
Astronomy and Computing 9 (2015) 20–33

Contents lists available at ScienceDirect

Astronomy and Computing

journal homepage: www.elsevier.com/locate/ascom

Full length article

SKIRT: An advanced dust radiative transfer code with a user-friendly
architectureI

P. Camps ⇤, M. Baes
Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B-9000 Gent, Belgium

a r t i c l e i n f o

Article history:
Received 12 June 2014
Accepted 5 October 2014
Available online 16 October 2014

Keywords:
Radiative transfer
Numerical methods
Dust
Object-oriented design
Abstraction
Modularity

a b s t r a c t

We discuss the architecture and design principles that underpin the latest version of SKIRT, a state-of-
the-art open source code for simulating continuum radiation transfer in dusty astrophysical systems,
such as spiral galaxies and accretion disks. SKIRT employs the Monte Carlo technique to emulate the
relevant physical processes including scattering, absorption and emission by the dust. The code features a
wealth of built-in geometries, radiation source spectra, dust characterizations, dust grids, and detectors,
in addition to various mechanisms for importing snapshots generated by hydrodynamical simulations.
The configuration for a particular simulation is defined at run-time through a user-friendly interface
suitable for both occasional and power users. These capabilities are enabled by careful C++ code design.
The programming interfaces between components are well defined and narrow. Adding a new feature is
usually as simple as adding another class; the user interface automatically adjusts to allow configuring
the new options.We argue that many scientific codes, like SKIRT, can benefit from careful object-oriented
design and from a friendly user interface, even if it is not a graphical user interface.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The presence of even a small fraction of dust can have a substan-
tial impact on the radiation traversing and exiting an astrophysical
system. In a typical spiral galaxy viewed edge-on, for example, the
central dust lane blocks most of the starlight in the UV and optical
wavelength range and re-emits the absorbed energy in the infrared
and sub-millimeter regime (e.g. Verstappen et al., 2013). Simulat-
ing the precise effect of the dust is not trivial. Anisotropic scattering
by the dust couples all lines of sight, and dust absorption/emission
couples all wavelengths. As a result, the radiative transfer equa-
tion is highly nonlocal and nonlinear (Steinacker et al., 2013). In
most astrophysical systems, at least part of the dust is not in lo-
cal thermal equilibrium with the radiation field, complicating the
calculations even more (Draine and Li, 2001). And finally, realistic
scenarios involve complex 3D geometries such as spiral arms, ran-
domly placed clumps, or snapshots taken from a hydrodynamical
simulation.

Because of these complexities, most dust radiative transfer
codes use the Monte Carlo technique to tackle the problem; see
e.g. the reviews by Whitney (2011) and Steinacker et al. (2013).

I This code is registered at the ASCL with the code entry ASCL: 1109.003.⇤ Corresponding author.
E-mail address: peter.camps@ugent.be (P. Camps).

The radiation field is represented as a stream of discrete photon
packages. A simulation follows the individual path of each photon
package through the dusty medium. The trajectory is governed
by various events determined statistically by drawing random
numbers from the appropriate probability distribution. Typically,
a photon package is emitted, undergoes a number of scattering
events, and is finally either absorbed or leaves the system. The
Monte Carlo technique is conceptually simple and allows efficient
radiative transfer calculations for complex problems. However,
due to the randomization process, the results inherently contain
a certain level of Poisson noise.

SKIRT is a state-of-the-art Monte Carlo dust radiative transfer
code. It implements the common optimization techniques, such
as peel-off at emission and scattering events (Yusef-Zadeh et al.,
1984), continuous absorption (Lucy, 1999; Niccolini et al., 2003),
and forced scattering (Cashwell and Everett, 1959), and includes
novel techniques such as the library mechanism described in Baes
et al. (2011). The code is registered in the Astrophysics Source
Code Library with identifier ascl:1109.003. Earlier versions were
described in Baes et al. (2003, 2011). Here we present the latest,
substantially revised version of SKIRT, which is fully documented1

and publicly available from a GitHub code repository.2

1 SKIRT documentation: http://www.skirt.ugent.be.
2 SKIRT code repository: https://github.com/skirt/skirt.

http://dx.doi.org/10.1016/j.ascom.2014.10.004
2213-1337/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ascom.2014.10.004
http://www.elsevier.com/locate/ascom
http://www.elsevier.com/locate/ascom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ascom.2014.10.004&domain=pdf
mailto:peter.camps@ugent.be
http://www.skirt.ugent.be
https://github.com/skirt/skirt
http://dx.doi.org/10.1016/j.ascom.2014.10.004


P. Camps, M. Baes / Astronomy and Computing 9 (2015) 20–33 21

Stalevski et al. (2012) have used SKIRT to investigate the
emission of active galactic nuclei (AGN) dusty tori in the infrared
domain, modeling the dusty torus as a two-phase medium with
high-density clumps and a low-density medium filling the space
between the clumps. The resulting SED database has been made
public as described in Stalevski (2012). As can be expected, SKIRT
is often used to solve the inverse radiative transfer problem, where
the goal is to recover the actual 3D distribution of radiation sources
and dust by fitting the results of radiative transfer simulations to
observational data. This is a nontrivial task, since the underlying
model typically has a large number of free parameters. For
example, SKIRT has been used to perform detailed studies of the
dust energy balance in the edge-on spiral galaxies UGC4754, NGC
4565, and M104 (Baes et al., 2010; De Looze et al., 2012a,b).
These studies found an inconsistency in the dust energy budget,
suggesting that a sizable fraction of the total dust reservoir consists
of a clumpy distribution with no associated young stellar sources.

Rather than using amanual trial and error procedure, De Geyter
et al. (2013) describe FitSKIRT, a code that automatically fits a 3D
model to observed images of a dusty galaxy bymatching the output
of SKIRT radiative transfer simulations to the data. They apply
FitSKIRT to automatically determine the intrinsic distribution of
stars and dust in the galaxy NGC4013. De Geyter et al. (2014)
use FitSKIRT to investigate interstellar dust in a sample of 12
edge-on galaxies, simultaneously reproducing the g-, r-, i- and z-
band observations from a model with 19 free parameters without
human intervention.

In this article,we do not discuss the results obtainedwith SKIRT,
nor the Monte Carlo radiative transfer techniques implemented in
the code. Insteadwe focus on the software design choices involved
with setting up the simulation model. Many scientific codes re-
quire a user to hard-code themodelmakeup for each distinct prob-
lem. In contrast, our strategy with SKIRT in recent years has been
to continuously add new features without removing existing capa-
bilities. Consequently, SKIRT now offers a wealth of configurable
components that are ready to use without any programming at
all, especially in the areas where the code has been most often ap-
plied. An ad-hoc approach to include all of this functionality would
have lead to source code that is hard to understand, maintain, and
use. Instead we developed a modular, generic software architec-
ture that can support the wide range of built-in components and
options in SKIRT in a developer- and user-friendly way.

In Section 2 we first provide an overview of SKIRT’s features,
including the user interface for configuring a particular simulation.
In Section 3 we then discuss the design goals for the latest revision
of the code, we describe the overall architecture, and we zoom
in on a few key aspects of the design, such as the mechanism
that automatically adjusts the user interface to accommodate new
features. In Section 4 we finally argue that many scientific codes,
like SKIRT, can benefit from careful object-oriented design and
from a friendly user interface, even if it is not a graphical user
interface.

2. Features

2.1. Overview

SKIRT is a Monte Carlo continuum radiative transfer code for
simulating the effect of dust on radiation in static astrophysical sys-
tems. It is assumed that the radiation traverses the system much
faster than the time scale on which the system evolves. SKIRT of-
fers full treatment of absorption and multiple anisotropic scat-
tering by the dust, computes the temperature distribution of the
dust and the thermal dust re-emission self-consistently, and sup-
ports stochastic heating of small grains using an efficient library

Fig. 1. A schematic representation of the items to be configured for a particular
SKIRT simulation.

approach. It handles multiple dust mixtures and arbitrary 3D ge-
ometries for radiation sources and dust components, and offers a
variety of simulated instruments for measuring the radiation field
from any angle. The code operates efficiently and is parallelized on
shared memory systems.

SKIRT is a console application and is completely written in C++.
It can easily be deployed on anyUnix system, including for example
Ubuntu and Mac OS X. The code has no compile-time options; all
built-in components and capabilities are configured at run-time.
The first-time user would use the interactive query and answer
mechanism (in a terminal window) to configure a particular
simulation. The smart mechanism guides the user through all
possible options, narrowing down the possibilities based on earlier
choices. The complete configuration for the simulation is then
saved as a SKIRT parameter file in XML (eXtensible Markup
Language) format, which can be easily viewed and adjusted in a
regular text editor, even by an occasional user.

2.2. Configuring a simulation

Fig. 1 illustrates the structure of a SKIRT simulation. Each of
the building blocks offers several alternatives and options that
can be configured in the parameter file. At the top level, for ex-
ample, SKIRT supports two simulation types: oligochromatic and
panchromatic. An oligochromatic simulation operates at just one
or a small number of distinct wavelengths. It handles absorption
and scattering by dust grains, but it does not support thermal dust
emission. There is no way to compute the dust temperature with-
out integrating the absorbed radiation energy over an appropriate
wavelength range. This basic simulation mode is appropriate for
studying optical wavelengths, since the dust emission is negligible
there. A panchromatic simulation operates over a broad range of
wavelengths. These simulations can handle thermal dust emission
as well as absorption and scattering, and thus many more options
need to be configured.

