of photon
packets. While the result seems to converge to the correct
solution for an increasing number of packets, even with 1013

packets (dark blue line) the MCRT result still underestimates the
solution for most directions, and it shows noise fluctuations of
about an order of magnitude. This calculation, with 1013 packets
for τmax=75, consumed 52 days of equivalent serial time on a
multicore computer system.

Reviewing the three panels in Figure 3, we might generalize
(at least for the plane–parallel slab problem) that the “running
average” of the MCRT solution generally matches the
corresponding reference solution as long as the transverse
optical depth is sufficiently low (τmax20) and the MCRT
method employs the appropriate variance reduction techniques.
For high optical depths (τmax75) the MCRT technique
becomes intractable. Moreover, when considered in isolation
and without further evaluation, any of the unconverged results
(e.g., the blue line in the middle panel and the purple and
orange lines in the rightmost panel of Figure 3) might be
mistaken as a proper result, albeit somewhat noisy. To develop
ways for avoiding such misinterpretation, we need to under-
stand why MCRT fails for these higher optical depths, and why

the average result depends so heavily on the number of photon
packets in the simulation.
The first intuitive insight can be gained from considering the

distribution of the individual photon packet contributions wi to
the observed intensity in a particular direction bin. To properly
handle the extremely small photon packet weights resulting
from repeated application of the biasing factors, we perform the
MCRT calculations for this part of our study using floating
point numbers with 50 significant digits and a sufficiently large
exponent range. Figure 4 shows the cumulative distributions of
the contributions for the bin centered on μ≈0.11 (θ≈84°) in
the solutions of the middle panel of Figure 3, i.e., for a slab
with τmax=20 and N=107. For the Split method (blue
curve), 1835 photon packets reach this particular bin (indicated
by the horizontal dashed blue line). Many of the contributions
are very small; the smallest one is wmin≈4×10−379 (i.e.,
far outside the range shown in the figure). With an albedo
of w = 1

2
, this weight corresponds to 1257 consecutive

scattering events. The largest contribution is wmax≈6×
10−11, corresponding to 34 scatterings. The vertical dashed

Figure 3. Solutions of the slab problem calculated with the Monte Carlo method variations described in the text (solid lines) compared to the corresponding reference
solution (red dots) for transverse optical depths 5, 20, and 70 (panels from left to right). The two leftmost panels show results for a fixed number of 107 photon packets,
using different methods. The rightmost panel shows results for the Split and Stretch method with an increasing number of photon packets.

Figure 4. Cumulative distribution of the photon packet contributions wi to the
observed intensity in the direction bin centered on μ≈0.11 for a slab with
τmax=20 and N=107, corresponding to the solutions shown in the middle
panel of Figure 3. The horizontal dashed lines indicate the total number of
packets contributing to the bin, or in other words, the limit of each cumulative
distribution. The vertical dashed lines are explained in the text.
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blue line indicates the weight each of the 1835 arriving packets
would need to contribute on average to reach the total weight
that matches the reference solution for the bin. Because even
the largest contribution for the Split method is several orders of
magnitude below this value, it is clear that a much larger
number of photon packets would need to be launched for the
simulation to approach the correct solution.

The situation for the Stretch as well as the Split and Stretch
methods (orange and green in Figure 4) is much improved
because many more photon packets contribute to the bin, and
the largest contributions are much larger than those for the Split
method. The steeper climb of the cumulative distribution for
the Split and Stretch method implies that it performs better than
the Stretch method, but it is not clear from this qualitative
analysis whether the result can be considered to be sufficiently
converged.