The wavelength grid for an oligochromatic simulation is simply
a short list of distinctwavelengths. A panchromatic simulation em-
ploys a grid over a range that typically extends fromUV tomillime-
ter wavelengths. SKIRT offers a plain logarithmic wavelength grid
and a nested logarithmic wavelength grid, providing a higher res-
olution in some subset of the range. The user can specify the wave-
length range and the number of grid points. Alternatively SKIRT



22 P. Camps, M. Baes / Astronomy and Computing 9 (2015) 20–33

Table 1

An overview of built-in components that can be used for defining (a) the spatial distribution of radiation sources and dust components, (b) the spectral energy distribution
of radiation sources, (c) the properties of the dust mixture, and (d) the spatial discretization of the dust medium.

(a) Geometries Spherically symmetric
PointGeometry Single point
PlummerGeometry Classical Plummer sphere (Plummer, 1911; Dejonghe, 1987)
SersicGeometry Spherical model with a Sérsic surface brightness profile (Sérsic, 1963; Ciotti and Bertin, 1999)
EinastoGeometry Spherical model with an Einasto density profile (Einasto, 1965; Retana-Montenegro et al., 2012)
GammaGeometry Spherical model with a gamma density profile (Dehnen, 1993; Tremaine et al., 1994)
ShellGeometry Spherical shell where the density behaves as a power law between an inner and an outer radius

Axisymmetric
ExpDiskGeometry Optionally truncated exponential profile in both radial and vertical directions (van der Kruit, 1986)
RingGeometry Ring with Gaussian profile in the radial direction and exponential fall-off in the vertical direction
TorusGeometry Torus with radial power-law profile within opening angle (Stalevski et al., 2012; Granato and Danese, 1994)
GaussianGeometry Model with Gaussian distribution in the radial and the vertical direction
MGEGeometry geometry defined by a Multi-Gaussian Expansion (Emsellem et al., 1994; Cappellari, 2002)

No symmetries
ExpDiskSpiralArmsG... Double-exponential profile with a spiral arm perturbation (Misiriotis et al., 2000)
AdaptiveMeshGeometry Density distribution defined over an adaptive mesh grid, imported from a data file
VoronoiGeometry Density distribution defined over a Voronoi tessellation, imported from a data file

Decorators
OffsetGeometry Applies an arbitrary offset to any other geometry
ClumpyGeometry Replaces a portion of the mass in any geometry by randomly placed clumps
SpheroidalGeometry Transforms any geometry to a spheroidal counterpart
TriaxialGeometry Transforms any geometry to a triaxial counterpart

Anisotropic
NetzerGeometry Point source with the anisotropic radiation profile of an accretion disk (Netzer, 1987)

(b) SEDs Simple
BlackBodySED Classical black body spectrum for a given temperature
PegaseSED SED templates for elliptical, lenticular and spiral galaxies (Fioc and Rocca-Volmerange, 1997)
QuasarSED SED template for a quasar (Schartmann et al., 2005)
StarburstSED SED templates for a starbursting stellar population with given metallicity (Leitherer et al., 1999)
SunSED The solar spectrum
FileSED Arbitrary spectrum imported from a data file

Families
BruzualCharlotSED Stellar population SEDs parameterized on metallicity and age (Bruzual and Charlot, 2003)
MarastonSED Stellar population SEDs parameterized on metallicity and age (Maraston, 1998)
KuruczSED Stellar SEDs parameterized on metallicity, effective temperature and surface gravity (Kurucz, 1993)
MappingsSED Starbursting region SEDs par. on metallicity, compactness, pressure and covering factor (Groves et al., 2008)

(c) Dust Mixes Turn-key dust mixes
DraineLiDustMix Mixture of graphite, silicate and PAH grains (Draine and Li, 2007)
MRNDustMix Mixture of graphite and silicate grains (Mathis et al., 1977; Weingartner and Draine, 2001)
WeingartnerDustMix Mixture of graphite, silicate and PAH grains (Weingartner and Draine, 2001)
ZubkoDustMix Mixture of graphite, silicate and PAH grains (Zubko et al., 2004)

Custom dust mixes
ConfigurableDustMix Custom-configured dust mix given a list of grain compositions and grain size distributions

Grain compositions
DraineGrainComp Optical and calorimetric properties for graphite, silicate and PAH grains (Draine and Li, 2007)
DustEmGrainComp Any of the dust grain properties provided with the DustEM code (Compiègne et al., 2011)
ForsteriteGrainComp Forsterite crystalline silicate grain properties (Fabian et al., 2001; Min et al., 2005; Suto et al., 2006)
EnstatiteGrainComp Enstatite crystalline silicate grain properties (Jaeger et al., 1998; Min et al., 2005)

Grain size distributions
PowerLawGrainSize Modified power-law grain size distribution with a form inspired by Compiègne et al. (2011)
LogNormalGrainSize Modified log-normal grain size distribution with a form inspired by Compiègne et al. (2011)

(d) Dust Grids Spherically symmetric
LinSpheDustGrid Spherical grid with regularly spaced cells (radii of cell boundaries are equidistant)
LogSpheDustGrid Spherical grid with logarithmically spaced cells (central cells have smaller widths)
PowSpheDustGrid Spherical grid with cells spaced according to a power-law (central cells have smaller widths)

Axisymmetric
LinAxDustGrid Cylindrical grid with regularly spaced cells in both radial and vertical directions
LogLinAxDustGrid Cylindrical grid with logarithmically spaced cells radially, and regularly spaced cells vertically
PowAxDustGrid Cylindrical grid where cells are spaced according to a power-law in both directions
LogPowAxDustGrid Cylindrical grid with logarithmically spaced cells radially, and power-law spaced cells vertically

Cuboidal
LinCubDustGrid Grid with regularly spaced cuboidal cells in the three dimensions
PowCubDustGrid Grid with cuboidal cells spaced according to a power-law in the three dimensions
OctTreeDustGrid Octree grid that recursively subdivides cuboidal nodes into eight sub-nodes (Saftly et al., 2013)
BinTreeDustGrid k-d tree grid that recursively subdivides cuboidal nodes into two sub-nodes (Saftly et al., 2014)

Unstructured
VoronoiDustGrid Unstructured dust grid based on a Voronoi tessellation of 3D space (Camps et al., 2013)

can read a custom wavelength grid from a text data file that lists
the grid points.

The spatial distribution of radiation sources and dust is obvi-
ously an important part of the simulation model. For this purpose
SKIRT offers a number of predefined geometries; the most impor-
tant ones are listed in Table 1(a). Each geometry defines a spatial
density distribution, which can be used for radiation sources as

well as dust components. Choices include a point-like source and
various theoretical models for distributed densities with spherical,
cylindrical, or no symmetries. Decorator geometries adjust another
geometry by shifting its center to an arbitrary location, deforming
a spherical geometry into a spheroidal or triaxial distribution, or
adding clumps in random locations. Other geometries can import a
density distribution from a data file. Anisotropic radiation sources



P. Camps, M. Baes / Astronomy and Computing 9 (2015) 20–33 23

are supported as well. Multiple geometries can be combined in ar-
bitrary ways, enabling the construction of complex models.

The stellar system describes the radiation sources in the
simulation model. For each geometry, the configuration defines
the emission spectrum and the luminosity. Table 1(b) lists the
built-in spectral energy distributions (SEDs), including several
well-known parameterized SED families, and the option to import
an SED from file. The amount of radiation can be specified
through the bolometric luminosity or through the spectral
luminosity at the center of a standard wavelength band. SKIRT also
includes specialized stellar systems to import a snapshot from a
hydrodynamic simulation using smoothed particles (SPH) or an
adaptive mesh (AMR). In this case, both the spatial distribution
and the emission spectrum in each location are extracted from the
input data, for example using a Bruzual–Charlot model based on
stellar age and metallicity.

Similarly, the dust system describes the spatial distribution
and the properties of the dust in the model. A dust system can
have multiple components, each with its own geometry and dust
characterization. The amount of dust in each component can be
defined simply as a total mass, or by specifying the optical depth
along a particular axis. The optical and chemical properties of
the dust in each component can be configured in great detail, as
described in Section 2.3. Again, there are specialized dust systems
to import a snapshot from a hydrodynamic simulation (SPH or
AMR). The spatial distribution of the dust is now calculated from
the gas density in the input data, assuming that the amount of
dust is proportional to themetal fraction in the gas, except in areas
where the gas is too hot to form dust.

The dust system also configures the dust grid, i.e. the compu-
tational structure that is used to discretize the spatial domain un-
der study. The grid partitions the spatial domain in individual dust
cells, and all physical variables (dust density, optical properties,
radiation field, dust temperature) are considered to be constant
in each dust cell. During the radiative transfer simulation, photon
packages propagate through the grid and interact with particular
cells according to randomly generated events. Since memory re-
quirements and computation time rapidly increase with the num-
ber of dust cells, a good grid has smaller cells in areas that require
a higher resolution, and larger cells elsewhere. Table 1(d) lists the
dust grids built into SKIRT. The spherical and cylindrical grids are
perfect for simplemodelswith the corresponding symmetries. Lin-
ear grids have equidistant grid points; logarithmic and power-law
grids place (much) smaller bins in the central areas of the model.
Most state-of-the-art simulations use 3D models, however, and
SKIRT offers a choice of smart structured and unstructured grids
to help optimize accuracy and performance. This is an active field
of study in our research group, as described in Section 2.4.