3.2. Statistical Tests for Convergence

A basic statistical treatment to obtain a confidence interval
for astrophysical dust MCRT simulation results is provided by,
e.g., Gordon et al. (2001) and Steinacker et al. (2013). More
detailed statistical techniques, however, are routinely employed
by nuclear particle transport simulation codes. We specifically
refer to the Overview and Theory manual for MCNP (hereafter
“the MCNP manual,” X-5 Monte Carlo Team 2003). MCNP is
a general MC N-Particle transport code developed by Los
Alamos National Laboratory in the United States. The
procedures described in the MCNP manual are based on early
work by Estes & Cashwell (1978) and further research by, e.g.,
Dubi (1979), Forster (1991), Forster et al. (1992), Booth
(1992a, 1992b), and Pederson et al. (1997). Dunn & Shultis
(2012) provide a succinct summary of the key concepts. For
our analysis in this section, we largely follow the definitions
and recommendations presented in the MCNP manual.

The total MCRT simulation result W for a given observed
radiation direction bin (before converting to intensity) is
obtained by accumulating the individual photon packet weights
wi, i.e., = åW wi, where the index i and the sum run over the N
photon packets launched during the simulation. By the nature
of the MC method, the weights wi are independently sampled1

from some unknown probability distribution function f (w).
Note that this distribution may have a discrete component. For
example, for the Basic method, the weights are either 0 or 1,
and for the Split method, the weights are multiples of the
albedo.

If the expectation value and variance of the unknown
distribution f (w) exist and are finite, the central limit theorem
applies and we can estimate both quantities from the sample
values wi.

2 We define the sample mean w̄ and the estimated kth

central moment Mk of the distribution as

å=¯ ( )w
N

w
1

, 11i

å= -( ¯ ) ( )M
N

w w
1

. 12k i
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In an MCRT simulation, N is always sufficiently large to
assume N≈N−1, so there is no need to correct for small
sample sizes. We can then write the estimated variance ¯Sw

2 of
the sample mean as

= ( )¯S
N

M
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We define the relative error R as
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where the right-hand side shows the expansion in sums of wi

and wi
2, which can be easily tracked during the simulation.

If all wi values are non-negative, as is the case when
detecting photon packet luminosities, it is easy to see from its
definition that 0�R�1. If all wi are zero, the ratio in
Equation (14) becomes undefined, and we arbitrarily set R=1
because, for our slab problem, a null solution is certainly
incorrect.3 If all wi are nonzero and equal, R reaches its
minimum value of zero. If there is only a single nonzero
contribution, R approaches its maximum value of unity. As a
final limiting case, consider a result with a small number of
n=N nonzero and equal contributions, such as when using
the Basic method for a slab with medium transverse optical
depth. In this case, »R n1 , recovering the behavior of
Poisson noise.
The top panel of Figure 5 shows the relative error, averaged

over all direction bins for each solution, as a function of the
number of photon packets launched to solve the plane–parallel
slab problem with the Split and Stretch method. The solid lines
plot the evolution of the average R for the three transverse
optical depth values for which selected solutions are shown in
Figure 3. Based on theoretical considerations and experience
with actual simulation results, the MCNP manual recommends
that R should be smaller than 0.1 for the corresponding result to
be considered reliable. In the range 0.1<R<0.2, results are
dubbed “questionable,” and for R>0.2, results are generally
unreliable. For τmax=5 the Split and Stretch method easily
reaches the R=0.1 mark at N≈105.3, and for τmax=20 at
N≈107.6. For τmax=75, however, the relative error is still at
the “questionable” level even with N=1013 photon packets.
These assessments are compatible with a visual evaluation of
the errors in the solutions shown in Figure 3.
It is worth noting that Gordon et al. (2001) define

uncertainties similarly to the definition of R in Equation (14).4

Because the models in their study have optical depths of the
order of unity, the resulting uncertainties remain well under the
0.1 “danger” value. As a consequence, the Gordon et al. (2001)
suggestion to employ the uncertainties as relative error bars is

1 For this to be true, all observed effects directly or indirectly caused by a
particular launched photon packet must be combined into a single contribution.
2 If the transverse optical depth of the slab is high enough relative to the
number of photon packets launched, the number of packets detected in a given
bin might be so low that the central limit theorem does not apply and the
sample mean is not normally distributed. For example, by performing 500 runs
using different random seeds, we verified that the sample mean for the
τmax=20 cases shown in Figure 4 does not follow a Gaussian distribution,
while it does when the optical depth is lowered to, e.g., τmax=5 (with the
same number of photon packets). However, in case the sample mean is not
distributed normally, we expect the sample variance to be sufficiently large that
the analysis presented in this section will still trigger the proper alarms. We also
verified that this is the case for the examples shown in Figure 4.