Finally, the configuration is completed with a number of syn-
thetic instruments, which collect and write down information
about the simulated radiation received at some specified view-
point. The SED instrument outputs the spectral energy distribution
of the received flux as a text file that can easily be plotted. The frame
instrument collects a complete 3D data cube (a rectangular frame
of flux samples at each simulated wavelength) and outputs the re-
sult as a FITS file (Flexible Image Transport System), enabling the
use of the standard visualization and data manipulation tools. The
instruments can treat the radiation differently depending on its
source; for example direct radiation, scattered radiation and dust
emission can be recorded separately. The default instruments as-
sume that the distance to the model is very large, so that they can
use parallel projection. The perspective instrument, however, can
be placed anywhere, even inside themodel. It ismostly used to cre-
ate animations by specifying an instrument per movie frame, with
slightly varying position and/or angles.

Fig. 2. A schematic representation of a dust mix containing multiple dust
populations. Each population describes a particular type of grain.

2.3. Dust properties

The dust system in a SKIRT simulation can hold multiple dust
components, each with their own spatial distribution and their
specific dust characterization. The dust properties applying to a
particular dust component are bundled in a building block called
a dust mix. SKIRT offers several options to configure a dust mix,
ranging from very simple to quite involved. Table 1(c) lists some
of the choices. Each of the turn-key dust mixes implements a
particular dust model described in the literature, usually including
some specific combination of silicate grains, graphite grains, and
polycyclic aromatic hydrocarbon (PAH)molecules, with properties
listed in data files and/or approximated by formulae. These dust
mixes can be configured simply by supplying their name.

Alternatively, the user can configure a custom dust mix from
basic building blocks, as illustrated in Fig. 2. A configurable dust
mix holds a distinct dust population for each type of grainmaterial
in the mix. For each type of grain material, the dust population
specifies the optical and calorimetric material properties and a
grain size distribution function. Optical dust properties include
the scattering and absorption coefficients sca(�, a) and abs(�, a),
and the asymmetry parameter g(�, a) determining the scattering
phase function ��,a(k, k0), for a range of wavelengths � and a
range of grain sizes a. Calorimetric properties include the heat
capacity C(T ) or equivalently the internal energy U(T ) of the dust
grain material at a range of temperatures T , and the bulk mass
density ⇢bulk of the material. Several sets of standard material
properties and often-used size distributions are built-in to SKIRT,
as illustrated in Table 1(c), and new choices can be easily added.

Configurable dust mixes allow users to experiment with new
dust models, or to specify a different spatial distribution for a
particular dust population (by splitting it off into a separate dust
mix corresponding to a dust component with its own geometry).

2.4. Dust grids

The construction of a proper dust grid is a key aspect of a
radiative transfer simulation. Many astrophysical models feature
small structures, such as dust clumps or star forming regions,
which require a lot of cells to resolve properly. To minimize
memory requirements and computation time, the grid should be
adapted to the spatial structure of themodel. Therefore, in addition
to fixed grids similar to the one shown in the top panel of Fig. 3,
SKIRT offers several types of adaptive grids, including the k-d tree
and the Voronoi grid shown in middle and bottom panels of the
same figure.

Starting from a cuboidal root cell that spans the complete
spatial domain, a typical adaptive mesh refinement (AMR) scheme



24 P. Camps, M. Baes / Astronomy and Computing 9 (2015) 20–33

Fig. 3. A planar cut through three of SKIRT’s dust grids. Top: a fixed grid with cell
sizes distributed logarithmically on the horizontal axis and according to a power-
law on the vertical axis. Center: a cuboidal k-d tree grid with cell sizes that are
adjusted to the dust density distribution in a simple spiral galaxy model. Bottom:
an unstructured Voronoi grid where the generating sites are placed randomly
following the dust density distribution of the same spiral galaxy model. Note that a
planar cut through a 3DVoronoi tessellation is usually not a 2DVoronoi tessellation.

recursively subdivides each cell into a ⇥ b ⇥ c cuboidal subcells
until sufficient resolution has been reached in each region. In the
special case where a = b = c = 2, each cell is subdivided into
eight subcells and the data structure is called an octree. The octree
implementation in SKIRT was optimized in the context of radiative
transfer as reported in Saftly et al. (2013).

A k-d tree (k-dimensional tree) is a space-partitioning data
structure where each cell is recursively split into just two subcells
along a particular hyperplane. In 3D space, i.e. with k = 3, a k-d
tree is similar to an octree. In fact, any octree of depth n has an
equivalent k-d tree of depth 3n. For each octree level, the k-d tree
uses three consecutive levels with mutually orthogonal dividing
planes. However, while an octree forces all eight subcells to be
created at the same time, a k-d tree allows more fine-grained
control over which of the two initial subcells are subdivided
further. As reported in Saftly et al. (2014), this property gives k-
d tree grids a relevant advantage over octree grids in the context of

Fig. 4. The output of a SKIRT simulation for a very simple spiral galaxy model with
an instrument that registers the total flux of an edge-on view. The SKIRT parameter
file for this simulation is shown in Fig. 6.

radiative transfer. The central panel of Fig. 3 shows a cut through
a k-d tree grid with cell sizes that are adjusted to the dust density
distribution in a simple spiral galaxy model.

Adaptive grids with cuboidal cells have become popular mainly
because of their relative ease of implementation. But there is
no a priori reason to assume that the cuboidal cell form is
optimal. To the contrary, the strict coordinate-plane alignment
of cell boundaries makes it hard to represent steep gradients
in arbitrary directions, raising the number of cells needed to
properly resolve clumpy features. One could consider constructing
a grid using polyhedra instead of cuboids, but in general this
seems a daunting task. FortunatelyGeorgeVoronoi (Voronoi, 1908)
provided a specific way of partitioning 3D space into convex
polyhedra. The mathematical properties of a Voronoi tessellation
greatly facilitate implementation of an unstructured Voronoi grid
in the context of radiative transfer, as described in Camps et al.
(2013). Further research should determine whether Voronoi grids
can indeed resolve astrophysical structures using less cells than
cuboidal adaptive grids. The bottom panel of Fig. 3 shows a cut
through a 3D Voronoi grid. Cells are placed randomly according to
the dust density distribution of a simple spiral galaxy model.

2.5. User interface

The complete configuration for a particular SKIRT simulation is
stored in a single parameter file, called a ski file (pronounced ‘‘skee
file’’). In view of themany features, options and interdependencies
described in the previous sections, the contents of a ski file can
become quite complex. To deal with this complexity, we opted for
a file format based on XML (eXtensible Markup Language). This
format has several advantages. XML elements can be nested to
create hierarchies of features and options that reflect the natural
makeup of the simulation’s configuration. XML is stored as plain
text, so it can be easily viewed and adjusted in a regular text editor,
even by an occasional user; the human-readable XML tags make
the format self-explanatory to a large degree. And finally, existing
ski files remain compatible when new features are added (with
appropriate defaults), or can be automatically upgraded when the
structure changes in an incompatible way.

To perform a simulation, the user starts the code in a terminal
window, supplying the name of the relevant ski file on the com-
mand line. The code runs fully unattended and all results are writ-
ten to output files. A small number of command line options allow
overriding some defaults in the run-time environment, such as the
number of parallel threads or the location of input and output files.
The makeup of the simulation itself is fully defined in the ski file.
When SKIRT is started without any command line arguments, it
enters an interactive query and answer mode that guides the user
through the process of creating a new ski file.

To illustrate how this works, we configure a SKIRT simulation
for a simple spiral galaxymodel, with an instrument that produces
the edge-on view shown in Fig. 4. The query and answer session in
the terminal window is illustrated in Fig. 5. The resulting ski file is
shown in Fig. 6, and a pretty-printed version is shown in Fig. 7.

When configuring a particular type of simulation for the first
time, the query and answermechanism guides the user through all



P. Camps, M. Baes / Astronomy and Computing 9 (2015) 20–33 25

Fig. 5. A partial transcript of the query and answer terminal session to configure a SKIRT simulation for a simple spiral galaxy model. The smart mechanism guides the user
through all possible options, narrowing down the possibilities based on earlier choices. For example, on line 15 there is only one choice for the wavelength grid because on
line 6 the user selected an oligochromatic simulation. Also the dust grid choices on lines 47–52 are limited to 2D and 3D grids (omitting 1D grids) since the geometry selected
on line 29 is axisymmetric. Furthermore the options for the geometry in lines 30–33 and for the dust grid in lines 54–59 are tailored to the selected type of geometry/dust
grid.

possible options, narrowing down the possibilities based on earlier
choices. This is similar to the concept of a wizard in graphical user
interfaces. Subsequently, the user can easily adjust the constructed
ski file in a text editor; a slightly more experienced user can copy
and paste building blocks between different ski files. For each

simulation performed, SKIRT produces a LATEX file describing the
contents of the input ski file in a human-readable format that can
be used for documentation purposes.