3 For problems where a null solution is physically possible, one could
set R=0.
4 Gordon et al. (2001) do not aggregate the effects from multiple scattering
events of a single photon packet to a single contribution, which may to some
extent skew comparison with their results.
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justified. Uncertainties with values above 0.1, however, should
be interpreted as indicating questionable or unreliable results
rather than as a relative error bar.

The dashed lines in Figure 5 (top panel) indicate the slope of
the expected evolution of R as N increases (with an arbitrary
starting point to guide the eye). The dependency can easily be
derived from Equation (14) to be µR N1 . For τmax=5
and 20, the actual evolution of R approaches the expected
power-law behavior, while for τmax=75 the slope differs
significantly even at N=1013. This is another clear indication
that the solution has not yet converged and thus should be
considered unreliable.

Continuing to follow the MCNP manual and the prior
research it is based upon, we further define the variance of the
variance, VOV, a quantity that measures the relative statistical
uncertainty in the estimated R. The definition assumes that the
third and fourth central moments of the probability distribution
f (w) exist and are finite. The VOV is much more sensitive to
large fluctuations in the wi values than is R, and it can thus
detect situations where the obtained R value is unreliable. The
VOV can be written in terms of the moments given by
Equation (12) as

-
= å -

å -
- ( ¯ )

( ¯ )
( )

N

M M

M

w w

w w N
VOV

1 1
. 15i

i

4 2
2

2
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The quantity can also be expressed as a function of the sums
åwi

k, k=1, 2, 3, 4, which can be tracked during the
simulation.

Based on statistical experiments, the MCNP manual
recommends that the VOV should be below 0.1 to ensure a
reliable confidence interval.5 It can be easily seen from

Equation 15 that the VOV is expected to decrease as 1/N.
The bottom panel of Figure 5 shows the VOV, averaged over
all direction bins, as a function of N, for the same solutions as
those considered before. The dashed lines again indicate the
expected evolution for sufficiently large N. For τmax=5 the
VOV behaves as expected even for small N, resulting in
convergence criteria that are more relaxed than those for R (top
panel). For higher optical depths, however, the VOV decreases
more slowly than expected. For τmax=75, the VOV barely
decreases even up to N=1013, adding another reason for
caution with regard to the reliability of the solution.
Our analysis shows that the statistical quantities R and VOV

can be successfully employed to evaluate the reliability of an
MCRT solution (without a priori knowledge of the correct
solution), at least for the plane–parallel slab problem
considered in this work. If both R and VOV are below 0.1,
and both quantities decrease with N as expected, one can be
reasonably confident to have a reliable solution.
Another useful quantity is the figure of merit, FOM, defined

as

= ( )
R T

FOM
1

, 16
2

where T is the computer time spent on the simulation in
seconds. Because the computer time is proportional to the
number of photon packets N and the square of the relative error
should scale as 1/N, the FOM should be approximately
constant once the solution has converged. The evolution of the
FOM for increasing N can thus be used as a reliability
indicator; it is easier to verify constant behavior than to
evaluate scaling with a power law. The FOM also provides a
measure for the efficiency or “merit” of a particular method for
solving the problem at hand. A higher FOM indicates that the
simulation can reach a given level of precision in less
computer time.
The solid lines in Figure 6 plot the (converged) FOM for

each of the four methods considered in this work as a function
of the transverse optical depth τmax. The value of the FOM
depends on the implementation details of the program and
scales with the processing speed of the computer system in use.