To further facilitate the configuration process, physical quan-
tities such as distances, sizes or masses can be specified in units



26 P. Camps, M. Baes / Astronomy and Computing 9 (2015) 20–33

Fig. 6. The ski file (SKIRT parameter file) configured during the query and answer session shown in Fig. 5. While it would be hard for a human to create this file from scratch,
it is surprisingly readable because of the self-explanatory tag names. For example, it is easy even for a casual user to adjust the scale height of the dust lane on line 29 or to
add an extra instrument by copying lines 52–54 and modifying the inclination angle of the second instrument.

selected by the user. The default unit system for a simulation’s in-
put and output is specified early on in the ski file (e.g. extragalac-
tic units on line 5 of Fig. 6), and individual parameter values can
be specified with a units string that overrides the default. For ex-
ample, a scale length of 6600 pc could be specified as "6600 pc",
"6.6 kpc", or approximately "2e20 m".

3. Architecture

The latest version of SKIRT was re-architected with the
following major design goals in mind:
• Structured parameter file: use a self-documenting ski file format

that supports the complex configuration needs described above
in a user-friendly manner.



P. Camps, M. Baes / Astronomy and Computing 9 (2015) 20–33 27

Fig. 7. A pretty-printed version of the ski file (SKIRT parameter file) shown in Fig. 6. SKIRT produces a LATEX file describing the configuration in this way for each simulation
performed. The description includes any default values that were omitted from the ski file; see for example lines 50–55.

• Single point of definition: define all information relating to a new
feature only once and in the same place, including the code,
the human-readable text strings used in the query and answer
session, and the tags in the ski file.

• Data-driven user interface: conduct the query and answer
session and handle the ski file based solely on these data
definitions, so that the user interface adjusts automatically as
new features are added.

• Shared-memory parallelization: make all code reentrant by
eliminating the use of global variables; protect the remaining
global resources or writable shared data with appropriate
locking mechanisms.

• Modularity: minimize dependencies among different areas
of the code by providing appropriate interfaces and data
encapsulation.

In this section we describe the overall architecture of the
code and we point out how it achieves these design goals.
SKIRT is written in C++ using object-oriented design principles.
Specifically we use several of the design patterns originally
described by Gamma et al. (1994) in their classic work, including
for example the Composite, Builder, Visitor, and Decorator patterns.

3.1. Simulation items

The core of the SKIRT code is obviously about performing
radiative transfer simulations. A complete SKIRT simulation is
represented at run-time as a hierarchy of objects called simulation
items, similar to the structure illustrated in Fig. 1. This object
hierarchy represents the configuration of the simulation (in
its structural makeup and in some data members), offers the



28 P. Camps, M. Baes / Astronomy and Computing 9 (2015) 20–33

Fig. 8. The run-time object hierarchy that would be constructed for the ski file
shown in Fig. 6. A solid rectangle represents a simulation item of the specified type;
a dashed oval indicates the name and value of a (plain or composite) property.
Connections starting with a diamond indicate aggregation. Each simulation item
instance and each property in this hierarchy maps directly to an XML element or
attribute in the ski file with the same name.

functionality to perform the simulation (through its member
functions), and provides space for any intermediate and resulting
data structures (in its data members). Multiple simulation object
hierarchies can co-exist and are fully independent of each other.

The object hierarchy for a particular simulation closely mimics
the structure of the corresponding ski file. For example, Fig. 8
shows the hierarchy that would be constructed for the ski file
listed in Fig. 6. A solid rectangle represents a simulation item of
the specified type; a dashed oval indicates the name and value
of a property. Plain properties hold a single value (or a list of
values); composite properties link other simulation items into the
hierarchy. The simulation items and attributes in this hierarchy
map directly to an XML element or attribute in the ski file with
the same name. This correspondence plays an important role in the
automation of the user interface, as we will discuss in Section 3.5.

Each simulation item is an instance of a class that directly or in-
directly derives from the SimulationItem base class. The sim-
ulation item classes form a compile-time inheritance hierarchy, a
small portion of which is shown in Fig. 9. The run-time object hi-
erarchy representing a simulation is thus an aggregation of objects
of the same type, reflecting the Composite design pattern (Gamma
et al., 1994) illustrated in Fig. 10. The Component role is played by
the SimulationItem class, and the Composite role is assumed
by any SimulationItem subclass that has one or more compos-
ite properties.

The use of the Composite pattern is fundamental to the imple-
mentation of the user interface discussed in Section 3.5, and it sub-
stantially facilitates reducing dependencies between portions of
the code, as described in Sections 3.2 and 3.3.

3.2. Simulation phases

A SKIRT simulation has three phases: construction, setup and
run. In the construction phase, the code constructs the simulation
item hierarchy corresponding to a particular ski file, initializing
the values of all plain and composite properties, as described
in Section 3.5. This process completes in a fraction of a second
because it does not do much work. During the setup phase, each
simulation item in the hierarchy gets a chance to perform further
initialization, such as reading data from resource files or pre-
computing frequently used information. This phase may require
some processing power, for example, to set up a dust grid that
is adapted to the specified dust distribution. Finally, the run

Fig. 9. A small portion of themore than 150 simulation item classes in the compile-
time inheritance hierarchy. A solid rectangle represents a simulation item class
with the specified name. Connections starting with an inverted arrow indicate
inheritance.

Fig. 10. The Composite design pattern (Gamma et al., 1994). Connections starting
with an inverted arrow indicate inheritance; connections starting with a diamond
indicate aggregation. This pattern describes an aggregation of objects that all have
the same base type.

phase performs the actual simulation and writes down the results.
Usually this phase consumes the bulk of the computing resources,
and it is fully parallelized.

TheSimulationItem base class offers thesetup() function;
its implementation is shown in Fig. 13. The children() function
used on line 4 returns a list of all simulation items held by
any composite property of the current simulation item. The
setupSelfBefore() and setupSelfAfter() functions are
declared virtual in the SimulationItem base class and are
overridden by subclasses that need to perform initialization during
the setup phase. They are invoked respectively before and after any
children of the simulation item have been set up.

The implementation of the setup() function follows the
Template Method design pattern (Gamma et al., 1994) to delegate
the actual initialization work to subclasses. To recursively invoke
all simulation items in the hierarchy, it relies on the fact that
all simulation item classes derive from the same class, which is
ensured by the use of the Composite design pattern.

SKIRT requires that the root object of the simulation item
hierarchy inherits from theSimulation class. This class offers the
run() function, which, not surprisingly, executes the run phase.
Thus, after constructing the run-time hierarchy, the code simply
invokes the setup() and run() functions on the hierarchy’s root
object to complete all phases of the simulation.

3.3. Reducing dependencies

Most simulation item classes are organized in groups with
a common purpose, e.g. wavelength grids, geometries, or dust
mixes. All classes in a particular group inherit from the same
base class, i.e. WavelengthGrid, Geometry, or DustMix. The
base class offers the common interface for all classes in the group
towards classes outside of the group. This design principle avoids



P. Camps, M. Baes / Astronomy and Computing 9 (2015) 20–33 29

undesirable dependencies between classes in different groups,
enhancing modularity.

Some information about a simulation’s configuration is ac-
cessed frommany different places, and thus must be readily avail-
able. To facilitate access to other simulation items in the same hi-
erarchy, the SimulationItem class offers the T* find<T>()
template function, where T stands for the name of any class that
derives from SimulationItem. This template function searches
the object hierarchy inwhich the receiving simulation item resides
for a simulation item of the specified type T, and returns a pointer
to the first such object found after dynamically casting it to the
requested type. If the hierarchy does not contain an object of the
specified type, the function throws an exception. The implementa-
tion of the find<>() template function again relies on the fact
that all simulation item classes derive from the same class.

For example, every run-time simulation hierarchy includes an
instance of a particular WavelengthGrid subclass, such as
OligoWavelengthGrid or NestedLogWavelengthGrid. Any
simulation item in thehierarchy can callfind<WavelengthGrid
>() to retrieve a pointer to the common wavelength grid inter-
face; the caller does not know the specific sub-type of the returned
object. Also, the caller has no need to knowwhere the returned ob-
ject resides, so this mechanism replaces application-wide global
data (which gets in the way of parallelization) by simulation-wide
available data.

While modularity is important, the generic and narrow in-
terfaces between different areas of the code sometimes hide in-
formation that can be relevant for optimal cooperation between
components. As a first example, the dust mass in each grid cell
is usually estimated by probing the dust density distribution in a
number of random locations uniformly distributed over the spa-
tial extent of the cell. This generic mechanism works for any cell
shape and for any type of density distribution. However, for cer-
tain cell shapes combined with certain types of density distribu-
tion, it might be orders ofmagnitude faster to directly calculate the
mass in the cell. As a second example, sometimes we would like to
build a dust grid based on particular locations (such as SPH parti-
cles) defined as part of the input dust density distribution, rather
than based on the density distribution itself. However, the generic
interface does not offer particle information because the concept
is meaningless for most density distributions.

These features can be accomplished without breaking mod-
ularity by using a specialty interface that is known only to the
specific classes involved, and by providing a mechanism to dy-
namically connect the two players at run time. This is illus-
trated in Fig. 12 for the first example described above. The
DustMassInBox interface declares pure virtual functions offer-
ing the relevant special capabilities. The SPHDustDistribution
class inherits the interface and actually implements its functions.
Finally, the TreeDustGridStructure simulation item recov-
ers a pointer to the specialty interface as follows. First it uses
the find<>() template function to retrieve the dust distribu-
tion object in the hierarchy; this could in fact happen in the
DustGridStructure base class since the returned pointer is
of the generic type DustDistribution. Then it invokes the
interface<>() template function on the dust distribution ob-
ject, which is in fact of type SPHDustDistribution, to return
a pointer to the DustMassInBox interface implemented by that
same object.

For this purpose, the SimulationItem base class provides
the T* interface<T>(), where T stands for the name of
the specialty interface to be recovered. In the example of Fig. 12,
the function can be implemented with a simple dynamic cast.
To support more complicated cases, the function also allows a
simulation item to delegate the implementation of a specialty
interface to a different object.

Fig. 11. The Decorator design pattern (Gamma et al., 1994). Connections starting
with an inverted arrow indicate inheritance; connections starting with a diamond
indicate aggregation. This pattern describes a convenient way to adjust or decorate
the behavior of another object of the same base type.

Fig. 12. A specialty interface (dotted rectangle) connects two specific simulation
items at run time, optimizing performancewithout creating undesirable dependen-
cies in the respective base classes. Connections starting with an inverted arrow in-
dicate inheritance; connections starting with a diamond indicate aggregation.

Fig. 13. The implementation of the SimulationItem::setup() function
(ignoring some implementation details).

3.4. Reusing components

In a Monte Carlo radiative transfer code, the key function of a
dust geometry (describing the distribution of the dusty medium)
is to retrieve the dust density at a specified location in space.
This function is called (quite often) during setup to build an
appropriate dust grid and calculate the dust mass in each grid
cell. On the other hand, the key function of a stellar geometry
(describing the distribution of radiation sources) is to generate a
random location in space, drawn from a probability distribution
corresponding to the geometry’s density distribution. This function
is called repeatedly during the simulation to determine the point
of emission for a new photon package.

Itmight seem that the functionalities of the two geometry types
are thus rather disjunct, but this is not the case. For example, we
want to build a Voronoi dust grid using generating sites placed
according to the dust density distribution. In this case, we need the
key stellar geometry functionality (generating random points) in
the dust geometry. Therefore the recent SKIRT version has unified
geometry classes that offer both functions, as listed in Table 1(a).

This change prompted us to invest in a number of geometry
classes thatmodify other geometries in interestingways, following
theDecorator design pattern (Gamma et al., 1994) shown in Fig. 11.
An object in the Decorator role maintains a pointer to another ob-
ject of the same base class, called the original object. The decorator
implements the base class interface by calling corresponding func-
tions in the original object, and returning the results after possible
adjustment. In SKIRT, the Geometry class plays the Component

role in this pattern, and any Geometry subclass can assume the
ConcreteComponent role, i.e. the role of the original geometry be-
ing decorated. The ClumpyGeometry class is one of the classes
that plays the Decorator role. It modifies the original geometry by



30 P. Camps, M. Baes / Astronomy and Computing 9 (2015) 20–33

Fig. 14. Planar cuts through four density distributions derived from the same
underlying geometry using the Decorator design pattern: a plain, spherical Einasto
profile with index 1 (top left); two superposed Einasto profiles, each shifted aside
using an offset decorator (top right); the Einasto profile deformed into a spheroidal
shape by a decorator (bottom left); and a clumpy, spheroidal Einasto distribution
derived from the original profile by applying a chain of two decorators (bottom
right).

replacing a fraction of its total mass allocation by randomly placed
clumps. Other decorators relocate the original geometry’s center,
or deform a spherical geometry into a spheroidal or triaxial dis-
tribution. Multiple decorators can be chained to achieve the com-
bined effects, as illustrated in Fig. 14.

3.5. Automating the user interface

The latest version of SKIRT is based on the Qt development
framework,3 which includes a rich set of cross-platform C++
libraries and an integrated development environment (IDE) called
Qt Creator. Although we do not need its graphical user interface
(GUI) capabilities, the Qt environment offers substantial benefits
in other areas as well.4 Specifically, the Qt environment provides
run-time introspection of classes and their member functions,
assuming the appropriate declarationswere added in the code. The
Qt mechanism is a lot more advanced than the standard C++ run-
time type information (RTTI) system. For example, the Qt library
offers functions to retrieve compile-time information such as the
class inheritance hierarchy and the type of function arguments or
return values. It is also possible to invoke a function by specifying
the function name at run-time as a string, or to construct a new
class instance in a similar manner.

SKIRT relies on the Qt introspection features to automatically
construct a user interface from the C++ class declarations in
the code. To enable this process, all SimulationItem subclass
declarations must be augmented with some extra information, as
illustrated in Fig. 15. The keywords starting with Q_ are provided
by the Qt development environment. The Q_OBJECT keyword
on line 3 is required to enable the Qt introspection features for

3 The Qt project: http://qt-project.org.
4 The new features in the recent C++11 language standard cover much of the

functionality for which SKIRT uses Qt, with the exception of the introspection
capabilities discussed in this section.

this class. The Q_CLASSINFO definitions on lines 4–25 associate
an ordered list of key-value pairs with the compile-time class
information; these strings can be retrieved at run-time through the
Qt introspection system. The Q_INVOKABLE keyword on lines 28
and 35–48 enables Qt introspection for the constructor or member
function declaration following the keyword.

In SKIRT, theQ_CLASSINFO key-value pairs are used to provide
a human readable description for the class, and to define its
configurable properties (i.e. the properties that can be specified
in a ski file). The name of a property, e.g. ‘‘clumpFraction’’,
must match the name of a getter function clumpFraction()
and a setter function setClumpFraction(), declared with the
keyword Q_INVOKABLE. The type of the configurable property
is derived from the getter’s return value (double in this case).
Additional key-value pairs can specify options such as a default
value, or the type of physical quantity represented by this property,
which determines the units used or accepted in the user interface.

Fig. 16 depicts the overall organization of the code that
automatically builds the user interface from the compile-timedata.
The architecture is inspired by – but does not correspond exactly
to – the Builder and Visitor design patterns (Gamma et al., 1994).
The hierarchy creator object in the figure plays the Builder role, and
the hierarchy consumer object plays the Visitor role.

Just after program startup, the item registry is initialized with
a list of all simulation item classes. This ensures that all classes
are actually linked into the code, and it provides the starting point
for the item discovery module to implement queries about the
simulation item classes. Functions offered by this module include
for example title(itemType), descendants(itemType),
and createPropertyHandlers(item). The latter function
spawns a property handler of the appropriate type for each
property of the specified simulation item.

A property handler combines a pointer to a particular sim-
ulation item object in the hierarchy, with knowledge about the
compile-time attributes of one of the properties of the item. The
handler can be used to get or set the property value directly from
or into the target object, or to retrieve attributes such as its default
value. The handler also knows how to convert a property value into
a string for human consumption, and vice versa. There are handlers
for various property types, including Boolean, integer, enumera-
tion, floating point (with support for units), string, and pointer to
simulation item.

To create a simulation item hierarchy from a ski file, the
command line handler in the SKIRT main module enlists an
XmlHierarchyCreator object. This object uses the XML tags in
the ski file, which correspond to simulation class names and prop-
erty names, to recursively construct the corresponding simulation
items and set their property values. The code heavily relies on the
item discovery module and the property handlers spawned by it.

Similarly, a ConsoleHierarchyCreator object is used to
create a hierarchy from scratch by conducting a query and answer
session. The top of the hierarchymust be occupied by an instance of
the Simulation class, so the algorithm obtains a list of concrete
Simulation subclasses from the item discoverymodule, and asks
the user to make a choice. The question is formulated using the
titles provided in each class declaration; see lines 4–6 in Fig. 5.
The algorithm constructs an instance of the selected subclass,
and then loops over all of its configurable properties, asking the
appropriate question(s) for each property depending on its type.
Boolean, numeric and stringproperties only need a single question;
see lines 30–33 and 54–59 in Fig. 5. A property that points to
another simulation item prompts a multiple choice question to
select one of the available concrete subclasses that inherit the
appropriate type, again obtained from the item discovery module;
see lines 7–11 and 23–29 in Fig. 5. A new simulation item of the
selected type is created (and linked into the hierarchy), and the
same mechanism is recursively applied to the new object.

http://qt-project.org


P. Camps, M. Baes / Astronomy and Computing 9 (2015) 20–33 31

Fig. 15. A typical simulation item class declaration. The keywords starting with Q_ are provided by the Qt development environment, and serve to define the extra
information needed to automatically build a user interface for the features offered by this class, as explained in Section 3.5. The setup functions declared on lines 31–32 are
described in Section 3.2 and Fig. 13. The geometry-specific functions declared on lines 51–52 are described in Section 3.4.

By selecting the desired type of simulation item at each level in
the recursion, the user’s responses drive the nature of subsequent
questions in the session. While this is sufficient for most purposes,
the discovery process implements a few extra mechanisms to
support specific needs. For example, the list of available dust grids
depends on the (lack of) symmetries in the geometries selected
earlier; e.g. the user cannot select a 1Dor 2Dgrid for a 3Dgeometry.
Also, it is possible to skip questions that are deemed irrelevant
based on the response to a previous question in the same class. All
of thesemechanisms are fully data-driven from the Q_CLASSINFO
definitions in the simulation item class declarations.