Figure 5. Relative error R (top) and variance of the variance VOV (bottom)
averaged over all direction bins as a function of the number of photon packets
launched to tackle the slab problem using the Split and Stretch method, for the
transverse optical depths also shown in Figure 3. The dashed lines indicate the
slope of the expected power-law dependence ( µ µ- -R N N, VOV1 2 1).

Figure 6. Converged figure of merit, FOM=1/(R2T), for each of the four
MCRT method variations considered in this work as a function of the
transverse optical depth τmax of the slab (solid lines). The dashed lines trace
exponential functions proportional to t-e m max for three values of the exponent
index m.

5 The value 0.1 is convenient, which is why the VOV is used rather than its
square root.
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For the data shown in this figure, we ran our C++ MCRT
program on a regular desktop computer using a single
execution thread. While the details may vary for other
computer systems and implementations, the overall trends
should be representative. The Basic and Split methods show
similar performance. While the Basic method requires a much
larger number of photon packets, the Split method calculates
many more path segments for each photon packet (because the
packets are forced to continue after each interaction).
Apparently, the efficiency of both mechanism is in balance.
The Stretch method performs significantly better, which is
understandable because it has been designed to penetrate high-
optical-depth barriers. Somewhat unexpectedly, adding absorp-
tion/scattering splitting to path length stretching (as in the
Split and Stretch method) substantially boosts performance
again. We postulate that the number of additional path
segments introduced by absorption/scattering splitting is now
limited because the stretched path segments are much longer,
on average.

The dashed lines in Figure 6 trace exponential functions of
the form t-A e m max for three values of the exponent index m and
with arbitrary proportionality constant A, chosen to approxi-
mately match the respective solid lines. It is clear from the
figure that, as τmax increases, the FOM for each method
decreases exponentially. Equivalently, the processing time
needed to solve the problem with given precision rises
exponentially as µ tT em max . This can be expected because of
the exponential relation between the penetrating intensity and
the optical depth of the barrier. Reading the appropriate data
point from Figure 6, and using Equation (16), we can deduce
that the Split and Stretch method requires about 25s to reach a
precision of R=0.1 at τmax=20. Using the exponent index
of m=0.48 for this method, we can extrapolate the time to
reach a similar precision at τmax=75 to be more than
7×1012 s or 2×105years. On a high-performance computer
with 512 nodes of 16 cores each, the calculation would still
require more than 27years. In other words, the problem is not
tractable on present-day computers with the MCRT methods
considered in this work.

3.3. Addressing the Problem

It is somewhat ironic that, for the purposes of this work, we
had the MCRT method consume many days of computer time
to obtain a solution that can be calculated in a fraction of a
second by a nonprobabilistic numerical method. However, as
indicated in Section 2.2, for arbitrary three-dimensional
problem configurations this “fast lane” is no longer available.
So the question becomes how to augment or complement the
MCRT method so that it can handle higher optical depths.

As a first step, it is crucial to equip MCRT codes with the
statistical instruments discussed in the previous section, so that
users can evaluate the accuracy of the simulation results, and
decide whether the reported inaccuracy is relevant for the
physics of the broader problem. Conversely, the statistics can
be used to determine, manually or automatically, when there is
a need for enabling specific, possibly approximative, high-
optical-depth techniques.

To this end, several authors have introduced schemes in
which the transport equation is replaced by a diffusion equation
in regions of the spatial domain where the diffusion
approximation can be justified. Indeed, Larsen et al. (1987)
show that both equations are asymptotically equivalent when