Once a simulation item hierarchy is in place, the same under-
lying data can be used to reverse the process and write down the
configuration in a human-readable form. In Fig. 16 the Creator ob-
ject is now replaced by a Consumer object that recursively visits
the items in the hierarchy to produce the corresponding output,
using the information supplied by the item discovery module and
the property handlers it spawns. Most importantly, SKIRT uses the
XmlHierarchyWriter object to output a ski file (Fig. 6) after the
user configured a simulation item hierarchy through a query and
answer session (Fig. 5). A newly generated ski file is also stored
with each set of simulation results, as a standard reference, ex-



32 P. Camps, M. Baes / Astronomy and Computing 9 (2015) 20–33

Fig. 16. Schematic overviewof the code that automatically builds the user interface
from simulation item class declarations. In this diagram, the phrase simulation item
has been shortened to item. A solid arrow indicates that the source module uses the
target module. Connections starting with an inverted arrow indicate inheritance.
The relationships are described in more detail in Section 3.5.

plicitly listing the default values for properties that may have been
omitted in the input ski file. Using the LatexHierarchyWriter
object, SKIRT also writes a LATEX source file that documents the con-
figuration in an even more user-friendly format (Fig. 7).

Because of this automation, adding a new SKIRT feature is ex-
tremely straightforward. For example, to add a new geometry,
a developer would copy one of the existing geometry classes,
rename the class, adjust the implementation and documenta-
tion of the member functions, adjust the Q_CLASSINFO defi-
nitions in the class declaration, and add a single line in the
RegisterSimulationItems class to register the new geometry
to the discovery system. Except for this trivial registration require-
ment, all information about the new geometry is in a single place,
and the user interfacewill be automatically adjusted to incorporate
it.

4. Conclusions

We described the major features of SKIRT, a state-of-the-art
Monte Carlo dust radiative transfer simulation code used to study
spiral galaxies, accretion disks and other astrophysical systems. In
addition to its core capability of tracing the radiation through the
dust, SKIRT offers a large number of built-in options for configuring
all aspects of the simulation model, including spatial and spectral
distributions, dust grain characterizations, simulated detection
systems, and discretization.

Providing a proper user interface to support these complex
configuration requirements is a nontrivial undertaking.Most SKIRT
simulations run for hours or days, often on remote servers, so there
is no need for a fancy graphical user interface. Still, the typical
user is an expert astrophysicist who interacts with the SKIRT code
rather occasionally, and thus benefits greatly from a low-barrier
interface. SKIRT addresses this challenge through the combination
of awizard-like query and answer session to guide a first-time user
through the configuration process, and self-documenting XML-
based parameter files that can be easily updated in a text editor.

We further described the overall architecture of the code.
Inspired by standard software design principles and patterns, the
latest version of SKIRT has a modular implementation that can be
easilymaintained and expanded. Programming interfaces between
components are well defined and narrow. The user interface is
automatically constructed from data provided in the C++ class
declarations, allowing a single point of definition, and placing the
user interface information right next to the code implementing the
corresponding feature.

All too often, scientific codes arewrittenwithoutmuch concern
for user interface or for modular software design. This is very un-
fortunate. Scientists may not need a graphical user interface, but,
just like every one else, they do benefit from an interaction mech-
anism that hides the underlying complexity. Aswe have illustrated
in thiswork, awell-designed non-graphical user interfacemay be a
perfect fit, and can often be developed andmaintainedwith limited
resources. Similarly, adhering to proven software design principles
pays off, even for small and mid-sized projects.

The SKIRT source code is publicly available, and it has already
been applied to radiative transfer problems in various astrophysi-
cal domains. We welcome new applications, and we invite poten-
tial users and code contributors to join the SKIRT community.

Acknowledgments

This work fits in the CHARM framework (Contemporary
physical challenges in Heliospheric and AstRophysical Models), a
phase VII Interuniversity Attraction Pole (IAP) program organized
by BELSPO, the BELgian federal Science Policy Office.

SKIRT and FitSKIRT are based on theQt development framework
and use the core Qt libraries for run-time class introspection,
parallelization, string and container handling, and more. The code
further incorporates the following third-party software libraries:
CFITSIO developed by NASA’s HEASARC to output FITS files;
Voro++ described in Rycroft (2009) to help construct Voronoi dust
grids; GAlib described in Wall (1996) to implement the search
mechanism based on genetic algorithms.

The authors hereby thank all SKIRT users for their enthusiastic
feedback, includingmany ideas for improvements and additions to
the code.

References

Baes, M., Davies, J.I., Dejonghe, H., Sabatini, S., Roberts, S., Evans, R., Linder, S.M.,
Smith, R.M., de Blok, W.J.G., 2003. Radiative transfer in disc galaxies — III.
The observed kinematics of dusty disc galaxies. Mon. Not. R. Astron. Soc.
343, 1081–1094. arXiv:astro-ph/0304501, http://dx.doi.org/10.1046/j.1365-
8711.2003.06770.x.

Baes, M., Fritz, J., Gadotti, D.A., Smith, D.J.B., Dunne, L., da Cunha, E., Amblard,
A., Auld, R., Bendo, G.J., Bonfield, D., Burgarella, D., Buttiglione, S., Cava, A.,
Clements, D., Cooray, A., Dariush, A., de Zotti, G., Dye, S., Eales, S., Frayer, D.,
Gonzalez-Nuevo, J., Herranz, D., Ibar, E., Ivison, R., Lagache, G., Leeuw, L., Lopez-
Caniego, M., Jarvis, M., Maddox, S., Negrello, M., Micha™owski, M., Pascale, E.,
Pohlen, M., Rigby, E., Rodighiero, G., Samui, S., Serjeant, S., Temi, P., Thompson,
M., van der Werf, P., Verma, A., Vlahakis, C., 2010. Herschel-ATLAS: The dust
energy balance in the edge-on spiral galaxy UGC 4754. Astron. Astrophys. 518,
L39. arXiv:1005.1773, http://dx.doi.org/10.1051/0004-6361/201014644.

Baes, M., Verstappen, J., De Looze, I., Fritz, J., Saftly, W., Vidal Pérez, E.,
Stalevski, M., Valcke, S., 2011. Efficient Three-dimensional NLTE dust radiative
transfer with SKIRT. Astrophys. J. Suppl. Ser. 196, 22. arXiv:1108.5056,
http://dx.doi.org/10.1088/0067-0049/196/2/22.

Bruzual, G., Charlot, S., 2003. Stellar population synthesis at the resolution of
2003. Mon. Not. R. Astron. Soc. 344, 1000–1028. arXiv:astro-ph/0309134,
http://dx.doi.org/10.1046/j.1365-8711.2003.06897.x.

Camps, P., Baes, M., Saftly, W., 2013. Using 3D voronoi grids in radiative transfer
simulations. Astron. Astrophys. 560, A35. arXiv:1310.1854, http://dx.doi.org/
10.1051/0004-6361/201322281.

Cappellari, M., 2002. Efficient multi-Gaussian expansion of galaxies. Mon. Not. R.
Astron. Soc. 333, 400–410. arXiv:astro-ph/0201430, http://dx.doi.org/10.1046/
j.1365-8711.2002.05412.x.

Cashwell, E.D., Everett, C.J., 1959. A practical manual on the Monte Carlo method
for random walk problems. In: International Tracts in Computer Science and
Technology and Their Application. Pergamon Press, Oxford.

Ciotti, L., Bertin, G., 1999. Analytical properties of the R1/m law. Astron. Astrophys.
352, 447–451. arXiv:astro-ph/9911078.

Compiègne, M., Verstraete, L., Jones, A., Bernard, J.P., Boulanger, F., Flagey, N.,
Le Bourlot, J., Paradis, D., Ysard, N., 2011. The global dust SED: tracing the
nature and evolution of dust with DustEM. Astron. Astrophys. 525, A103.
arXiv:1010.2769, http://dx.doi.org/10.1051/0004-6361/201015292.

De Geyter, G., Baes, M., Camps, P., Fritz, J., De Looze, I., Hughes, T.M., Viaene, S.,
Gentile, G., 2014. The distribution of interstellar dust in CALIFA edge-on galaxies
via oligochromatic radiative transfer fitting. Mon. Not. R. Astron. Soc. 441,
869–885. arXiv:1403.7527, http://dx.doi.org/10.1093/mnras/stu612.

http://arxiv.org/astro-ph/0304501
http://dx.doi.org/doi:10.1046/j.1365-8711.2003.06770.x
http://dx.doi.org/doi:10.1046/j.1365-8711.2003.06770.x
http://dx.doi.org/doi:10.1046/j.1365-8711.2003.06770.x
http://arxiv.org/1005.1773
http://dx.doi.org/doi:10.1051/0004-6361/201014644
http://arxiv.org/1108.5056
http://dx.doi.org/doi:10.1088/0067-0049/196/2/22
http://arxiv.org/astro-ph/0309134
http://dx.doi.org/doi:10.1046/j.1365-8711.2003.06897.x
arXiv:1310.1854
arXiv:1310.1854
arXiv:1310.1854
http://dx.doi.org/10.1051/0004-6361/201322281
http://dx.doi.org/10.1051/0004-6361/201322281
http://dx.doi.org/10.1051/0004-6361/201322281
http://dx.doi.org/10.1051/0004-6361/201322281
http://dx.doi.org/10.1051/0004-6361/201322281
http://dx.doi.org/10.1051/0004-6361/201322281
http://dx.doi.org/10.1051/0004-6361/201322281
http://dx.doi.org/10.1051/0004-6361/201322281
arXiv:astro-ph/0201430
arXiv:astro-ph/0201430
arXiv:astro-ph/0201430
http://dx.doi.org/10.1046/j.1365-8711.2002.05412.x
http://dx.doi.org/10.1046/j.1365-8711.2002.05412.x
http://dx.doi.org/10.1046/j.1365-8711.2002.05412.x
http://dx.doi.org/10.1046/j.1365-8711.2002.05412.x
http://dx.doi.org/10.1046/j.1365-8711.2002.05412.x
http://dx.doi.org/10.1046/j.1365-8711.2002.05412.x
http://dx.doi.org/10.1046/j.1365-8711.2002.05412.x
http://dx.doi.org/10.1046/j.1365-8711.2002.05412.x
http://dx.doi.org/10.1046/j.1365-8711.2002.05412.x
http://dx.doi.org/10.1046/j.1365-8711.2002.05412.x
http://dx.doi.org/10.1046/j.1365-8711.2002.05412.x
http://refhub.elsevier.com/S2213-1337(14)00051-1/sbref7
http://arxiv.org/astro-ph/9911078
http://arxiv.org/1010.2769
http://dx.doi.org/doi:10.1051/0004-6361/201015292
http://arxiv.org/1403.7527
http://dx.doi.org/doi:10.1093/mnras/stu612


P. Camps, M. Baes / Astronomy and Computing 9 (2015) 20–33 33

De Geyter, G., Baes, M., Fritz, J., Camps, P., 2013. FitSKIRT: genetic algorithms to
automatically fit dusty galaxies with a Monte Carlo radiative transfer code.
Astron. Astrophys. 550, A74. arXiv:1212.0538, http://dx.doi.org/10.1051/0004-
6361/201220126.

De Looze, I., Baes, M., Bendo, G.J., Ciesla, L., Cortese, L., de Geyter, G., Groves, B.,
Boquien, M., Boselli, A., Brondeel, L., Cooray, A., Eales, S., Fritz, J., Galliano, F.,
Gentile, G., Gordon, K.D., Hony, S., Law, K.H., Madden, S.C., Sauvage, M., Smith,
M.W.L., Spinoglio, L., Verstappen, J., 2012a. The dust energy balance in the
edge-on spiral galaxy NGC 4565. Mon. Not. R. Astron. Soc. 427, 2797–2811.
arXiv:1209.2636, http://dx.doi.org/10.1111/j.1365-2966.2012.22045.x.

De Looze, I., Baes, M., Fritz, J., Verstappen, J., 2012b. Panchromatic radiative
transfer modelling of stars and dust in the Sombrero galaxy. Mon. Not. R.
Astron. Soc. 419, 895–903. arXiv:1109.0212, http://dx.doi.org/10.1111/j.1365-
2966.2011.19759.x.

Dehnen, W., 1993. A family of potential-density pairs for spherical galaxies and
bulges. Mon. Not. R. Astron. Soc. 265, 250.

Dejonghe, H., 1987. A completely analytical family of anisotropic Plummermodels.
Mon. Not. R. Astron. Soc. 224, 13–39.

Draine, B.T., Li, A., 2001. Infrared emission from interstellar dust. i. stochastic
heating of small grains. Astrophys. J. 551, 807–824. arXiv:astro-ph/0011318,
http://dx.doi.org/10.1086/320227.

Draine, B.T., Li, A., 2007. Infrared emission from interstellar dust. iv. the silicate-
graphite-PAH model in the post-spitzer era. Astrophys. J. 657, 810–837.
arXiv:astro-ph/0608003, http://dx.doi.org/10.1086/511055.

Einasto, J., 1965. On the construction of a compositemodel for the galaxy and on the
determination of the system of galactic parameters. Trudy Astrofizicheskogo
Instituta Alma-Ata 5, 87–100.

Emsellem, E., Monnet, G., Bacon, R., 1994. The multi-gaussian expansion method:
a tool for building realistic photometric and kinematical models of stellar
systems I. the formalism. Astron. Astrophys. 285, 723–738.

Fabian, D., Henning, T., Jäger, C., Mutschke, H., Dorschner, J., Wehrhan, O., 2001.
Steps toward interstellar silicate mineralogy. VI. dependence of crystalline
olivine IR spectra on iron content and particle shape. Astron. Astrophys. 378,
228–238. http://dx.doi.org/10.1051/0004-6361:20011196.

Fioc, M., Rocca-Volmerange, B., 1997. PEGASE: a UV to NIR spectral evolution
model of galaxies. application to the calibration of bright galaxy counts. Astron.
Astrophys. 326, 950–962. arXiv:astro-ph/9707017.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1994. Design Patterns: Elements of
Reusable Object-Oriented Software, first ed.. Addison-Wesley Professional.

Granato, G.L., Danese, L., 1994. Thick tori around active galactic nuclei — a
comparison of model predictions with observations of the infrared continuum
and silicate features. Mon. Not. R. Astron. Soc. 268, 235.

Groves, B., Dopita, M.A., Sutherland, R.S., Kewley, L.J., Fischera, J., Leitherer,
C., Brandl, B., van Breugel, W., 2008. Modeling the pan-spectral energy
distribution of starburst galaxies. iv. the controlling parameters of the
starburst SED. Astrophys. J. Suppl. Ser. 176, 438–456. arXiv:0712.1824,
http://dx.doi.org/10.1086/528711.

Jaeger, C., Molster, F.J., Dorschner, J., Henning, T., Mutschke, H., Waters,
L.B.F.M., 1998. Steps toward interstellar silicate mineralogy. IV. the crystalline
revolution. Astron. Astrophys. 339, 904–916.

Kurucz, R.L., 1993. Model atmospheres (Kurucz, 1979). VizieR Online Data Catalog
6039, 0.

Leitherer, C., Schaerer, D., Goldader, J.D., Delgado, R.M.G., Robert, C., Kune, D.F.,
de Mello, D.F., Devost, D., Heckman, T.M., 1999. Starburst99: synthesis models
for galaxies with active star formation. Astrophys. J. Suppl. Ser. 123, 3–40.
arXiv:astro-ph/9902334, http://dx.doi.org/10.1086/313233.

Lucy, L.B., 1999. Computing radiative equilibria with Monte Carlo techniques.
Astron. Astrophys. 344, 282–288.

Maraston, C., 1998. Evolutionary synthesis of stellar populations: a modular
tool. Mon. Not. R. Astron. Soc. 300, 872–892. arXiv:astro-ph/9807338,
http://dx.doi.org/10.1046/j.1365-8711.1998.01947.x.

Mathis, J.S., Rumpl, W., Nordsieck, K.H., 1977. The size distribution of interstellar
grains. Astrophys. J. 217, 425–433. http://dx.doi.org/10.1086/155591.

Min, M., Hovenier, J.W., de Koter, A., 2005. Modeling optical properties of
cosmic dust grains using a distribution of hollow spheres. Astron. Astro-
phys. 432, 909–920. arXiv:astro-ph/0503068, http://dx.doi.org/10.1051/0004-
6361:20041920.

Misiriotis, A., Kylafis, N.D., Papamastorakis, J., Xilouris, E.M., 2000. Is the exponential
distribution a good approximation of dusty galactic disks? Astron. Astrophys.
353, 117–123. arXiv:astro-ph/9912018.

Netzer, H., 1987. Quasar discs. II — a composite model for the broad-line region.
Mon. Not. R. Astron. Soc. 225, 55–72.

Niccolini, G., Woitke, P., Lopez, B., 2003. High precision Monte Carlo ra-
diative transfer in dusty media. Astron. Astrophys. 399, 703–716.
http://dx.doi.org/10.1051/0004-6361:20021761.

Plummer, H.C., 1911. On the problem of distribution in globular star clusters. Mon.
Not. R. Astron. Soc. 71, 460–470.

Retana-Montenegro, E., van Hese, E., Gentile, G., Baes, M., Frutos-Alfaro, F., 2012.
Analytical properties of Einasto darkmatter haloes. Astron. Astrophys. 540, A70.
arXiv:1202.5242, http://dx.doi.org/10.1051/0004-6361/201118543.

Rycroft, C.H., 2009. Voro++: a three-dimensional voronoi cell library in c++. Chaos
19, 041111. http://dx.doi.org/10.1063/1.3215722.

Saftly, W., Baes, M., Camps, P., 2014. Hierarchical octree and k � d tree grids for
3D radiative transfer simulations. Astron. Astrophys. 561, A77. arXiv:1311.0705,
http://dx.doi.org/10.1051/0004-6361/201322593.

Saftly, W., Camps, P., Baes, M., Gordon, K.D., Vandewoude, S., Rahimi, A.,
Stalevski, M., 2013. Using hierarchical octrees in Monte Carlo radia-
tive transfer simulations. Astron. Astrophys. 554, A10. arXiv:1304.2896,
http://dx.doi.org/10.1051/0004-6361/201220854.

Schartmann, M., Meisenheimer, K., Camenzind, M., Wolf, S., Henning, T., 2005.
Towards a physical model of dust tori in active galactic nuclei. radiative transfer
calculations for a hydrostatic torus model. Astron. Astrophys. 437, 861–881.
arXiv:astro-ph/0504105, http://dx.doi.org/10.1051/0004-6361:20042363.