three key assumptions hold: spatial variations of physical
quantities are slow, the physical medium is optically thick, and
interactions with the physical medium are scattering-domi-
nated. For a discretized spatial domain, the first two
assumptions translate to requiring that the radiation field and
the optical properties of the medium can be considered constant
within each spatial cell, while at the same time each cell still
contains many free path lengths. In these hybrid schemes, the
MCRT mechanism is used to solve the transport equation in
nondiffusive regions, and another, more efficient, method is
used to solve the diffusion equation in diffusive regions. For
example, the discrete diffusion Monte Carlo method (DDMC,
e.g., Densmore et al. 2007, 2012; Abdikamalov et al. 2012;
Cleveland & Gentile 2015) allows radiation packets to step
from one diffusive spatial cell to another following the solution
of a diffusion equation discretized on those cells, as opposed to
performing a possibly long-winded random walk within
each cell.
An alternate technique for diffusive regions, usually referred

to as modified random walk (MRW), was introduced by Fleck
& Canfield (1984) and further refined and generalized by Min
et al. (2009), Robitaille (2010), and Keady & Cleveland (2017).
The MRW procedure picks a sphere centered on the current
radiation packet’s position that encloses a region of space with
constant medium properties (e.g., within a single spatial cell).
Given the assumptions for the diffusive regime, this sphere
may still enclose a large number of MC random-walk path
segments. To replace this long random walk by a single step,
the procedure estimates the probability function for the total
length of the path enclosed in the sphere, which is then used to
determine the resulting extinction, or equivalently, the amount
of energy absorbed by the transfer medium. The original MRW
procedure assumes isotropic scattering (Fleck & Canfield 1984),
and corrections can be made for anisotropic scattering (Min
et al. 2009).
A number of caveats remain to be considered. To our

knowledge, the above techniques have been implemented mostly
(or solely) in combination with an immediate re-emission
scheme assuming energy balance under local thermal equili-
brium conditions. The smaller dust grains and the hydrocarbon
compounds in the interstellar medium, however, are often not
in equilibrium with the radiation field (Sellgren 1984; Boulanger
& Perault 1988; Helou et al. 2000) and are characterized by
a temperature probability distribution rather than a single
equilibrium temperature. The emission spectrum of these grains
depends on the surrounding radiation field in a highly nonlinear
way (Guhathakurta & Draine 1989; Draine & Li 2001; Camps
et al. 2015). Modern dust MCRT codes thus need to keep track
of the absorbed energy at each frequency (in each spatial cell), so
that the diffusive regime solution mechanism must consider
individual frequencies (or narrow ranges) rather than integrating
over a broad range of frequencies.
Most importantly, at ultraviolet and optical wavelengths, a

typical interstellar dust mixture has a scattering albedo between
0.2 and 0.65 (Draine 2003; Zubko et al. 2004; Jones et al.
2013). In other words, scattering interactions do not dominate
absorption events. Because one of the key assumptions of the
diffusion methods does not hold, they are, in principle, not
applicable to interstellar dust. The approximation may be
acceptable in certain parameter regimes (albedo, scattering
anisotropy, optical depth), but this cannot be assumed without
further consideration. Perhaps some of the diffusion methods
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can be adjusted to handle a broader parameter range, for
example, by adopting probability density functions in the
MRW technique that take into account albedo and scattering
anisotropy parameter values in a broader range.

The plane–parallel slab configuration presented in
Section 2.1 would form an excellent test-bed in this context.
The nonprobabilistic numerical methods described in
Section 2.2 are easily extended to support arbitrary albedo
and anisotropic scattering, so that reference solutions would be
readily available for comparison with the results of adding a
diffusive regime procedure to the implementation of the MC
method described in Section 2.3. Such a study could pave the
way for implementations of these methods in fully equipped
3D dust MCRT codes, although this may require additional
effort. While some of the hybrid MC/diffusion techniques have
been implemented in 3D codes (e.g., Robitaille 2011, assuming
equilibrium heating) most studies were performed with
axisymmetric or even spherically symmetric models (e.g.,
Densmore et al. 2007, 2012; Min et al. 2009; Pinte et al. 2009;
Abdikamalov et al. 2012; Cleveland & Gentile 2015). Adapta-
tions that handle nonequilibrium dust grain heating and a wider
albedo and scattering anisotropy parameter range should be
properly tested with high-optical depth 3D model configura-
tions similar to the Gordon et al. (2017) benchmark.