Sérsic, J.L., 1963. Influence of the atmospheric and instrumental dispersion on
the brightness distribution in a galaxy. Boletin de la Asociacion Argentina de
Astronomia La Plata Argentina 6, 41.

Stalevski, M., 2012. SKIRTOR — database of modelled AGN dusty torus SEDs.
Bulgarian Astronomical Journal 18, 030000.

Stalevski, M., Fritz, J., Baes, M., Nakos, T., Popovi¢, L.É, 2012. 3D radiative transfer
modelling of the dusty tori around active galactic nuclei as a clumpy two-
phase medium. Mon. Not. R. Astron. Soc. 420, 2756–2772. arXiv:1109.1286,
http://dx.doi.org/10.1111/j.1365-2966.2011.19775.x.

Steinacker, J., Baes, M., Gordon, K.D., 2013. Three-dimensional dust radiative
transfer*. ARA&A 51, 63–104. arXiv:1303.4998, http://dx.doi.org/10.1146/
annurev-astro-082812-141042.

Suto, H., Sogawa, H., Tachibana, S., Koike, C., Karoji, H., Tsuchiyama, A., Chihara, H.,
Mizutani, K., Akedo, J., Ogiso, K., Fukui, T., Ohara, S., 2006. Low-temperature
single crystal reflection spectra of forsterite. Mon. Not. R. Astron. Soc. 370,
1599–1606. http://dx.doi.org/10.1111/j.1365-2966.2006.10594.x.

Tremaine, S., Richstone, D.O., Byun, Y.I., Dressler, A., Faber, S.M., Grillmair, C.,
Kormendy, J., Lauer, T.R., 1994. A family of models for spherical stellar systems.
AJ 107, 634–644. arXiv:astro-ph/9309044, http://dx.doi.org/10.1086/116883.

van der Kruit, P.C., 1986. Surface photometry of edge-on spiral galaxies. V — the
distribution of luminosity in the disk of the galaxy derived from the Pioneer 10
background experiment. Astron. Astrophys. 157, 230–244.

Verstappen, J., Fritz, J., Baes, M., Smith, M.W.L., Allaert, F., Bianchi, S., Blommaert,
J.A.D.L., De Geyter, G., De Looze, I., Gentile, G., Gordon, K.D., Holwerda,
B.W., Viaene, S., Xilouris, E.M., 2013. HERschel observations of edge-on
spirals (HEROES). I. Far-infrared morphology and dust mass determination.
Astron. Astrophys. 556, A54. arXiv:1305.3130 http://dx.doi.org/10.1051/0004-
6361/201220733.

Voronoi, G., 1908. Nouvelles applications des paramètres continus à la théorie de
formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres
primitifs. J. Reine Angew. Math. 134, 198–287.

Wall, M., 1996. GAlib: A C++ library of genetic algorithm components (Ph.D. thesis),
Mechanical Engineering Department, Massachusetts Institute of Technology.

Weingartner, J.C., Draine, B.T., 2001. Dust grain-size distributions and extinction in
the milky way, large magellanic cloud, and small magellanic cloud. Astrophys.
J. 548, 296–309. arXiv:astro-ph/0008146, http://dx.doi.org/10.1086/318651.

Whitney, B.A., 2011. Monte Carlo radiative transfer. Bulletin of the Astronomical
Society of India 39, 101–127. arXiv:1104.4990.

Yusef-Zadeh, F., Morris, M., White, R.L., 1984. Bipolar reflection nebulae —
Monte Carlo simulations. Astrophys. J. 278, 186–194. http://dx.doi.org/10.1086/
161780.

Zubko, V., Dwek, E., Arendt, R.G., 2004. Interstellar dust models consistent with
extinction, emission, and abundance constraints. Astrophys. J. Suppl. Ser. 152,
211–249. arXiv:astro-ph/0312641, http://dx.doi.org/10.1086/382351.

http://arxiv.org/1212.0538
http://dx.doi.org/doi:10.1051/0004-6361/201220126
http://dx.doi.org/doi:10.1051/0004-6361/201220126
http://dx.doi.org/doi:10.1051/0004-6361/201220126
http://arxiv.org/1209.2636
http://dx.doi.org/doi:10.1111/j.1365-2966.2012.22045.x
http://arxiv.org/1109.0212
http://dx.doi.org/doi:10.1111/j.1365-2966.2011.19759.x
http://dx.doi.org/doi:10.1111/j.1365-2966.2011.19759.x
http://dx.doi.org/doi:10.1111/j.1365-2966.2011.19759.x
http://refhub.elsevier.com/S2213-1337(14)00051-1/sbref14
http://refhub.elsevier.com/S2213-1337(14)00051-1/sbref15
http://arxiv.org/astro-ph/0011318
http://dx.doi.org/doi:10.1086/320227
http://arxiv.org/astro-ph/0608003
http://dx.doi.org/doi:10.1086/511055
http://refhub.elsevier.com/S2213-1337(14)00051-1/sbref18
http://refhub.elsevier.com/S2213-1337(14)00051-1/sbref19
http://dx.doi.org/doi:10.1051/0004-6361:20011196
http://arxiv.org/astro-ph/9707017
http://refhub.elsevier.com/S2213-1337(14)00051-1/sbref22
http://refhub.elsevier.com/S2213-1337(14)00051-1/sbref23
http://arxiv.org/0712.1824
http://dx.doi.org/doi:10.1086/528711
http://refhub.elsevier.com/S2213-1337(14)00051-1/sbref25
http://refhub.elsevier.com/S2213-1337(14)00051-1/sbref26
http://arxiv.org/astro-ph/9902334
http://dx.doi.org/doi:10.1086/313233
http://refhub.elsevier.com/S2213-1337(14)00051-1/sbref28
http://arxiv.org/astro-ph/9807338
http://dx.doi.org/doi:10.1046/j.1365-8711.1998.01947.x
http://dx.doi.org/doi:10.1086/155591
http://arxiv.org/astro-ph/0503068
http://dx.doi.org/doi:10.1051/0004-6361:20041920
http://dx.doi.org/doi:10.1051/0004-6361:20041920
http://dx.doi.org/doi:10.1051/0004-6361:20041920
http://arxiv.org/astro-ph/9912018
http://refhub.elsevier.com/S2213-1337(14)00051-1/sbref33
http://dx.doi.org/doi:10.1051/0004-6361:20021761
http://refhub.elsevier.com/S2213-1337(14)00051-1/sbref35
http://arxiv.org/1202.5242
http://dx.doi.org/doi:10.1051/0004-6361/201118543
http://dx.doi.org/doi:10.1063/1.3215722
http://arxiv.org/1311.0705
http://dx.doi.org/doi:10.1051/0004-6361/201322593
http://arxiv.org/1304.2896
http://dx.doi.org/doi:10.1051/0004-6361/201220854
http://arxiv.org/astro-ph/0504105
http://dx.doi.org/doi:10.1051/0004-6361:20042363
http://refhub.elsevier.com/S2213-1337(14)00051-1/sbref41
http://refhub.elsevier.com/S2213-1337(14)00051-1/sbref42
http://arxiv.org/1109.1286
http://dx.doi.org/doi:10.1111/j.1365-2966.2011.19775.x
arXiv:1303.4998
arXiv:1303.4998
arXiv:1303.4998
http://dx.doi.org/10.1146/annurev-astro-082812-141042
http://dx.doi.org/10.1146/annurev-astro-082812-141042
http://dx.doi.org/10.1146/annurev-astro-082812-141042
http://dx.doi.org/10.1146/annurev-astro-082812-141042
http://dx.doi.org/10.1146/annurev-astro-082812-141042
http://dx.doi.org/10.1146/annurev-astro-082812-141042
http://dx.doi.org/10.1146/annurev-astro-082812-141042
http://dx.doi.org/doi:10.1111/j.1365-2966.2006.10594.x
http://arxiv.org/astro-ph/9309044
http://dx.doi.org/doi:10.1086/116883
http://refhub.elsevier.com/S2213-1337(14)00051-1/sbref47
http://arxiv.org/1305.3130
http://dx.doi.org/doi:10.1051/0004-6361/201220733
http://dx.doi.org/doi:10.1051/0004-6361/201220733
http://dx.doi.org/doi:10.1051/0004-6361/201220733
http://refhub.elsevier.com/S2213-1337(14)00051-1/sbref49
http://refhub.elsevier.com/S2213-1337(14)00051-1/sbref50
http://arxiv.org/astro-ph/0008146
http://dx.doi.org/doi:10.1086/318651
http://arxiv.org/1104.4990
http://dx.doi.org/10.1086/161780
http://dx.doi.org/10.1086/161780
http://dx.doi.org/10.1086/161780
http://dx.doi.org/10.1086/161780
http://dx.doi.org/10.1086/161780
http://dx.doi.org/10.1086/161780
http://dx.doi.org/10.1086/161780
http://arxiv.org/astro-ph/0312641
http://dx.doi.org/doi:10.1086/382351

	SKIRT: An advanced dust radiative transfer code with a user-friendly architecture
	Introduction
	Features
	Overview
	Configuring a simulation
	Dust properties
	Dust grids
	User interface

	Architecture
	Simulation items
	Simulation phases
	Reducing dependencies
	Reusing components
	Automating the user interface

	Conclusions
	Acknowledgments
	References