At the same time, an improved understanding of which
methods can properly solve the 1D slab problem for various
high-optical depth parameter regimes, and why this is the case,
might lead to more fundamental insights. For example, while
the statistical tests discussed in Section 3.2 can help detect the
failure of a method after an alleged solution has been obtained,
it would be beneficial to develop a theoretical or empirical
framework to detect such failure before actually attempting to
solve the problem.

4. Summary and Conclusions

We set out to investigate the apparent failure of the MCRT
method noted by Gordon et al. (2017) for optical depths of
about 30 or more. To this end, we formulated a plane–parallel,
single-wavelength RT problem consisting of an infinite slab of
uniform material with given transverse optical depth τmax. We
summarized two nonprobabilistic methods that can be used to
generate reference solutions for this one-dimensional config-
uration. We also described our implementation of four
variations of the MC method to solve the same problem,
including the Basic photon packet life cycle and two optional
biasing techniques called Split (absorption-scattering split) and
Stretch (path length stretching).

We compared the solutions produced by our MCRT program
to the corresponding reference solutions in Figure 3. The
photon packets in the Basic method essentially fail to penetrate
the slab for τmax as low as 20. The Stretch biasing technique
has a substantial positive effect, as expected, because it was
designed to improve penetration of higher optical depths. The
best results are obtained with the Split and Stretch method,
which combines both biasing techniques. However, a slab with
τmax=75 forms an insurmountable barrier even for this
optimized photon packet life cycle. A calculation with 1013

photon packets, consuming 52 days of equivalent serial
computer time, still does not recover the correct solution
because too few photon packets with a significant contribution
penetrate the slab.

We subsequently discussed and applied a number of
statistical tests originally developed by other authors for
evaluating MC simulations of nuclear particle transport. The
relative error, R, is defined as the ratio of the estimated standard
deviation over the estimated mean of the individual photon
packet contributions to a particular detector bin. The variance
of the variance, VOV, defined similarly, serves in turn as a
reliability measure for R. To calculate these statistics, the
simulation must keep track of the sums åwi

k, k=2, 3, 4, in
addition to the regular accumulated contribution åwi. We
verified that the recommendations developed for the MCNP
nuclear particle transport code (X-5 Monte Carlo Team 2003)
are also valid for our slab problem (see Figure 5). In short,
when both R and VOV are below 0.1 and show the expected
statistical dependency with an increasing number of photon
packets launched, the corresponding result can be considered to
be reliable.
We also discussed a quantity called figure of merit, defined

as FOM=1/(R2T), where R is the relative error and T is the
amount of computer time spent on the simulation (see
Figure 6). We used the FOM to determine that calculating a
solution for the τmax=75 slab problem would take dozens of
years even on a powerful high-performance computer system.
We conclude that the MCRT methods used in our study start

to fail for barriers with transverse optical depths as low as 20,
and that detecting the anomalous results requires the judicious
application of statistical tests, possibly in combination with
convergence tests employing consecutively larger numbers of
photon packets. While we focused our tests on a plane–parallel
geometry and fixed material properties, changing the geometry
and including materials with anisotropic scattering or a
different scattering albedo will most likely leave the overall
conclusions intact. The benchmark results reported by Gordon
et al. (2017) at least point in that direction.
The above implies the need for approximative methods

to handle high optical depths in MCRT simulations. An
excellent candidate is the MRW technique, which was already
implemented and tested by other authors in specific circum-
stances. Because reference solutions can easily be obtained for
the one-dimensional slab problem presented in this work, we
suggest that it can play a significant role in testing the accuracy
of the MRW method for various optical properties of the
transfer medium.

We thank the coauthors of the TRUST slab benchmark paper
(Gordon et al. 2017), and specifically the lead author, Karl
Gordon, for many interesting discussions that inspired us to
investigate further and write the current paper.
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